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Direct Reactions

• Elastic scattering – (n, n),  (p, p),  (α ,α), ...
• Inelastic Scattering -- (n, n′),  (p, p′),  (α ,α′), ...
• Knockout – (n, 2n), (n, np), (p, pn), (p, 2p), ... 
• Stripping – (d, p), (d, n), (t, d), ...
• Pickup – (p, d), (n, d), (d, t), ...
• Charge exchange – (n,p), (p,n), (t,3He), (3He, t), ...

The optical model is particularly important for the study of 
the direct (fast) contribution to the first two of these --
elastic and inelastic scattering -- on which we will 
concentrate our attention.   

However, it also plays an important role in the analysis of 
the statistical (slow) contribution to nuclear reactions. 



Conservation laws

• Charge and nucleon number, Z and A -- 56Fe (p, n) 56Co
• Energy, E – 238U(n,n ′)238U* (Ex= 0.045 MeV)
• Linear momentum,     – thresholds, recoil
• Angular momentum and parity,     and  π --
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Conservation laws are important in determining the 
basic characteristics of nuclear reactions.



Experimental Setup for Studying Scattering
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•Distance from accelerator to target and from target to detector on the 
order of a meter or more.

•Cross sectional area of beam A on the order of mm2.

•Target thickness t on the order of µm or more.

•Beam intensity – n0 (particles/s) – varies greatly, from about 105 to 
1013

•In target, atomic dimension on the order of 10-10 m and nuclear 
dimension on the order of 10-15 m.



The Experimental Cross Section

θ

Accelerator

Detector

Target 
nucleus

ϕ

( )( )0

particle intensity entering detector in solid angle  ( , )
(incident intensity/area) * (no. of target particles in beam) / tar
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•A – cross sectional area of beam

•n0 – incident beam intensity

•ρtar – target particle density

•t – target thickness 

•n(θ,ϕ)dΩ -- particle intensity (part./s) entering detector of solid angle dΩ

The differential cross section d
d

σ
Ω

has the units of  area/solid angle.



The Classical Cross Section

θ

Target

b

b+db

b – the impact parameter
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An example – Hard sphere scattering
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For 238U, R ≈ 7.5 fm and

R2/4 ≈ 14 fm2 = 140 mb.



Another example – a sticky hard sphere

Now, suppose that a fraction of the incoming particles do not scatter, but 
instead stick to the target. Let us assume, for instance, that the fraction
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(which decreases as the collision becomes more grazing) is absorbed by 
the target. 
Decomposition of the differential 
cross section:
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Only dσel/dθ is observed as scattered particles.      In the figure, α = 0.4



Integrated cross sections
We can integrate the differential cross sections over angle to obtain
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The total cross section of πR2 is what we would expect and what we 
would obtain in the simple hard sphere case.

In the general case, when there is a value of the impact parameter 
bmax such that θ(b)=0 for b>bmax, we have
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Attenuation and the total cross section
Both elastic scattering and absorption remove particles from the incident 
beam. The sum of the two – the total cross section – determines how the 
beam is attenuated as it passes through the target.
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From the definition of the 
cross section, we have in any 
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The inverse of the product ρtarσtot
defines the mean free path λ of the 
projectile through the target.

1 tar totλ ρ σ=

For our example of hard scattering 
from U-like spheres, assuming a 
density close to that of  U, we have 

1
29 30 119*6 10 *177 10 m 0.12m

238
λ

−
− − = × × ≈ 

 



Laboratory and Center-of-mass Coordinates
In order to properly treat the conservation of momentum and energy,  
scattering problems should be analyzed in the center-of-mass frame. 

The basic steps in the transformation to the center-of-mass frame and 
back to the lab one are shown below. 

mP, vPi mT mP, vP mT, vT

mP +mT, vCM

mP +mT, vCM

mT, vT’

mP, vP’mP, vPf

mT, vTf

to c.m.
scattering in c.m.

back to 
the lab



Laboratory and Center-of-mass Coordinates - Basics 

The transformation of the scattering angle does not reduce to a simple 
expression. However, its numerical calculation is straightforward.

Two fundamental quantities that result from the transformation are the 
reduced mass µ and the energy Ecm in the center-of-mass frame. In terms 
of the projectile and target masses, mP and mT and the projectile energy in 
the lab frame Elab, these are

P T

P T

m m
m m

µ =
+

and T
cm lab

P T

mE E
m m

=
+

The relative momentum in the c.m. frame is T
cm lab

P T

mp p
m m

=
+

From this point on, we will assume that we are using the center-of-mass 
frame, unless otherwise noted.



Yet another example – Coulomb scattering
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with pr the radial momentum and r 
the radial coordinate and 
When b = 0, the point of 
closest approach a0 is given by
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The orbit for repulsive Coulomb 
scattering forms a hyperbola 
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Substituting in the expression 
above, we obtain

0 tan
2
ab φ=



Coulomb scattering – the differential cross section
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The differential cross section is then
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p + 238U

Ecm=15 MeV



No integrated Coulomb cross section

p + 238U

Ecm=15 MeV

as well as from the figure, that the 
Coulomb angular distribution 
diverges at small angles.

It is obvious from its explicit form,
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This expression may be 
integrated formally,
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but is also divergent.

The long range of the Coulomb 
potential is the physical reason for the 
divergences in the Coulomb angular 
distribution and cross section. There is 
no value of the impact parameter bmax
for which scattering no longer occurs. 



Coulomb scattering from a charge distribution
In scattering calculations, the nuclear 
charge distribution is usually taken as 
that of a uniformly charged sphere of 
radius Rc=1.25*A1/3 (fm). 
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p + 238U

Ecm=15 MeV

Since the nuclear potential is short-
ranged, the scattering at large values 
of the impact parameter is Coulomb 
scattering. 

In the example given here, the 
scattering at angles below about 95°
would be pure point-like Coulomb 
scattering.

Coulomb Nuclear



The Coulomb barrier for charged particles
The Coulomb + nuclear potential forms a barrier to charged particles that 
reaches its maximum just outside the nucleus. Outside the barrier 
maximum, the potential is very similar to the Coulomb potential of  
pointlike particles. At relative energies below the Coulomb barrier or at 
distances of closest approach greater than the barrier position, the 
scattering is almost purely point-like Coulomb scattering. 

We can estimate the barrier 
position as

1/ 31.25 2.0 (fm)BR A≈ +

and its height as 
2

(MeV).P T
B

B

Z Z eV
R

≈

The barrier height VB for 
protons is shown at the 
right.



Waves and particles
We know that the wave-like nature of the scattering particles may be neglected 
only if their wavelength is much smaller than the length scale on which the 
scattering system varies. For nuclear scattering, the appropriate length scale 
would be at most the size of the nucleus and should probably be of the size of 
the nuclear surface – about 0.5 to 1.0 fm.

Comparing the wavelength of a nucleon to a typical nuclear radius, taken to be 
R = 1.25A1/3 (fm), we find that the wavelike nature must be taken into account 
over the entire energy range we will consider – up to about 20 MeV.



The quantum view of scattering
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Far from the scattering center, 
we take the scattering wave 
function to be the sum of a 
plane wave and a scattered 
outgoing spherical wave, 
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Back to the basics
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particle intensity entering detector of solid angle  ( )
(incident intensity/area) * (no. of target particles in beam) / tar
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We defined the differential cross section as 

How did we relate this with the asymptotic form of the wave function 
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•First, we assume that we have but one target nucleus,  

•Next, we note that n0/A is proportional to the plane wave current density, 

1.tartAρ =

( )( )*
0 /

2 in in in in
kn A v

i
ψ ψ ψ ψ

µ µ
∗= ∇ − ∇ = =

h h
since .ikz

in eψ =

•Finally, we write the particle intensity entering the detector in terms of the 
current density of scattered particles, 
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The partial-wave expansion
Neglecting spin for the moment, we use conservation of angular momentum 
to expand the wave function in partial waves of the orbital angular 
momentum,
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where each of the partial waves satisfies the Schrö dinger equation



More on the partial-wave expansion
Outside the scattering region defined by the 
potential U(r), the wave function yl(r) satisfies 
the same Schrö dinger equation as the plane 
wave and must be a linear combination of the 
same incoming / outgoing waves  ( ) ( ),lh kr±

r

scattering 
region

( ) ( )lh kr−

( ) ( )l lS h kr+

( )( ) ( )( ) ( ) ( ) .
2l l l l
ir h kr S h krψ − +→ −

The incoming wave must be the same as that of the plane wave, so that the 
only difference with the plane wave is in the outgoing scattered wave.
Substituting in the partial wave expansion,
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Solving the scattering problem
How do we obtain the asymptotic 
form of the wave function,

( )( ) ( )( ) ( ) ( ) ?
2l l l l
ir h kr S h krψ − +→ −

rm

yin yex

First, we fix a radius rm , called the 
matching radius, that is beyond the 
range of the interaction.
The wave function inside the 
matching radius, yin , is determined 
numerically, up to a multiplicative 
factor. Outside the matching radius, 
the wave function has the asymptotic 
form,

( )( ) ( )
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This gives us two equation in two 
unknowns, Al and Sl ,

We require continuity of the wave 
function and its derivative at the 
matching radius.
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and the derivative equation. We solve 
these for each value of l, stopping 
when Sl is sufficiently close to one.



