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Direct Reactions

Elastic scattering — (n, n), (p, p), (o ,a), ...
Inelastic Scattering -- (n,n’), (p, p’), (o ,a’), ...
Knockout — (n, 2n), (n, np), (p, pn), (p, 2p), ...
Stripping — (d, p), (d, n), (t, d), ...

Pickup — (p, d), (n, d), (d, t), ...

Charge exchange — (n,p), (p,n), (t,’He), (°*He, t), ...

The optical model 1s particularly important for the study of
the direct (fast) contribution to the first two of these --
elastic and inelastic scattering -- on which we will
concentrate our attention.

However, 1t also plays an important role in the analysis of
the statistical (slow) contribution to nuclear reactions.



Conservation laws

Conservation laws are important in determining the
basic characteristics of nuclear reactions.

Charge and nucleon number, Zand A -- >°Fe (p, n) *°Co
Energy, E —23%U(n,n ")>*3U* (E = 0.045 MeV)
Linear momentum, p — thresholds, recoil

Angular momentum and parity, Jand m-- d o/dQ



Experimental Setup for Studying Scattering

Detecto’

Accelerator nucleus

*Distance from accelerator to target and from target to detector on the
order of a meter or more.

«Cross sectional area of beam A4 on the order of mm?.
*Target thickness ¢ on the order of pm or more.

‘Beam intensity — n,, (particles/s) — varies greatly, from about 10° to
1013

*In target, atomic dimension on the order of 10-'° m and nuclear
dimension on the order of 10-1> m.



The Experimental Cross Section
Detecto’
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Target ()
Accelerator nucleus
* A — cross sectional area of beam *p,, — target particle density
* n,— incident beam intensity * t — target thickness

* n(6, p)d(2 -- particle intensity (part./s) entering detector of solid angle d(2

Jo — particle intensity entering detector in solid angle dQQ  n(0,¢9)dQ
(incident intensity/area) * (no. of target particles in beam) (n,/4)(p,, tA)

The differential cross section Z—g has the units of area/solid angle.



The Classical Cross Section

b — the impact parameter

- perpendicular distance

between particle trajectory

and center of target b+db

==\

d db
Assuming no dependence on @, d—g =27 b(0) ‘E
Since

do b |db
4O = 27500 do =) o _50) ‘

dQ  siné|dé



An example — Hard sphere scattering

We have
b(¢) = Rsin¢g
and
T—0
b ¢ = >
so that ‘
2 800 -
d—0=2ﬂb(6’)‘db‘=ﬂR sin @ =) _
do | 2 £ 00 _
and ) '
do  b(O)|db| R’ 3 0
dQ sin@|do| 4 = 200t ]
For 28U, R ~ 7.5 fm and % 30 60 90 120 150 180
0 (deg)

R?/4 ~ 14 fm? = 140 mb.



Another example — a sticky hard sphere

Now, suppose that a fraction of the incoming particles do not scatter, but
instead stick to the target. Let us assume, for instance, that the fraction

P(@)=acos¢ :asing

(which decreases as the collision becomes more grazing) is absorbed by

the target.
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i dﬁ[mfdﬁ |
— tlﬁug’dﬂ
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1000
Decomposition of the differential -
Cross section: e 800
d R | £ 600l
Tas _ 22 p(@)sind 2 600/
do 2 = oo
do, =R’ 3
4 = 1- P(6))sin @ P
do 2 (1=P©)) 20
do,, _ do N do, _7R <in g ===
do do do 2

Only do,/d6 is observed as scattered particles.
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In the figure, o= 0.4



Integrated cross sections

We can integrate the differential cross sections over angle to obtain
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The total cross section of 7R’ is what we would expect and what we
would obtain in the simple hard sphere case.

In the general case, when there 1s a value of the impact parameter
b, ..such that (b)=0 for b>b,  , we have

max>

= b*

max

=27 j b(@)‘— do = ﬂbz




Attenuation and the total cross section

Both elastic scattering and absorption remove particles from the incident
beam. The sum of the two — the total cross section — determines how the
beam is attenuated as it passes through the target.

From the definition of the

cross section, we have in any >
dZ . dl”l

O =

tot
n (Z ) p tar dZ nO
or

dn

= _ptar Gtot n(Z)

dz

‘ n(Z) - nO eXp(_ptarGtotZ)
, For our example of hard scattering
The mverse of the product p,,, 0, from U-like spheres, assuming a

deﬁ.nes. i rniegil e [palfil /4 o e density close to that of U, we have
projectile through the target.

19%6 5 o]
A=1/p o, 22(238 x107” *177x107" m j ~0.12m




Laboratory and Center-of-mass Coordinates

In order to properly treat the conservation of momentum and energy,
scattering problems should be analyzed in the center-of-mass frame.

The basic steps in the transformation to the center-of-mass frame and
back to the lab one are shown below.

=
Mp T Vey,
— @ - <@
Mp, Vp; mr Mp, Vp mr Vr
to c.m.
M scattering in c.m.
=

mp+My, Vey,

O
My Viy back to nj L
the lab Por




Laboratory and Center-of-mass Coordinates - Basics

Two fundamental quantities that result from the transformation are the
reduced mass u and the energy E_  in the center-of-mass frame. In terms
of the projectile and target masses, m, and m, and the projectile energy in
the lab frame E,,,, these are

m,m m
Ry _ T
lLl — and Ecm - Elab
m, +m, Mmp + My
. . . mT
The relative momentum in the c.m. framei1s P., =———— P
m, +m,

The transformation of the scattering angle does not reduce to a simple
expression. However, its numerical calculation is straightforward.

From this point on, we will assume that we are using the center-of-mass
frame, unless otherwise noted.



Yet another example — Coulomb scattering

Conservation of energy:

2 2 2 2
AYA
pr +pcm bz + P Te :E
2u 2ur v

cm

with p, the radial momentum and r

the radial coordinate and E,, = p /2u.

When b = 0, the point of
closest approach a, 1s given by

Z,7.¢e Z,7.¢e
=F a, =——=
CZO cm q 0 E

cm

For arbitary b, the point of
closest approach a satisfies

P b’ n ZoZse

2 :E
2u a a

cm

Target
This becomes

b’ =a(a—a,)

The orbit for repulsive Coulomb
scattering forms a hyperbola

satisfying R ( ¢ j
2

Substituting in the expression
above, we obtain

a
b=—"tan
5 ¢



Coulomb scattering — the differential cross section

Combining
O=n—-2¢ and p= a—zotan¢

we have b T

The differential cross section is then

p Le-+06¢
2> COS| —
d_g_”(aoj 2 _ le+05¢
2y 2 sin’ (g) :’é 10000
2 = :
. 2 2 1000¢
do | a, 1 = }0:
i \4) (9) 08
Sin | — .

P + 238U
E.=15MeV
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e
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0 (deg)



No 1ntegrated Coulomb cross section

It 1s obvious from its explicit form,

S1n

do _(a) 1
dQ \ 4 .4(gj'
2

as well as from the figure, that the
Coulomb angular distribution
diverges at small angles.

This expression may be
integrated formally,

0=2ﬂjd—asin¢9d6
) a0

0

N 7{2sin(06’/2)}

but 1s also divergent.
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do/d€2 (mb/sr)

100:

030 60 90 120
0 (deg)
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The long range of the Coulomb
potential is the physical reason for the
divergences in the Coulomb angular
distribution and cross section. There 1s
no value of the impact parameter b,
for which scattering no longer occurs.



Coulomb scattering from a charge distribution

In scattering calculations, the nuclear
charge distribution is usually taken as
that of a uniformly charged sphere of
radius R =1.25*A'3 (fm).

Vc(r):4

(7,7,¢
;Ri (3-=(r/R:)*) r<R
2
VAW >R,
r

Since the nuclear potential 1s short-
ranged, the scattering at large values
of the impact parameter is Coulomb
scattering.

In the example given here, the
scattering at angles below about 95°
would be pure point-like Coulomb
scattering.

do/d€2 (mb/sr)
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The Coulomb barrier for charged particles

The Coulomb + nuclear potential forms a barrier to charged particles that
reaches its maximum just outside the nucleus. Outside the barrier
maximum, the potential 1s very similar to the Coulomb potential of
pointlike particles. At relative energies below the Coulomb barrier or at
distances of closest approach greater than the barrier position, the
scattering is almost purely point-like Coulomb scattering.

We can estimate the barrier 7
position as
R, ~1.254"° +2.0 (fm) 10
>
and its height as S
Z,7.¢ =
V, ~ 2221 (MeV). > 5
RB
The barrier height V; for o/ L o
protons i1s shown at the 0 50 100 150 200 250

right.



A (fm)

Waves and particles

We know that the wave-like nature of the scattering particles may be neglected
only if their wavelength 1s much smaller than the length scale on which the
scattering system varies. For nuclear scattering, the appropriate length scale
would be at most the size of the nucleus and should probably be of the size of
the nuclear surface — about 0.5 to 1.0 fm.

Comparing the wavelength of a nucleon to a typical nuclear radius, taken to be
R =1.254"3 (fm), we find that the wavelike nature must be taken into account
over the entire energy range we will consider — up to about 20 MeV.

