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Nucleons, light or heavy nuclei with energies of up
to several megaelectronvolts per nucleon, strike a
nucleus. How do we account for the ensuing reac-
tion processes (angular distributions, loss of kinetic
energy and angular momentum, production of sec-
ondary particles)? The statistical theory developed
to answer these questions forms the content of this
chapter.

§1. Why a Statistical Theory?

Reaction processes induced by nucleons or nuclei on
medium-weight or heavy target nuclei proceed either
via a direct reaction or via the formation of a long-
lived intermediate complex. The amplitudes for both
processes are coherent if they lead to the same final
states. The direct reaction typically involves only few
nucleons or, more generally, few degrees of freedom.
It allows for a theoretical description in terms of sim-
ple models. The direct contribution to elastic scatter-
ing, for instance, is calculated from a single-particle
Schrodinger equation with a complex optical-model
potential. The imaginary part describes absorption
due to both direct inelastic processes that deplete the
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elastic channel and the formation of the long-lived
intermediate complex. Theoretical models for forma-
tion and decay of the latter require an understand-
ing of quasi-bound states of the “compound nucleus”
formed by coalescing the target nucleus and the inci-
dent particle. It is here that the statistical approach
applies. I show this now for the simplest case, elas-
tic scattering of slow neutrons by medium-weight and
heavy nuclei.

Figure 1 shows the total cross section for the scat-
tering of neutrons on 238U versus neutron energy E,,.
The energy is in the 100-eV range and, thus, very
small compared to the typical nuclear scale of 1 MeV.
The data are taken using neutron time-of-flight spec-
troscopy. This limits the total number K of resonances
seen in such data to typical values of K ~ 200 or so.
The resonances displayed in Fig. 1 all have spin 1/2
and positive parity. Their average spacing d is about
10 to 20 eV, and their average total width I is on the
order of 1 eV. A multilevel resonance analysis of the
data yields values for the resonance energies €, and
for the widths T, with p running from 1 to K.

The resonances are quasi-bound excited states in
the compound nucleus 23?U with an excitation energy
of roughly 8 MeV, given by the binding energy of the
last neutron in 23°U. The resonances form the sim-
plest example of the intermediate complex referred
to above and are called “compound-nucleus reso-
nances”. If we could count levels of the same spin
and parity in 23°U from the ground state up, these
resonances would carry running numbers in the range
108 or so. (Incomplete spectroscopic knowledge pre-
vents us from actually doing this counting exercise,
and the figure 10° is a rough estimate only. It is based
on the nearly exponential increase of the nuclear level
density with excitation energy. This increase accounts
for the small value d ~ 10 eV displayed by the data.)
At such high running numbers, dynamical models for
nuclear spectra like the nuclear shell model cannot
be used; the dimension of the matrices involved and
the numerical accuracy required are too large. In-
stead, a statistical approach is highly successful. It
has its root in ideas formulated by Bohr (1936) and
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Figure 1 The total cross section for the scattering of slow neutrons by 28y versus energy. Taken from Garg et al. (1964).
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was developed by Wigner; see Porter (1965). For a
recent review, see Guhr et al. (1998). We display this
approach in its simplest form and consider the 1/2*
states in 23°U as bound states, disregarding their cou-
pling to the neutron channel and to other channels.
We return to this coupling later.

The nucleus is a time-reversal invariant system.
Therefore, the Hamiltonian matrix Hy, in Hilbert
space for states |u) and |v) of fixed spin and parity
can be chosen real and symmetric,

Huy =Hy, = Hy,.

(1)

We denote the dimension of H,y by N and consider
the limit N — oo. We consider an ensemble £ of
Hamiltonian matrices of the form (1), specified in
terms of a statistical distribution of the matrix ele-
ments H,,y and referred to as a random-matrix en-
semble. We ask: Is it possible to derive statements
about the distribution of eigenvalues and eigenfunc-
tions for this ensemble? If so, and if the predic-
tions obtained from such a “statistical” approach do
agree in all respects with properties of the resonance
energies €, and resonance wave functions deduced
from the data, we can simplify the calculation of the
compound-nucleus contribution to nuclear scattering
amplitudes: We would consider the energies €, with
u=1,...,K as a typical subsequence of eigenvalues
of a member of the ensemble £. We would accord-
ingly replace the actual nuclear Hamiltonian in the
formal expression for the scattering matrix by the en-
semble &, and we would calculate the mean cross

section by averaging over the ensemble. This aver-
age should then be compared with the average of the
measured cross section taken over a sufficiently large
energy interval containing many compound-nucleus
resonances. We could proceed similarly for the calcu-
lation of the variance and/or of higher moments of the
cross section. This, in a nutshell, is the programme
of the statistical theory of nuclear reactions. The ap-
proach, if successful, predicts mean values and higher
moments of observables but not the actual cross sec-
tion in its full energy dependence as shown in Fig. 1.
Such a prediction is possible only if all the energies
€, are known. This knowledge is forfeited when one
uses a random-matrix model.

Implementation of this programme requires the
following steps. First, the ensemble £ must be spec-
ified, and it must be shown that the statistics of the
resonance energies €, do indeed follow the predictions
of the ensemble. This step leads to the Gaussian or-
thogonal ensemble of random matrices (GOE) and is
sketched in the remainder of this section. Next, the
scattering matrix must be written in such a way that
the Hamiltonian governing the quasi-bound states ap-
pears explicitly. This step amounts to the formulation
of a theory of resonance reactions, see §2. It will al-
low us to replace the actual nuclear Hamiltonian by
an ensemble £ of Hamiltonian matrices, quite irre-
spective of the choice of this ensemble. This step is
taken in §3. We then turn to the scattering ampli-
tude for direct reactions. This amplitude is obtained
by averaging the actual scattering amplitude over the
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compound-nucleus resonances. Such averaging leads
to the optical model of elastic scattering (§4) and de-
fines the input parameters of the statistical model.
In subsequent sections, the statistical approach is ap-
plied to a number of typical cases. First, we use the
GOE to calculate compound-nucleus reactions (§3).
This can also be done using the maximum-entropy ap-
proach (§6). The GOE is then generalised to allow for
the breaking of a discrete symmetry or the violation
of an invariance (§7), and to allow for the existence
of a relaxation time in the compound nucleus (§8).

Following Wigner (see Porter (1965)), we intro-
duce the GOE by the requirement that the ensemble
should be invariant under those transformations of
Hilbert space that leave the property (1) invariant.
These are the orthogonal transformations. The en-
semble is accordingly defined in terms of an integra-
tion over all independent matrix elements H,y with
u <vand a weight factor P. The integration measure
is given by

P(H) [] dHav- 2)

ey

The product of differentials of matrix elements of H
has the required invariance property, and by choos-
ing P to be a function of tr(H™) with m integer or of
a combination of such terms, overall orthogonal in-
variance is guaranteed. Averages of observables that
depend on H are calculated by integration over ma-
trix space with the weight factor P. The weight factor
is needed as a cutoff to make the integrals convergent.
It is usually chosen in Gaussian form,

P o exp (—(N/A2) tr(H?)). (3)

Equations (2) and (3) define the GOE. In the limit
N — oo, the average level density of the GOE has
the shape of a semicircle of radius 2A. At the centre
of the semicircle, the mean level spacing is given by
d =n)/N. In applications of the GOE to experimen-
tal spectra, this relation is used to replace A in favour
of the actual mean level spacing.

Given d, the GOE predicts spectral fluctua-
tion properties in a parameter-free fashion. For
comparison with data, these properties are needed in
an energy interval of order d. This interval is typically
chosen near the centre of the semicircle. For N— oo, it
is infinitely small in comparison with the radius of the
semicircle. Hence, the unphysical shape of the over-
all GOE spectrum plays no role. The Gaussian choice
for the weight factor P is obviously arbitrary. It is
important to ascertain that other choices of P yield
identical fluctuation properties (although the mean
level spacings d will have different values). This is
indeed the case provided that P is chosen such that
the spectrum is again confined to a finite interval of
the energy axis. This fact is referred to as universality

and justifies the use of the Gaussian ensemble. In
tests of the GOE, one typically compares an ensem-
ble average calculated theoretically with an average
taken over a single experimental spectrum (referred
to as a running average). Equality of ensemble av-
erage and running average is the necessary condition
for a meaningful application of random-matrix the-
ory. This property is referred to as ergodicity. It is
known to hold for a very wide class of observables
and in the limit in which the running average is taken
over infinitely many resonances (Brody et al., 1981;
Guhr et al., 1998). For a finite number K of reso-
nances, the finite-range-of-data error is of order K-1.

The quantities most often used in the analysis of
experimental data for energy levels are the nearest-
neighbour spacing distribution, and the A3 statistic.
In the case of eigenfunctions, it is the Porter-Thomas
distribution. There is no room to go into any details;
see Porter (1965) and Guhr et al. (1998) and refer-
ences therein. Suffice it to say that the GOE has been
thoroughly tested by comparing its predictions with
the totality of resonance data (level spacings and, to
a lesser extent, resonance widths that involve GOE
eigenfunctions) available for a number of nuclei in
the form of data shown in Fig. 1, and in the form
of similar proton scattering data taken in the vicinity
of the Coulomb barrier. The success of the GOE ap-
proach to the resonance properties shows that the res-
onance energies €, and resonance wave functions may
be considered random variables. By the same token,
the cross section shown in Fig. 1 is a random variable.
It then makes sense to develop a statistical theory of
elastic neutron scattering. This theory would apply
in the regime of isolated resonances shown in Fig. 1.
In this regime, the average width T" of the resonances
is small compared to the average level spacing d. The
scope of the statistical theory is much wider, however.
This is demonstrated in Fig. 2. At excitation ener-
gies of the compound nucleus higher than that shown
in Fig. 1, statistical fluctuations of the cross section
(“Ericson fluctuations”) appear. The nearly exponen-
tial increase of the average nuclear level density with
excitation energy goes along with a much weaker but
also nearly exponential increase of the average total
width I of the compound-nucleus resonances, caused
by the growing number of channels open for decay
into ground and excited states of the residual nuclei.
Therefore, a few megaelectronvolts above neutron
threshold the inequality I' > d holds. The compound-
nucleus resonances overlap strongly. From the point
of view of the statistical model, each such resonance
makes a random contribution to the scattering ampli-
tude, and these coherent contributions may add con-
structively or destructively, as the case may be. As a
result, the cross section shows random fluctuations.
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Figure 2 Ericson fluctuations in the differential cross section
taken at several lab angles versus proton energy (in MeV) for
inelastic proton scattering on 26Mg leading to the second excited
state. Taken from Hausser et al. (1968).
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The coherence width of these fluctuations is expected
to be of order T. Detailed analyses of many data
sets of the type shown in Fig. 2 have definitely estab-
lished the validity of the statistical point of view in
this regime (Ericson and Mayer-Kuckuk, 1966).

Thus, the scope of a statistical theory of nuclear re-
actions covers the entire range of excitation energies
from neutron threshold (the regime of isolated reso-
nances) to several megaelectronvolts above neutron
threshold and higher (the regime of strongly overlap-
ping resonances). The statistical approach forfeits
any detailed knowledge of the Hamiltonian of the
system under study. It is successful if nuclear cross-
section data are generic and rather independent of
system-specific properties. Indeed, the statistical the-
ory uses a very limited number of input parameters. It
predicts fluctuations in terms of mean values. There-
fore, input parameters are the values of the mean level
spacing d, of the mean level width I, of the mean par-
tial widths for the open decay channels and of the
average scattering amplitude. These must be deter-
mined either phenomenologically or from dynamical
models. It is only through these input parameters that
system-specific properties enter into the theory. Be-
yond that, the results of the theory are generic. From
a formal point of view, the statistical theory answers
the question: What are the characteristic properties
of scattering processes in which the compound sys-
tem is described by an ensemble of random matrices?
In this form, the theory has wide applications beyond
nuclear physics; see Guhr et al. (1998).