Integrated cross sections
We obtain the elastic cross section by integrating over the differential one,
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We may calculate the absorption cross section by taking into account all of 
the flux entering and leaving the scattering region. Integrating the flux over 
a sphere whose radius tends to infinity, we have 
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The total cross section takes into account all flux lost from the incident 
plane wave, either by scattering or absorption,
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The total cross section satisfies the optical theorem,
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Low-energy neutron scattering – a simple example
Because of the Coulomb barrier, only neutral particles can reach the 
nucleus in a low-energy scattering. At extremely low energies, the 
centripetal barrier keeps all but l=0, s-waves away from the nucleus. 
Let us re-examine hard-sphere scattering in the case of low-energy 
neutron scattering.
Scattering from the hard sphere requires 
that the wave-function vanish at the 
radius of the sphere. The s-wave wave 
function is then
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The S-matrix element is 2
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The elastic cross section is 
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When kØ0, the elastic cross 
section tends to a constant,

2
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This is 4 times the classical 
cross section.



Low-energy neutron scattering -- resonances

Although the neutron-nucleus interaction is attractive, its rapid variation at 
the nuclear surface has the same effect on low energy neutrons as a hard-
sphere does– the neutrons are reflected.  Absorption also usually occurs, so
that the total cross section is larger than the elastic one. However, if both 
the elastic scattering and absorption are prompt processes, one would 
expect them to vary slowly with energy. Behavior of this type can be seen 
on the low energy side of the figure.

The cross section of the figure also 
possesses a rapidly varying resonant 
component, a feature common to all 
low-energy neutron-nucleus systems.

The resonant contribution arises from 
scattering  through a quasi-bound 
state (a compound nuclear state) of 
the neutron+nucleus. 



Direct and compound nuclear scattering
At low energies, neutron-nucleus scattering occurs either directly or 
through the qausi-bound compound nucleus states.

Direct scattering Compound nuclear scattering

20 22~ 10 10 st − −∆ − 12 20~ 10 10 st − −∆ −
In a direct scattering, the incident neutron interacts with the average field of 
the nucleus. The duration of the collision is approximately the time it takes the 
neutron to cross the nucleus.

In a compound nuclear scattering, the incident neutron loses energy upon 
colliding with the nucleus and is trapped. After a fairly long interval, enough 
energy is again concentrated on one neutron to allow it to escape. 

E t∆ ∆ ≥ h



Formalities - I 

To formally separate the direct and compound nucleu contributions, we 
assume that we can partition the space of states into two components:

P -- containing the continuum states, such as the n + 58Ni ones, and 

Q-- containing the quasi-bound states, such as the ground and excited 
states of 59Ni (and any other states that we don’t want in P ). 

We define projection operators, P and Q, onto the subspaces with the 
properties

† †

2 2

,
,

1

P P Q Q
P P Q Q

P Q

= =

= =
+ =

We then decompose the wave function into  Y = PY + QY,  where PY is the 
continuum component  and QY the quasi-bound component of the wave 
function. 



Formalities - II
Using P and Q, we decompose the Schrö dinger equation, (E - H) Y = 0,
into coupled equations for the two components of the wave function,

( )
( ) ,

PP PQ

QQ QP

E H P V Q
E H Q V P

− Ψ = Ψ

− Ψ = Ψ
and

where
0 , , etc.,PP PQH PH P PVP V PHQ PVQ≡ + ≡ =

and we have assumed that the contributions of the kinetic energy and 
the target Hamiltonian, both contained in H0, do not couple the P and Q
subspaces.
We can now solve the second equation formally, using an outgoing
wave boundary condition, to obtain QY, 

( ) 1( )QQ QPQ E H V P+ −Ψ = − Ψ

and substitute in the first of these to obtain an equation for PY alone,
( ) 1( ( ) ) 0,PP PQ QQ QPE H V E H V P+ −− − − Ψ =

and which explicitly contains the direct and compound processes we expect.  



Formalities - III
However, it will be useful for us to follow a more convoluted path here. We 
first solve for the continuum component of the wave function PY, 

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ

where the wave function ( )
cφ + satisfies the equation

( )( ) 0,PP cE H φ +− =

with an incoming wave in channel c. When the solution for PY is 
substituted in the equation for QY, the latter may be rewritten as

( )( ) ,QQ QQ c QP cE H W Q V φ +− − Ψ =
where

( ) 1( ) .QQ QP PP PQW V E H V+ −≡ −

In the last expression, we may decompose the P -subspace propagator as

where P.P. is the principal part. The open channels in the P subspace make 
a negative imaginary contribution to WQQ, leading to poles of the the wave 
function in the lower half of the complex energy plane.

( )
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PPPP

P P i E H
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Formalities - IV

( )( )QQ QQ c QP cE H W Q V φ +− − Ψ =

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ

If we solve the equation for Q-subspace component, 
1 ( )( ) ,c QQ QQ QP cQ E H W V φ− +Ψ = − −

we may substitute this in the solution for the P -subspace  component,

to immediately obtain,
( ) ( ) 1 1 ( )( ) ( ) .c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

This is a solution for the complete P -subspace wave function in terms of 
pure continuum component       and a compound nucleus component.
The prompt contribution  of VPP to the scattering is not as visible as 
before – it is contained in the  wave function        and in the P -subspace 
propagator. The compound nucleus term appears ina modified form, in 
which passage through the continuum is taken into account by the WQQ
term in the Q-subspace propagator.

( )
cφ +

( )
cφ +



Low-energy neutron scattering -- resonances
We may now take the expression for the P -subspace wave function,

( ) ( ) 1 1 ( )( ) ( ) ,c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

and apply it to s-wave neutron scattering, for which,

0 0( ) ( ),
2

ikr ikrir e S e
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ψ −= −

outside the range of the interaction. (We continue to neglect the spin of the 
neutron.)
After a bit of work, we can approximate the S-matrix of the P -subspace 
wave function in a multi-level Breit-Wigner form (among others) as
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µ µφ φ

µ µ µ

δ
ε
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where fa and fb are the initial and final channel phase shifts and gmc
characterizes the coupling of the compound state m to the continuum 
channel c, with 
The phase shifts vary slowly with the energy while the resonance sum 
varies quickly.

2 .cc
gµ µΓ = ∑



Low-energy neutron scattering – cross sections

( )2

2 1 Re .tot el abs lS
k
πσ σ σ= + = −

2
0,2 1 ,el aaS

k
πσ = − ( )2

0,2 1 ,abs aaS
k
πσ = −

The absorption cross section is non-zero when non-elastic channels, 
such as g emission or fission, remove flux from the compound 
nucleus. The cross sections for these take the form

The cross sections directly related to the elastic S-matrix element are 
the elastic, absorption and total ones, 

and

2
0,2 .ac caS

k
πσ =

The total flux is conserved,so that

and .abs ca tot el abs
c a

σ σ σ σ σ
≠

= = +∑
The elastic cross section is well described at energies below the 
resonance region by a hard-sphere cross section of  4p R 2.



From resonances to fluctuations
At low energies, the resonance expression for the l=0 S-matrix, and for 
higher partial waves as well, permits the separation of the direct and 
compound contributions to cross sections. However. the density of 
compound nucleus states increases rapidly with energy so that the 
resonances overlap and can no longer be distinguished. The cross section 
fluctuates rapidly, as in the figure, but the fluctuations, called Ericson 
fluctuations, cannot be attributed to individual resonances.

It is in this context that the 
optical model plays a 
fundamental role. The objective 
of the model is to describe just 
the prompt, direct reactions in a 
collision. To this end, one 
defines the optical potential as 
the potential that furnishes the 
energy-averaged (short time) 
scattering amplitudes.



