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6Li - Neutron Scattering and Semi-Realistic Models

Conclusions



Standard Reactions

Light nuclei
H(n,n)H 1 keV - 20 MeV
SHe(n, p)*H thermal — 50 keV
®Li(n, t)*He thermal — 1 MeV
1'B(n,a)’Li  thermal — 250 keV
19B(n, a,v)"Li thermal - 250 keV

C(n,n)C thermal - 1.8 MeV
Heavy nuclei
197 Au(n, ) 0.2 - 2.5 MeV
235U(n, f) thermal — 20 MeV
238U(n, f) threshold — 20 MeV

Theoretical treatment of light and heavy nuclei
vastly different

light nuclei heavy nuclei
few well defined open channels many, unspecified
few (broad) resonances many, narrow
center-of-mass motion important unimportant
detailed microscopic models bulk properties
"Few Nucleon regime” "Nuclear matter”

See typical examples



Neutron Production Cross
Section T(p,n)°He

T(n)P*He.  o(0° can.), Legendre Coefficients, o(total)
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Simple energy variation over large range
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Neutron Capture in Gold

BIRD, ALLEN, BERGQVIST, AND BIGGERSTAFF
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Neutron - Proton Scattering

H(n,n)H

Nuclear Physics: proton and neutron elementary particles
= considered pointlike

Scattering experiment:
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incoming neutron impinging on proton target
= incoming wave

scattered neutron measured in detector
= scattered wave

Theory: center-of-mass system

relative and center-of-mass coordinates
center-of-mass moves with constant velocity
= can be separated trivially

=relative motion = scattering by fixed potential



do/ d2 (b/sr)

p+p Differential Cross Section
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Ay (Py) for p+p Scattering
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n-p Total Cross Section
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do/ dQ (b/sr)
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Yy

va for n-p Scattering
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n+p Capture Cross Section
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Potential Scattering

Potential of finite range = interaction region

Description: Incoming free wave
modified in interaction region
scattered particles outside interaction region
free again

Dimensions: neutron beam formed far from target
dimension of beam much larger than H-atom
detector far from target

Conservation of probability:

Incoming beam

total flux through successive planes orthogonal to beam

constant

= Incoming beam = plane wave o e

Scattered particles

total flux through increasing spheres around potential

constant

surface of spheres oc radius r squared

= Scattered particles = spherical wave

kT

eikr

T

. - = tkr
Ansatz for total wave function ¥(F) = e™* T + f(O)%

scattered flux through area dA
incoming Aux

Differential cross section =

do(©,¢) = |f(0)[*dQ



Partial Wave Expansion

Potential rotationally invariant

= conservation of angular momentum

= angular momentum unchanged during
scattering

= consider each angular momentum separately

Spherical harmonics Y;,,(0©, ¢) are eigenfunctions
of orbital angular momentum operator

= form complete set of functions for spherical
angles ©, ¢

= Any function f(©, ) can be expanded in
spherical harmonics

Simplest spherical harmonic

Yoo(©, ¢) = const = 1/v/4x
Ansatz for total scattering wave function

U(r,0,0) = 21 mwu(r)/rYim(O, )

u; obeys radial Schrodinger equation

2 T
[;77 + z;ian _ 2m¥( ) l(ljl)] w(r) =0




Probability interpretation and continuity of flux
= wave function u; and derivative du;(r)/dr
continous

regular at origin: u;(0) =0

Example: No potential -

£ = 0 solutions

general solution

standing waves: sin kr, cos kr
(Riccati—)Bessel functions j;(kr), ni(kr)
In- and outgoing waves:e k7 etkT
Hankel functions h( )(kr) h(z)(kr)
regularity = only sin kr allowed



Scattering Phase Shift

Example: | V(r) R
square-well potential, £ = 0 r
—Vo <R
Vir)= { 0 r>R
. -W
wave function
( sin Kr r< R
ug(r) =< Asinkr + Bcoskr r > R
| o sin(kr + &)

. \
with k? = 2mE/A? and K? = 2m(E + Vj) /K2
for r = R logarithmic derivative of uy continous

= tandy=B/A -~ ;