Lack of space does not allow me to describe the his-
tory of the statistical theory. In subsequent sections,
I will briefly mention the main developments. I refer

the reader to Guhr et al.
Weidenmiiller (1991).

(1998) and Mahaux and

§ 2. Theory of Resonance Reactions

Any theory of resonance reactions aims at decompos-
ing the scattering matrix into two parts. One part de-
scribes nonresonant scattering with a smooth energy
dependence while the other is a sum over resonances.
This decomposition is generic and applies whenever
resonances play a role in scattering processes. The
basic idea is very simple: In the case of a single res-
onance, the scattering matrix is decomposed into a
smooth part and a Breit-Wigner term. The decom-
position we aim at is similar in form and yields the
unitary generalisation to many resonances that may
or may not overlap. The resonance parameters are
related to properties of the underlying Hamiltonian.

Reaction theory determines the elements S, (E) of
the scattering matrix S as functions of energy E. The
channels a,b, ... are defined in terms of the intrinsic
states of the fragments at asymptotic distance and in
terms of the quantum numbers of their relative mo-
tion. The angular momenta of relative motion and
the intrinsic spins of the fragments are coupled to the
overall spin | of the system. Spin ], overall parity
and, if applicable, total isospin T of the system are
conserved quantum numbers. We focus attention on
the scattering matrix for fixed values of J,x, T. To
simplify the notation, we do not carry these indices,
however, except for §7 where breaking of parity and
isospin symmetry will be considered. We mention
here already that in the statistical model it is assumed
that S-matrix elements pertaining to different con-
served quantum numbers are uncorrelated. A chan-
nel a is open (closed) when the threshold energy E, is
smaller (larger) than the energy E of the system. At
the energies of interest for the statistical model, only
two-body fragmentation is of interest, and only two-
body channels are considered in the sequel. When ex-
pressed in terms of elements of the scattering matrix,
any differential reaction cross section involves angu-
lar momentum coupling coefficients, spherical har-
monics and kinematical factors. These expressions
are part of the standard repertoire of nuclear reaction
theory (Lane and Thomas, 1958) and are not given
here; see Chapter 3.1.2 by L. J. Thompson. They are
not affected by the use of the statistical model.

The first widely used theory,of resonance reac-
tions was formulated by Wigner and Eisenbud. It
is described in the classic review paper by Lane and
Thomas (1958). The configuration space of all nucle-
ons involved in the reaction is divided into two parts
separated by a boundary. In one part, all nucleons
are close to each other. Using suitable boundary con-
ditions on the boundary, the self-adjoint Hamiltonian
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defined on this part yields a set of bound states that
turn into resonances when the physical conditions
linking both parts of configuration space are used.
This “R-matrix theory of nuclear reactions” plays an
important role even today in the analysis of exper-
imental resonance reaction data of the type shown
in Fig. 1. Aside from early attempts by Moldauer
(1976), this theory has, however, not been used as a
framework for the implementation of the statistical
model and will, therefore, not be considered in the
sequel.

A second theory due to Feshbach (1958, 1962,
1992) uses projection operators P and Q, which
project Hilbert space onto the space of open and
closed channels, respectively. Restricting the Hamil-
tonian H to the closed-channel part QHQ yields a set
of bound states that turn into resonances when the
coupling to the open channels is taken into account.
This theory has been used for purposes of the statisti-
cal model mainly in the context of precompound re-
actions. We return to it in §8.

A third theory, closely related in spirit to Fesh-
bach’s, was formulated in Mahaux and Weidenmiiller
(1969). It makes explicit use of shell-model ideas
but the resulting formulas apply much more widely.
This theory will be used here because for a stochastic
modelling of the Hamiltonian, it is the most widely
used version, with applications to compound and pre-
compound reactions, to the conductance properties of
chaotic and/or disordered mesoscopic systems, and to
the scattering of light by media with a random index
of refraction (Guhr et al., 1998).

Two mechanisms lead to the occurrence of res-
onances: Barrier penetration causing single-particle
resonances and auto-ionising states, a typical many-
body phenomenon. For pedagogical reasons, I
present the scattering matrices for several simple
Hamiltonians that cause resonances through either
mechanism in increasing order of complexity. In this
way, we arrive at the most general form of the scat-
tering matrix which is used in the sequel.

Single-Particle Resonances

Such resonances occur when a particle is trapped
within a potential well with a barrier separating it
from the outside world. The particle may tunnel
through the barrier. The width of the resonance is
proportional to the tunnelling probability. States of
nucleons in the nuclear mean-field potential with an
angular-momentum barrier and/or the Coulomb bar-
rier serve as examples. The Hamiltonian may generi-
cally be modelled in the form

H=Y e(k)a'(kla(k)+ Eod'd+ Y [Wo(k)a'(k)d+h.c.]. (4)
k k

Here the state |0) within the barrier has energy Eg and
Fermion creation and annihilation operators d and
d, respectively. The states beyond the barrier form
a continuum, with wave number &, energy e(k) and
Fermion creation and annihilation operators af(k)
and a(k), respectively. The matrix elements Wy(k)
are the tunnelling amplitudes connecting the state
|0) with the channel states labelled k. It is straight-
forward to calculate the scattering amplitude corre-
sponding to H, see Egs. (6) to (8).

Autoionising States

We consider the mean-field approximation to the
nuclear many-body problem (i.e., the shell model).
The many-body wave functions are Slater determi-
nants of single-particle states. We assume that the
mean field allows for both bound states and scatter-
ing states. For simplicity, we consider only Slater de-
terminants where all particles or all particles but one
occupy bound states. We label the first set @, >,
with Hartree-Fock energies E,, and the second set
Ixc(E) >, where the energy E is a continuous vari-
able, and where ¢ labels the channels. These states
are taken to be orthonormal, with a delta-function
normalisation in energy for the continuum states. To
begin with, we consider a single-bound state |®g >
with energy Ey larger than the threshold energy E,
in channel ¢, the only open channel. The residual
two-body interaction that is not accounted for by the
mean field couples [®y > and [y (E) >. This causes
the state |®p > to become unstable against particle
decay into channel ¢. The state |®g > turns into a
resonance. Such states occur frequently in practice:
Consider two particles above the filled Fermi sea, both
lacking the energy needed to escape into the contin-
uum. The two-body interaction may transfer energy
from one particle to the other that then escapes. In
atomic physics, such states are referred to as auto-
lonizing states. In Mahaux and Weidenmiiller (1969),
the term bound states embedded in the continuum is
used. Here we use the term quasi-bound states. The
Hamiltonian has the form

H= " dE Elt(E) >< 1B+ Eo 100 >< Byl
. “: dE Wo(E)lye(E) >< ®ol +h.c.|. (5)

Here W is the matrix element of the residual interac-
tion. We note the close similarity of the Hamiltonians
in Egs. (4) and (5). Because of the normalisation of
the continuum wave functions, Wy has the dimension
E'/2 in both equations.

The models (4) and (5) yield identical forms of the
scattering function (the scattering matrix has dimen-
sion one),

W (E)
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where

W2(E')

i TH/2
E-T —mWg(E) (7)

[=<]
F(E)= p] dE'
E,
and where P denotes the principal-value integral. The
background phase shift due to potential scattering is
denoted by 8. Obviously, unitarity holds, |S(E)? = 1
Moreover, Eq. (6) has the form of a Breit~Wigner res-
onance. In most applications, it is realistic to assume
that Wy(E) is practically constant over the width of
the resonance. Then, the principal-value integral is
negligibly small compared to the width of the reso-
nance, and

W}
S(E) = exp (2i8) |1-2in——90 |, 8
(E) = exp (2 )[ ‘ E-Eo+intJ ®)

The formula for the resonance width, T = 2nWj,
looks like the golden rule but actually is a non-
perturbative result. Equation (8) expresses the scat-
tering function in terms of quantities defined by the
Hamiltonian: The potential scattering phase shift 5,
the energy Eo of the autoionising state and the cou-
pling matrix element Wj.

For purposes of the statistical model, it is neces-
sary to consider a generalisation to N quasi-bound
states [@, >, u=1,...,N. We also consider A open
channels. Let Hyy denote the matrix elements of
the Hamiltonian between the quasi-bound states. We
write the total Hamiltonian in the form

H-= ZJ dE Ely.(E) >< o(E) +2H,N B, >< |

I dE Wo(E)gelE) >< @yl +he.|.  (9)
c=lp=1

Here W, is the coupling matrix element between
channel ¢ and the quasi-bound state @, >.

The scattering matrix has dimension A and the
form

Sab(E) = exp (2i8,)8,p — 2im exp (18,)

x zv Wy (D'l)”v Wipexp (idp).  (10)
n

The quantity D is a matrix in the space of the N quasi-
bound states [®, > and is given by

Dy(E) = Ed,y — ,,V+m2 W, Wey, (11)
with H,y introduced in Eq. (9). We have again ne-
glected the energy dependence of the matrix elements
W. It is straightforward to check that the matrix S is
unitary. Equations (10) and (11) constitute the uni-
tary extension of the Breit-Wigner formula to N res-
onances. These equations apply both for isolated and
for overlapping resonances. They expresss the scatter-
ing matrix in terms of properties of the Hamiltonian

H. We note that as the energy increases and passes
a threshold with energy E,, one or several channels
open, and the dimension A of the S matrix increases.
Equations (10) and (11) have a simple physical in-
terpretation: Aside from elastic nonresonant scatter-
ing processes that yield the elastic phase shifts §,,
scattering proceeds via the N compound-nucleus res-
onances. The matrix elements Weu = Wy describe for-
mation and decay of these resonances. The matrix D
describes the propagation of the system in the space
of the resonance states and contains the projection
H,,y of the Hamiltonian onto this space as well as the
width matrix with elements Yiv =21Y, Wy Wey. The
resonances do (do not) overlap if the |y, | are large
(small) in comparison with the mean level spacing d
of the eigenvalues of the matrix H,y. We distinguish
these two cases by the inequalities > d and T < d,
respectively. For reasons that will become obvious
presently, we refer to the case of Eqgs. (10) and (11)
as to the “optical-model case”. In the definition of
this case, we include Eq. (14) introduced below.

This case is not sufficiently general, however. To
account for direct reactions between channels, it is
necessary to consider a further generalisation of the
model. So far it has been assumed that there is
no dynamlcal coupling between the states [y (E) >
pertaining to different channels This is not real-
istic: Inelastic scattering processes that do not in-
volve the formation of resonances are important
and cause direct reactions to occur. The general-
isation consists in allowing for such reactions by
adding to the right-hand side of Eq. (9) the term
Seo [5.dE[§ , dE' Voo (E, ENte(E) >< %o (E')l. The
§ matrix for the resulting Hamiltonian is obtained in
two steps. (i) We disregard the matrix elements W and
consider the formal solutions [W2(E) > of the result-
ing coupled-channels scattering problem. (The actual
calculation of these functions would require a numer-
ical approach; see Chapter 3.1.2 by L. J. Thompson.)
We denote the resulting scattering matrix by ng,). We
assume that this matrix depends smoothly on energy.
(ii) We take account of the presence of the matrix
elements W,.(E) =< u|W|x.(E) > and define the new
elements WLQ)(E) =< y|W|¥:(E) >. The scattering
matrix of the generalised model is obtained as

Sa(E)=Sgp -2y We (D7) Wl (12)
uv u
The matrix D has the form
Dyv(E) = E§yv — m,+z1|:2W (13)

The matrix $'% describes reaction processes without
the intermediate formation of compound states. The
last term in Eq. (12) is very similar in form to the cor-
responding term in Eq. (10). The elastic phase shifts
have disappeared; they form part of the coupling
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matrix elements ng). We refer to the case of
Egs. (12) and (13) as to the “direct-reaction case”.
In the sequel, we distinguish this case with a nondi-
agonal background S-matrix 5 from the “optical-
model case” of Egs. (10) and (11). Equations (12)
and (13) give the most general form of the scattering
matrix.

Implementation of Stochasticity

§3.