Energy averaging and the optical potential
To obtain the optical potential, we begin by calculating the energy average 
of the P -subspace wave function, which depends linearly on the scattering 
amplitude. After rewriting the wave function in the form of an equation, 
we will obtain an expression for the optical potential.

The energy average of the P -subspace wave function may be written directly,
( ) ( ) 1 ( )( ) 1/ .c c PP PQ QQ QP cP E H V e Vφ φ+ + − +Ψ = + −

.QQ QQ QQe E H W= − −
since the only rapidly varying quantity in the wave function is

By multiplying by (E-HPP) as well as solving formally for       and 
substituting, we can write a Schrö dinger-like equation for ‚PYcÚ,
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The optical potential is then 

1

1
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Performing the energy average
To conclude the derivation of the optical potential, we must calculate 
‚1/eQQÚ. Although there are many ways to perform the average, the 
simplest is to average over a normalized Lorentzian density,

0
0

0

( , )1/ QQ
QQ QQ

E Ee dE
E H W

ρ
=

− −∫
where

0 2 2
0

1( , ) .
2 ( ) / 4

E E
E E

ρ
π
∆

=
− + ∆

Assuming that 1/eQQ has no poles in the upper half of the complex E 
plane (causality), we can perform the integral by closing the contour in 
the UHP to find

11/ ( / 2 )QQ QQ QQe E i H W −= + ∆ − −

so that 1
/ 2opt PP PQ QP

QQ

U V V V
E H i

= +
− + ∆

The optical potential is energy-dependent, non-local and complex. Its 
imaginary part is negative, resulting in a potential that is absorptive. The 
absorption accounts for the flux that is lost to the Q-subspace.



Low-energy neutron scattering – optical potential
One finds for the low-energy neutron s-wave S-matrix element 2

0 ,ikS e ρ−=
where r is a complex scattering length.

We have, as kØ0,

n + 238U

24 4 ,el
d R
d

σσ π π= →
Ω

R ρ= is called the scattering
radius. 

The resulting elastic cross section tends to a constant as the energy tends to 
zero, while the absorption and total cross sections diverge at small energy 
as 1/k.

( )4 Im 1 2 Im ,abs k
k
πσ ρ ρ→ − +

.tot el absσ σ σ= +

and



Experimental significance
An optical model calculation furnishes a wave function  and a scattering  
amplitude that should describe the prompt part of the scattering. The S-
matrix that results is an energy-averaged one. We could write the S-
matrix before averaging as 

0 0 0, 0, 0 0with so tha, .t, 0fluc flucS S S S= + = =S S

The energy-averaged total cross-section is just the optical one,

( ) ( )0 02 2

2 21 Re 1 Re ,tot S
k k
π πσ = − = −S

since it is linear in the S-matrix.
However, the energy-averaged elastic and absorption cross sections are

22 2
0 0 0,2 2 21 1el flucS S

k k k
π π πσ = − = − +S

( ) 22 2
0 0 0,2 2 21 1 .abs flucS S

k k k
π π πσ = − = − −S

and

Only the total optical cross section may be compared with the 
experimental one.



The s-wave strength function
If we average the resonance expression for the elastic S-matrix,

2 2
0, 1 , ,

/ 2
wherea ai

aa a aS e i g
E i

µφ
µ µ

µ µ µε
−

 Γ
= − Γ =  − + Γ 

∑
over the Lorentzian that was used to obtain the optical potential, we find

2 2
0, 1 1 ,a aai i n
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E i D

µφ φ
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π
ε

− −
 Γ  Γ

= − ≈ −    − + ∆   
∑

where       is the average neutron width and D the average s-wave resonance 
spacing. Since the average is the same as that of the optical potential, the 
average S-matrix should be the same as the optical one. In particular, we 
expect

nΓ

2
01 2 nS

D
π

Γ
− ≈

when      << D. We define the strength function as 

( )
1/ 2 1/ 2

20 0
0 0

1 1
2

n

cm cm

E Es S
D E Eπ

   Γ
= ≈ −   

   

where E0 is usually taken to be 1 eV. The factor of           cancels the 
energy dependence of the neutron partial width.

cmE

nΓ



Strength functions and SPRT
The s-wave strength function may be obtained from experimental data, 
either from measurements of the total cross section or from averages over 
resonances. When compared to optical model calculations, the agreement 
is quite good. The two peaks in the s-wave strength function occur in the 
regions where the 3s1/2 and 4s1/2  neutron shell-model orbitals  are 
becoming bound and have a large overlap with continuum states.

A p-wave strength function 
may also be associated with 
p-wave absorption and 
extracted from data. The two 
strength functions, together 
with the scattering radius and 
the total cross section,  may 
be used to fit optical model 
parameters at low energy. 
This is known as the SPRT 
method.



Higher partial waves

n + 238U

n + 238UThe angular distribution for a pure s-
wave is obviously constant. As the 
energy increases, more partial waves 
participate in the scattering and the 
angular distribution becomes more 
forward peaked.  

An important auxiliary quantity 
determined in an optical model 
calculation is the transmission 
coefficient,                       which is used 
to calculate the fluctuating contribution 
to the cross sections. The transmission 
coefficient measures the fraction of flux 
that is absorbed from each partial wave.

21 ,l lT S= −

The highest partial wave 
contributing to the scattering may be 
crudely estimated as lmaxºkR. For 
n+238U at an energy of 1 MeV, this 
gives lmaxº1.6.



The partial wave expansion for charged particles
The difference between the partial wave expansion for neutral and charged 
particles is the long-range Coulomb potential. Rather than consider a plane 
wave, one must consider a Coulomb wave,which contains an additional 
logarithmic phase. The wave function may be expanded as 

0

1 (2 1) ( ) (cos ),lil
c l l

l
l i e F kr P

kr
σψ θ

∞

=

= +∑
with

( )( ) ( )( ) ( ) ( )
2

l li i
l l l

iF kr e H kr e H krσ σ− − += −

( ) ( )ln 2( )
0wit( ) .hl i kr kr

l rH kr i e kaη η± −±
→∞→ =∓

where the sl are the Coulomb phase shifts and

One may proceed as before to extract the scattering amplitude as

( )2

0

1( ) ( ) (2 1) 1 (cos ).
2
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C l l

l
f f l e S P

ik
σθ θ θ

∞

=

= + + −∑
where

( )2
02( ) exp ln sin / 2 2 .

2 sin / 2Cf i i
k

ηθ η θ σ
θ

 = − − + 

The quantum Coulomb scattering cross section is identical to the classical one.



Proton scattering

p + 58Ni

p + 58Ni
The angular distribution for proton 
scattering on 58Ni at 1 MeV is a 
pure Coulomb one. Even at 4 
MeV, the difference from the pure 
Coulomb angular distribution 
appears small. At 10 MeV, 
substantial deviations have 
appeared.

Nuclear effects are more easily 
distinguished in the transmission 
coefficients. They support the 
observation that the scattering is 
purely Coulomb at 1 MeV. 
However, at 4 MeV, 40% of the s-
wave and about 10% of the p- and 
d-wave have been absorbed. 
Angular momenta through l=4 
contribute at 10 MeV. 



The optical potential
We obtained a formal expression for the optical potential,

1
/ 2opt PP PQ QP

QQ

U V V V
E H i

= +
− + ∆

by rewriting the energy-average of the continuum component of the wave 
function as an equation for itself. We observed that this potential is 
complex, non-local and energy-dependent.

A good deal of work has been done to calculate the optical potential from 
first principles. These potentials are usually non-local, except at very high 
energies, which tends to complicate their use.

Phenomenological optical potentials are normally used to fit and compare 
with experimental data. These potentials are usually taken to be local. 
However, their geometrical characteristics and the general trend of their 
energy dependence are quite similar to those of microscopic potentials. 
They can furnish insight into what one should expect of a microscopic 
potential. After all, both potentials are trying to describe the same physical 
processes. 



The phenomenological optical potential
Empirical optical potentials are determined by adjusting a limited set of 
parameters to the data on hand. Over the years, a standard form of the 
potential has evolved, which permits the parametrization of the scattering 
of most light particles (n, p, d, t, 3He, or  a) from most nuclei. This is
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( ) ( )
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( ) ( ) ,
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U r V r
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r r

a Coulomb term,
volume terms,
surface terms,
spin-orbit terms

where the spin-orbit constant is  ( )2 2/ 2 fm .sod m cπ= ≈h

The Coulomb potential is usually taken to be the interaction of a point 
charge with a uniformly-charged sphere of radius Rc=1.25*A1/3 (fm), 

( )
2

2

2

3 ( / )
2( )

P T
C C

C
C

P T
C

Z Z e r R r R
RV r

Z Z e r R
r


− <= 

 >



The volume terms of the optical potential
The volume terms are usually taken 
to be of Wood-Saxon form,

[ ]
1( ) , ,

1 exp ( ) /i
i i

f r i V W
r R a

= =
+ −

The real volume potential reflects the average interaction of the projectile with 
the nucleons of the target. The strength of the real volume potential is roughly 
proportional to the mass of the projectile and and decreases with energy, in 
agreement with nuclear mean field calculations.