= weak potential: a

''''' Repulsive potential
sokr

~ <

;{)\/ T
No potential e
NN

NN\
Atractive potential
f sin Kr R sin ke

Vi N\

I

ufon
ttractive 6 > 0

repulsive § < 0

phase shift ¢ is function of energy



S-Wave Scattering

No potential
simkr 1 .. ikr
Yo = —(e"" = e7)
KT szr R
free outggz’ng incoming wave

with potential, outside potential

5 o
on _ Nsm(’::*— 0) _ 2zkr(S ezk’r —e zk'r)

outgoing wave is modified, incoming must not

b = _é_ﬁ_Vk_;(eikrﬂ-i(So _ e-—-z’kruiéo)

= N = ¢'% and Sp = e%%

’t/)o 2120 (ez‘kr+i50 _ e~ikr~i50)
ikr
= — ez -t + € 0 1
2ikr ( )J szr ( )J
free  wave scattered wave Vs
ikr . . zkr
Vge = %;6250 sin dg = <— fi=0(O)

.2
Partial cross section:3Z = | f;-o(© )| = 81155



Energy Dependence of
Scattering Phase Shifts

Physical quantities contain phase shifts only in
expressions like €2 or e¥siné

= multiples of 7 do not matter for o
Standard choice §(Energy = oo) =0

Levinson theorem:

O(E =0) — 6(F = 00) = number of bound
states X

Typical behaviour

dA

2 7
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Example: P-Wave Phase
Shifts

Exercise:

Spherical square well potential, range R =
3.14fm

energy range considered 0 - 14 MeV

plot §;—; and o; = 4n3sin*§/k? as function

of energy for Vy = 15.3, 17.6 , and 19.0 MeV
(M = 1000 MeV/c?, fic & 200 MeV fm) j;(4.49) =~ 0

!

VO = 15.3 MeV
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A V() = 17.6 MeV
2| k
0 s 0 E
54

!

;. Vo = 19.0 MeV
T
2 .
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Note: Only narrow resonances have their

s

maximum at § = 5
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Neutron - Proton -
Scattering

Nuclear Physics: neutron and proton elementary
particles

What do we know about their interaction ?

n + p form bound state deuteron J* =1+

non -+ n, or p+ p bound state known

n + p state with spin zero unbound

= NN interaction spin-isospin dependent

Simplest deuteron model: attractive potential,
spin S = 1, no orbital angular momentum
However, deuteron has quadrupol moment

= aspherical shape needed

= need higher orbital angular momenta of
positive parity

= D -wave component ¢ = 2, coupled channels

S-wave: (I=0,8= 1)‘]=1+
D - wave: (I=2,8=1)7=1"
= need non-central tensor force



General Nucleon-Nucleon
Force

VNN('F) - Vcentral(r)
no direction distinguished, can be different for

parallel spins 11 and anti-parallel spins 1]

~ 0
+ Viensor(r) [Yg(f') [a"lo'?z]z] spins parallel 11

xXT-0, T-09 — %7"2 01 - 09

+Vspin—o7‘bit('r) E ’ (O'—i + 072)
distinguishes left-right scattering of polarized
nucleons

Observable: polarization (measured in exit channel)
analysing power (prepared in initial channel)

measures interference of different partial waves
= sensitive to small components



Theoretical Approach

Quantum - Chromo - Dynamics: THE theory of
strong interactions also governs nuclear physics
However, no solutions known till know

Instead of QCD degrees of freedom, quarks and

gluons, use hadron degrees, nucleons and mesons
Meson-Exchange-Models n o on b n n o p
long range part dominated .
by lightest meson, the pion |

Model parameters fitted to |7 o e
deuteron properties and 'L | ! | f
many scattering data L L ") !
radial dependence of short range phenomenologic

= Paris-, Argonne-, Nijmegen- ... potential

radial dependence of short range given by heavy mesons
= Bonn-, Moscow-, ... potential

These potentials, so called realistic
NN-potentials, reproduce pp and np data within
error bars, due to fit

See following figures for NN-data

Idea: use these potentials to describe reactions

of heavier nuclei

22



S-Wave Scattering

No potential
o = sin kr _ 1 (eibT e—ikr)
kr VAL et
-v-free outgging mcoming wave

with potential, outside potential
wO — N31n(k7"+50) _ S ezkr _ e—ikr)

outgoing wave is modified, incoming must not

szr(

on 25\;{:7"( zkr+z50 — e—ik’r‘-i&o)