10000+
1000,

100

10.
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The quantum view of scattering

Accelerator

Far from the scattering center,
we take the scattering wave
function to be the sum of a

plane wave and a scattered The differential cross section is the
outgoing spherical wave, squared magnitude of the scattering
. amplitude,
- e
w(r) = e™ + f(0)—. do 2
r — = | f (6?)| :
dQ)

when r— oo. (k2 =2uE /hz)



Back to the basics

We defined the differential cross section as

Jo — particle intensity entering detector of solid angle dQQ  n(0)dQ
(incident intensity/area) * (no. of target particles in beam) (n,/A)(p, .tA
0 tar

How did we relate this with the asymptotic form of the wave function
ikr
w(F) ~ e* + f(0)—. to obtain Z_g =|f @) ?

r

» First, we assume that we have but one target nucleus, p, (4 =1.

* Next, we note that n,/4 is proportional to the plane wave current density,

h [ . ' hk e

nO/A:_(Wmvl//m_<VWln)Wzn):_:v Since l//in :ek'
2ip H

* Finally, we write the particle intensity entering the detector in terms of the

current density of scattered particles,

1,00 =~ (y.0,, ~(0.6. v, ) dQ)———v|FO)f
i



The partial-wave expansion

Neglecting spin for the moment, we use conservation of angular momentum
to expand the wave function in partial waves of the orbital angular

momentum, 2
w(r,0)= u,(r)B(cosb).
[=0
The plane wave may be expanded as

e =Y @21 +1)i'j,(kr)P,(cos 0)
with | =
Ji (kr) = é(h}‘) (k) =hO (k) whete B (k) —=—(Fi) <.

In analogy with the plane wave, we write

y(r,0) = (21 +)i'y, ()P (cos )

where each of the partial waves satisfies the Schrodinger equation

(822+k2 ;‘U(r)l(”l))(r%(r)) =0.

2
or i



More on the partial-wave expansion

Outside the scattering region defined by the

) (kr) potential U(r),"thp wave fun.ction (r) satisfies
the same Schrodmger. equation as th.e plane
S hP (kr) wave and must be a linear combination of the
_ same incoming / outgoing waves h® (kr),
r

() = (K (k)= 5,7 ),

The incoming wave must be the same as that of the plane wave, so that the
only difference with the plane wave 1s in the outgoing scattered wave.

Substituting in the partial wave expansion

w(r,0) —> Z(21+1)z ( J,(kr)+ ! h (kr)jP(cos@)
— e+ Lk > (21+1)(S, —1) P(cos 0) e
IK 12 r

so that
1 - 472- A * N
[(0)= ﬁgwm( ~)E(cos®) =) (8, ~1)Y,, (DY, (k).

Im



Solving the scattering problem

How do we obtain the asymptotic
form of the wave function,

7 ) (Jpr (+)
w;()—>2(h (kr) =S, 1" (kr) ) ?

First, we fix a radius 7, , called the
matching radius, that 1s beyond the
range of the interaction.

The wave function inside the
matching radius, . , 1s determined

mn’

numerically, up to a multiplicative

factor. Outside the matching radius,
the wave function has the asymptotic

form,
V) (r) = = (h< (k)= S, (kr)).

We require continuity of the wave
function and its derivative at the
matching radius.

—- Re[wyir)] TN
—- Im[yr(r)] / \

r (fm) )

This gives us two equation in two
unknowns, 4, and S,

AW, (1) == (h( (k)= S, (kr,,) )

and the derlvatlve equation. We solve
these for each value of /, stopping
when S 1s sufficiently close to one.



Integrated cross sections

We obtain the elastic cross section by integrating over the differential one,
o, =2x[|f(O) sin0do = klzZ(zz +1)[S, -1
0 =0

We may calculate the absorption cross section by taking into account all of
the flux entering and leaving the scattering region. Integrating the flux over
a sphere whose radius tends to infinity, we have

5 :—%ggsj-d*:%i 21+1)( \Sl\z).

The total cross section takes into account all flux lost from the incident
plane wave, either by scattering or absorption,

c,=0,+0, :%i(2l+l)(l—ReS,).
[=0

The total cross section satisfies the optical theorem,

4

O =——Im f(0=0").

tot



Low-energy neutron scattering — a simple example

Because of the Coulomb barrier, only neutral particles can reach the
nucleus in a low-energy scattering. At extremely low energies, the
centripetal barrier keeps all but /=0, s-waves away from the nucleus.

Let us re-examine hard-sphere scattering in the case of low-energy
neutron scattering.

Scattering from the hard sphere requires
that the wave-function vanish at the B

. y=0 | Y@
radius of the sphere. The s-wave wave
function 1s then >

i = ?
—ikr —2ikR _ikr
w,(r)=——->=_>e " —e"e"). .
’ 2kr When k-0, the elastic cross

The S-matrix element is S, = &™*". section tends to a constant,

. . o, ——>4rR’.
The elastic cross section 1s el k-0
do & ‘ v 1‘2 This 1s 4 times the classical

o, =4r = :
¢ dO k2 Cross section.




Low-energy neutron scattering -- resonances

Although the neutron-nucleus interaction is attractive, its rapid variation at
the nuclear surface has the same effect on low energy neutrons as a hard-
sphere does— the neutrons are reflected. Absorption also usually occurs, so
that the total cross section is larger than the elastic one. However, if both
the elastic scattering and absorption are prompt processes, one would
expect them to vary slowly with energy. Behavior of this type can be seen
on the low energy side of the figure.

150 —————
The cross section of the figure also _
possesses a rapidly varying resonant *Ni+n Total L
component, a feature common to all — 20AF f
low-energy neutron-nucleus systems. = |\
L2

The resonant contribution arises from 50+ \
scattering through a quasi-bound _ "a__“\
state (a compound nuclear state) of T e . j} Sy d
the neutron+nucleus. 0 s —

0.001 0.01

E, (McV)



Direct and compound nuclear scattering

At low energies, neutron-nucleus scattering occurs either directly or
through the qausi-bound compound nucleus states.

Direct scattering Compound nuclear scattering

Q > —
\\\ \\\
\\ \\

‘\\ ‘\
\
\
\
—0—@—O—0— +0—b£o—

\ Y, AEAL > h \ y,
At ~107° —107*%s At ~107"% =107s

In a direct scattering, the incident neutron interacts with the average field of
the nucleus. The duration of the collision is approximately the time it takes the
neutron to cross the nucleus.

In a compound nuclear scattering, the incident neutron loses energy upon
colliding with the nucleus and 1s trapped. After a fairly long interval, enough
energy is again concentrated on one neutron to allow it to escape.



Formalities - I
To formally separate the direct and compound nucleu contributions, we
assume that we can partition the space of states into two components:
P -- containing the continuum states, such as the n + 3¥Ni ones, and

Q -- containing the quasi-bound states, such as the ground and excited
states of **Ni (and any other states that we don’t want in P).

We define projection operators, P and Q, onto the subspaces with the
properties

Pl=pP Q=0
PP=P Q=0
P+ =1

We then decompose the wave function into ¥ = P¥Y + O¥, where PV is the
continuum component and Q¥ the quasi-bound component of the wave
function.



Formalities - 11

Using P and Q, we decompose the Schrodinger equation, (£ - H) ¥ = 0,
into coupled equations for the two components of the wave function,

(E—-Hpp)PY = VPQQLP
(E —HQQ)QT . VQPP‘P,

and

where
H,, =PH,P+ PVP, VPQ = PHQ = PVQ, etc,

and we have assumed that the contributions of the kinetic energy and
the target Hamiltonian, both contained in H,,, do not couple the # and Q
subspaces.

We can now solve the second equation formally, using an outgoing
wave boundary condition, to obtain OQV¥,

QY =(E" —H,,)"' V,,P¥
and substitute in the first of these to obtain an equation for P¥ alone,

(E—H,, —Vpo(EY —H,,)"'V,,)P¥Y =0,

and which explicitly contains the direct and compound processes we expect.



Formalities - 111

However, it will be useful for us to follow a more convoluted path here. We
first solve for the continuum component of the wave function P¥,

quc — ¢c§+) + (E(+) o ]{PP)_1 VPQQLPC >
where the wave function ¢c(+) satisfies the equation
(E _HPP)¢£+) =0,

with an incoming wave in channel c. When the solution for PY¥ is
substituted in the equation for OV, the latter may be rewritten as

(E _HQQ o WQQ)QLI’C = VQP¢£+)’
where

Weoo =Vor(ED —H ) V.

In the last expression, we may decompose the $-subspace propagator as
1 PP

E® _HPP B E_HPP

where P.P. is the principal part. The open channels in the $ subspace make

a negative imaginary contribution to W, leading to poles of the the wave
function in the lower half of the complex energy plane.

—ino(E—H,,)



Formalities - IV

If we solve the equation for Q-subspace component,
(E=Hyy =Woo)O¥, =Vput” = O =(E-Hy,~Wpo) Ve,
we may substitute this in the solution for the $-subspace component,
PY, =4 +(E" —Hpp) Ve Q¥
to immediately obtain,

quc — ¢£+) + (EH) _HPP)_IVPQ (E _HQQ _ WQQ)_I VQP¢C('+)'

This is a solution for the complete $-subspace wave function in terms of
pure continuum component ¢ Vand a compound nucleus component.
The prompt contribution of V,, to the scattering 1s not as visible as
before — it is contained in the wave function ¢'*’ and in the P-subspace
propagator. The compound nucleus term appears ina modified form, in
which passage through the continuum is taken into account by the W,
term in the Q-subspace propagator.