Equations (10) and (11) oz, in the case of a direct cou-
pling between channels, Egs. (12) and (13) give the
scattering matrix in terms of the underlying Hamil-
tonian. We recall that stochastic features reside in
the compound-nucleus resonances, i.e., in the pro-
jection H,y of the actual Hamiltonian of the nuclear
system onto the space of quasi-bound states |®, >,
p=1,...,N. To implement stochasticity, we accord-
ingly replace the matrix H,y by a suitable ensem-
ble of random matrices. In the present context, this
ensemble is the GOE, although in later sections differ-
ent choices will be considered. For pedagogical rea-
sons, we consider first the simpler optical-model case
of Egs. (10) and (11) and return to the direct reac-
tions below. We assume that the matrix elements W,

obey the relations

Y Wy Wy = NvZSsp. (14)
M

This assumption simplifies the calculation and is re-
moved at the end of this section. We always consider
the limit N — oo.

Use of the GOE implies certain constraints on the
properties of the quasi-bound states, which will be
lifted later. Indeed, because of the orthogonal in-
variance of the GOE, all states |®, > are treated on
the same footing. This assumption is realistic only
if the time scale Teq for intrinsic mixing of the states
|®, > is small compared to the average nuclear decay
time Tgec = /T due to coupling to the channels. The
value of Teq is determined by the strength of the resid-
ual interaction. It is related to the spreading width
't of the strong interaction, Teq = /T with T' » a
few megaelectronvolts. (The spreading width is de-
fined in section 0.1.7). This value changes slowly with
excitation energy. In contradistinction, I' increases
very strongly with excitation energy. The inequality
I’ < T'* holds at neutron threshold and justifies here
the use of the GOE. However, '~ T'* roughly 10 MeV
above neutron threshold. Here the compound system
may decay by particle emission before it has reached
equilibrium, and precompound reaction processes be-
come important. We address this situation in §8.

The stochastic model is defined by Egs. (10), (11)
and (14) and by substituting for H,v the GOE. It
may appear that this model is ill-defined. Indeed, the

parameters of the model are the W,,,’s and A, which
fixes the mean level spacing d. With A the number of
open channels, the number of parameters is 1+A x N.
This figure diverges as N = oo. The orthogonal in-
variance of the GOE saves the situation. Indeed, be-
cause of the orthogonal invariance of the GOE, the
ensemble average of S,, and of all observables de-
pending on S, can depend only on orthogonal in-
variants constructed from these parameters, i.e., on
the quantities ¥, Wz, W, and on A. Equation (14)
reduces this set to A and Nv2, a=1...A. The S ma-
trix is dimensionless. Hence, only the dimensionless
parameters NvZ/A, a=1...A can play a role. The
input for the stochastic model consists in the values
of the average S-matrix elements Sz,. In the absence
of direct reactions, the average S matrix is diagonal,
Sab = 845524. We see that the number A of parameters
of the model equals the number of input variables S,:
The stochastic model predicts S-matrix fluctuations
uniquely in terms of average S-matrix elements. The
latter are determined phenomenologically in terms of
the optical-model potential; see §4. For the predic-
tion of correlation functions, one further parameter
is needed: The energy is scaled in units of the mean
level spacing d.

We turn to the case of direct reactions, Egs. (12)
and (13), and do not assume the validity of Eq. (14).
This case can be reduced to that considered in the pre-
vious paragraph (Nishioka and Weidenmiiller, 1985):
There exists a unitary transformation Uy, in the space
of open channels that reduces the scattering matrix
of Eqgs. (12) and (13) to the form given in Egs. (10)
and (11). At the same time, U,, can be chosen in
such a way that the W’s obey Eq. (14). The matrix
U is obtained through the following steps. (i) Find
the orthogonal transformation O in channel space
that brings the symmetric matrix $'© in Eq. (12) to
diagonal form, O©SOOONT = exp (2i6¥)). Here
T denotes the transpose and 8% is a diagonal matrix,
the elements of which are the (real) eigenphase shifts
of §'9. Define W = OOW!© (i) Find a second
orthogonal transformation O in channel space that
diagonalises the symmetric bilinear form ¥, W,‘,,l,) WL},)
50 that T, OLd S, Wi W1, O} = Nu28.s. Define
W = OWWM. Then, the unitary matrix U is de-
fined as

U= 0Wexp (-i8® 0O, (15)

and we put

s = ysuT, (16)

The matrix SV has the form of Egs. (10) and (11)
with all 8,’s put equal to 0; the W’s obey Eq. (14).
Stochasticity is now implemented into the matrix S‘1
in exactly the same way as described in the previous
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paragraph. Formally, the matrix U in Eq. (16) plays
the same role as the diagonal phase matrix §,exp[i5,]
in Eq. (10).

We remark in parentheses that whenever Eqs. (10)
and (11) do apply but the matrix elements W do not
obey the condition (14), step (ii) of the construction
just outlined can be used to satisfy this condition.
Hence, the condition (14) can always be imposed
without loss of generality.

In summary, we have presented formal argu-
ments that show that in the very general case of
Egs. (12) and (13), knowledge of the average scat-
tering matrix and of the mean level spacing d of the
compound-nucleus resonances is sufficient to deter-
mine completely the fluctuation properties of S and,
thus, averages of observables containing any number
of S-matrix elements (cross sections, correlation func-
tions, polarisations, etc.). These formal arguments
must now be supplemented by answers to the follow-
ing concrete questions: How are the average S-matrix
elements related to phenomenology (optical-model
and coupled-channels calculations)? And given a phe-
nomenological model or a fit procedure to experimen-
tal data that do allow us to determine the average S
matrix, how do we proceed to actually calculate the
fluctuation properties of S and, thereby, averages over
observables? These questions are dealt with in the fol-
lowing two sections.

§4. Optical Model and Direct Reac-
tions

We wish to determine the values of the ensemble av-
erages of the S matrices for the case of the optical
model (Egs. (10), (11) and (14)) and for the case of
direct reactions (Egs. (12), (13)) from empirical in-
put. This will fix the input parameters of the statisti-
cal model and will allow us to predict the fluctuations
in terms of the mean values. The introduction of the
optical model into nuclear physics (Feshbach et al.,
1953) was a pivotal step: The earlier black-box the-
ory was replaced by a model that could be related to
nuclear forces. Without this step, the development of
the statistical theory described here would not have
been possible.

We denote the actual nuclear scattering matrix by
§7u¢ the energy average by angular brackets, and the
ensemble average by an overbar. We require that the
ensemble averages of the scattering matrices defined
in Egs. (10),(11) and (14) (and in Egs. (12),(13)) be
equal to the energy average of $™,

Sab = (S35)- (17)

In the case of the optical model where S,; is diag-
onal, this postulate is meaningful only if (S5;) is

(nearly) diagonal and direct reactions are negligible.
In postulate (17), we have implicitly used ergodic-
ity, i.e., the equality of running average and ensemble
average.

The implementation of Eq. (17) makes use of the
optical model of elastic scattering and of coupled-
channels calculations with complex optical-model po-
tentials. We first focus on the optical-model case
(Egs. (10), (11) and (14)) and turn to the case of di-
rect reactions below. Theoretically, the optical model
at low energy is defined (Feshbach, 1992; Mahaux
and Weidenmiiller, 1969; Austern, 1970) by the re-
quirement that the elastic scattering amplitude Sop'
calculated from the single-particle Schrodinger equa-
tion with a complex optical-model potential coincides
with the energy-averaged elastic element of the actual
nuclear scattering matrix §™¢,

opt
Saa = (S:: ¢ .

(18)

In practice this equation is useful only for channels
where both reaction partners are in their ground
states; it is commonly assumed that the optical-model
potential determined in this way applies likewise to
channels involving the same reaction partners in ex-
cited states. In the case of nucleon scattering, the
optical-model potential is the sum of the mean-field
potential and an imaginary part that accounts for
absorption of the incident particle. There are two
contributions to the imaginary part: Inelastic scatter-
ing processes and compound-nucleus formation. We
have excluded direct reactions and, therefore, con-
sider the casc where only compound-nucleus forma-
tion occurs. Formation of the compound nucleus is
not an absorptive process, of course. Absorption does
occur, however, upon averaging the scattering ampli-
tude over an energy interval containing a sufficiently
large number of compound-nucleus resonances. We
see this in a time-dependent picture: We consider a
wave packet incident on a target nucleus. By Fourier
transformation, it is easily seen that the average of the
scattering amplitude taken over an energy interval of
length I describes the asymptotic contribution of that
part of the incident wave packet that is emitted from
the interaction region after short delay times, i.e.,
times < //I. This is the “fast” part of the wave packet.
The part of the wave packet that forms compound-
nucleus resonances is reemitted from the interaction
region at times of order #/T". For I > T, this part will
not be counted in the fast part. Therefore, the average
scattering amplitude cannot be unitary. This causes
the optical model to acquire an imaginary part even
in the absence of direct inelastic processes. This is the
case, for instance, at low energies where only the elas-
tic channel is open; see Fig. 1.

Rather than using directly Eq. (17) to determine
the input parameters of the statistical model, we
combine Egs. (17) and (18) to obtain
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Sz = SOPE. (19)

We take it for granted that an optical-model potential

has been found and that Sgy " is known for all open
channels 4. In order to use Eq. (19) for the determi-
nation of the input parameters of the statistical model,
we must calculate the ensemble average of S,; defined
in Eqgs. (10), (11) and (14). We again invoke ergod-
icity and calculate the energy average instead. It is
not difficult to show the equality of both averages.
To perform the energy average, we use a Lorentzian
weight factor with width I centred at energy Eo. We
transform the integration over the real axis into a
contour integral by adding to the path of integration
the semicircle with radius R — oo in the upper half
of the complex energy plane. We use the fact that
Su(E) has no poles in this part of the plane. Then
(Sab) = Sap(Eo +iI): Averaging over energy amounts
to replacing the energy argument of Sz, by Eo +il.
A straightforward calculation of Sgp(Eq +il) yields
(Brown, 1959)

525 = SuplEo+ 1) = bapexp 2i8) T 2 (20)
Here x, = nNv2/A = n?v2/d with v} defined in
Eq. (14). Equations (19) and (20) determine the x,,
a=1,...,Aand, thus, the parameters of the statistical
model.

It turns out that except for overall phase factors,
the higher moments of S do not depend on the vari-
ables So¥° but only on the “sticking probabilities” or
“transmission coefficients” T, defined by

T, =1—IS2" 12 =1~ SI2. (21)

Obviously, we have 0 < T, < 1 for all channels a.
The relation (21) has a simple physical interpretation:
The coefficients T, measure the unitarity deficit of S,
i.e., of the “fast part” of S. In other words, the T,
values measure that part of the incident flux that is
not scattered instantaneously back into the channels
but populates the long-lived resonant states. Fluc-
tuation properties and correlation functions of S de-
pend only on this part. Combining the definition
(21) with Eq. (20), we obtain the explicit relation
T, = 4x,/(1 +x,)>. Taken as a function of the x’s,
each T, depends only on the parameter x, and van-
ishes for both x, — 0 and x, = c. Thus, T, vanishes
both for very weak and, perhaps surprisingly, also for
very strong coupling of the channel a to the levels .
We return to this point in §5.

We turn to the implementation of the postulate
(17) in the case of direct reactions, Egs. (12) and (13).
The argument runs parallel to the case of the optical
model: We assume that a coupled-channels approach
with complex optical-model potentials yields a scat-
tering matrix S47 thar satisfies the equation.