= N = ¢'% and Sy = e2%0

o = e?%0 (e ikr+i8y 6—ikr—i50)

2ikr
1 ke ik vkr 218
= — (" —e7"") + e“?0 —1
ZZkT ( )J ZZkT ( l
free_\ﬁwave scattered wave‘ Ysc
ikr . ] zkr
Yse = G—€"08in dg = <= fi—o(O)
. 2
Partial cross section: 42 = | f1_o(© )I = 25t :



R-Matrix Data Analysis

|dea: Separate configuration space in two parts
|: Interaction region of finite channel radius a

lI: asymptotic space (no interaction, except point
Coulomb)

Solution in |l known, free incoming and outgoing
waves, I — S(E)O

Hamiltonian not hermitian in finite space
Choose boundary condition B, derivative zero
Instead (H — E)ug = 0 use

(H + EB - E)UE = [,B’LLE

U = &H + Lz — E)_i Lpup

Blacks}‘urnctionG
Eigenfunctions of H in | uy form complete set

expand in | G and ug in terms of u)
=sug(r) = G(r,a)a®2E|, and

G(r,a) o< Y, ”’w’)“ﬁa)

)\
Define R-Matrix
—“%ﬁ- G(a,a) = 3,73/ (Ex ~ E)




Connection to Scattering
Matrix

In asymptotic region Il ug x I — S(F)O
logarithmic derivative continuous at channel

radius a
o aup  a(I'=50)"
inte‘;’;al asymptotic

I(a 1-LiR
= S(F) = O((a)) 1—L(I)R

with Lo = 221(@) — (-{—(i)-l) — (L))

In simple case: Lo positive imaginary

= poles of S in lower half-plane

Data analysis:

Use finite number of R-matrix pole positions
(energies Ey) and residues (reduced width

amplitudes 7)) to reproduce data



Physical Constraints in
R-Matrix Theory

Unitarity (SST = §15 = 1)
comes from R real (hermitian), constraints
S-matrix elements for different reactions

Built-In Symmetries of Strong Interaction
Conservation of angular momentum and parity
Time - reversal invariance due to R, S symmetric

Approximate Symmetry
Charge independence (charge symmetric)

Truncation of nuclear partial wave series
Due to finite channel radius and
Coulomb/angular-momentum barrier



Energy Dependent Analysis Code

Adjust pacamsters
for minimum’

Cap abilities and Features

1) Accomodates general (spins, masses, charges) two~body channels
2) Uses relativistic kinematics and R-matrix formulation

3) Calculates general scattering observables for 2— 2 processes

4) Has rather general data—hadling capabilities

5) Uses modified variable-maric search algorithm that gives
parameter covariances at a solution,



“He Level Scheme

375 2500 147
+ 5
4’ 91 4 7
29.89 240
0
28.31 0 "1-0
27.42 70
2595 14
25.28 X y n} d
2425 =0
23.64 a1
23.33 21
21.84 250
21.01 00
0.21 gt] P(NO7)
, 19.815
e
7 1
00
4He

physical channels: proton - triton, neutron - 3He,
deuteron - deuteron

several channel spins possible

= coupled channels



The Reaction *He(n, p)t

Due to open channels always coupled channels
Four-body problem, difficult to calculate

huge computer power neccessary

only qualitative agreement with data

bit prior information into R-matrix analysis
many parameters neccessary

e.g. £ = 2: 36 channels; £ = 3 : 51 channels

150 - , —_

$imb),

100

50 gee

o]

cm

Differential cross section of the reaction *H(p, n)3Hé calculated for
E., = 3.0 MeV. The data are for 4.101 MeV protons from Perry.

The full line represents the R-matrix analysis, the dashed one the full
calculation, the dot-dashed one the small calculation, and the dotted

one the semi-realistic calculation. The open circles denote the full
calculation with the ® P, matrix element replaced by the corresponding

R-matrix one.