Low-energy neutron scattering -- resonances

We may now take the expression for the -subspace wave function,
PY, =¢" +(EY —Hpp) Voo (E—Hyy =Wy ) Vs,

and apply it to s-wave neutron scattering, for which,

! —ikr ikr
ry=——-»e " =35,e"),
W, (r) oy ( € )
outside the range of the interaction. (We continue to neglect the spin of the

neutron. )

After a bit of work, we can approximate the S-matrix of the $-subspace
wave function in a multi-level Breit-Wigner form (among others) as

—i(4, +@) . gagb
S, ., = e ¢)(5ab_le “ ;% /2}
—E—¢,+iT,

where ¢, and ¢, are the initial and final channel phase shifts and g,

characterizes the coupling of the compound state u to the continuum
: . 2

channel ¢, with r,= Zc g

The phase shifts vary slowly with the energy while the resonance sum
varies quickly.



Low-energy neutron scattering — cross sections

The cross sections directly related to the elastic S-matrix element are
the elastic, absorption and total ones,

T

o,=—
el 2 0,aa
k

R o)

abs k2 ( ‘SO aa
and

c,=0,+0, = ?:T (I-ReS, ).

The absorption cross section is non-zero when non-elastic channels,
such as y emission or fission, remove flux from the compound
nucleus. The cross sections for these take the form

7T 2
o :P‘So,ca

The total flux 1s conserved,so that

= Z Gca and Gtot = Gel + Uabs

c*a

The elastic cross section is well described at energies below the
resonance region by a hard-sphere cross section of 47 R?2.



From resonances to fluctuations

At low energies, the resonance expression for the I=0 S-matrix, and for
higher partial waves as well, permits the separation of the direct and
compound contributions to cross sections. However. the density of
compound nucleus states increases rapidly with energy so that the
resonances overlap and can no longer be distinguished. The cross section
fluctuates rapidly, as in the figure, but the fluctuations, called Ericson
fluctuations, cannot be attributed to individual resonances.

It 1s in this context that the R I
optical model plays a LB . Ni+n Total |
fundamental role. The objective 7 |\ |\\ | _
of the model is to describe just 10 | f"J . | [\ ol
the prompt, direct reactionsina  — i 'M W M [(. Iﬁ f ) f Mﬂ | lJ\ J| r’\ i
collision. To this end, one > 3 w;'l'f \/ \{' \J d“ I A
defines the optical potential as f |

, : 3.0 :
the potential that furnishes the _

energy-averaged (short time) L T
scattering amplitudes. ' B B, (McV) ‘



Energy averaging and the optical potential

To obtain the optical potential, we begin by calculating the energy average
of the P-subspace wave function, which depends linearly on the scattering
amplitude. After rewriting the wave function in the form of an equation,
we will obtain an expression for the optical potential.

The energy average of the $-subspace wave function may be written directly,
(P¥,) =8 +(ED —H,p) Voo (1 €y ) Vopt™.

since the only rapidly varying quantity in the wave function 1s
€op = £ —Hoy =Woy.

By multiplying by (E-H,,) as well as solving formally for ¢\~ and
substituting, we can write a Schrodinger-like equation for (PY,),

1
E-H, -V, - Vop [(PY,)=0.
<1 /€0 > + Wy
The optical potential 1s then
1
Uppe =Vpp Vo Vor

<1 / €00 >_1 + Wy



Performing the energy average

To conclude the derivation of the optical potential, we must calculate
(l/eypr- Although there are many ways to perform the average, the
simplest is to average over a normalized Lorentzian density,

E.E
<1/eQQ>:jdEO 10( ) 0)
EO_HQQ_WQQ
where
A 1

E,E,)= |
P ) = E—E )+ /4

Assuming that 1/e,, has no poles in the upper half of the complex E

plane (causality), we can perform the integral by closing the contour in

the UHP to find . »
(1/€gy ) = (E+iA/ 2= Hyp —Wpy)

so that |

V
0 : op
E—H,,+iA/2

Uop =Vpp +Vp

t
The optical potential 1s energy-dependent, non-local and complex. Its
imaginary part is negative, resulting in a potential that is absorptive. The
absorption accounts for the flux that is lost to the Q-subspace.



Low-energy neutron scattering — optical potential

One finds for the low-energy neutron s-wave S-matrix element S, = e

—2ikp
b

where p is a complex scattering length. R = | ,0| is called the scattering

radius.

The resulting elastic cross section tends to a constant as the energy tends to
zero, while the absorption and total cross sections diverge at small energy

as 1/k.
We have, as k—0,

do
o, =4r———>

4r
Gabs — _7 Im IO

and

o)

tot — Gel + Gabs .

ArR?,
100+

(1+2k1m,0),

—

=

T’
©

10




Experimental significance

An optical model calculation furnishes a wave function and a scattering
amplitude that should describe the prompt part of the scattering. The S-
matrix that results is an energy-averaged one. We could write the S-
matrix before averaging as

Sy =Sy + Sy pue» With (S, . )=0, sothat (&,)=(S,).
The energy-averaged total cross-section is just the optical one,

1— Re(G >) 27

o P (1 ReS, )
since it 1s linear in the S-matrix.

tot

277(

However, the energy-averaged elastic and absorption cross sections are

00 =25 (180 =1 )= T35, =1 + 7| ]

o = e (118 ) = 2 (1 15F )~ (|| )

Only the total optical cross section may be compared with the
experimental one.

and




The s-wave strength function

If we average the resonance expression for the elastic S-matrix,

. I
S =e | 1—i - ., where ' =g,
e [ ;E—gﬂ +1Tﬂ/2j pa = Epe

over the Lorentzian that was used to obtain the optical potential, we find

_ | r . r
Sy =€ [ 121y ——2 x| -,
’ 7 E—gﬂ+iA D

where T is the average neutron width and D the average s-wave resonance
spacing. Since the average is the same as that of the optical potential, the
average S-matrix should be the same as the optical one. In particular, we
expect

1-|S, | zzﬂ%

when ' << D. We define the strength function as

f E 1/2 1 E 1/2
So = L 0 ~ — 0 (1_‘SO‘2)
D\E 27\ E.

cm

where E, is usually taken to be 1 eV. The factor of /£, cancels the
energy dependence of the neutron partial width.



Strength functions and SPRT

The s-wave strength function may be obtained from experimental data,
either from measurements of the total cross section or from averages over
resonances. When compared to optical model calculations, the agreement
is quite good. The two peaks in the s-wave strength function occur in the
regions where the 3s1/2 and 4s1/2 neutron shell-model orbitals are
becoming bound and have a large overlap with continuum states.

A p-wave strength function e e e
may also be associated with
p-wave absorption and
extracted from data. The two
strength functions, together
with the scattering radius and
the total cross section, may
be used to fit optical model |
parameters at low energy. 02+ : . -
This 1s known as the SPRT Sl atidey e g aotipon ol bepasiaes Ay b §R A
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Higher partial waves 10000~—

The angular distribution for a pure s-
wave 1s obviously constant. As the
energy increases, more partial waves
participate in the scattering and the

do/dQ (mb/sr)

angular distribution becomes more 3 i |

forward peaked. : G &

The highest partial wave 10k W, s
contributing to the scattering may be 0 30 60 90 120 150 180
crudely estimated as [, ~kR. For 0 (deg)

n+238U at an energy of 1 MeV, this 1

gives [ ~1.6. o8l n+238U

An important auxiliary quantity

determined in an optical model 0.6

calculation is the transmission =3

coefficient, 7, =1-|S,|", which isused 4] |
to calculate the fluctuating contribution 5|
to the cross sections. The transmission : . 4
coefficient measures the fraction of flux  WG7—607 '{'fl==:-i"m4]"*"" 0
that is absorbed from each partial wave. E_(MeV)

1000¢

04 28y — 0.01 MeV]| 1

—- 0.1 MeV
1 MeV
== 10 MeV
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The partial wave expansion for charged particles

The difference between the partial wave expansion for neutral and charged
particles is the long-range Coulomb potential. Rather than consider a plane
wave, one must consider a Coulomb wave,which contains an additional
logarithmic phase. The wave function may be expanded as

e éz(zz +1)i'e F (kr)P(cos 0),
[=0
with ;
Fy(kr) == (&7 HI” (kr) = [ (kr) )

where the o, are the Coulomb phase shifts and

H® (kr)——(Fi) ™) with 7= ka,.

One may proceed as before to extract the scattering amplitude as

1(0) = £.(0) + ﬁ S (21 +1)e? (5, ~1) P(cos ).
where H o

£.(0)=— stir?z " exp| —inln(sin® 0/2) +2ic, |

The quantum Coulomb scattering cross section is 1dentical to the classical one.



Proton scattering

The angular distribution for proton
scattering on 58N1 at 1 MeV is a
pure Coulomb one. Even at 4
MeV, the difference from the pure
Coulomb angular distribution
appears small. At 10 MeV,
substantial deviations have
appeared.

Nuclear effects are more easily
distinguished in the transmission
coefficients. They support the
observation that the scattering 1s
purely Coulomb at 1 MeV.
However, at 4 MeV, 40% of the s-
wave and about 10% of the p- and
d-wave have been absorbed.
Angular momenta through 1=4
contribute at 10 MeV.
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The optical potential

We obtained a formal expression for the optical potential,

: V.
0 . OP
E—-H,,+iA/2
by rewriting the energy-average of the continuum component of the wave

function as an equation for itself. We observed that this potential 1s
complex, non-local and energy-dependent.