Sdr - (sme). (22)

The task consists in determining the parameters of
the statistical model from the postulate S, = SS[;'.
For S,,, we use Eq. (16) and the fact that the
matrix U is a smooth function of energy. Then,
(USUT)p = S;L). As shown in the previous para-

graphs, the matrix S is diagonal and can be writ-

ten as Si})) =8(1—x,)/(1+x,). We proceed similarly
for S:;; : There exists (Engelbrecht and Weidenmiiller,
1973) a unitary transformation U9 that “diago-
nalises” Sjé‘ in the sense that (Ud“S:j‘;r [UdinT),, =
Sab(:i:\/l —p,). Without loss of generality, we have
assumed that the “eigenvalues” are real and that
0 < p, < 1. In the presence of direct reactions, the
coefficients p, play the same role as the transmission
coefficients T, in the case of the optical model: These
coefficients are the eigenvalues of a matrix with el-
ements 8,5 — (§dirgdirt) . and measure the unitarity
deficit of the matrix S47, We compare the result-
ing forms for S and $9" and equate U with U9 and
(1—=x4)/(1+x,) with i\/l —pg4. This determines the
parameters of the statistical model in the case of direct
reactions, with x, = an‘f /A as defined earlier.

In applications of this formalism to compound-
nucleus reactions, the standard procedure consists in
using only the optical model, and to disregard di-
rect reactions. This is because direct reactions tend
to populate low-lying states of the reaction products
while particle emission from the compound-nucleus
favours high-lying states where we know very little
about direct reaction processes. For this reason, we
will use the parlance that the input of the statistical
model is determined by the optical model. The situ-
ation is different in case of the multistep-direct reac-
tion; see §8.

In conclusion, we have shown that the parameters
of the statistical model can be determined from a stan-
dard optical-model or coupled-channels approach.
More specificaily, when we write the scattering matrix
S as the sum of the ensemble average and the fluctu-
ating part S,

Sab = Sap+ S0, (23)
where Sf“c =0 by definition, then the average part is
determined by the optical model. As pointed out in
§ 3, all moments and correlation functions of Sf[;‘“ are
then predicted uniquely and in a parameter-free fash-

ion by the statistical model.

§5. The Compound Nucleus

The concept of the compound nucleus has a long
history and dates back well past the beginnings
of a proper statistical theory of nuclear reactions;
see (Blatt and Weisskopf, 1952; Mahaux and
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Weidenmiiller, 1979). The concept was introduced
by Bohr (1936). It was based on the idea that nu-
cleons interact very strongly in the nuclear interior
and that, therefore, energy exchange and equilibra-
tion are extremely rapid processes. This picture led
to the expectation that formation and decay of the
compound nucleus are independent processes. Aside
from kinematical and geometrical factors, we iden-

tify the compound-nucleus cross section with ISEECIZ.
This expression should factorise. One factor should
depend only on the entrance channel 2 and be given by
the probability of formation of the compound system.
According to the arguments following Eq. (21), this
factor is T,. The second factor should give the nor-
malised probability of decay of the compound system
into a given final channel b. Using detailed balance,
we find that the second factor has the form T,/ 3, T,.
In summary, the Bohr picture implies the “Hauser—
Feshbach formula”

ISP = (1.4 8,5) 2212

T

(24)

The factor (1+8,3) goes beyond the Bohr argument. It
embodies time-reversal symmetry and is referred to as
“elastic enhancement factor”. In the original black-
box model, all T, values were put equal to 1, and the
emission probability was, therefore, simply given by
the density of states of the fragments (“evaporation
model”).

Does the statistical model yield the result (24)?
And if so, what are the limits of validity of this for-
mula? What is the value of the variance of the cross
section, of the cross-section autocorrelation function,
and of other observables that depend on S,,? How
do the predictions of the statistical model compare
with experimental data? These are the questions we
address in the present section. The relevant energy
interval extends from neutron threshold where I' <« d
to about 20 MeV excitation energy where I" > d and
where precompound processes must also be included.
We recall that the statistical model refers to S-matrix
elements pertaining to fixed values of the overall con-
served quantum numbers like spin and assumes that
S-matrix elements pertaining to different values of the
quantum numbers are uncorrelated. Thus, Eq. (24)
and all similar equations below always involve S-
matrix elements with the same overall quantum num-
bers. This fact automatically implies that the average
compound-nucleus cross section is symmetric about
90° c.m., irrespective of the precise form of the sec-
ond moment of §.

To calculate |Sfu¢|2 from a statistical input, sev-
eral authors (see Lane and Lynn (1957) and Moldauer
(1976)) used a perturbative expansion valid for I «
d, while Agassi et al. (1975) used an asymptotic
expansion valid for T > d; see Mahaux and

Weidenmiiller (1979). In either case, the Hamiltonian
matrix Hyy in Eq. (11) or (13) is diagonalised with
the help of an orthogonal matrix O,y. We denote the
eigenvalues by E,. The transformed matrix ODOT
has the form [(E - E,)8,y +(i/2)(OYOT)y]. We re-
call that v,y stands for the elements 213, Wya Wy of
the width matrix. The matrix ODOT is either ex-
panded in powers of the nondiagonal matrix elements
of the transformed width matrix OYOT (I' < d) and
averaged or expanded in powers of OyOT and av-
eraged, and the leading terms in powers of d/T" are
resummed (I" > d). The full regime (any value of I'/d)
remained inaccessible for a long time. The problem
was solved (Verbaarschot et al., 1985) by adapting
a novel technique due to Efetov (the supersymmetry
technique) from condensed matter theory. The cor-
relation function Sfluc(E;)§flucx(E,) and, by implica-
tion, the intensity |S1u|2] could be calculated from
the statistical input. This is not the place to describe
the technical aspects of this method; see Efetov (1997)
and Verbaarschot ez al. (1985). We confine ourselves
to a number of results that have been obtained with
this method.

The average of a product of fluctuating S-matrix
elements vanishes unless the product contains at least
one factor $u¢ and one factor Sflucx, Indeed, if this
condition is not met, we replace the ensemble aver-
age by the energy average, use the fact that the poles
of all factors in the product lie on the same side of the
real energy axis, close the contour in the other half-
plane (see §4) and find zero as a result. Interest thus
concentrates on the simplest non trivial case: The cor-
relation function of a pair of complex conjugate fluc-
tuating S-matrix elements with energy arguments E;
and E; and carrying different channel indices (ab) and
(cd), respectively. This function is given by a threefold
integral,

fluc flucx _1 i @ 1
Sab (E1)S_;"(E2) = o dM o diy Od}»

8
% (1=R)AJAL = A2]
((T+ADA (T +A2)A2) V2 (A4 Rp )2 (A + Xg)2
ime (1-T.\)
—— Ay +2)
xeXP[ d (A +A2+ )} 1:‘[(1+Tekl)]/2(1+Te;\r2)1/2

— M A2 2A
"(a“bs':ds““ S“T”T”<1 v Toh 14 Tahg 1 -Tak)

N A A2 R 2A
T+TA " 1+Tg "1-Ta
AM(1+))
+(8acBpg + 8240 ) Ta Ty, <—__(1 ST s Tyhg)
20(1-%)
*(1—Tax><1—nm))' 29

Here, € = E; — E;. Aside from overall phases con-
tained in the factors S, and S, the correlation

A2(14+43)
1+ Tl )1+ TpAz)
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function is indeed completely determined by the val-
ues of the transmission coefficients T, c=1,...,A.
Moreover, this function depends only on the di-
mensionless energy difference €/d. The Kronecker
deltas reflect the absence of direct reactions. Anal-
ogous statements hold for all higher moments of
Sfluic, We emphasise that Eq. (25) holds for any num-
ber of channels and for all values of the transmis-
sion coefficients. Thus, it can be used to calculate
the compound-nucleus cross section considered in
Eq. (24) for any value of the ratio I'/d. Equation (25)
is used for this purpose in numerical codes that ap-
ply statistical nuclear reaction theory to the calcula-
tion of cross sections. These calculations are needed
for reactor safety, radiation shielding and similar pur-
poses in the case of short-lived or rare target isotopes
and are successfully tested against empirical data for
stable and abundant target nuclei; see Qaim (1991)
and Reffo (1997). In such applications, Eq. (25) is
referred to as the “threefold integration formula™.
The result (25) cannot be simplified further. Aside
from a numerical evaluation, the implications of
Eq. (25) can, therefore, only be displayed in lim-
iting cases. We first consider the case of strongly
overlapping resonances (I > d), i.e., of Ericson fluc-
tuations. Ericson (Mayer-Kuchut (1966)) predicted
the existence of these fluctuations and their proper-
ties. His arguments were intuitive. His results were
later shown to follow from the statistical model. For
I > d, it can be shown (Mahaux and Weidenmiiller,
1979) that the complex elements of S have a Gaus-
sian distribution. Thus, it suffices to know the sec-

ond moments. We know that Sf,;’c(EﬂSCﬂd“C(Ez) =0.

For Sgll‘,‘c(El )S‘g}‘“*(Ez), on the other hand, the leading
term in an asymptotic expansion in powers of d/T has
the form

T,T.

S Te+2ine/d’ (26)

ST (E1)SME* (E) = (8acBpa + Saadbe)

with € as defined above. This follows from Eq. (25).
Thus, to leading order in d/T, the distribution of §f*
is completely known. We note that Eq. (26) implies
the Hauser-Feshbach formula (24). It is straightfor-
ward to work out the autocorrelation function of the
cross section in the same limit. We find that

15t (E)218Mer (Ey)2 - 152 (Eq) 2 (8B (Ep)2
ISt (Eq)2 (sfex(Ey) 2

1

S — 7
1+(e/T? @7

Here, the average total width T of the compound-
nucleus resonances is given by

d
= ﬁ;Ta' (28)

Equation (27) shows that T is the coherence width
of the cross-section autocorrelation function. On the
other hand, we can read Eq. (28) as giving the aver-
age total width I' in terms of a sum of average partial
widths T, = %Ta for decay into channel 4. And the
form of T, possesses a simple semiclassical interpre-
tation (Blatt and Weisskopt, 1952): d/2nb estimates
the period with which a wave packet evolving in time
in the space of quasi-bound states returns to a given
point (the “opening” of channel ) in that space, and
T, is the probability with which the wave packet es-
capes into that channel.

In summary: In the regime I" > d, the statistical
theory implies a Gaussian distribution of the elements
of M a5 its central result. This regime is attained
whenever the condition ¥, T, > 1 is met. The distri-
bution of the values of the transmission coefficients T,
over the individual channels is irrelevant. The nonva-
nishing second moments of Sf,;’c are given in Eq. (26).
Equation (28) identifies the correlation width with the
average decay width T of the compound-nucieus res-
onances. These results suffice to derive all assump-
tions used in the review of Ericson and Mayer-Kuckuk
(1966) to describe average cross sections, energy and
angular correlation functions, and the role of direct
reactions in Ericson fluctuations. Lack of space forces
me to refer to this review for details.

How large are the corrections to these results, i.e.,
the terms of order (¥, T.)™*? It turns out that the
right-hand side of Eq. (26) gives a surprisingly good
semiquantitative account of the actual autocorrela-
tion function even in the case of few open channels.
The extreme case is that of a single open channel
with transmission coefficient T. Figure 3 shows
the square |C(g)|* of the autocorrelation function
Sfuc(E)§fluer(E 4+ ¢) of the scattering function versus

Figure 3 The normalised S-matrix autocorrelation function for
a single open channel versus the dimensioniess energy variable
r; see text. Taken from Lewenkopf and Weidenmdiller (1991).
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r = g/d for two cases defined by T = 0.5 and 1.
The dashed lines give the Lorentzians expected from
Eq. (26) and the full lines the actual behaviour. The
difference is quantitatively significant. In particular,
the non-Lorentzian behaviour of the full lines implies
. that the decay of the compound nucleus is not expo-
nential in time but follows a power law; see the next
paragraph. This behaviour is also found in the case
of several open channels. It is a direct consequence of
the Porter-Thomas distribution of the partial widths.
This is most easily seen for well-isolated resonances.
Here, each S-matrix element S, is a sum of resonance
terms of the form Yz, (E — E, +(1/2)iT,) y,p. Averag-
ing this sum over the partial width amplitudes (which
also contribute to I',) changes the energy dependence
and leads to the non-Lorentzian dependence of the
autocorrelation function on E.