The imaginary volume potential takes into account the loss of projectile flux 
due to collisions with the nucleons in the target. It is zero at low energy, below 
the threshold for single-particle excitations, and increases with energy as the 
phase space of single-particle modes increases. 

where Ri and ai are the radii and 
diffusivities of the two terms.

The Wood-Saxon form is quite similar 
to the nucleon density of a saturated 
nucleus (A>30).



The surface terms of the optical potential
The surface terms are usually taken to be either the derivative of a Wood-
Saxon, [ ]

[ ]( )2

exp ( ) /
( ) 4 ( ) 4 , ,

1 exp ( ) /
i i

i i i

i i

r R adg r a f r i V W
dr r R a

−
= − = =

+ −
or a Gaussian,

2 2( ) exp ( ) / , .i i ig r r R a i V W = − = 

The imaginary surface term takes into 
account the absorption due to the 
excitation of low-energy collective 
modes, which have their couplings 
concentrated on the surface. 

A real surface term can result from the 
same coupling but can also be 
explained using a dispersion relation.

The two are practically indistinguishable when aG=2.21 aWS.



The spin-orbit terms of the optical potential
The spin-orbit terms are taken to have a Thomas form factor,

[ ]
[ ]( )2

exp ( ) /1 1( ) ( ) , .
1 exp ( ) /

i i
i i

i i i

r R adh r f r i V W
r dr ra r R a

−
= − = =

+ −

The spin-orbit interaction also acts between the bound states of a nucleus, 
where it increases the binding of the j=l + ½  levels and decreases the 
binding of the j=l-1/2 levels.

The Thomas form factor and the spin-
orbit potential itself are obtained (for 
spin ½ ) when the Dirac equation with 
Wood-Saxon potentials is reduced to 
an equivalent Schrö dinger equation. 
The spin-orbit interaction is thus 
another manifestation of the volume 
interaction of the projectile with the 
nucleons of the target. 



Optical potential parameters
The phenomenological optical potential is thus parametrized in terms of a 
set of potential strengths and corresponding geometrical parameters. 

The best modern reference for optical potential parameters is the Reference 
Input Parameter Library (RIPL), available both online and in CD from the 
Internationational Atomic Energy Agency.

For nucleons, typical values of the potential strengths are
(45 55) MeV - (0.2 0.3) ,
(2 7) MeV - (0.1 0.3) 8 10 MeV,
(4 10) MeV.

s

so

V E
W E E
V

≈ − −
≈ − − < −
≈ −

Above 8-10 MeV, Ws is usually constant or slightly decreasing. Vs and Wso
can normally be taken to be zero as can W below about 10 MeV. Above 
about 10 MeV, W is constant or slightly increasing.

The radii Ri take on values                  with the reduced radii in the range 
riº1.2 – 1.3 fm. The diffusivities are normally in the range ai º0.4 – 0.7 fm.

Fairly wide ranges of the parameters V, RV, Ws and as result in equally good 
fits if         and Wsas remain constant. These are potential ambiguities.

1/ 3
i i TR r A=

2
VVR



The microscopic optical potential -- I

+ + ...+

Microscopic optical potentials attempt to 
describe the projectile-target interaction in 
terms of  nucleon-nucleon interactions, such as 
these representing the first few terms in 
nucleon-nucleus interaction.

A systematic method for summing the most 
important terms is provided by the self-
consistent Brueckner approximation. The 
Brueckner G-matrix is calculated by summing 
repeated interactions, taking into account 
effects of the nuclear medium.This calculation 
is usually performed in infinite nuclear matter, 
for simplicity.
The G-matrix is then folded over the target 
nucleon density to obtain the optical potential 
U. Self-consistency requires that the target 
density be obtained with the same potential.

= +G G

= + + + ...G

G G+Uopt =



The microscopic optical potential -- II

G G+Uopt =

=     Ud +     Uex

The microscopic optical potential possesses a direct 
term and an exchange term. The exchange term is 
non-local and both are energy-dependent. The 
exchange term is often approximated as a local term 
with an additional energy-dependence (JLM). 
At high energy, the microscopic 
optical potential reduces to the 
impulse approximation potential, 
obtained by folding the two-nucleon 
t-matrix with the target density --
the tr approximation.

The figure compares experimental 
reaction cross sections for 12C, 28Si, 
56Fe 90Zr and 208Pb, in ascending 
order, with microscopic optical 
model calculations by Amos and 
Karataglidis, nucl-th/0202050.



The microscopic potential at low energy

1 .
/ 2opt PP PQ QP
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Formally, we derived the optical potential by considering the scattering in a 
subspace P of the space of states and then energy-averaged to smooth the 
dependence on the remaining subspace  of states Q. We obtained

In the microscopic optical potential, the division into P and Qsubspaces is 
no longer transparent. It is there, contained in the G-matrix, but in terms of 
nucleon-nucleon scattering rather than nucleon-nucleus scattering. We 
would thus expect that the microscopic potential does not take into account 
the collective effects that are often important at low energies. We might 
consider decomposing the optical potential at low energies  (using a local 
approximation) as

( , ) ( , ) ( , ),opt sp collU r E U r E U r E= +

where Usp is the microscopic potential and Ucoll is the remainder, which we 
might attribute to collective effects. At low energies, Usp(r,E)ºVHF(r,E). At 
high energy, we expect that Ucoll(r,E)Ø0.



Dispersion relations 

*E Re E´

Im E´

( , ')
P.P. ' ( , )

'
coll

coll
U r EdE i U r E

E E
π=

−∫

Because of causality, the optical potential should 
have no singularities in the upper half-energy plane. 
We may then write ( , ')

' 0,
'

collU r EdE
E E

=
−∫Ñ

which we may rewrite as 

Separating Ucoll into its real and imaginary 
parts, Ucoll = DV + i W, we have

1 ( , ')( , ) P.P. '
'

W r EV r E dE
E Eπ

∆ =
−∫

At low energy,  Uopt ºVHF+ DV + i W.

The effect of DV is seen as a strengthening 
in the real part of the optical potential at 
low energy relative to the linear 
dependence expected of VHF. (Finlay and Petler, Opt. Model 1986)

208Pb, 209Bi



where l and j are the orbital and total angular momenta and |snÚ is a spin 
eigenvector. In the expansion, sl is the Coulomb phase shift,     denotes the 
angular variables and     the direction of the incident momentum. The spin-
angular functions are vectors with components labeled by n, the projection 
of the spin. 

Because of angular momentum and parity conservation, the equations for 
the            uncouple. They can then be solved as before and the asymptotic 
behavior of the resulting wave function analyzed to extract the scattering 
amplitude.

The single-channel optical model -- spin
Because of the spin-orbit interaction, a rigorous treatment of neutron or proton 
scattering requires that the spin be included in the calculation. To do this, one 
performs the  partial wave expansion of the scattering wave function (spin s) as
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The scattering amplitude -- spin

( )2 †4 ˆˆ( ) ( ) 1 ( ) ( ),
2

li j jn jn
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f f e S r k

ik
σπθ θ= + −∑1 Y Y

The scattering amplitude

with fC(q ) the Coulomb scattering amplitude, is now a matrix, fnn (́q), 
with matrix elements labeled by the spin projections n and n .́ 

For particles of spin ½ , ( ) ( )
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( ) ( )
A B

f
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θ θ
θ

θ θ
 
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ik
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l
B e S S P

ik
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The amplitude A corresponds to scattering in which the spin projection 
remains constant. The amplitude B describes scattering in which the spin 
projection flips.