Uppi =Vep V5

t

A good deal of work has been done to calculate the optical potential from
first principles. These potentials are usually non-local, except at very high
energies, which tends to complicate their use.

Phenomenological optical potentials are normally used to fit and compare
with experimental data. These potentials are usually taken to be local.
However, their geometrical characteristics and the general trend of their
energy dependence are quite similar to those of microscopic potentials.
They can furnish insight into what one should expect of a microscopic
potential. After all, both potentials are trying to describe the same physical
processes.



The phenomenological optical potential

Empirical optical potentials are determined by adjusting a limited set of
parameters to the data on hand. Over the years, a standard form of the
potential has evolved, which permits the parametrization of the scattering
of most light particles (n, p, d, t, 3He, or @) from most nuclei. This is

U, (r)= V.(r) a Coulomb term,
Vi (r) — iWfy(7) volume terms,
+ Vg, (r)—iWsg, (r) surface terms,

~d -5V, h,(r)—iW, h,(r)), spin-orbit terms
where the spin-orbit constant is d = (%/ mﬁc)2 ~2 fm”.

The Coulomb potential 1s usually taken to be the interaction of a point
charge with a uniformly-charged sphere of radius R =1.25*A'!3 (fm),

(7.7,
2R,
Z,7Z.e

\§ ]/'

(3-=(r/R.)*) r<R
Ve(r) =+

¥y >R

C



The volume terms of the optical potential

The volume terms are usually taken ]
to be of Wood-Saxon form,

i | 0.8~

f;(r):1+exp[(r—Rl.)/ai] =W 0.6 I
where R; and a; are the radi1 and i 0.4; i
diffusivities of the two terms. -
The Wood-Saxon form is quite similar N T T : .

[

to the nucleon density of a saturated 0
nucleus (4>30).

The real volume potential reflects the average interaction of the projectile with
the nucleons of the target. The strength of the real volume potential is roughly
proportional to the mass of the projectile and and decreases with energy, in
agreement with nuclear mean field calculations.

r (fm)

The 1maginary volume potential takes into account the loss of projectile flux
due to collisions with the nucleons in the target. It is zero at low energy, below
the threshold for single-particle excitations, and increases with energy as the
phase space of single-particle modes increases.



The surface terms of the optical potential

The surface terms are usually taken to be either the derivative of a Wood-
Saxon,

gi(’"):—4ai%fi(r):4 eXp[(V—Ri)/al.]

(1 +exp|(r —Rl.)/azl.])2

i=V,w,
or a Gaussian,
g(r)=exp| (r=R) /a] | i=V.W.

The two are practically indistinguishable when a=2.21 a .
] : [ ' |

The 1maginary surface term takes into

- |— Derivative W-5
account the absorption due to the i el L
excitation of low-energy collective
modes, which have their couplings o 0T
concentrated on the surface. D

-
=
T T r

A real surface term can result from the
same coupling but can also be 0.2
explained using a dispersion relation.




The spin-orbit terms of the optical potential
The spin-orbit terms are taken to have a Thomas form factor,
1 exp[(r—Rl.)/al.]

= =V, W.
ra, (1+exp[(r—Rl.)/ai])

hi<r>=—}%f,-<r)=

The spin-orbit interaction also acts between the bound states of a nucleus,
where it increases the binding of the j=/ + 7 levels and decreases the
binding of the j=/-1/2 levels.

The Thomas form factor and the spin-
orbit potential itself are obtained (for
spin 2) when the Dirac equation with
Wood-Saxon potentials 1s reduced to =
an equivalent Schrodinger equation. 0.05¢
The spin-orbit interaction is thus
another manifestation of the volume
interaction of the projectile with the
nucleons of the target.

h(1




Optical potential parameters

The phenomenological optical potential is thus parametrized in terms of a
set of potential strengths and corresponding geometrical parameters.

The best modern reference for optical potential parameters is the Reference
Input Parameter Library (RIPL), available both online and in CD from the
Internationational Atomic Energy Agency.
For nucleons, typical values of the potential strengths are
V =(45-55)MeV -(0.2-0.3)E,
W =(2-T7)MeV -(0.1-03)E E <8—-10MeV,
V., ~(4-10) MeV.
Above 8-10 MeV, W_ 1s usually constant or slightly decreasing. V, and W,

can normally be taken to be zero as can W below about 10 MeV. Above
about 10 MeV, W is constant or slightly increasing.

The radii R, take on values R, = .4, with the reduced radii in the range
r~1.2 — 1.3 fm. The diffusivities are normally in the range a, ~0.4 — 0.7 fm.

Fairly wide ranges of the parameters V, R, W and a, result in equally good
fits if VR, and W.a, remain constant. These are potential ambiguities.



The microscopic optical potential -- 1

Microscopic optical potentials attempt to
describe the projectile-target interaction in

terms of nucleon-nucleon interactions, such as }O + IG + IG Lo

these representing the first few terms in
nucleon-nucleus interaction.

A systematic method for summing the most A
important terms 1s provided by the self-
consistent Brueckner approximation. The @ - * II B }T T
Brueckner &-matrix is calculated by summing
repeated interactions, taking into account A 4
effects of the nuclear medium.This calculation @ = == + @
is usually performed in infinite nuclear matter,

for simplicity.

The &-matrix is then folded over the target
nucleon density to obtain the optical potential U, = @ 4 @
U. Self-consistency requires that the target ” (=

density be obtained with the same potential.




The microscopic optical potential -- 11

term and an exchange term. The exchange term 1s Uopt =
non-local and both are energy-dependent. The

exchange term 1s often approximated as a local term = 4 o
with an additional energy-dependence (JLM).

The microscopic optical potential possesses a direct @
_|_
2
u + U

At high energy, the microscopic -

optical potential reduces to the _
impulse approximation potential, 51 I
obtained by folding the two-nucleon
-matrix with the target density --
the 7p approximation.

G, (b)

The figure compares experimental 10

reaction cross sections for 2C, 28Si,

SFe 99Zr and 2%®Pb, in ascending 0> R ;
order, with microscopic optical ’ Y
model calculations by Amos and 90 50 60 70 80

Karataglidis, nucl-th/0202050. E (MeV)



The microscopic potential at low energy

Formally, we derived the optical potential by considering the scattering in a
subspace P of the space of states and then energy-averaged to smooth the
dependence on the remaining subspace of states Q. We obtained

1
U,, =Vep+V, Vo
v H o vin/2

t

In the microscopic optical potential, the division into # and Q subspaces is
no longer transparent. It is there, contained in the &-matrix, but in terms of
nucleon-nucleon scattering rather than nucleon-nucleus scattering. We
would thus expect that the microscopic potential does not take into account
the collective effects that are often important at low energies. We might
consider decomposing the optical potential at low energies (using a local
approximation) as

Uopt (7', E) — Usp (7/', E) +Ucoll (7", E)’

where U, 1s the microscopic potential and U, 1s the remainder, which we
might attribute to collective effects. At low energies, U, (7, E)~V (1, E). At
high energy, we expect that U, (7, £) 0.



Dispersion relations

ImE~’
Because of causality, the optical potential should
have no singularities in the upper half-energy plane.
We may then write
Cﬁ dEv coll (7" E ) O
’ > o >
which we may rewrite as E Rek’
U E'
PdeEv coll'(r ) —lﬂ'U 01[(7' E)

G600 =

Separating U, , into its real and imaginary

col

parts, U, , = AV + i IV, we have

Wr,E")
E'-E

208Pb, 209B1

BOO| -

400

AV (r, E) = P.P.ljdE'
T

Jy /A (MaV fm?)

At low energy, U, ~Vy+ AV +iW. ey, e ™S ot

300| soo|

The effect of AV 1s seen as a strengthening
in the real part of the optical potential at 200/ —
low energy relative to the linear e (MoV)

dependence expected of V. (Finlay and Petler, Opt. Model 1986)

10 20




The single-channel optical model -- spin

Because of the spin-orbit interaction, a rigorous treatment of neutron or proton
scattering requires that the spin be included in the calculation. To do this, one
performs the partial wave expansion of the scattering wave function (spin s) as

AT ot oy it
‘P=;lee v (N5 (HDL” (%),

lin

s
in terms of the spin-angular functions, 7
"(F) = ilz<lmsv‘j n> Y (f)‘sv>, [

where / and j are the orbital and total angular momenta and |sv) is a spin
eigenvector. In the expansion, o, is the Coulomb phase shift, 7 denotes the
angular variables and & the direction of the incident momentum. The spin-
angular functions are vectors with components labeled by v, the projection
of the spin.

Because of angular momentum and parity conservation, the equations for
the v/ (r)uncouple. They can then be solved as before and the asymptotic
behavior of the resulting wave function analyzed to extract the scattering
amplitude.



The scattering amplitude -- spin
The scattering amplitude

£(0) = fc<e)1+—ze2’°'f (S/ 1) (A (),

l]n
with f-(6 ) the Coulomb scattering amplitude, is now a matrix, f, (),
with matrix elements labeled by the spin projections v and v’.