Difficulties of Analysis

Many coupled channels=> many parameters
Resonances very broad = not too well defined
background problematic

not enough data

inconsistent data

How to treat break-up channels

50 — ~ —
do mb | |
dQ[ ]

40

30

20

10

Differential cross section for the reaction 2H(d, n)3He
calculated for E.,, = 2.11 MeV. Data are for 4.0 MeV
deuterons from Schulte. The labeling is as before.
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Resonating Group Model
|deas

Composite system

RGM Ansatz ¥; = Y3 ok, - x %, (R)
Variation (0 AH—-E| ¥;) =0
Channel function ¥.pan = [Y2(R) @ [¢)' © ¢72]5]/
Ansatz ¥ = chen(), bi - Gaussian) (bound state)

or Xlrlzl(R) = 5lk : Fk(R) + aj - ék(R) + Zz blkz“ Gaussian
(scattering state)

Variational parameters a;x and bk,

Decompose Hamiltonian
H—-F=H;—FE|+ Hy— Ey+

Y1 Vij = Veow+
FE2

TR+VCoul‘(E—E1_E2): 3
Hy—F1+Hy— Es+ Vipors + HR — E

with A -(H; — E;)¢; =0 and (Hp — E)F/G =0

= All integrals shortranged
Note: Relative thresholds fixed by E
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Resonating Group Model
Technicalities

=> Expand all Functions including F and G
e in terms of Gaussians

e times solid spherical harmonics
e times monomials in R?

= All individual integrals analytically calculable,

provided potential is of Gaussian form including differential operators
All Operators allowed which occur in Argonne and Bonn (r-space)
potentials

e Correct center of mass motion

e No limit on number of channels

e No limit on number of nucleons

e Up to 6 clusters, i.e. up to 6 orbital angular momenta

= Allow for distortion of fragments via different ¢ and/or
different decompositions of the system

Three- and more-body channels approximately treated via two-body
channels

Fragment wave functions ¢; and ¢, must be strongest bound in given
model-space

=> Relative thresholds can only be changed by increasing dimension of
model-space or other potential



Realistic NN-interactions
versus
effective ones

Examples: Bonn, Argonne-14, Argonne-18

Start from deuteron p - n
S,D-wave 2 configurations
binding due to tensor force

proceed via °H/°He N - N - N
S,P.D,F-waves S,P.D,F 37 configurations

to ‘He
Some hundred configurations

present limit °Li
Some thousand configurations

All nuclei A > 3 underbound due to missing three-nucleon force
Larger systems: Use effective NN-forces with reduced repulsive core

= nuclet A < 4 bound via central force alone, just one configuration
=> higher orbital symmetry
=> much simpler wave functions, nuclei up to A = 12 accessible
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Effective Interactions versus
Realistic ones

Effective interactions

simple wave functions

comparatively fast calculations, e. g. 1B - neutron scattering
parameter studies possible

model space dependence unclear

severe overbinding possible

limited energy range, Eipreshold + & 25 MeV
Realistic interactions

complicated wave functions
tedious long lasting calculations

model spaces increase rapidly with A, limit around A = 6

calculation improves with increasing model space

o

o

[ ]

e parameterfree calculation
°

® no overbinding possible
°

large energy range, up to pion threshold

Strategy

Study small system A
Blackuce model space till qualitative change
Use this model space as input for A + 1 system

34



°Li(n, t)a Reaction

A7761

R

- Open channel « - triton
11:3-?-5 => coupled channels

Well defined, narrow ﬁ;’-“ resonance in relevant
energy range



Typical Resonating Group
Result

e
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M. Herman 1985 unpublished
see also 'Use of the Optical Model for ...
Neutron Cross-Sections ...", NEADC-222 'U’

page 77, OECD Paris 1986
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0B (n,a)’Li Reaction
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Complicated level scheme
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Data analysis tedious
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General Nucleon-Nucleon
Force

VNN("-") - chentral('r)
no direction distinguished, can be different for
parallel spins 11 and anti-parallel spins 1|

) 0
+ Viensor(T) [Yz(f‘) [(7-»10_.2]2 spins parallel 11

x7-d 76 - L2 g6

+Vtspz'n—orbz't(7ﬂ) L- (O'—i + 03)
distinguishes left-right scattering of polarized
nucleons

Observable: polarization (measured in exit channel)
analysing power (prepared in initial channel)

measures interference of different partial waves
= sensitive to small components
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