The autocorrelation function of the scattering ma-
trix is related to the decay in time of the compound
system (Harney et al., 1992). An incident narrow
wave packet populates the compound nucleus at time
t=0. We consider the time evolution of the pro-
jection p(z) of the density matrix onto the space of
quasi-bound states |®,) with u=1, ..., N. We define
the occupation probability of the compound system
as p(t) = trace[p(t)]. This function is closely related
(Harney et al., 1992) to the Fourier transform with
respect to € of the S-matrix autocorrelation function
Sfuc(E)Sflucx(E+¢). In the Ericson limit T > d of
Eq. (26), p(t) decreases exponentially in time. The
deviations from the Lorentzian form of the S-matrix
autocorrelation function addressed in the previous
paragraph imply an asymptotic power-law depen-
dence of p(#) ~ t~1-*/2 for large t and A open channels
(Harney et al., 1992).

In the case of isolated resonances (I « d), poles
of the scattering matrix in the complex E plane are
in a one-to-one correspondence with resonances. It
is tempting to generalise this correspondence and to
ask for the distribution of poles of the S matrix in
the general case. Here a caveat is needed, however.
The S matrix depends on the energy E and, with 1,
the reduced mass of the fragments in channel ¢, on
the wave numbers k. = \/2m (E—E_)/bin all A chan-
nels. The dependence on k. arises because the states
[xc(E) > in Eq. (9) depend on the k.’s, and so do the
matrix elements Wy.. As a function of the complex
variable E, the § matrix, therefore, has branch points
on the real E axis located at the energies E.. Each
pair of nearest but different threshold energies de-
fines a section of the real E axis. Different sections
separated by one or more branch points connect to
different Riemann sheets. Poles of S are given by zeros
of det(D). Causality requires these poles to occur
below the real physical E axis, but these poles have

different locations on different sheets. The canoni-
cal simplification used in all applications of statisti-
cal nuclear reaction theory consists in disregarding
the branch points and, thereby, the channels with
threshold energies in the energy interval of interest.
This simplification is legitimate in two cases: (i) All
omitted channels are weakly coupled to the system.
Because of the angular momentum and Coulomb bar-
riers, this may not be an unrealistic assumption. (ii)
The mean spacing d of resonances is very small in
comparison with the spacing diyesn of neighbour-
ing thresholds. Then, the relevant energy interval
may not comprise any thresholds. This is the case
near neutron threshold in heavy nuclei where with
d =10 eV, we have dyesh & 100 keV.

With this simplification, the S matrix has N poles
in the lower E plane. For the model (10), (11), § takes
the form (I omit the background phase shifts)

N
Sab = 82 -zznzé“’ﬁ, (29)
w E=Ey

where Im(€,) < 0. It is tempting to use the form (29)
as the starting point for further analytical work since
this form displays explicitly all N resonances. This,
however, is not easy to do because of the constraints
imposed by unitarity on the resonance parameters g,,
and £,. For isolated resonances (resonance spacing
large compared to resonance width) unitarity yields
only the relation -2 Im (&,) =T}, = ¥, g4l The to-
tal width equals the sum of the partial widths over all
open channels, but whenever the resonances overlap,
the unitarity relation for § leads to a set of A(A—1)/2
equations that connect all partial width amplitudes
8ua With all resonance energies £,. This is why it is
preferable in general to use the expressions (10), (11)
as the starting point for the statistical theory since
these expressions obey unitarity automatically.

These statements have a straightforward physical
interpretation. An isolated pole does signify an iso-
lated resonance, visible in the local energy dependence
of the cross section. Poles with spacings smaller than
their distance from the real axis describe overlapping
resonances. Such resonances jointly contribute to a
perhaps very complicated dependence of the cross
section on energy. In this case it is not possible to
establish a one-to-one correspondence between a spe-
cific feature of the cross section and one of the poles
of S. Therefore, it is not possible to attach physical
meaning to any one of these poles individually, and
positions and other values of the resonance param-
eters of individual poles of the S matrix are devoid
of physical interest. Despite these facts, the global
distribution of the poles of the S matrix is of interest
even for strongly overlapping resonances, especially
when 1 « A < N. This distribution can be worked
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out analytically with the help of the supersymmetry
method (Lehmann et al., 1995).

Qualitative features of the distribution of poles
can be inferred from the form of Eq. (11). We con-
sider the case where the coupling to the channels de-
scribed by the matrix elements W becomes very large.
Then it is convenient to bring the symmetric width
matrix 21y, W, W,y appearing in Eq. (11) to diag-
onal form. This can be accomplished by an orthog-
onal transformation O in the space of quasi-bound
states. We denote the eigenvalues by w} with u =

1...N. The transformed matrix ODO " has the form
E8y + (1/2)it28, ~ [OHO Luv. The width matrix
2y, Wy Wy is a sum of A separable terms. This
implies that only A of the eigenvalues wﬁ differ from

0. These eigenvalues obey wﬁ > 0. Typically, the
number A of open channels is much smaller than the
number N of levels. If the nonvanishing eigenvalues

wﬁ are much larger than the nondiagonal elements of

[6H5T],N, then A poles of the S matrix have a dis-

tance from the real axis that is much larger than that
of the remaining (N — A) poles. These far-away poles
only change the overall phase of the scattering matrix
and eventually merge into the background contained
in S while only the (N— A) close-lying poles contribute
to $™u¢, The distance of the far-away poles increases
monotonically with increasing coupling to the chan-
nels. By the same token, the distance of the remain-
ing N - A poles from the real axis actually shrinks
and approaches zero as wﬁ — co. This can easily
be seen using perturbation theory. As this happens,
absorption is reduced. These observations explain
why the transmission coefficients T, = 4x,/(1 + x,)*
first increase but eventually decrease with increasing
x,. Indeed, the nonvanishing eigenvalues wﬁ of the
width matrix are monotonically increasing functions
of the x,’s. Increasing all the x,’s causes the motion
of poles just described. Absorption attains its maxi-
mum value, S,; =0 or T, = 1, at x, = 1. This is why the
eigenvalues wﬁ are not suitable measures for the phys-
ical strength of the coupling between channels and
resonances. Rather, this role is played by the trans-
mission coefficients T),.

These qualitative arguments are fully supported by
the quantitative analysis. In Lehmann ez al. (1995),
the limit N — oo was considered with 7 = A/N held
fixed. The ratio m denotes the fraction of resonances
that move toward —ico in the complex E plane as all
x, = 0. For fixed and small values of the x,, the
distribution of poles in the complex E plane shows a
cloud located below the real axis. As the x, increase,
this cloud deforms and eventually splits into two. The
upper cloud contracts toward the real axis. It was

numerically observed by Moldauer (1975) and later
confirmed analytically by Gaspard and Rice (1989)
that all poles keep a finite distance from the real axis.
This distance is related to but different from the aver-
age decay width T".

The statistical theory of compound-nucleus reac-
tions presented in this section uses the optical model
of elastic scattering and/or a coupled-channels ap-
proach as input. The parameters determining these
models are assumed to be known and do not form
part of the statistical theory. Nevertheless, it is only
fair to point out that optical-model parameters must
be known for all channels, not only those with both
fragments in their ground states. The essential step
then consists in replacing the projection H,y of the
Hamiltonian matrix onto the space of quasi-bound
states by an ensemble of random matrices, the GOE.
In this way, averages over all observables depend-
ing on S are uniquely determined in terms of the
optical-model or coupled-channels input. It is the
strength of this statistical approach that it is capa-
ble of predicting not only variances but also corre-
lation functions, both versus energy (Eq. (25)) and,
as will be shown in §7, also with respect to a pa-
rameter that measures symmetry breaking. This is
possible because in Egs. (11) and (13) the energy E
and the projected Hamiltonian both appear explic-
itly. The exact calculation of the correlation functions
is not easy, however. Even in the simplest nontrivial
case, that of the S-matrix autocorrelation function of
Eq. (25), the calculation involves the use of the su-
persymmetry technique. And calculating the average
of a product of four elements of $ fluc (+wo with and
two without complex conjugate sign) has been pos-
sible only in very special cases. So far, this has not
been a serious drawback because cross-section corre-
lation functions outside the Ericson regime (where the
inequality T > d allows for an asymptotic expansion)
are very difficult to measure, and have not been of
particular experimental interest. Observables involv-
ing more than four S-matrix elements in a nontrivial
way are beyond the present reach of the supersymme-
try method.

§6. Maximum Entropy Approach

A second approach to the statistical theory of
compound-nucleus scattering does not take recourse
to Egs. (11) and (13). Rather, the scattering matrix it-
self is considered a member of a suitable ensemble of
random matrices, without the detour of implementing
stochasticity into the projection of the Hamiltonian
onto the space of quasi-bound states. Dyson’s circular
ensembles may be considered an early precursor of
this approach. Dyson (see Porter (1965)) introduced



1406 Statistical Theory of Nuclear Reactions

the circular orthogonal ensemble (COE) of symmet-
ric unitary matrices S of dimension A: The matrix §
is written as S = U UT, and the ensemble is defined
by integration over the Haar measure for the unitary
matrices U in A dimensions. Since S is unitary and
symmetric, we may consider the COE as an ensem-
ble of scattering matrices. For this ensemble, S = 0.
It has been shown (Lewenkopf and Weidenmiiller,
1991; Brouwer, 1995) that the COE is identical to the
ensemble of § matrices defined for compound-nucleus
scattering, see §5, with S = 0 or, equivalently, with
T,=1foralla.

This raises the question whether an ensemble of $
matrices can be found also for the general case (arbi-
trary values for the average S-matrix elements §) in
a direct fashion, i.e., without implementing stochas-
ticity into the projection of the Hamiltonian onto the
space of quasi-bound states. This is indeed the case
(Mello et al., 1985; Brouwer, 1995). The ensem-
ble is constrained by the following conditions. (i)
The members must be unitary and symmetric. This
constraint imposes probability conservation and time-
reversal invariance. (i) Any function f(S) that can be
expanded in a series of nonnegative powers of S must
obey £(S) = f(S), and similarly for f($*). This con-
straint was mentioned as an obvious property above
Eq. (25) but must now be imposed. (iii) The ensemble
average of S is given by the optical S matrix, S = $°Pt, or
by the coupled-channels § matrix, S = $9, as the case
may be. This is the constraint that defines the statisti-
cal model. The measure of the ensemble is written as

dp(S) = F(S)du(S). (30)

The measure of integration du(S) is found by writ-
ing § = U UT and varying S so that S » S+dS =
U(I +i8M)UT with I the A-dimensional unit matrix
and 6M real and symmetric. This yields du(S) =
2MA-DATL , dMjs. The weight factor F(S) is found
by maximising the information entropy S defined by

- J du(S)E(S)InE(S) (31)
with respect to F(S), subject to the three constraints
mentioned above. Variation yields for F(S) the result
(Mello et al., 1985)

_ 1 [der(I-55%))(A+1/2

- 3 2
V [det(I-5 $*)](A+1) (32)

F(S)

with V some normalisation factor. For § = 0, we
retrieve the COE. It was mentioned above that the
COE is completely equivalent to the statistical model
of §5 provided we put all T, = 1 in the latter. A
similar equivalence has not been established yet for
the general case where S # 0, i.e., for the ensemble
defined by Eqs. (30) and (32). Numerical studies have
shown perfect agreement for the case of two chan-
nels, and the Hauser-Feshbach formula (24) has been

derived from Egs. (30) and (32) for the case A > 1.
A comparison in other cases is difficult because of the
unwieldy form of the integral kernel (32).

The strength of the maximum entropy approach
lies in the fact that it deals directly with the quantity
of interest, i.e., the scattering matrix, and avoids in-
troducing the Hamiltonian. It yields Eq. (32) for F(S)
from which in principle all moments of S can be ob-
tained. The approach has not been much used in nu-
clear physics but has found important applications to
properties of quasi one-dimensional disordered con-
ductors. The main drawback of the approach is its
inability to predict correlation functions, except for
select cases. This is because it is not clear how a de-
pendence on energy and/or on a symmetry-breaking
field can be incorporated into this approach in a phys-
ically correct fashion. This is precisely because the
approach avoids using the Hamiltonian explicitly.