AO) B(O)
B(0) A(0)

For particles of spin Y2,

f(0)= (
where

AO) = £-(0) +#Ze2f@ [(1+1)(Sj+”2 ~1)+1(s" —1)]1’1(0089),

and B(O) = _kzezia, [Slm/z _Sll_1/2:|Pll (cos6).
2i

The amplitude A corresponds to scattering in which the spin projection
remains constant. The amplitude B describes scattering in which the spin
projection flips.

o 4t dad n tad ded



Angular distributions -- spin

The differential elastic cross section for an unpolarized incident beam 1is
obtained by averaging the squared magnitudes of the scattering amplitudes
over the initial values of the projectile spin and summing over the final
ones,

do

]
dQ_2S+lz

%%

fn O

For spin-1/2 particles, this becomes

Z—g =|4@)| +|B@O]  s=1/2.

For particles of spin /2 and greater, vector and possibly tensor spin
observables may be defined in terms of other combinations of the
amplitudes. For particles of spin %%, the vector polarization P(6) and the
spin rotation function Q(6) are defined as

2Im 4 (8)B(0) and  0(0) = 2Re A*(Q)B(Q).

PO = 10/d0 dodQ




Polarization in
neutron scattering

The spin-summed angular
distribution due to scattering of a
polarized beam may be written as

do il do
dQ)  dQ
where ﬁpol 1s a vector defining the

intitial polarization and 7 is the
normal to the scattering plane.

(1+P@©)A-P,,),

The spin-orbit interaction is fairly
strong. Its effects on the

polarization become visible as soon

as partial waves above the s-wave
contribute to the scattering.
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Integrated cross sections -- spin

As before, the absorption cross section may be related to flux lost from the
asymptotic probability current density,

o, ——Cj} j- dS— nyE 2(2]+1)( ‘Slj‘z).

The fraction of the flux lost from each partlal wave may also be
expressed as a transmission coefficient,

. .12
T/ =1-|S/]".
For charged particles, the Coulomb interaction leads to an infinite elastic
cross section. For neutrons, integration of the differential cross section

yields
o, =deZQ — 2(2]+1)\Sf —1\

For neutron, the total cross section may be defined as the sum of the
elastic and absorption ones,

c,=0,+0, = %i(2j+l)(l—ReS/).
i



Comparison with
experiment

We recall that, being linear in the
scattering amplitude, the total optical
cross section may be compare to the
energy-averaged experimental one. We
see that reasonable agreement with the
data is possible here.

We also verified that the partial wave
contributions to the energy-averaged
elastic cross section,
T 2
= >

‘S/ - 1‘2 + %<
exceed the shape elastic (optical) ones
due to contributions from fluctuations.
We observe that the fluctuation
contributions are negligible only at
higher energies.
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Inelastic scattering

The single-channel optical model describes the scattering in the elastic
channel alone. It is often called the spherical optical model because, 1n it,
the target may be considered to be spherically symmetric since its
structure is never introduced.

Direct reactions that transfer energy as well as momentum are often quite
important. Such inelastic scatterings, in the case of the inert projectiles
that we are considering (n, p, @, d, etc.), leave the target in an excited
state and diminish the asymptotic kinetic energy of the projectile. To
describe inelastic scattering, we must introduce at least the basic
characteristics of the ground and excites states of the target.

The nature of the ground and excited states of the target nucleus are also
important factors in detemining the degree to which the target is excited in
a collision. The states that are most strongly excited in collisions are those
that involve collective movement, vibrations and rotations, in particular.



Vibrations

Every nucleus possesses collective vibrational modes of excitation. Their
importance in low-energy scattering, however, varies greatly from nucleus to
nucleus.

Vibrational modes may be understood qualitatively as shape oscillations of
intermixed but incompressible neutron and proton fluids about their
equilibrium configuration. The protons and neutrons may oscillate in phase
(isoscalar) or out of phase (isovector) with one another.

The simplest modes are:

Isoscalar Isovector

Ol ©)
[=1-— dipole CM displacement
[=2" -- quadrupole Q «> Q (:) «> @

Octupole (/=3-) modes are also common and many others have been observed.




Vibrations — Excitation Energies and states

Isovector vibrations occur ar higher energies than the corresponding 1soscalar
ones, because of the strong nuclear attraction between protons and neutrons.

Negative parity vibrational modes tend to vary smoothly in energy as a function
of the mass number. Positive parity vibrational modes, vary greatly with the
mass and depend on the shell structure. The variations in the excitation energies
are explained in a microscopic treatment in terms of particle-hole pairs:

Negative parity — particle-hole pairs from two adjacent shells,

Positive parity — particle-hole pairs from same shell, when possible,
otherwise from one shell and from second higher shell.

Ex.: 298Pb — the first excited state is the 3- octupole state.

Vibrations are bosonic modes. Multiple excitations are possible but must form
symmetric states. Thus an excited state consisting of two /=2 quadrupole
phonons on a I=0" ground state may have /=0",2", 4.

The states may be written in terms of creation operators p =~ as

L N)=b, [0) and  |eedN,)=———[5b] |0}

‘/1+5,1,2



Vibrations — An example

: : : E =2h
In the simplest case of non-interacting phonons, X @

the spectrum is harmonic. The ideal spectrum of F_ =
the first few excited quadrupole states on an

[=0" ground state are shown here. E =0

We compare this with the first few excited

states of >Ni (energies in MeV).
E =2.46,2.78,2.90,2.94

The three states that can be interpreted as E =145
two-phonon quadrupole states occur close g
in energy to twice the energy of the one- E =0

phonon state and have the correct spin and
parity The 17 state, however, does not.

Ideal

58Ni

1=0" 2+, 4*
=2*
=0*

=4+ 2+1*,0
[=2°
=0*

Another indicator of the relationship between the states are the branching ratios
for their EM decay. The two-phonon 4* and 2" states decay almost exclusively to
the one-phonon 2" state, as does the 17 state. The two-phonon 0* state decays to

various of the others, but principally to the 17 state.



Rotations

Many nuclei in the regions between closed shells possess a
statically deformed ground state with axial symmetry. The
lowest energy excited states of these nuclei are usually

rotations about an axis perpendicular to the symmetry axis.

We can approximate the surface of a deformed nucleus as
R(0") = R, (1 T Z:Bzy/w (& ')ja
A

where the 8,, A=2, 4, 6,... are deformation parameters and the angle 6" is
taken with respect to the symmetry axis of the nucleus. The most important
of the deformation parameters 1s S,.

When 5, <0, the nucleus is oblate. When 5, >0, the nucleus is prolate.

The wave function of a rotational state can be written in terms of an intrinsic
wave function yy and the rotation matrices p; as

21, +1
< 1nt

cI.N,) Zx GODy R+ (D) g Fo)Dy ()
m 1677 9 |: K t t K t -K t ]
where K 1s the projection of the intrinsic ang. momentum y on the symmetry axis.




Rotations — An example

A rotational band built on a 0" ground state consists of states with /=07, 27, 4",

6", ... A rotational band built on a ground state with spin I,#0 consists of states
with J=1, [, +1, [, +2, [,+3, ...

The excitation energy of a state with angular momentum 7 is
2
E (I)= ;'l—,v[1(1+1)—10(1O +1)].

27
The nucleus 238U possesses static deformations of 5,=0.198 and 8,=0.057. The
rotational band based on its 0+ ground state consists of excited states with
=27 E =0.045 MeV = 0.0075 MeV * 2*3,
=4 E =0.148 MeV = 0.0074 MeV * 4*5,
=6 E =0.307 MeV =0.0073 MeV * 6*7,
=87 E=0.518 MeV =0.0072 MeV * 8*9,

=287 E =4.516 MeV = 0.0056 MeV *28*29, and possibly more.

The electromagnetic decay of each of these states occurs exclusively to the next
state of lower energy in the chain.



The generalized optical potential -- vibrations

The simplest manner of extending the optical potential to take into account
either static deformation or the dynamical deformation of a vibrational mode
1s to modify the radii of the terms in the potential accordingly.

In its simplest form, a vibrational mode of a nucleus may be taken as a shape
oscillation about a spherical equilibrium mode. The radii of the terms in the
potential may be expressed as

_ . . B
Ri _ ROi (1 + ;a}w)//ly (7")], with a/ly — \/ﬁ (b;,u + (_)ﬂ b/i—lu)a

where lfr and b, are the phonon creation/annihilation operators and the 5,
are the amphtudes of the shape oscillations.

We may then expand the optical potential in the creation/annihilation
operators as

Opt (r) = Uopt(r)+z Opt Rolza,w ﬂ(ﬁ)

The potential is sometimes expanded to second order in the operators. The
second order potential permits single-step transitions to two-phonon states.



The generalized optical potential -- rotations

The optical potential for a deformed nucleus may also be obtained by
expanding the deformed potential radii

R, (0') = R, (1 T Zﬂiyio (0 ')]a

in a Taylor series in the deformation parameters, 8,. However, when the
deformations are large, it 1s better to expand it directly in multipoles as

U, (r#) =2 U, (MY, () with U, (r)=[dQ'U,,(r,0)7,,(6".

opt

The moments U, (r), with u+0, vanish in the body-fixed frame. The
body-fixed angles 7'are related to the space fixed ones 7 through the
collective angular coordinates of the nucleus, 7 . This implies that

Y:IO (ﬁ ') — Z )f/llu (f)Dio (i/;'nt ) — Z Y'/w (ﬁ)Yv/’; (i/;'nt )
% U
The optical potential in the rotational model may thus be expanded as
Uopt (’77 i;int ) — Z U/l (r))//llu (ﬁ))/)ju (i;int )
Ap

The generalized optical potential, in both models, couples the relative motion
to the internal degrees of freedom of the target.