A: B:



Angular distributions -- spin
The differential elastic cross section for an unpolarized incident beam is 
obtained  by averaging the squared magnitudes of the scattering amplitudes 
over the initial values of the projectile spin and summing over the final 
ones,

21 ( ) .
2 1

d f
d s ν ν

νν

σ θ′
′

=
Ω + ∑

For spin-1/2 particles, this becomes

2 2( ) ( ) 1/ 2.d A B s
d

σ θ θ= + =
Ω

For particles of spin ½  and greater, vector and possibly tensor spin 
observables may be defined in terms of other combinations of the
amplitudes. For particles of spin ½ , the vector polarization P(q) and the 
spin rotation function Q(q) are defined as 

* *
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d d d d

θ θ θ θθ θ
σ σ

= =
Ω Ω



Polarization in 
neutron scattering

( )ˆ1 ( ) ,pol
pol

d d P n P
d d
σ σ θ= + ⋅
Ω Ω

r

The spin-summed  angular 
distribution due to scattering of  a 
polarized beam may be written as 

where is a vector defining the 
intitial polarization and     is the 
normal to the scattering plane.

The spin-orbit interaction is fairly 
strong. Its effects on the 
polarization become visible as soon 
as partial waves above the s-wave 
contribute to the scattering.

polP
r

n̂



Integrated cross sections -- spin
As before, the absorption cross section may be related to flux lost from the 
asymptotic probability current density,
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v s k
πσ = − ⋅ = + −

+ ∑∫
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Ñ

For charged particles, the Coulomb interaction leads to an infinite elastic 
cross section. For neutrons, integration of the differential cross section 
yields 2

2 (2 1) 1 .
2

j
el l
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dd j S
d k

σ πσ = Ω = + −
Ω ∑∫

For neutron, the total cross section may be defined as the sum of  the 
elastic and absorption ones,

( )2 (2 1) 1 Re .j
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j S

k
πσ σ σ

∞

= + = + −∑

The fraction of the flux lost from each partial wave may also be
expressed as a transmission coefficient,

2
1 .j j

l lT S= −



Comparison with 
experiment

We recall that, being linear in the 
scattering amplitude, the total optical 
cross section may be compare to the 
energy-averaged experimental one. We 
see that reasonable agreement with the 
data is possible here.

We also verified that the partial wave 
contributions to the energy-averaged 
elastic cross section, 

,

22

, 2 21
l fluc

j j j
l el lS S

k k
π πσ = − +

exceed the shape elastic (optical) ones 
due to contributions from fluctuations. 
We observe that the fluctuation 
contributions are negligible only at 
higher energies.



Inelastic scattering

The single-channel optical model describes the scattering in the elastic 
channel alone. It is often called the spherical optical model because, in it, 
the target may be considered to be spherically symmetric since its 
structure is never introduced.

Direct reactions that transfer energy as well as momentum are often quite 
important. Such inelastic scatterings, in the case of the inert projectiles 
that we are considering (n, p,  a, d, etc.), leave the target in an excited 
state and diminish the asymptotic kinetic energy of the projectile. To 
describe inelastic scattering, we must introduce  at least the basic 
characteristics of the ground and excites states of the target. 

The nature of the ground and excited states of the target nucleus are also  
important factors in detemining the degree to which the target is excited in 
a collision. The states that are most strongly excited in collisions are those 
that involve collective movement, vibrations and rotations, in particular. 



Vibrations
Every nucleus possesses collective vibrational modes of excitation. Their 
importance in low-energy scattering, however, varies greatly from nucleus to 
nucleus.

Vibrational modes may be understood qualitatively as shape oscillations of 
intermixed but incompressible neutron and proton fluids about their 
equilibrium configuration. The protons and neutrons may oscillate in phase 
(isoscalar) or out of phase (isovector) with one another.

The simplest modes are:

Isoscalar Isovector

l=1- – dipole               CM displacement

l=2+ -- quadrupole               

Octupole (l=3-) modes are also common and many others have been observed.



Vibrations – Excitation Energies and states
Isovector vibrations occur ar higher energies than the corresponding isoscalar 
ones, because of the strong nuclear attraction between protons and neutrons.

Negative parity vibrational modes tend to vary smoothly in energy as a function 
of the mass number. Positive parity vibrational modes, vary greatly with the 
mass and depend on the shell structure. The variations in the excitation energies 
are explained in a microscopic treatment in terms of particle-hole pairs: 

Negative parity – particle-hole pairs from two adjacent shells,
Positive parity – particle-hole pairs from same shell, when possible,

otherwise from one shell and from second higher shell.
Ex.: 208Pb – the first excited state is the 3- octupole state. 

Vibrations are bosonic modes. Multiple excitations are possible but must form 
symmetric states. Thus an excited state consisting of two l=2+ quadrupole 
phonons on a I=0+ ground state may have  I=0+,2+, 4+.  

The states may be written in terms of creation operators        as
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Vibrations – An example

I=0+

I=2+

I=0+,2+, 4+

0xE =

xE ω= h

2xE ω= hIn the simplest case of non-interacting phonons, 
the spectrum is harmonic. The ideal spectrum of 
the first few excited quadrupole states on an 
I=0+ ground state are shown here.

We compare this with the first few excited 
states of 58Ni (energies in MeV).

Ideal

I=0+

I=2+

I=4+,2+,1+,0+

0xE =

1.45xE =

2.46, 2.78,2.90, 2.94xE =

58Ni

The three states that can be interpreted as 
two-phonon quadrupole states occur close 
in energy to twice the energy of the one-
phonon state and have the correct spin and 
parity The 1+ state, however, does not.

Another indicator of the relationship between the states are the branching ratios 
for their EM decay. The two-phonon 4+ and 2+ states decay almost exclusively to 
the one-phonon 2+ state, as does the 1+ state. The two-phonon 0+ state decays to 
various of the others, but principally to the 1+ state.



Rotations
Many nuclei in the regions between closed shells possess a 
statically deformed ground state with axial symmetry.  The 
lowest energy excited states of  these nuclei are usually 
rotations about an axis perpendicular to the symmetry axis.

We can approximate the surface of a deformed nucleus as

0 0( ') 1 ( ') ,R R Yλ λ
λ

θ β θ 
= + 

 
∑

where the bl, l=2, 4, 6,... are deformation parameters and the angle q´ is 
taken with respect to the symmetry axis of the nucleus. The most important 
of the deformation parameters is b2. 

When b2 <0, the nucleus is oblate. When b2 >0, the nucleus is prolate.

The wave function of a rotational state can be written in terms of an intrinsic 
wave function cK and the rotation matrices        as
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where K is the projection of the intrinsic ang. momentum c on the symmetry axis.
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Rotations – An example
A rotational band built on a 0+ ground state consists of  states with I=0+, 2+, 4+, 
6+, ...  A rotational band built on a ground state with spin I0∫0 consists of states 
with J=I0, I0+1, I0+2, I0+3, ... 

The excitation energy of a state with angular momentum I is

[ ]
2

0 0( ) ( 1) ( 1) .
2xE I I I I I= + − +
I

h

The nucleus 238U possesses static deformations of b2=0.198 and b4=0.057. The 
rotational band based on its 0+ ground state consists of excited states with
I=2+ Ex=0.045 MeV = 0.0075 MeV * 2*3,
I=4+ Ex=0.148 MeV = 0.0074 MeV * 4*5,
I=6+ Ex=0.307 MeV = 0.0073 MeV * 6*7,
I=8+ Ex=0.518 MeV = 0.0072 MeV * 8*9,

Ç
I=28+ Ex=4.516 MeV = 0.0056 MeV *28*29, and possibly more.

The electromagnetic decay of each of these states occurs exclusively to the next 
state of lower energy in the chain.



The generalized optical potential -- vibrations
The simplest manner of extending the optical potential to take into account 
either static deformation or the dynamical deformation of a vibrational mode  
is to modify the radii of the terms in the potential accordingly.

In its simplest form, a vibrational mode of a nucleus may be taken as a shape 
oscillation about a spherical equilibrium mode. The radii of the terms in the 
potential may be expressed as 

0 ˆ1 ( ) ,i iR R a Y rλµ λµ
λµ

 
= + 

 
∑ ( )† ( ) ,

2 1
a b bµλ

λµ λµ λ µ
β
λ −= + −

+
with

where       and       are the phonon creation/annihilation operators and the bl

are the amplitudes of the shape oscillations.

We may then expand the optical potential in the creation/annihilation 
operators as

†bλµ bλµ

0 ˆ( ) ( ) ( ).opt
opt opt i

i i

U
U r U r R a Y r

R λµ λµ
λµ

∂
= +

∂∑ ∑r

The potential is sometimes expanded to second order in the operators. The 
second order potential permits single-step transitions to two-phonon states.