§7. Symmetry Breaking

The strong interaction conserves isospin and parity
and is time-reversal invariant. In nuclei, isospin is vi-
olated by the electromagnetic interaction and parity,
by the weak interaction. Violation of both quantum
numbers has been observed in compound-nucleus
reactions. To account for these observations and to
deduce the strength of the symmetry-breaking inter-
action from the data, it is necessary to modify the
approach of §3. The same holds true for a possible
violation of time-reversal invariance for which an up-
per bound has been established in compound-nucleus
reactions. A violation of symmetry and/or invariance
may affect the values of $', of the W%’ and of H,
in Egs. (12) and (13) for the S matrix. Because of the
long lifetime of the quasi-bound states, the effect is ex-
pected to be strongest when it occurs in H,y. We fol-
low common practice and focus attention on this term
only which for brevity we denote by H. In compound-
nucleus reactions, isospin violation (parity violation)
has mainly been investigated for strongly overlapping
(for isolated) resonances, respectively. Both cases re-
quire a separate treatment. The case of time-reversal
symmetry is different altogether because the operator
of time-reversal symmetry is anti-Hermitean. Lack of
space forces me to omit this topic.

Isospin Violation

Violation of isospin symmetry in compound-nucleus
reactions for strongly overlapping resonances has
been reviewed in Harney et al. (1986) and Reiter
and Harney (1990). By assumption, isospin violation
occurs only in H, i.e., in the compound nucleus.
Therefore, among the labels characterising the chan-
nels (a,b,...) there is also the isospin quantum
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number T. The physical channels are characterised
by the isospin projection ¢ of the light reaction part-
ner. A simple orthogonal transformation involving a
Clebsch-Gordan coefficient connects the two repre-
sentations. To model isospin violation in H, we con-
fine ourselves to the simplest case: Only two different
values, T =Ty and T = T,, of the isospin quantum
number are considered. This suffices for most appli-
cations. A generalisation is easily possible but would
require more complex notation. We label the quasi-
bound states by the isospin quantum number T and
write the matrix H in block form,

H V
H = .
VI H,

The first (second) diagonal block refers to quasi-
bound states with T = Ty (T = T, respectively). The
matrix V violates isospin. In the absence of isospin
violation (V = 0), we would proceed as in §5: We
would model H; and H, as two independent GOEs
of dimensions N1 and N3, with semicircle radii 224
and 2);, and mean level spacings di = mA;/N1 and
dy = th2 /Ny, respectively. We consider the regime of
strongly overlapping resonances, T'y > dg, for both
isospin values k = 1,2. The I'; values are defined
as in Eq. (28). In the presence of isospin-symmetry
breaking (V #0), Coulomb effects and other isospin-
violating interactions are contained not only in V.
Such effects contribute also to H; and to H; but are
here neglected because such effects are small in com-
parison with the matrix elements of the nuclear force.
In the presence of V, we accordingly retain the mod-
elling of H; and H; in terms of two independent
GOEs. In the spirit of the statistical model, we as-
sume that the elements of V are uncorrelated Gaus-
sian distributed random variables with mean value
zero and a second moment 2. The dependence of
12 on Ni, N, is determined by the observation that
the dimensionless ratio v*/[d1d>] must be indepen-
dent of Ny and N;: The matrix elements of the
isospin-violating interaction scale with the N values
as do the mean level spacings. We accordingly write
2 = H2,/[N1Na]. Then H3, is the average of the
square of the isospin-violating element in the nucleus.
The analysis of data on compound-nucleus scatter-

(33)

ing with isospin violation aims at determining Hfz or
another -suitable measure of the strength of isospin-
symmetry breaking related to this quantity. We men-
tion in passing that the representation used in Harney
et al. (1986) and Reiter and Harney (1990) differs
from that adopted here: In the former, it is assumed
that the matrices H; and H> have been diagonalised,
the limits Nj, - oo have been taken, the eigenvalues
of both matrices have been rescaled to attain finite
mean level spacings di and d; and the matrix elements
of Hq7 have been introduced. The technique used in

Harney et al. (1986) and Reiter and Harney (1990)
to calculate averages of observables was later shown
to give the same results in the Ericson regime as the
supersymmetry technique.

We observe that the average S matrix of the model
conserves isospin, 1.e., is diagonal in T. This is be-
cause isospin-symmetry violation occurs only in the
compound nucleus and is entirely due to V. The
isospin-violating elements of S are necessarily odd in
V and, thus, vanish on average. As in §5, we as-
sume that S is given in terms of an optical-model
or coupled-channels calculation, which, for consis-
tency, must conserve isospin. The statistical model
for isospin-symmetry breaking differs in one funda-
mental aspect from the model for compound-nucleus
scattering in §5: The model contains an additional

parameter, the strength H2, of the isospin-symmetry
breaking interaction V. This parameter is not deter-
mined by the values of the average S-matrix elements.
Rather, it is determined by a fit to data on isospin-
symmetry breaking. The validity of the model can
only be established by showing that it consistently de-
scribes a large body of such experimental data; see
Fig. 4. We also observe that the model of Eq. (33)
violates the orthogonal invariance in Hilbert space
originally postulated in the defining equations of the
GOE, Egs. (2) and (3): The model keeps this invari-
ance with respect to states with fixed isospin but not
in the entire Hilbert space. This is the unavoidable
consequence of a weakly broken symmetry.

In the regime of strongly overlapping resonances,
the distribution of the fluctuating part $¢ of the §
matrix has many properties in common with that de-
scribed in §5 for compound-nucleus scattering: The
distribution is Gaussian, and the only nonvanish-
ing second-order correlation function has the form

Sfuc(Eq)Stucs (Ey). It is given by
Sftl:cbtz (E1 )Sélt‘;fi’;A(EZ) = Sacﬁbdz‘,‘lffz'»tx3 nmn‘tzznt"
mn

+82a 8 3. Tt Tl T2, (34)
mn

The indices (at) refer to the physical channels with
t denoting the isospin projection of the light reaction
partner. The matrix I1,,, in the space of isospin classes
has dimension two. The inverse of IT has the form

_— ST vz +2ine/dy -z (35)
-2 Y ath+z+2ine/dy

Here, € = E; — E;.  The dimensionless parame-
ter z measures isospin violation. Except for a
correction that usually is unimportant, z is given by

2= 4n2H%2 /ld1d2]. The definition of the transmission

. ity . .
coefficients 14,7 involves charge-dependent barrier
penetration factors and is not given here; see Harney
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Figure 4 The spreading width I'* of Eq. (36) in kiloelectronvolts versus mass number A

. Open triangles (full dots) indicate values

determined from the statistical theory (from isobaric analogue states, respectively). Data available at different excitation energies

cause the occurrence of different data points for the same

nucleus. Taken from Harney et al. (1986) and Reiter and Harney (1990)).

100 | W | *
iy j . T
f . i,
A L bi
1 | 1 [ ]
° E T 1 h :
| f ot
1 f ! 1
e 4 i { 4 e e e e
z 30 40 50 60 70 80 9 100
4 T + r
1001 . }h‘“]';h‘:'f' 3";-"
- ) )
L ¥R |
10} ! ]
£
B
1 ]
£
8 110 120 130 140 150 160 170  180)
o v
%100}, - .F y ! i
[« trom 1as ]
10F |« from ical reactions ]
190 200 210 220 230 240

Mass Number A

etal. (1986) and Reiter and Harney (1990). Equa-
tions (34) and (35) give the leading terms of an asymp-
totic expansion in inverse powers of ¥ 1", and of
315 We observe that for z = 0, the correlation func-
tion (34) reduces to two independent Lorentzians, one
for each isospin value. This is consistent with Eq. (26)
except for the fact that the channels are now also ex-
plicitly labelled by the (conserved) isospin quantum
number. Investigation of the converse limit z — oo
shows that the correlation function is governed by a
single Lorentzian: Isospin mixing between the two
classes is so strong as to make any distinction be-
tween them meaningless. In this limit, the orthog-
onal invariance of the matrix ensemble (33) in the
combined Hilbert space of the states with isospins T}
and T3, is restored. These limits show that Egs. (34)
and (35) constitute the simplest nontrivial extension
of Eq. (26).

The parameter typically deduced from experimen-
tal data is the spreading width l"i for isospin mixing
defined by

7
Hip

L2
- 5z,

I3 i 2n

(36)

This quantity has a simple physical interpretation,
and it possesses an important property. Let |1ot) and

IB) denote eigenstates of H; and of M, respectively.
We order the states |B) so that the associated eigen-
values grow monotonically. The probability |(B|1c:)[?
for finding a fixed state 1o in the states B has on av-
erage a Lorentzian form with width I’:l,_. Put differ-
ently, h/I‘i is the average mixing time of the states
that have isospin T; with those that have isospin T.
The spreading width I} is a much more useful mea-
sure (Brody et al., 1981) of isospin mixing than the

mean square mixing matrix element H%z. This is be-
cause the latter involves the overlap between states
with isospin values T} and T. The overlap decreases
rapidly with increasing complexity of the states in-
volved, and so does M%,. This strong decrease is al-
most completely compensated by the factor d;l in the
definition (36). This was shown theoretically (Brody
et al., 1986) and is supported by the data. Indeed,

values of H?, determined from experimental data
(Harney et al., 1986; Reiter and Harney, 1990) vary
over seven orders of magnitude while the correspond-
ing values of F%_ lie in a narrow band; see Fig. 4. We
mention in passing that a definition completely analo-
gous to Eq. (36) applies to the spreading width of the
strong interaction introduced in §3. Here the state
20, is identified with an eigenstate of the shell model,
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while the states B are the eigenstates of the full nuclear
Hamiltonian.

Isospin-symmetry breaking in the compound
nucleus has been studied with the help of several re-
action processes: Through the comparison of aver-
age cross sections leading to isospin-allowed and to
isospin-forbidden reaction channels, through the in-
tensity of isospin-forbidden electric dipole radiation
induced by light or by heavy ions, or the intensity
of the isospin-forbidden neutron decay of the giant
dipole resonance, through ratios of evaporation spec-
tra that should be unity if isospin were completely
broken or through the comparison of cross-section
fluctuations in isobaric mirror channels. All these
cases involve a fairly straightforward application of
the formalism of Egs. (33) to (36). The results are
summarised in Fig. 4. We note that I"é is nearly in-
dependent of A and excitation energy. This result is
not obvious, especially since the primary experimen-
tal observable is z. To obtain I‘;l,_ from Eq. (36), z must

be multiplied with d;. The average level density d;"
of states with isospin Ty depends nearly exponentially
on energy and is not always well known. We also note
that independent and different sources of information
(the statistical theory and isobaric analogue states)
lead to almost identical values for T3. The results
summarised in Fig. 4 constitute one of the best vin-
dications of the statistical theory of nuclear reactions.

Parity Violation

The weak interaction induces a parity-violating term
also in the effective nucleon-nucleon interaction.
The scattering of epithermal polarised neutrons on
medium-weight and heavy nuclei provides a mea-
sure for parity violation in the compound nucleus
(Mitchell et al., 1999): The total neutron cross section
depends on the helicity of the incident neutron. It is
customary to present the data in terms of the “asym-

metry”
4 4
+ =0

p=g

ol

(37)

where 67 is the total p-wave cross section for neu-
trons with helicities £. An effect is observed when
the neutron populates an isolated p-wave compound
nucleus resonance. We focus on the typical case
where the target nucleus has spin zero. Then the p-
wave resonances have spin values 1/2 or 3/2. Par-
ity mixing of the former (the latter) involves s-wave
(d-wave) resonances. The angular momentum bar-
rier prevents the d-wave resonances from contribut-
ing, and only p-wave resonances with spin 1/2 need
be considered. Because of two enhancement factors
explained below, values of P in the percent region are
measured even though the strength of the weak inter-
action is only one part in 10° or so of the strong one.