Coupled-channels partial wave expansion

To properly take into account the angular momentum of the target, the spin-
angular functions must be coupled to the target states to form target-spin-
angular functions of total angular momentum J and projection M,

(R =Y (jnI N |IM)D} (F)|cI.N,).
nh.

The functions also depend on the internal target coordinates. In
terms of these, the scattering wave function may be expanded in a
sum over both the excited states and angular momenta,

iO-ZC
_ Z JM el T € IMYt T
T — 472- @Z'Sj'cv(r)l lejvcv,yc (r)—Q;le]c (k).
jent ker
j'c

“|

J

I

The most significant difference here is that the partial wave functions depend on
two sets of indices, /, j,cand /', j', ¢’. For a particle with spin in the spherical
optical model, we have two indices / and /', in principal, for each value of the
total angular momentum j. For particles of spin 0 or spin 'z, parity conservation
reduces the two, [ and /', to have the same value. The partial wave functions and
S-matrix elements are then uncoupled scalar quantities. Here, we should look
more carefully to see how the channels could be coupled.



Coupled partial waves

To analyze the partial waves that can couple, we must consider
all possible combinations of the orbital angular momentum /,
the spin s, the channel angular momentum j and the target spins i
/. that can sum to a given value J of the total angular

momentum and possess a given value of the parity, 7.

Consider a simple example: a spin-’2 nucleon incident on a 0" ground state
that can be excited to a 2" target state. We have

“|

For the J/=1/2" channel: For the J/=1/2- channel:
0+ ground state: /=0, j=1/2 3 0+ ground state: /=1, j=1/2
2+ excited state: [=2, j=3/2 coupled 2+ excited state: /=1, j=3/2
[=2,j=5/2  channels =3, j=5/2

For the J/=5/2" channel: For the J/=5/2- channel:
0+ ground state: /=2, j=5/2 0+ ground state: /=3, j=5/2
2+ excited state: /=0, j=1/2 6 2+ excited state: /=1, j=1/2
=2, j=3/2 coupled =1, j=3/2
=2, j=5/2 channels I=3,j=5/2
=4, j=7/2 =3, j=7/2

I=4, j=9/2 =5, j/=9/2



The coupled equations

When the partial-wave expansion is substituted in the Schrodinger equation,
it reduces to a set of coupled equations for each value of J”,

el d® 1(I'+1)
2#{@1}’2 7”2 k2 l//l]cl]c(r) IZ i’[l]cljc(’/')l//ZJ"j"c",ljc(’/'):Oa
j'c
where the potential matrix elements are those of the target-spin-angular
functions,
l j'c\ljc (7') de 2](11]\;?- (7') Uopt (7', rlnt ) 2)15]0 (V)

The matrix elements are independent of M due to rotational invariance and
symmetric under interchange of indices, if the system is time-reversal invariant.

If we group the matrix elements of the coupled equations into matrices,

['6,,8, 8., = L, k88, 8., = K,

l//l'j'c',ljc(r)_)LPJ(r) Z]cljc(r)_>U (I/')

we may write the coupled equations for each value of J* as a matrix equation

{dz CL,(L, +))

2 2
dr 7

2
+ K> ;;‘Uj(r)}tpj(r) — 0.



The scattering amplitude and S-matrix

We may also introduce the target-spin angular functions into the matrix
representation of the partial wave decomposition, but as a vector rather than as

% TS, DM () = (7|lsjcIM ) — (7| IM ).
The wave function may then be written as
=S R UMY (e K (M k).

rm
Conceptually, obtaining the scattering amplitude 1s now straightforward. As

before, the wave function must be integrated numerically from the origin to
beyond the range of the nuclear potential. There, it is matched to either
Coulomb or free waves (in matrix form),

Y, > % (H C(r)—H (r)e” S e ) e ' where S’/

l'j'C',ZjC % SJ'

Substituting this expression in the partial wave expansion and analyzing its
asymptotic form, we obtain the scattering amplitude,
0

— 4 .
fO)=—> (7

20 57
The matrix elements of the scattering amplitude, ./, Newn.c » are labeled by
the target state and the projections of the projectile and target spins.

IM)(e5,e7 ~1,)K;' (JM




Flux normalization

The cross section can be defined in terms of a ratio of current densities or
fluxes. When energy 1s removed from the relative motion, as in inelastic
scattering, the relative velocity and the corresponding flux are reduced. To
correct for this, we must multiply the scattering amplitude by a factor of

JVr /v =4k, k.
We may do this by defining first the normalized S-matrix,
SJ — K}/2§JK;1/2’
and then defining the normalized scattering amplitude in its terms as

£(0) = 42—’;%:(? IM)(eS,€” ~1,) K, (M k)

IM)e” (S, -1,)e” K;' (M

where the Coulomb amplitude 7(6) is now a matrix, diagonal in the spin

projections and state indices, but different for each of the target states due to
the difference in the relative motion..

4 n
—fc(9)+2—iz<’"

JM



Angular distributions and cross sections

The angular distributions for an unpolarized beam and target are obtained by
averaging the squared amplitude over the initial spin projections and summing
over the final ones. Denoting the initial state by ¢, and its spin by /,, the
differential elastic cross section is

2

@) -

/

V'Noco ,VN()CO

do, 1 Z
dQ)  (2s+1)(21, +1) =
The differential inelastic cross section to an excited state ¢ with spin /. 1s

J

v'N,.c,vNycy

do, 1 Z
d (2 (2s+1)(2] +1)

For neutrons, the integrated elastic Cross section 1S
1

2021, +1) k. 15

Z(2J+l)‘ I'j ey licy 51'15]"]"2'

z]J
For charged or neutral particles, the inelastic cross section to an excited
state ¢ with spin 7, is

Gel —

- 1
‘ (25+1)(2] +1) k. 7

Z<2J+1)\

l]J



Absorption cross sections

Just as in the spherical optical model, we may associate an elastic absorption
cross section o, with the flux lost from the elastic channel,

— _lcj)s j(:o .dS where ]’CO f (\PT VY, (VTZO )‘PCO ),

2iu
with W belng the ground-state component of the wave function. This cross
section includes the flux lost to inelastic scattering as well as absorption.

We may also define a total absorption cross section o, (which is smaller
than the elastic one) as the flux lost from all of the channels together,

1 T x h
= —;cﬁszcjc -dS  where . = 2 (‘PTV‘P (VLPZ)LPC),

with ¥, the component of the wave function of state c.

We have for the inelastic channels

1 - =
;C'[)Sjc-dSzac C#Cy, so that Grzaabs+200.
CiCO

That is, the elastic absorption cross section is the sum of the total absorption
cross section and the inelastic excitation cross sections.



Cross sections and transmission coefficients

Uing the asymptotic form of the wave function, the elastic absorption cross
section may be calculated,
J 2
Z(2J+1)( =15 )
]J

1
It 1s a sum of the contributions of the elastic S-matrix elements.

O
’ (2s+1)(21 +1) k,

The total absorption cross section may be reduced to a similar form,

1
o, = J+1 ,
O @2s+ DI, +1) k: ;( i s

where we have introduced the coupled-channel transmission coefficients,
which in matrix form are

T,=1,-S'S,.
For neutrons, we may define the total cross section as the sum of the elastic

and the elastic absorption ones,

1
c,=0,+0C 2J+D(1-ReS’ :
tot r (2] ) ;( )( ljcy IJCO)

The total cross section measures the ﬂux lost from the incident plane wave. It
takes into account scattering of any type.




An example — Rotational excitation of 238U

Let us consider excitation of the ground state rotational band of 2*3U through
the 8" state. For J=1/2, 1+2+2+2+2=9 coupled channels are involved. For
large values of the total angular momentum, we have 1+5+9+13+17=45
coupled channels in each partial wave.

The cross sections of the first excited states increase rapidly above their
thresholds. The cross sections of the more highly excited states increase
more smoothly.

100005
All of the cross sections 1000k E
decrease very slowly at high e
100~~~ T i o 2
energy. ,._g -?r =
The high energy values of the = IO? - —
cross sections decrease by a 1} L — Basico' |
factor of about 5 for each state e i_ 2 By oy : ;
as one ascends the rotational TH bt g|
. . . 1 | I I I .-\ aI L : -

band in excitation energy. 0.015 5 i 6 2 T

E , (MeV)



Comparison with
experiment

Inelastic cross sections are dominated
by the contribution from the compound
nucleus at low energies, as seen here
for the first excited states of °®Ni and

2381J

The two calculations of the *8Ni

inelastic cross section use the same

value of 8,=0.2, yet yield cross

sections that differ by almost a factor
of two due to differences in the optical

potentials.

The cross section for excitation of the
rotational state in 238U is 5 to 10 times
greater than that of the vibrational state
in >¥Ni, mainly due to the factor of 30
difference in their excitation energies.
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The Lippmann-Schwinger equation -- I

The integral representation of the wave equation, the Lippmann-Schwinger
equation,

Y=V, +(E ~H,) U¥=Y,+GU'Y, where (E-H,)¥,=0,

is often very useful for the analysis and solution of scattering problems.
Here, G, is the outgoing-wave Green’s function and ¥, a wave function
with an incoming wave boundary condition. It is usually most convenient to
place the single-channel optical potential in the /, of the equation and only
the couplings between states in U’.