The generalized optical potential -- rotations
The optical potential for a deformed nucleus may also be obtained by 
expanding the deformed potential radii 

0 0( ') 1 ( ') ,i iR R Yλ λ
λ

θ β θ 
= + 

 
∑

in a Taylor series in the deformation parameters, bl. However, when the 
deformations are large, it is better to expand it directly in multipoles as 

0 0witˆ ˆ( , ') ( ) ( ') ( ) ' ( , ') ( ').hopt optU r r U r Y r U r d U r Yλ λ λ λ
λ

θ θ= = Ω∑ ∫
The moments Ulm(r), with m∫0, vanish in the body-fixed frame. The 
body-fixed angles     are related to the space fixed ones    through the 
collective angular coordinates of the nucleus,      . This implies that

*
0 0ˆ ˆ ˆ ˆ ˆ( ') ( ) ( ) ( ) ( ).ínt íntY r Y r D r Y r Y rλ

λ λµ µ λµ λµ
µ µ

= =∑ ∑
The optical potential in the rotational model may thus be expanded as 

*
int intˆ ˆ ˆ( , ) ( ) ( ) ( ).optU r r U r Y r Y rλ λµ λµ

λµ

= ∑r

The generalized optical potential, in both models, couples the relative motion 
to the internal degrees of freedom of the target.

r̂ˆ 'r
intr̂



Coupled-channels partial wave expansion
To properly take into account the angular momentum of the target, the spin-
angular functions must be coupled to the target states to form target-spin-
angular functions of total angular momentum J and projection M,
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J
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The functions also depend on the internal target coordinates. In
terms of these, the scattering wave function may be expanded in a 
sum over both the excited states and angular momenta,
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The most significant difference here is that the partial wave functions depend on 
two sets of indices, l,  j, c and l ,́  j ,́ c .́ For a particle with spin in the spherical 
optical model, we have two indices l and l ,́ in principal, for each value of the 
total angular momentum j. For particles of spin 0 or spin ½ , parity conservation 
reduces the two, l and l ,́ to have the same value. The partial wave functions and 
S-matrix elements are then uncoupled scalar quantities. Here, we should look 
more carefully to see how the channels could be coupled. 



Coupled partial waves

l
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sr
j
r
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r
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r

To analyze the partial waves that can couple, we must consider 
all possible combinations of the orbital angular momentum l, 
the spin s, the channel angular momentum j and the target spins 
Ic that can sum to a given value J of the total angular 
momentum and possess  a given value of the parity, p. 
Consider a simple example: a spin-½  nucleon incident on a 0+ ground state 
that can be excited to a 2+ target state. We have
For the Jp=1/2+ channel:

0+ ground state: l=0, j=1/2
2+ excited state: l=2, j=3/2

l=2, j=5/2

For the Jp=1/2- channel:
0+ ground state: l=1, j=1/2
2+ excited state: l=1, j=3/2

l=3, j=5/2
For the Jp=5/2+ channel:

0+ ground state: l=2, j=5/2
2+ excited state: l=0, j=1/2

l=2, j=3/2
l=2, j=5/2
l=4, j=7/2
l=4, j=9/2

For the Jp=5/2- channel:
0+ ground state: l=3, j=5/2
2+ excited state: l=1, j=1/2

l=1, j=3/2
l=3, j=5/2
l=3, j=7/2
l=5, j=9/2

3 
coupled
channels

6 
coupled
channels



The coupled equations
When the partial-wave expansion is substituted in the Schrö dinger equation, 
it reduces to a set of coupled equations for each value of Jp,

2 2
2
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where the potential matrix elements are those of the target-spin-angular 
functions, †
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The matrix elements are independent of M due to rotational invariance and 
symmetric under interchange of indices, if the system is time-reversal invariant.

If we group the matrix elements of the coupled equations into matrices,
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we may write the coupled equations for each value of Jp as a matrix equation
2
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The scattering amplitude and S-matrix
We may also introduce the target-spin angular functions into the matrix 
representation of the partial wave decomposition, but as a vector rather than as 
a matrix, ˆ ˆ ˆ( ) .JM

lsjc r r lsjcJM r JM= →Y
The wave function may then be written as 

14 ˆˆ ( ) .J JL i
J J

JM
r JM i r e K JM k

r
σπ −Ψ = Ψ∑

Conceptually, obtaining the scattering amplitude is now straightforward. As 
before, the wave function must be integrated numerically from the origin to 
beyond the range of the nuclear potential. There, it is matched to either 
Coulomb or free waves (in matrix form),
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Substituting this expression in the partial wave expansion and analyzing its 
asymptotic form, we obtain the scattering amplitude,
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The matrix elements of the scattering amplitude,                , are labeled by 
the target state and the projections of the projectile and target spins.
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f
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Flux normalization
The cross section can be defined in terms of a ratio of current densities or 
fluxes. When energy is removed from the relative motion, as in inelastic 
scattering, the relative velocity and the corresponding flux are reduced. To  
correct for this, we must multiply the scattering amplitude by a factor of 

.f i f iv v k k=

We may do this by defining first the normalized S-matrix, 
1/ 2 1/ 2 ,J J J JS K S K −=

and then defining the normalized scattering amplitude in its terms as 
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where the Coulomb amplitude fC(q) is now a matrix, diagonal in the spin 
projections and state indices, but different for each of the target states due to 
the difference in the relative motion..



Angular distributions and cross sections
The angular distributions for an unpolarized beam and target are obtained by 
averaging the squared amplitude over the initial spin projections and summing 
over the final ones. Denoting the initial state by c0 and its spin by I0, the 
differential elastic cross section is 
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The differential inelastic cross section to an excited state c with spin Ic is
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For neutrons, the integrated elastic cross section is
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For charged or neutral particles, the inelastic cross  section to an excited 
state c with spin Ic is
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Absorption cross sections
Just as in the spherical optical model, we may associate an elastic absorption 
cross section sr with the flux lost from the elastic channel,
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with      being the ground-state component of the wave function. This cross 
section includes the flux lost to inelastic scattering as well as absorption. 

We may also define a total absorption cross section sabs (which is smaller 
than the elastic one) as the flux lost from all of the channels together,
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with Yc the component of the wave function of state c. 

We have for the inelastic channels
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That is, the elastic absorption cross section is the sum of the total absorption 
cross section and the inelastic excitation cross sections.



Cross sections and transmission coefficients
Uing the asymptotic form of the wave function, the elastic absorption cross  
section may be calculated,
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It is a sum of the contributions of the elastic S-matrix elements.

The total absorption cross  section may be reduced to a similar form,
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where we have introduced the coupled-channel transmission coefficients, 
which in matrix form are †1 .J J J JT S S= −
For neutrons, we may define the total cross section as the sum of the elastic 
and the elastic absorption ones,
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The total cross section measures the flux lost from the incident plane wave. It 
takes into account scattering of any type.



An example – Rotational excitation of 238U
Let us consider excitation of the ground state rotational band of 238U through 
the 8+ state. For J=1/2, 1+2+2+2+2=9 coupled channels are involved. For 
large values of the total angular momentum, we have 1+5+9+13+17=45 
coupled channels in each partial wave.

The cross sections of the first excited states increase rapidly above their 
thresholds. The cross sections of the more highly excited states increase 
more smoothly.

All of the cross sections 
decrease very slowly at high 
energy. 

The high energy values of the 
cross sections decrease by  a 
factor of about 5 for each state  
as one ascends  the rotational 
band in excitation energy. 



Comparison with 
experiment

Inelastic cross sections are dominated 
by the contribution from the compound 
nucleus at low energies, as seen here 
for the first excited states of 58Ni and 
238U.

The two calculations of the 58Ni 
inelastic cross  section use the same 
value of b2=0.2, yet yield cross 
sections that differ by almost a factor 
of two due to differences in the optical 
potentials.

The cross section for excitation of the 
rotational state in 238U is 5 to 10 times 
greater than that of the vibrational state 
in 58Ni, mainly due to the factor of 30 
difference in their excitation energies.



The Lippmann-Schwinger equation -- I
The integral representation of the wave equation, the Lippmann-Schwinger 
equation, 

( ) 1

0 0 0 0 0 0, ( ) 0,whereE H U G U E H
−+ +′ ′Ψ = Ψ + − Ψ = Ψ + Ψ − Ψ =

is often very useful for the analysis and solution of scattering problems. 
Here,       is the outgoing-wave Green’s function and  Y0 a wave function 
with an incoming wave boundary condition. It is usually most  convenient to 
place the single-channel optical potential in the H0 of the equation and only 
the couplings between states in U .́

For the single-channel optical model, we can define incoming/outgoing-
wave solutions,            , of the wave equation,
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where the spin-orbit factor is

Asymptotically, these solutions behave as incoming/outgoing Coulomb (free) 
waves, 
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The Lippmann-Schwinger equation -- II
The solution to the single-channel Schrö dinger equation that is regular at the 
origin is given in terms of the incoming/outgoing solutions and the S-matrix as
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which is just the single-channel wave function of the partial wave expanson. 
We have merely relabeled the S-matrix as S0 .