The statistical model is that of Eq. (34) with H;
(H>) representing quasi-bound states with spin and
parity 1/2* (1/27, respectively), and V modelling
the effective weak interaction. The goal of the the-
ory consists in deducing the strength of the effective
weak interacion or, more appropriately, the associ-
ated spreading width l"tv from data given in the form
of Eq. (37). To this end, we proceed as in the case of
isospin violation and write the second moment of Vin

the form V2 = _H—‘Zx,/ [N1N;]. Then the spreading width

is defined in analogy to Eq. (36) as T}, = 2nM,/d..
Here d; is the mean level spacing of the s-wave reso-
nances with spin 1/2.

We use the model of Eq. (34) and Egs. (10) and
(11) for isolated resonances, and first-order perturba-
tion theory in V to evaluate P. We label the p-wave
(s-wave) resonances consecutively by an index u (v,
respectively). Then

VIH
P, =zg’———<E'v _"‘g:” g;—?‘. (38)

Here g, and g, are the neutron decay amplitudes of
levels u and v, with r}= gﬁ the partial width for p-
wave neutron decay. The neutron bombarding energy
has been taken in the centre of the p-wave resonance,
and the p-wave background and the resonance widths
have been neglected. In the calculation, the eigenval-
ues E, and E, have been rescaled to attain finite mean
level spacing.

Equation (38) displays the central aspects of par-
ity violation in the regime of isolated resonances. (i)
It shows the origin of two enhancement factors. The
first is associated with the ratio (v|Hwlu)/[Ey — E,].
The small expected size of the weak interaction ma-
trix element (v|Hw|u) is partially compensated by the
small level spacing [Ey ~ E,;]. Hence, parity violation
is a relatively larger effect near neutron threshold than
at lower excitation energies where level spacings are
much larger. Quantitatively, we recall the fact that the
spreading width is roughly independent of excitation
energy and conclude that [(v|[Hwlu)/[Ey — E, ]| scales

with excitation energy as ds 2 This implies that
in comparison with the ground-state region where d;
is typically 100 keV, the ratio |(v|iHwlu)/[Ev - E,]|
is enhanced by a factor (100 keV / 10 eV)!/2 = 102.
The second enhancement factor stems from the par-
tial width amplitudes in Eq. (38): In the case of par-
ity mixing, the p-wave resonance decays by s-wave
emission. Without parity mixing, the decay would
be back into the p-wave channel and would be hin-
dered by the barrier penetration factor for p waves.
The resulting enhancement amounts to another factor
10? - 103 near neutron threshold. The combination
of both factors explains qualitatively why P, values
on the order of 1072 are found. (ii) Equation (38)
also demonstrates the need of a statistical approach.
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Indeed, experimental knowledge of P, and of the
quantities E,, Ey, g, and g, will in general not allow
us to determine the matrix elements (v|Hw|u). And
even when this is possible (because only a single s-
wave resonance lies sufficiently close to E,, and the
sum in Eq. (38) reduces to a single term), the com-
plexity of the states |u),|v) prevents us from using
a single matrix element (v|Hwlu) to deduce proper-
ties of the effective weak interaction in nuclei. Here
the statistical theory comes to the rescue: It states
that the matrix elements (v|Hw|u) are uncorrelated
random variables with a Gaussian distribution cen-

tered at 0 and with a common second moment H3%,.

We determine the value of H3, by writing Eq. (38) as
P, =Yy Auv(vVIHwlu) and observe that as sums of ran-
dom variables, the P, are also Gaussian-distributed
random variables with mean value zero. The variance
var(P,) of P, with respect to both 4 and the ensemble

is given by A2H{,, where A% = (1/Np) 3,y A%, and N,
the number of p-wave resonances. Thus,

H%{/ - var(Py)

A2

(39)

Values of the weak spreading width T}, determined
via Eq. (39) are known (Mitchell et al., 1999) for
about 15 nuclei and are typically a few times 107
eV, in keeping with the estimate of a few megaelec-
tronvolts for the spreading width of the strong inter-
action, and with a factor 107% relating the strengths
of the strong and the weak interactions. These facts,
and tests of the distribution of the P, values, consti-
tute another successful application of the statistical
theory.

§8. Precompound Reactions

As mentioned in §5, the compound-nucleus picture
breaks down at excitation energies of about 15 to 20
MeV. Here the internal equilibration time 5T be-
comes comparable with the compound-nucleus de-
cay time »/T, and “precompound decay” sets in:
The system decays before it has reached internal
equilibrium. The emitted particles have, on average,
energies higher than would correspond to compound-
nucleus decay. Moreover, the angular distribution of
these fragments is forward-peaked and “remembers”
the direction of the incident beam, while compound-
nucleus decay is symmetric about 90° c.m.

Figure S shows a typical data set. Neutrons at 13.5
Mev bombarding energy strike a **Nb target. The
full dots show the measured spectrum of neutrons
produced at an angle of 143° c.m. in a logarithmic
plot. The peak at the highest energy corresponds to
direct reactions populating low-lying states. The con-
tribution that decays nearly exponentially with energy

is partly due to compound-nucleus decay; see below.
The contributions between 7 and 14 MeV are largely
due to precompound decay processes.

The statistical modelling must deviate from the
GOE to allow for the existence of an equilibration
time. The underlying physical picture is based on the
shell model with a residual two-body interaction and
is explained most simply if the incident particle is a
nucleon and the target nucleus is doubly magic. The
extension to composite projectiles is straightforward.
In a sequence of two-body collisions, the incident
nucleon generates a series of two-particle one-hole,
three-particle two-hole, etc., states. The n-particle
(n—1)-hole states form a class with index n. The
states in each class are treated in a statistical fashion
and can decay by emitting particles. The two-body
interaction couples only classes that differ in # by not
more than one unit (this is Feshbach’s “chaining hy-
pothesis”; see Feshbach e al. (1980)). At a given
excitation energy E, the partial level density p,(E)
for states in class n grows strongly with » and, af-
ter reaching a peak value at #py,y, falls off strongly
with #. The equilibration time is the time needed
to reach class 7,y from the incident channel. This
picture is the starting point for a number of theoreti-
cal approaches (Feshbach et al., 1980; Tamura et al.,
1982; Nishioka et al., 1986, 1988). Common to all

Figure 5 Differential cross section for the reaction 93Nb(n,xn)
at £, = 13.47 MeV and 143° c.m. and the results of a multistep-
compound calculation (solid line). Taken from (Herman et al.,
1992).

2
10 =
£ &
- .
L .
B .
101 =3 *
> -
(] L
\2 Y
5 L
E o L
|_“10 §
3 -
- L
-1
10 E
-2 PN ERE U R SRR N S SV T
10
0 4 8 12 16

E (Mev)




Statistical Theory of Nuclear Reactions 1411

is the distinction between the “multistep-compound”
and the “multistep-direct" process. In the multistep-
compound process, the states in all classes but the first
are quasi-bound states, while in the multistep-direct
process, these states are continuum states. These two
processes are not independent, however, but states
in either are coupled to those in the other by the
residual two-body interaction. The relative impor-
tance of the multistep-direct process increases with
increasing excitation energy. Indeed, in a given class
n of the multistep-compound process, the available
energy E is shared by (2n+ 1) “excitons” (particles
or holes). Particles cannot absorb more than their
binding energy, and the creation of deep-lying hole
states is limited by the extremely short lifetimes of
such states. Therefore, the number of states available
for multistep-compound processes in each class de-
creases as the excitation energy increases above some
fixed class-dependent value. No such restriction ex-
ists for the multistep-direct process.

Multistep-Compourid Process

Theoretical approaches to the multistep-compound
process are fairly similar and essentially use a mod-
ification of the procedure described in §7 for the
mixing of isospin or parity. The Hamiltonian # is
modelled as in Eq. (33) except that the number of
blocks is larger than 2 and given by the number of
classes under study. The states in each class » de-
fine a block of dimension N, and are modelled in
terms of a GOE, with N,; = co. The GOEs for differ-
ent classes are uncorrelated. Classes differing in class
label 7 by one unit are connected by a block of two-
body matrix elements that are taken to be Gaussian-
distributed random variables with mean value zero.
The second moments 22,1 = [Huns1|2/[INsNps1] to-
gether with the level densities p,(E) determine the
equilibration time. The model breaks the overall or-
thogonal invariance of the GOE model for the com-
pound nucleus used in §5. The invariance is restored,
and the compound-nucleus limit is attained, if the
spreading widths 27| Hy.1/|*pas1(E) for the mixing of
states in class # with those in class (z+ 1) become suf-
ficiently large. In practice, it suffices that these quan-
tities are much larger than the decay widths T, of the
states in class 7. This is the situation realised in the
regime of compound-nucleus scattering.

The formula for the average cross section is an ob-
vious generalisation of the expressions (34) and (35).
For a # b, it reads

18512 = 3 T pin T (40)
mn

Here T is the transmission coefficient for populat-
ing class m from channel @ and obeys the sum rule

Y Tam = Ty with T, as defined in §4. The quantity
IT is a matrix with class indices (m, 7). Lack of space
permits me to give only the central features. The in-
verse of IT is given by

(T )oin = 8yn 20Ty + Tom) = Toun: (41)
Here Tony = 2101 | Hnn [*p mixes classes m and 7 pro-
vided that m = n+ 1. The interpretation of Egs. (40)
and (41) follows that of Egs. (34) and (35). The
expressions (40) and (41) can be further simplified
if one uses the “never come back” approximation
(Feshbach ez al., 1980): The level densities p,, increase
so strongly with # that the decay back from class
into class (n— 1) is negligible.

To evaluate Egs. (40) and (41), one uses level den-
sities of the particle-hole model and calculates the
transmission and mixing coefficients and the spread-
ing widths with the help of the optical model (Herman
et al., 1992): The imaginary part of the optical model
defines the lifetime for decay of each particle or hole
into more complicated states. Thus, combining the
particle-hole and the optical model makes it possible
to evaluate Egs. (40) and (41) without additional fit
parameters. The solid line in Fig. 5 shows the result
of such a calculation. Single (multiple) neutron de-
cay is calculated from the multistep-compound pro-
cess (compound nucleus theory, respectively). The
difference between the calculated and the measured
results is attributed to the multistep-direct process.

Multistep-Direct Process

The multistep-compound process introduces a sta-
tistical model tor the quasi-bound states, i.e.,
for the matrnix H,. in Eq.(13). The model
differs from the GOE model used to describe
compound-nucleus reactions. In contradistinction,
theories of the multistep-direct process address
the calculation of the nonresonant scattering ma-
trix S in Eq. (12). As mentioned in §4, this
matrix is, in principle, determined by a coupled-
channels calculation. Such a calculation becomes
impractical, however, whenever the final channel in-
volves excited states in either fragment with excita-
tion energies of several megaelectronvolts. Indeed,
the level density in the fragment(s) is then so high
that the number of channels needed in the coupled-
channels calculation exceeds the possibilities of nu-
merical calculation. Equally important is the fact that
very little is known about the spectroscopic proper-
ties of the excited states involved in the calculation.
Such properties are needed as input for the coupled-
channels approach. Hence, one again takes recourse
to a statistical modelling. Such modelling has less
secure foundations, however, than the GOE model
used for compound-nucleus scattering. Indeed, the
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experimental evidence presented in §1 is direct proof
for the applicability of the GOE to the compound-
nucleus regime. In the case of excited states of either
fragment, there must be a transition from the regular
behaviour of low-lying states that can be described by
the shell model and/or by one of the collective models,
to the GOE regime that prevails at neutron thresh-
old. Unfortunately, experimental data on this transi-
tion are practically nonexistent, and much room is,
therefore, left to theoretical modelling.