For the single-channel optical model, we can define incoming/outgoing-
wave solutions, //*(r), of the wave equation,

d>  I(+]) 21 | )
[ R +kfhz(Ucen,c(r)+leUSO,c(r))jh,{: () =0,

where the spin-orbit factor is d/ =d,, ( JG+D) =l +1)—s(s+ 1)) /2.

Asymptotically, these solutions behave as incoming/outgoing Coulomb (free)

waves, hi=(r) > H]* (r) =" (G, (r) £iF,.(r)).



The Lippmann-Schwinger equation -- 11

The solution to the single-channel Schrodinger equation that 1s regular at the
origin 1s given in terms of the incoming/outgoing solutions and the S-matrix as

i+ l — i+ o i ' ioy,
i (1) = S ()= (e S5 ) =yl (e,
which 1s just the single-channel wave function of the partial wave expanson.
We have merely relabeled the S-matrix as S, .

The single-channel Green’s function may be decomposed in partial waves as

GL (7.7 =— S 97 (g (r, )V (),

rr

lin
where 5
lu io +
r,r'=— r.)e " hl”(r.).
glc ( ") 221 ch( ) (>)

©

The complete single-channel Green’s function for the coupled-channels
problem may then composed as

G, (7,7 =Z\chC>GJCW )

w (g (r,rYig " (7).

l]n



The Lippmann-Schwinger equation -- 111

In terms of the channel matrices, the Green’s function G, takes the form

t i o 1 " N
Go(”»’”):—,le” r>,
rr'
where we have grouped the appropriate Green’s functions in diagonal

matrices,

IM) Gy, (r,r){JM

gl (178,88, = Gy ().

JJ cc¢C

In terms of these, we can write the contribution to the Lippmann-Schwinger
equation of each partial wave as

V,(r)= LPOJ(’")"‘Td’"' G, (r, U (Y, (7).

Substituting the large-r expressions for the wave functions,

0J 0J

v, —» %(HJ (r)—H; (r)e' 5,, e'% jeiaf ,

and using flux conservation to normalize the S-matrix, S, =K,*S K,"*,
we obtain

2 o0
S =S, + 2ih—§‘1<;”2 [ar e, (U, (K,
0



The distorted-wave Born approximation (DWBA)

The Lippmann-Schwinger equation,

W, (r) =Wy, (r)+ [ dr' Gy, (r,r U (FOY (),

here in partial wave form, contains the wave function ¥ (r) on both the
right and left sides of the equation. This can be used to advantage when the
coupling potential U" is small. We then expect the wave function ¥, to be
little different from the uncoupled one ¥, , so that we have, to first order,

O =W, (r)+ j dr' G, (r,r U (r )Y, ().
0
The corresponding DWBA S-matrix 1s
2 o0
SO =5+ 2ih—§‘1<;”2 [ar e, (U, K.
0

The DWBA approximation may be extended to higher orders by substituting
the solution of the previous order in the Lippmann-Schwinger equation. The
second-order solution, for example, is obtained by substituting the first order
solution in the integral equation. However, the DWBA is usually not used
above the second-order.



Limit of the DWBA R
Two examples give us an idea of 60
when the DWBA mlght be applled to L xﬁ — Coupled channels
. . . =) -- DWBA
inelastic scattering. £ ]
The DWBA provides a reasonable © . .
approximation to excitation of a 20r Ttz BsldsaMey
vibrational state such as the 2* one in
58N+ 1 I I

Ni. H9wever, it gregtly. 9 5 7 6 3 0

overestimates the excitation of a E  (MeV)
strongly-excited rotational state, such 2000——— 11—
as the 2% one in #38U. - B8y ot E=45keV |—2.-8 gg

In general, the DWBA overestimates
the inelastic cross section, since it
does not take into account transitions
back to the ground state.

In the case of 238U, we note that
transitions to other states of the
rotational band can also be important.




The ECIS method -- 1

The ECIS method (Equations Couplées en Itérations Séquentielles) i1s an
alternative to the standard coupled-channels method. It is based on the
Lippmann-Schwinger equation, _

W, (r) =Wy, (r)+ [ dr' Gy, (r,r U (FOY (),

given here 1n partial wave form. The ECIS method uses a decomposition of the
optical potential into the single-channel potentials, placed in H, , and the
couplings between states, which are put in U’". It assumes that the states are
arranged in order of decreasing coupling with the ground state.

Beginning with the ground-state (state 0) single-channel wave function, the
ECIS method:

Calculates the wave function of the first excited state (state 1) using that of
state 0,

Calculates the wave function of the second excited state (state 2) using those
of states 0 and 1,

*Calculates the wave function of the ground state (state 0) using those of states 1
through ».



The ECIS method -- 11

The calculation of the wave functions for each of the states is then repeated
in the same order, using for the other states the last wave function that was
calculated, either from the same iteration or from the preceding one.

The set of calculations, beginning with the first excited state through the
ground state, are iterated until convergence is achieved.

The method 1s extremely efficient in cases in which the coupling is small,
such a that of the 2* vibrational state in 3Ni. The standard coupled chanels
method must solve a matrix equation, which requires a processing time
similar to that of performing an ECIS iteration for each of the coupled
channels. In weakly-coupled problems, convergence may occur in a few
iterations, making the method the more efficient of the two.

In strongly coupled problems, such as that of the ground state rotatonal band
in 233U, the opposite is the case. The convergence of ECIS iterations can be
much slower than solution using the standard method, when convergence
occurs at all.



Single-channel calculations with ECIS95

To perform a single-channel optical model calculation, we have to furnish
information on:

*The system -2, 4, Z,, A,,and E_, =4 E,,/(A,+4), I" of target;

*The optical potential parameters—V, V., W, W_, V.  and W  and the
geometrical parameters — the reduced radii 7, and diffusivities a, ;

*Quantities to be calculated — cross sections (automatic), S-matrix elements
(in the form C = (5-1)/2i ), transmission coefficients, angular distributions
and/or polarizations printed and/or plotted.

ECIS95 -- by J. Raynal -- does not calculate several basic low-energy
observables -- strength functions and the scattering radius.

ECIS95 can fit parameters to experimental data — integrated and
differential cross sections, polarizations, and others, by minimizing

2
2 cal X X
P’ :Z[(ai — 0, )/Aal. ] :
ECIS95 cannot use or adjust energy-dependent parameters.

PRECIS — a utility code to facilitate input preparation.



Exercise 1 —n + >%Ni,g

Spherical Optical Model Calculation: Using the program PRECIS, generate
an input data file for the ECIS95 code for neutrons incident on *®Ni, at 0.1,
1.0 and 10.0 MeV i1n the laboratory system that:

e Includes only the 0% 3Ni ground state,
 Uses the global optical potential parameters of Wilmore-Hodgson,
e Prints the C-matrix elements, C=(S-1)/21, and

» Calculates and plots the differential elastic cross section in 10° intervals
from 0° to 180°.

Look at the contents of the input data file and try to identify the parameters
that you entered.

In the output file, for each value of the incident energy,
* Find the optical potential parameters,

 Find the C-matrix elements, and

* Find the integral and differential cross sections.

Are the optical potential parameters constant?



A dialogue with the code PRECIS — Exercise 1 -- 1

To prepare an input file for ECIS95,

your file.

ecis—-exl

begin by entering the name of

Enter the title that you wish to appear on the output.

n+t58Ni —-- Spherical optical model -- Wilmore-Hodgson parameters

Enter 1 if the logical switches are to be printed

0O otherwise.
1

Enter the number corresponding to the projectile.

1_
2_

o U1 b W

1
Enter the charge, mass,
28. 58. 0. 1.

neutron
proton
deuteron
tritium
helium-3

alpha

spin and parity (+1 or

of the target.



A dialogue with the code PRECIS — Exercise 1 -- 2

Enter 1 to use a global potential,

0 to enter the potential parameters.

1
Enter the number corresponding to the potential to be used.
1 - Wilmore-Hodgson ( 40<A E<I1O0 )
2 — Bechetti-Greenless ( 40<A 10<E<50 )
3 - Ferrer-Rapaport ( 24<A<209 E=11 )
4 - Cindro-Bersillon
5 - Madland-Young ( actinides )
1

For each of the potentials vc, w, vso and wso, enter 1 if its
deformation is to be taken into account, otherwise enter 0.

O 0 00
Enter the number of excited states to be used.
0



A dialogue with the code PRECIS — Exercise 1 -- 3

Enter 1 to include the contribution of the compound nucleus,

0O otherwise.

Enter 1 to use the standard coupled channels method,
to use the ECIS method.

Enter 1 if the C-matrix elements, C=(S-1)/2i, are to be printed

otherwise.

Enter 1 if the transmission coefficients are to be written on unit?,

otherwise.

Enter 1 if angular distributions are to be calculated,
0 otherwise.
1
Enter the first angle, the stepsize and the last angle to be used
to calculate the angular distributions. (Angles in degrees.)
0. 10. 180.
Enter 1 if angular distributions are to be plotted,
0 otherwise.