The single-channel Green’s function may be decomposed in partial waves as
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The complete single-channel Green’s function for the coupled-channels 
problem may then composed as 
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The Lippmann-Schwinger equation -- III
In terms of the channel matrices, the Green’s function       takes the form0G+

0 0
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where we have grouped the appropriate Green’s functions in diagonal 
matrices,
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In terms of these, we can write the contribution to the Lippmann-Schwinger 
equation of each partial wave as 
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Substituting the large-r expressions for the  wave functions,  
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and using flux conservation to normalize the S-matrix,                               , 
we obtain
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The distorted-wave Born approximation (DWBA)
The Lippmann-Schwinger equation,
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here in partial wave form, contains the wave function YJ(r) on both the 
right and left sides of the equation. This can be used to advantage when the 
coupling potential U´ is small. We then expect the wave function YJ  to be 
little different from the uncoupled  one Y0J , so that we have, to first order,
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The corresponding DWBA S-matrix is 
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The DWBA approximation may be extended to higher orders by substituting 
the solution of the previous order in the Lippmann-Schwinger equation. The 
second-order solution, for example, is obtained by substituting the first order 
solution in the integral equation. However, the DWBA is usually not used 
above the second-order.



Limit of the DWBA
Two examples give us an idea of 
when the DWBA might be applied to 
inelastic scattering. 
The DWBA provides a reasonable 
approximation to excitation of a 
vibrational state such as the 2+ one in 
58Ni. However, it greatly 
overestimates the excitation of a 
strongly-excited rotational state, such 
as the 2+ one in 238U.
In general, the DWBA overestimates 
the inelastic cross section, since it 
does not take into account transitions 
back to the ground state.
In the case of 238U, we note that  
transitions to other states of the 
rotational band can also be important.



The ECIS method -- I
The ECIS method (Equations Couplées en Ité rations Séquentielles) is an 
alternative to the standard coupled-channels method. It is based on the 
Lippmann-Schwinger equation,
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given here in partial wave form. The ECIS method uses a decomposition of the 
optical potential into the single-channel potentials, placed in H0 , and the 
couplings between states, which are put in U .́ It assumes that the states are 
arranged in order of decreasing coupling with the ground state.
Beginning with the ground-state (state 0) single-channel wave function, the 
ECIS method:
•Calculates the  wave function of the first excited state (state 1) using that of 
state 0,
•Calculates the  wave function of the second excited state (state 2) using those 
of states 0 and 1,                                    

Ö
•Calculates the wave function of the ground state (state 0) using those of states 1 
through n.



The ECIS method -- II

The calculation of the wave functions for each of the states is then repeated 
in the same order, using for the other states the last wave function that was 
calculated, either from the same iteration or from the preceding one. 

The set of calculations, beginning with the first excited state through the 
ground state, are iterated until convergence is achieved. 

The method is extremely efficient in cases in which the coupling is small, 
such a that of the 2+ vibrational state in 58Ni. The standard coupled chanels 
method must solve a matrix equation, which requires a processing time 
similar to that of performing  an ECIS iteration for each of the coupled 
channels. In weakly-coupled problems, convergence may occur in a few 
iterations, making the method the more efficient of the two.

In strongly coupled problems, such as that of the ground state rotatonal band 
in 238U, the opposite is the case. The convergence of ECIS iterations can be 
much slower than solution using the standard method, when convergence 
occurs at all.



Single-channel calculations with ECIS95
To perform a single-channel optical model calculation, we have to furnish 
information on:
•The system – Zp , Ap , Zt , At , and Ecm=AtElab/(Ap+At), Ip of target;
•The optical potential parameters – V, Vs , W , Ws , Vso and Wso and the 
geometrical parameters – the reduced radii ri and diffusivities ai ;
•Quantities to be calculated – cross sections (automatic), S-matrix elements 
(in the form C = (S-1)/2i ), transmission coefficients, angular distributions 
and/or polarizations printed and/or plotted. 
ECIS95 -- by J. Raynal -- does not calculate several basic low-energy 
observables -- strength functions and the scattering radius.
ECIS95 can fit parameters to experimental data – integrated and 
differential cross sections, polarizations, and others, by minimizing 

( ) 22 .cal x x
i i i

i
χ σ σ σ = − ∆ ∑

ECIS95 cannot use or adjust energy-dependent parameters. 

PRECIS – a utility code to facilitate input preparation.



Exercise 1 – n + 58Ni28

Spherical Optical Model Calculation: Using the program PRECIS, generate 
an input data file for the ECIS95 code for neutrons incident on 58Ni28 at 0.1, 
1.0 and 10.0 MeV in the laboratory system that: 
•Includes only the 0+ 58Ni ground state,
•Uses the global optical potential parameters of Wilmore-Hodgson,
•Prints the C-matrix elements, C=(S-1)/2i, and
•Calculates and plots the differential elastic cross section in 10ºintervals 
from 0ºto 180º.

Look at the contents of the input data file and try to identify the parameters 
that you entered. 

In the output file, for each value of the incident energy, 
•Find the optical potential parameters,
•Find the C-matrix elements, and
•Find the integral and differential cross sections.

Are the optical potential parameters constant?



A dialogue with the code PRECIS – Exercise 1 -- 1

To prepare an input file for ECIS95, begin by entering the name of 
your file.
ecis-ex1
Enter the title that you wish to appear on the output.
n+58Ni -- Spherical optical model -- Wilmore-Hodgson parameters
Enter 1 if the logical switches are to be printed

0 otherwise.
1
Enter the number corresponding to the projectile.

1 - neutron
2 – proton
3 - deuteron
4 - tritium
5 - helium-3
6 - alpha

1
Enter the charge, mass, spin and parity (+1 or -1) of the target.
28.  58.  0.  1.



A dialogue with the code PRECIS – Exercise 1 -- 2

Enter 1 to use a global potential,
0 to enter the potential parameters.

1
Enter the number corresponding to the potential to be used.

1 - Wilmore-Hodgson     (  40<A  E<10   )
2 - Bechetti-Greenless  ( 40<A 10<E<50  )
3 - Ferrer-Rapaport     ( 24<A<209 E=11 )
4 - Cindro-Bersillon
5 - Madland-Young       (  actinides    )

1
For each of the potentials  vc, w, vso and wso, enter 1 if its 

deformation is to be taken into account, otherwise enter 0.
0 0 0 0
Enter the number of excited states to be used.
0



A dialogue with the code PRECIS – Exercise 1 -- 3
Enter 1 to include the contribution of the compound nucleus,

0 otherwise.
0
Enter 1 to use the standard coupled channels method,

0 to use the ECIS method.
1
Enter 1 if the C-matrix elements, C=(S-1)/2i, are to be printed

0 otherwise.
1
Enter 1 if the transmission coefficients are to be written on unit7,

0 otherwise.
1
Enter 1 if angular distributions are to be calculated,

0 otherwise.
1
Enter the first angle, the stepsize and the last angle to be used
to calculate the angular distributions. (Angles in degrees.)
0.  10.  180.

Enter 1 if angular distributions are to be plotted,
0 otherwise.

0



A dialogue with the code PRECIS – Exercise 1 -- 4
Enter 1 if experimental data are to be input,

0 otherwise.
0
Enter the number of projectile energies at which calculations will 

be performed.
3
Enter 1 if the projectile energies are to be equally spaced,

0 otherwise.
0
Enter the energies (in MeV in the lab frame).
0.1  1.  10.

Enter 1 to prepare the input data to another ECIS95 calculation,
0 to stop.

0
Your input to ECIS95 is in file  ecis-ex1.in.

To run the code ECIS95 with this input file, type:
ecis95 <ecis-ex1.in >ecis-ex1.out

The results of the run will be written to the file ecis-ex1.out. The transmission 
coefficients will be printed in a separate file on unit 7.