In all theories (Feshbach ez al. 1980; Tamura et al.
(1982); Nishioka et al. 1986, 1988) of the multistep-
direct process, the coupled-channels problem is solved
perturbatively (Born series). The transition from the
initial channel to the final channel is then described as
a sequence of steps. Each step involves a matrix ele-
ment that has the form of a direct-reaction amplitude,
hence the name “multistep-direct” process. In order
to arrive at expressions that are amenable to calcula-
tion, the sums over intermediate states are simplified.
First, these states are modelled in a schematic fash-
ion, similar to the modelling of the quasi-bound states
in the multistep-compound process: It is assumed
that the multistep-direct process populates a sequence
of n-particle n-hole states in either fragnment. Sec-
ond, statistical assumptions on these #-particle #-hole
states are used to simplify the sums over intermediate
states. More precisely, the statistical average of ]Sig)lz
is calculated and in this average, only incoherent sums
over intermediate states appear.

The three approaches (Feshbach er al. 1980;
Tamura et al., 1982; Nishioka et al. 1986, 1988)
use different statistical assumptions. It was empha-
sised above that a statistical assumption usually im-
plies an assumption about a time scale: The states
that are treated as statistically equivalent must mix
on a time scale that is short in comparison with
all other time scales of the problem. Moreover,
the three approaches use different simplifications to
arrive at workable formulas for practical calculations.
The three approaches are compared in Konning and
Akkermans (1991). Problems in using these theories
are discussed in Chadwick et al. (1999). The work of
Feshbach, et al. (1980) has probably found the widest
application. Applications of the formalism described
here are reviewed in Gadioli and Hodgson (1992).

§9. Outlook

Starting at neutron threshold, the regime of compound-
nucleus scattering extends over an energy interval of
about 10 MeV. In this regime, the statistical theory
is highly successful. It is based on a well-defined
input (the average scattering matrix). In the absence
of symmetry breaking, the theory makes parameter-

free predictions that are in very good agreement with
experimental data and that are used in applications
where such data are not available. In cases of sym-
metry breaking, the theory involves one parameter,
the spreading width. This parameter has been consis-
tently determined in many cases of isospin or parity
violation.

Precompound reactions are important at excita-
tion energies above the regime of compound-nucleus
scattering. The multistep-compound process seems
well understood. Under the assumption that a
sequence of quasi-bound particle-hole states of in-
creasing complexity is populated in the process, the
additional characteristic parameter of the model (the
equilibration time) can be determined from the optical
model and from particle-hole level densities. For the
multistep-direct process, the situation is less satisfac-
tory. The handling of the intermediate states includ-
ing statistical aspects is currently under debate. As the
excitation energy increases, the relative importance of
the multistep-direct process increases. It should even-
tually become equivalent to a semiclassical theory.

Statistical concepts play a large role in other areas
of nuclear reaction theory. An outstanding example
is deeply inelastic heavy ion scattering. The transfer
of large amounts of energy and angular momentum
of relative motion into intrinsic excitation of both
fragments is phenomenologically described in terms
of models with dissipation and requires, on a micro-
scopic scale, statistical concepts. The same is prob-
ably true of the multitude of gamma rays emitted in
the deexcitation of compound nuclei formed by the
fusion of two medium-weight nuclei.

The statistical theory described in this chapter has
much in common with the theory of chaotic scat-
tering, and with theories of transport of electrons
through disordered and/or chaotic devices and of
photons through a medium with an irregular index of
refraction. Much work has been done over the past
few years on these topics (Guhr et al., 1998).

§10. Acknowledgement

I am grateful to H. L. Harney and to A. Molinari for
a careful reading of the manuscript, and for useful
suggestions.

References

Agassi, D., Weidenmiiller, H. A. and Mantzouranis, G.
1975, Phys. Repts. 22, 145.

Austern, N. 1970, Direct Nuclear Reaction Theories. Wiley,
New York.

Blatt, J. M. and Weisskopf, V. F. 1952, Theoretical Nuclear
Physics. Wiley, New York.

Bohr, N. 1936, Nature 137, 344,



Statistical Theory of Nuclear Reactions 1413

Brody, T. A., Flores, J., French, J. B., Mello, P. A, Pandey,
A. and Wong, S. S. M. 1981, Rev. Mod. Phys. §3, 385.

Brown, G. E. 1959, Rev. Mod. Phys. 31, 893.
Brouwer, P. W. 1995, Phys. Rev. B 51, 16,878.
Chadwick, M. B., et al. 1999, Acta Phys. Slovaca 49, 365.

Efetov, K. B. 1997, Supersymmetry in Disorder and Chaos.
Cambridge Univ. Press, Cambridge.

Engelbrecht, C. A. and Weidenmiiller, H. A. 1973, Phys.
Rev. C 8, 859.

Ericson, T. and Mayer-Kuckuk, T. 1966, Ann. Rev. Nucl.
Sci. 16, 183.

Feshbach, H. 1958, Ann. Phys. 5, 357.

Feshbach, H. 1962, Ann. Phys. 19, 287.

Feshbach, H. 1992, Theoretical Nuclear Physics: Nuclear
Reactions. Wiley, New York.

Feshbach, H., Porter, C. E. and Weisskopf, V. E. 1953, Phys.
Rew. 90, 166.

Feshbach, H., Kerman, A. and Koonin, S. 1980, Ann. Phys.
125, 429.

Garg, J. B., Rainwater, J., Petersen, J. S. and Havens, W. W.
Jr. 1964, Phys. Rev. 134, B9SS.

Gaspard, P. and Rice, S. 1989, J. Chem. Phys. 90, 2225,
2242,

Gadioli, E. and Hodgson, P. E. 1992, Pre-equilibrium Nu-
clear Reactions. Clarendon Press, Oxford.

Guhr, T., Miiller-Groeling, A. and Weidenmiiller, H. A.
1998, Phys. Repts. 299, 189.

Hausser, O., Richter, A., Thompson, W. J. and von Witsch,
W. 1968, Nucl. Phys. A 109, 329.

Harney, H. L., Richter, A. and Weidenmiiller, H. A. 1986,
Rev. Mod. Phys. 58, 607.

Harney, H. L. Dittes, F.-M. and Miiller, A. 1992, Ann. Phys.
220, 159.

Herman, M., Reffo, G. and Weidenmiiller, H. A. 1992,
Nucl. Phys. A 536, 124.

Koning, A. J. and Akkermans, J. M. 1991, Ann. Phys. 208,
216.

Lane, A. M. and Lynn, |. E. 1957, Proc. Phys. Soc. London
70 8-A, 557.

Lane, A. M. and Thomas, R. G. 1958, Rev. Mod. Phys. 30,
257.

Lehmann, N., Saher, D., Sokolov, V. V. and Sommers, H.-].
1995, Nucl. Phys. A 582,223,

Lewenkopf, C. H. and Weidenmiiller, H. A. 1991, Ann.
Phys. 212, 53.

Mahaux, C. and Weidenmuller, H. A. 1969, Shell-Mode!
Approach to Nuclear Reactions. North-Holland, Ams-
terdam.

Mahaux, C. and Weidenmiller, H. A. 1979, Ann. Rev.
Nucl. Particle Sci. 29, 1.

Mello, P. A., Pereyra, P. and Seligman, T. H. 1985, Ann.
Phys. 161, 254.

Mitchell, G. E., Bowman, J. D. and Weidenmiiller, H. A.
1999, Rev. Mod. Phys. 71, 445.

Moldauer, P. A. 1975, Phys. Rev. C 11, 426.

Moldauer, P. A. 1976, Phys. Rev. C 14, 764.

Nishioka, H. and Weidenmiiller, H. A. 1985, Phys. Lett. B
157, 101.

Nishioka, H., Verbaarschot, J. J. M., Weidenmiiller, H. A.
and Yoshida, S. 1986, Ann. Phys. 172, 67.

Nishioka, H., Weidenmiiller, H. A. and Yoshida, S. 1988,
Ann. Phys. 183, 166.

Porter, C. E. 1965, Statistical Theories of Spectra: Fluctua-
tions. Academic Press, New York.

Qaim, S. (Ed.) 1991, Nuclear Data for Science and Tech-
nology. Springer-Verlag, Berlin.

Reffo, G. (Ed.) 1997, Proceedings of the International Con-
ference on Nuclear Data for Science and Technology.
Italian Physical Society, Bologna.

Reiter, J. and Harney, H. L. 1990, Z. Phys. A 337, 121.

Tamura, T., Udagawa, T. and Lenske, H. 1982, Phys. Rev.
C 26, 379.

Verbaarschot, J. ]. M., Weidenmiiller, H. A. and Zirnbauer,
M. R. 1985, Phys. Repts. 129, 367.



1414 Polarisation in Nuclear Reactions

Chapter 3.1.5

POLARISATION IN NUCLEAR REACTIONS

J. Gomez-Camacho
Departamento de FAMN,
Universidad de Sevilla,
Aptdo 1065,

41080 Sevilla,

Spain

R. C. Johnson
Department of Physics,

University of Surrey,
Guildford GU2 5XH,

UK
Contents
§1 Introduction 1414
Scope of the Chapter 1414
The Significance of Polarisation Studies 1415

§2
§3

§4

§5

§6

§7
§8

Scattering of Spin-1/2 Particles as a Simple
Example 1415

The Concept of Polarisation and Its Description 1416

Analysing Powers and Their Extraction from
Cross-Section Data 1418
Definition of the Analysing Powers 1418
Implications of Parity Conservation 1418
Extraction of Analysing Powers from Polari-

sation Experiments 1419

Relation of Analysing Powers with Scattering
Amplitudes
Spin-Dependent Forces
Spin-Dependent Interactions for Elastic Scat-

1420
1420

tering 1421
Symmetries of the Interactions 1421
Generalised Spin—Orbit Forces 1421
Tidal Forces 1422

Relation of Spin-Dependent Forces to
Analysing Powers 1422
Treatment of Spin-Dependent Forces by

Perturbation Theory 1423
The Turning-Point Model 1423
Expansion of the Scattering Amplitude in

Irreducible Spin Tensors 1424

Phenomenology of the Elastic Scattering of
Polarised Nuclei 1424
The Nucleon—Nucleus Spin—-Orbit Force 1425
Deuteron—-Nucleus Scattering 1425

6Li and ’Li Scattering near the Coulomb Bar-

rier 1426
Tidal Symmetry 1428
Summary and Conclusions 1429

Appendix: Analysing Powers in Different Coor-

dinate Systems 1429

PART 3 SCATTERING IN NUCLEAR PHYSICS
Topic 3.1 Nuclear Physics

Coordinate Systems with OY along K; A K 1430

Coordinate Systems with OZalong K; A K¢ 1430

Coordinate Systems with OX along K; A K; 1430
§9 Appendix: Tensor Operators Depending on

the Orbital Variables 1430
Vector Operators (k= 1) 1430
Tensor Operators (k = 2) 1430
Rank-3 Operators (k = 3) 1431
General Rank-k Operators 1431

introduction

§1.

Scope of the Chapter

A basic fact of nuclear physics is the strong spin de-
pendence of the force between nucleons. This shows
up at the most elementary level. Two neutrons do
not bind, though a neutron and proton do form a
deuteron, indicating a significant difference between
the spin-singlet and spin-triplet nucleon-nucleon po-
tentials. Nucleon—nucleon scattering experiments
and detailed studies of the deuteron have shown that
the nuclear force has the full spin-dependence that is
consistent with general symmetries, including spin—
orbit and tensor forces. A crucial contribution to
these results has come from high precision data ob-
tained with polarised beams and targets. Here we
use the term “polarised” to denote any spin state of
a spin-I system that differs from a mixed state having
a uniform distribution over the 2+ 1 spin projections
along some direction in space. Polarisation measure-
ments also play an important role in studies of the
3-nucleon system. (see Chapter 3.1.1).

In this chapter we have chosen to discuss the spe-
cial phenomena that give rise to spin dependence in
the interaction of heavy nuclei and that are revealed
by polarisation experiments. Some of the most inte-
resting of these spin-dependent effects have very little