A dialogue with the code PRECIS — Exercise 1 -- 4

Enter 1 if experimental data are to be input,

0O otherwise.
0

Enter the number of projectile energies at which calculations will
be performed.

3

Enter 1 if the projectile energies are to be equally spaced,
0 otherwise.
0
Enter the energies (in MeV 1in the lab frame).
0.1 1. 10.

Enter 1 to prepare the input data to another ECIS95 calculation,
0 to stop.
0

Your input to ECIS95 1s in file ecilis-exl.in.

To run the code ECIS95 with this input file, type:

ecis95 <ecis-exl.in >ecis-exl.out

The results of the run will be written to the file ecis-ex1.out. The transmission
coefficients will be printed in a separate file on unit 7.



Exercise 1 — ECIS95 input

nt58Ni —-- Spherical optical model -- Wilmore-Hodgson parameters
230 e et e e 1 e e e e
230 e o e o e e e e

1 0 0

0.00000 0.00000 0.00000 0.00001 0.00001 0.00001
0.00 0 1+ 0.10000 0.50000 1.00866 58.00000 0.00000
0
46.98329 1.28982 0.66000
0.00000 1.00000 0.60000
0.00000 1.25049 0.48000
9.51470 1.25049 0.48000
7.00000 1.28982 0.66000
0.00000 1.28982 0.66000
1.25000 0.00000 0.00000
0.00000 1.25000 0.00000
0.00000 10.00000 180.00000
T 14 0
0 1 2 4 5 7 8 10 11 12 13 14
1.00000 46.74182 1.28982 0.00000 1.00000 0.00000
9.46700 1.25049 0.48000 7.00000 1.28982 0.00000
P14 0

0 1 2 4 5 7 8 10 11 12 13 14

10.00000 44.22200 1.28982 0.00000 1.00000 0.00000

8.99000 1.25049 0.48000 7.00000 1.28982 0.00000
FIN

16 17
1.25049
1.28982

16 17
1.25049
1.28982



Coupled-channels calculations with ECIS95

To perform a coupled-channels optical model calculation, we have to furnish
the same information as before on:

*The system -2, 4, Z,, A,,and E_, =4 E,,/(A,+4), I" of target
+ [, E_and structure (phonon number) of excited states;

*The optical potential parameters—V, V., W, W_, V. and W  and the
geometrical parameters — the reduced radii 7, and diffusivities a;

+ excitation model (vib/rot), B; and expansion parameters;

*Quantities to be calculated — cross sections (automatic), S-matrix elements (in
the form C = ($-1)/2i ), transmission coefficients, angular distributions and/or
polarizations printed and/or plotted.

ECIS95 -- by J. Raynal -- can fit parameters to experimental data — integrated
and differential elastic and inelastic cross sections, polarizations, and others.

ECIS95 can perform standard and ECIS coupled-channels calculations.
Transmission coefficients require that the entire S-matrix be calculated, which
is usually more efficient using the standard method.The ECIS method permits
the inclusion of a deformed spin-orbit interaction.

DWBA calculations may be performed by restricting the ECIS method to one
or two iterations and restricting the interaction appropriately.



Exercise 4 — n + >$Ni,g

Deformed Optical Model Calculation: Using the program PRECIS, generate an
input data file for the ECIS95 code for neutrons incident on *®Ni,, that:

* Includes the 0" °3Ni ground state and the 2% excited state at 1.454 MeV as a
vibrational state,

* Uses the following optical potential parameters:

-- 1,=1.27 fm, a,,=0.75 fm, V,=48.87 MeV, V,=-0.369 and V,=0.002 MeV-!,

-- ry=1.34 fm, a,;=0.375 fm, W =14.3 MeV, W¢,=0.16 and W ,=-0.006 MeV-!,
-~ Ty,=1.27 fm, ay,,=0.75 fm, V__,=6.75 MeV,

with a phonon amplitude 5,=0.2 and all other potential strengths zero,

» Uses the standard coupled-channels method,

* Includes the file of experimental data ecis-ex4.dat, and

* Adjusts the phonon amplitude S,.

so0

Look at the contents of the input data file and try to identify the parameters that
you entered.

In the output file,
* Find the final value of the adjusted parameter.
* Find the comparisons between the experimental data and the calculations.



A dialogue with the code PRECIS — Exercise 4 -- 1

To prepare an input file for ECIS95, begin by entering the name of
your file.

ecis—-ex4
Enter the title that you wish to appear on the output.
n + 58N1 -- Optical parameters fit to data set
Enter 1 if the logical switches are to be printed
0 otherwise.
1
Enter the number corresponding to the projectile.
1 - neutron
2 — proton
3 - deuteron
4 - tritium
5 - helium-3
6 — alpha
1
Enter the charge, mass, spin and parity (+1 or -1) of the target.
28. 58. 0. 1



A dialogue with the code PRECIS — Exercise 4 -- 2

Enter 1 to use a global potential,

0 to enter the potential parameters.

Enter 1 if dispersion terms are to be taken into account,
0 otherwise.

0

Enter rO(v), rl(v), av, v0, vl, v2, vl and cv,

where v = v0 + vl*e + v2*e**2 + vl*¥ln(e) + cv*sgrt(e) and
rv0=r0(v) + rl(v)*e.

1.27 0. 0.75 48.87 -0.369 0.002 0. O.
Enter rO(ws), rl(ws), aws, ws0O, wsl, ws2, wsl and cws,
where ws = ws0 + wsl*e + ws2*e**2 + wsl*ln(e) + cws*sqgrt(e)
and rws0=r0(ws) + rl(ws) *e.

1.34 0. 0.375 14.13 0.16 -0.006 0. O.



A dialogue with the code PRECIS — Exercise 4 -- 3

Enter rO(w), rl(w), aw, wO, wl, w2, wl and cw,

where w = wO + wl*e + w2*e**2 + wl*ln(e) + cw*sgrt(e) and
rwO=r0 (w) + rl (w)*e.

1.2 0. 0.6 0. 0. 0. 0. O.
Enter r0O(vso), rl(vso), avso, vso0O, vsol, vso2, vsol and cvso,
where vso=vsol0 + vsol*e + vso2*e**2 + vsol*ln(e) + cvso*sqgrt (e)
and rvso0O=r0(vso) + rl(vso) *e.

1.267 0. 0.75 .75 0. 0. 0. O.
Enter rcO and ewmax.

1.25 12.

For each of the potentials vc, w, vso and wso, enter 1 if its
deformation is to be taken into account, otherwise enter 0.

0000



A dialogue with the code PRECIS — Exercise 4 -- 4

Enter the number of excited states to be used.
1
Enter 0 to use the vibrational model,
1 to use the rotational model.

0
Enter the number of distinct phonons to be used.
1
For each phonon, enter its angular momentum and its amplitude.
2 0.2
Enter the energy (in MeV), spin and parity (+1 ou -1) of the first
excited state.

1.454 2. 1.
Enter the number of phonons used to describe the first
excited state.

1
Enter the number(s) identifying the phonon(s) used to describe
this state

phonon no.
1 2



A dialogue with the code PRECIS — Exercise 4 -- 5

Enter 1 to include the contribution of the compound nucleus,

0

Enter 1

Enter

Enter

Enter 1

Enter

otherwise.

to use the standard coupled channels method,
to use the ECIS method.

if the C-matrix elements, C=(S-1)/2i, are to be printed

otherwise.

if the transmission coefficients are to be written on unit7,

otherwise.

1f angular distributions are to be calculated,

otherwise.

1f experimental data are to be input,

otherwise.



A dialogue with the code PRECIS — Exercise 4 -- 6

Enter 1 if experimental angular distributions are to be plotted,

0O otherwise.

0

Enter 1 if parameters are to be adjusted,

0O otherwise.

1

For each of the following parameters, enter the precision desired of

the fit.

If the precision 1s given as 0.,

0 0.
0 0.
0 0.
0 0.

v, rv0, av

0.

vs, rvsO, avs

0.

ws, rwsO, aws

0.

w, rwO, aw

0.

vso, rvsoO, avso
0.

the parameter will not be adjusted.



A dialogue with the code PRECIS — Exercise 4 -- 7

wso, rwso(O, awso
0. 0. 0.

The amplitude of the multipolarity 2 phonon
0.01
Enter the number of projectile energies at which calculations

will be performed.
7
Enter 1 if the experimental data are on file,
0 if they will be input.

1
Enter the complete name of the data file.

ecis-ex4.dat
Enter 1 to prepare the input data to another ECIS95
calculation,

0 to stop.

0
Your input to ECIS95 1s in file ecilis-ex4.1n.



The possibilities of ECIS95

The aim of these lectures has been to provide an introduction to the basic
problems in nuclear physics to which ECIS95 may be applied. For lack of
time, we have discussed only the simplest applications. ECIS95 is capable of
many other types of calculations. Among these are:

*The use of more elaborate macroscopic models, such as the anharmonic
vibrator, the asymmetric rotor or the vibrational-rotational model,

Inclusion of the compound nucleus contribution to cross sections, in a single-
channel model or the Engelbrecht-Weidenmiiller coupled-channel one,

*Dirac optical model calculations,

*Heavy-ion optical model calculations,
*Long-range Coulomb excitation,

Projectile and target excitation,

*Transfer reactions within a zero-range DWBA.

It can be a powerful tool in the hands of those who know how to use it.