Exercise 1 – ECIS95 input
n+58Ni -- Spherical optical model -- Wilmore-Hodgson parameters         
FFFFFFFFFFFFFFFFFFFFTFFFFFFTFFFFFFFFTFFFFFFFFFFFFF
FFFFTFFFFFFFTFFFTTTFTTFFFFFFFFFFFFFFFFFFFFFFFFFFFF

1    0    0
0.00000   0.00000   0.00000   0.00001   0.00001   0.00001

0.00 0 1+   0.10000   0.50000   1.00866  58.00000   0.00000
0

46.98329   1.28982   0.66000
0.00000   1.00000   0.60000
0.00000   1.25049   0.48000
9.51470   1.25049   0.48000
7.00000   1.28982   0.66000
0.00000   1.28982   0.66000
1.25000   0.00000   0.00000
0.00000   1.25000   0.00000
0.00000  10.00000 180.00000

T  14    0
0    1    2    4    5    7    8   10   11   12   13   14   16   17

1.00000  46.74182   1.28982   0.00000   1.00000   0.00000   1.25049
9.46700   1.25049   0.48000   7.00000   1.28982   0.00000   1.28982

F  14    0
0    1    2    4    5    7    8   10   11   12   13   14   16   17

10.00000  44.22200   1.28982   0.00000   1.00000   0.00000   1.25049
8.99000   1.25049   0.48000   7.00000   1.28982   0.00000   1.28982

FIN



Coupled-channels calculations with ECIS95
To perform a coupled-channels optical model calculation, we have to furnish 
the same information as before on:
•The system – Zp , Ap , Zt , At , and Ecm=AtElab/(Ap+At), Ip of target

+ Ip , Ex and structure (phonon number) of excited states;
•The optical potential parameters – V, Vs , W , Ws , Vso and Wso and the 
geometrical parameters – the reduced radii ri and diffusivities ai

+ excitation model (vib/rot), bi and expansion parameters;
•Quantities to be calculated – cross sections (automatic), S-matrix elements (in 
the form C = (S-1)/2i ), transmission coefficients, angular distributions and/or 
polarizations printed and/or plotted. 
ECIS95 -- by J. Raynal -- can fit parameters to experimental data – integrated 
and differential elastic and inelastic cross sections, polarizations, and others.
ECIS95 can perform standard and ECIS coupled-channels calculations. 
Transmission coefficients require that  the entire S-matrix be calculated, which 
is usually more efficient using the standard method.The ECIS method permits 
the inclusion of a deformed spin-orbit interaction.
DWBA calculations may be performed by restricting the ECIS method to one 
or two iterations and restricting the interaction appropriately.



Exercise 4 – n + 58Ni28

Deformed Optical Model Calculation: Using the program PRECIS, generate an 
input data file for the ECIS95 code for neutrons incident on 58Ni28 that: 
•Includes the 0+ 58Ni ground state and the 2+ excited state at 1.454 MeV as a 
vibrational state,
•Uses the following optical potential parameters:
-- rV=1.27 fm, aV=0.75 fm, V0=48.87 MeV, V1=-0.369 and V2=0.002 MeV-1,
-- rWs=1.34 fm, aWs=0.375 fm, Ws0=14.3 MeV, WS1=0.16 and Ws2=-0.006 MeV-1,
-- rVso=1.27 fm, aVso=0.75 fm, Vso0=6.75 MeV,
with a phonon amplitude b2=0.2 and all other potential strengths zero,

•Uses the standard coupled-channels method,
•Includes the file of experimental data ecis-ex4.dat, and
•Adjusts the phonon amplitude b2.

Look at the contents of the input data file and try to identify the parameters that 
you entered. 

In the output file, 
•Find the final value of the adjusted parameter.
•Find the comparisons between the experimental data and the calculations.



A dialogue with the code PRECIS – Exercise 4 -- 1
To prepare an input file for ECIS95, begin by entering the name of 

your file.
ecis-ex4
Enter the title that you wish to appear on the output.
n + 58Ni  -- Optical parameters fit to data set                        
Enter 1 if the logical switches are to be printed

0 otherwise.
1
Enter the number corresponding to the projectile.

1 - neutron
2 - proton
3 - deuteron
4 - tritium
5 - helium-3
6 - alpha

1
Enter the charge, mass, spin and parity (+1 or -1) of the target.
28.  58.  0.  1



A dialogue with the code PRECIS – Exercise 4 -- 2

Enter 1 to use a global potential,
0 to enter the potential parameters.

0
Enter 1 if dispersion terms are to be taken into account,

0 otherwise.
0
Enter r0(v), r1(v), av, v0, v1, v2, vl and cv,
where v = v0 + v1*e + v2*e**2 + vl*ln(e) + cv*sqrt(e) and 

rv0=r0(v) + r1(v)*e.
1.27  0.  0.75  48.87 -0.369  0.002  0.  0.

Enter r0(ws), r1(ws), aws, ws0, ws1, ws2, wsl and cws,
where ws = ws0 + ws1*e + ws2*e**2 + wsl*ln(e) + cws*sqrt(e) 
and rws0=r0(ws) + r1(ws)*e.
1.34  0.  0.375  14.13  0.16 -0.006  0.  0.



A dialogue with the code PRECIS – Exercise 4 -- 3

Enter r0(w), r1(w), aw, w0, w1, w2, wl and cw,
where w = w0 + w1*e + w2*e**2 + wl*ln(e) + cw*sqrt(e) and 

rw0=r0(w) + r1(w)*e.
1.2  0.  0.6  0.  0.  0.  0.  0.

Enter r0(vso), r1(vso), avso, vso0, vso1, vso2, vsol and cvso,
where vso=vso0 + vso1*e + vso2*e**2 + vsol*ln(e) + cvso*sqrt(e)
and rvso0=r0(vso) + r1(vso)*e.
1.267  0.  0.75  6.75  0.  0.  0.  0.

Enter rc0 and ewmax.
1.25  12.

For each of the potentials  vc, w, vso and wso, enter 1 if its 
deformation is to be taken into account, otherwise enter 0.
0 0 0 0



A dialogue with the code PRECIS – Exercise 4 -- 4
Enter the number of excited states to be used.
1
Enter 0 to use the vibrational model,

1 to use the rotational model.
0
Enter the number of distinct phonons to be used.
1
For each phonon, enter its angular momentum and its amplitude.
2  0.2
Enter the energy (in MeV), spin and parity (+1 ou -1) of the first  
excited state.
1.454  2.  1.

Enter the number of phonons used to describe the first  
excited state.
1
Enter the number(s) identifying the phonon(s) used to describe 

this state
phonon no.     l

1      2
1



A dialogue with the code PRECIS – Exercise 4 -- 5

Enter 1 to include the contribution of the compound nucleus,
0 otherwise.

0
Enter 1 to use the standard coupled channels method,

0 to use the ECIS method.
1
Enter 1 if the C-matrix elements, C=(S-1)/2i, are to be printed

0 otherwise.
1
Enter 1 if the transmission coefficients are to be written on unit7,

0 otherwise.
1
Enter 1 if angular distributions are to be calculated,

0 otherwise.
0
Enter 1 if experimental data are to be input,

0 otherwise.
1



A dialogue with the code PRECIS – Exercise 4 -- 6
Enter 1 if experimental angular distributions are to be plotted,

0 otherwise.
0
Enter 1 if parameters are to be adjusted,

0 otherwise.
1
For each of the following parameters, enter the precision desired of 

the fit.
If the precision is given as 0., the parameter will not be adjusted.

v, rv0, av
0.  0.  0.

vs, rvs0, avs
0.  0.  0.

ws, rws0, aws
0.  0.  0.

w, rw0, aw
0.  0.  0.

vso, rvso0, avso
0.  0.  0.



A dialogue with the code PRECIS – Exercise 4 -- 7

wso, rwso0, awso
0.  0.  0.

The amplitude of the multipolarity  2 phonon
0.01
Enter the number of projectile energies at which calculations 

will be performed.
7
Enter 1 if the experimental data are on file,

0 if they will be input.
1
Enter the complete name of the data file.
ecis-ex4.dat
Enter 1 to prepare the input data to another ECIS95 

calculation,
0 to stop.

0
Your input to ECIS95 is in file  ecis-ex4.in.



The possibilities of ECIS95
The aim of these lectures has been to provide an introduction to the basic 
problems in nuclear physics to which ECIS95 may be applied. For lack of 
time, we have discussed only the simplest applications. ECIS95 is capable of 
many other types of calculations. Among these are: 

•The use of more elaborate macroscopic models, such as the anharmonic 
vibrator, the asymmetric rotor or the vibrational-rotational model, 

•Inclusion of the compound nucleus contribution to cross sections, in a single-
channel model or the Engelbrecht-Weidenmüller coupled-channel one,

•Dirac optical model calculations,

•Heavy-ion optical model calculations,

•Long-range Coulomb excitation,

•Projectile and target excitation,

•Transfer reactions within a zero-range DWBA.

It can be a powerful tool in the hands of those who know how to use it.


