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1. Introduction

asimple example:

Given two samples of a certain radioisotope to be usd asrelative
radiation sources for instrument testing.

Avail able information:

sample 1 courts 900

sample 2 courts 981

badkground 700
Question:

Calculate theratio of the ret source adivities, includingits
uncertainty.
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All terms and definitions based on

1.VIM (1984: International vocabulary of
basic and general termsin metrology
puldished jointly by ISO/IEC/OIML/BIPM

2."The Guide": Guideto the expression of
uncertainty in measurement, (developed
jointly by BIPM, IEC, IFCC, 1S0, IUPAC,
OIML), ISO/TAG 4/WG 3
puldished in bookform by the Internationa
Organizaion for Standardization, Geneva,
Switzerland (2 nd edition 1995.

Many of the recommencetions therein are available on
the Internet, e.g. at

http://physics.nist.govPubs/guidelined
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afew clarifications, concerning frequently
used terms

error.

the deviation d the reault of a particular
measirement from the unknown "true value"
of the measirand

errors may be dueto
» Iincorred human working methods, which could be
traceal by thoroughly considering the whole
measurement procedure
» non-perfed, non-ided instrument behavior, or
» fluctuations due to physical phenomena

uncertainty:

a parameter, as®ciated with the result ofa
meagsirement, that charaderizesthe dispersion
of the values hat could reasonablyeb
attributed to the measirand
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deviations, for which the algebraic sign and magnitude
are unknown and fluctuating, leading to scatter in the
results of a measurement:

random (statistical) errors

deviations, which influence a series of measurementsin
the same way and in the same, but unknown diredion,
yielding a shift in the results:

" systematic" (correlated) errors

accur acy of measurement:

closeness of the agreement between the result of a
measurement and the value of the measurand.

repeatability (of results of measurements):

closeness of the agreement between the results of
successve measurements of the same measurand carried
out under the same conditions of measurement.

reproducibility (of results of measurements):

closeness of the agreement between the results of
measurements of the same measurand carried ou under
changed conditions of measurement.
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2. Evaluation d measirement uncertainties
2.1. Type A (evaluation of uncertainties)

=: components of uncertainty evaluated by statistical methods

Figure 1. Graphical illustration of evaluating the standard ugcertainty
of an input quantity from repeated observations
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Let x be arandom variable and ta parameter,
then the distribution function F(t) is defined as

F(t) = P(x <t) for-oo <t <o
and the derivative
f(t) = dF(t) / dt = F(t)
is cdled the probability density function

If we know the probability density function p(z) for a random variable
z, we can cdculate the expectdion or mean value of the variable

E(2) = u, = [zp(2) dz

andits variance

0’ (2) = [(z-1)"p(2) dz

The positive square roat of the variance, o (z2), is call ed the standard
deviation of a measurement andis generally quaed as standard
uncertainty.

For a given probability density function this determinesa confidence
level for the result of the measurement = a probability that the “true
value” lies within agiven interval aroundthe mean.

for anormal or Gaussdistribution this means

for aninterval x = k o(x) the probability is

k = 1.00 68.30%
k = 2.00 95.45%
k = 3.00 99.73%
k = 1.64 90%
k = 1.96 95%
k = 2.58 9%
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Statisticd estimate of uncertainty from repeaed observationsof the
same quantity:

<z>=m, = %ZZ.

1=1

with avariance of the individual observations

and avariance of the average

1 n
D 2 (z-m,)

the pasitve square root of which is taken as stancard uncettainty:

u(m,)=JFm) =58V

s'(m,) =

2.2. Type B (evaluation of uncertainties)

Methodof evaluation of a standard uncettainty u(x;) by means other
than the statistica analysis of a series of observations.

Judgement using all relevant information onthe possble varability of
Xj. The pod of information may include

e previous measurement data

» experiencewith or general knowledgeof the behsior and
properties of relevant materials and instruments

* manufadurers spedfications

» uncertainties assgned to reference data taken from handbools

» dataprovided in cdibration and other cetificates

Proper use of the pod of avail able information cdlsfor insight based
on experienceand general knowledge.
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A type B evaluation of stancard uncettainty can be asreliadeasa
type A evaluation, espedally in a measurement situation, where a type
A evaluationis based onasmall number of statistically i ndependet
observations.

relative standard deviation of the experimental standard deviation of
the mean of a sample of n observations (@assumed normal distribution)

# of observationsn  rel. standard dev. (%)
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If reasonable assumptionson thedistribution of the measurements
aroundan estimated mean can be made, eg. equal probability between
some upper and lower boundor trianguar probability around he
mean, it isalsopossble todetermine astandard uncertainty with a
similar confidencelevel than in atype A evaluation with assumption
of normally distributed measurement results.

pOrC' 4
0,125 |- -

¥
S
¥

8

3

(@

0,100 |~
0,075
0,050 -
0,025 |
0,000 Ly

1/2a

1 N
105 t/°C

1+ a3

Covariances— Basic Theory 9 S. Tagesen, Univ. of Vienna, Austria



p@)/°C"
0250 1= ¢

0,200 [
(b)
0,150 |

0,100

0,050 -

0,000 ‘

95 1} 100 \ Y 105 ec
a. ? a,
H,— a6 H, 1+ aNG

2.3. Determining combined standard urcertainty:

If y isafunction F of several independset observable quantiti es x

Y = F(Xq, X2, .oy Xk)

the combined standard uncertainty of the estimatey is designated
u.(y) andisthe pasitive square roct of the combinedvariance ucz(my)
obtained from

k

Am,) =y B,

=1

which is also known as the law of propagation of uncertainty.
The partial derivatives dF/dx; describe, how the output estimate y
varies with changes in the values of the inpu estimates x; and are
therefore often referred to as sensitivity coefficients.
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in particular, we et for alinear combination d varnables
y=ax; + bx, + cX3

w(my) = &@u¥(ma) + b2 (M) + ¢ B(mys)

for aproduct of variables

Yy = aXiXa2X3

Uz(my) — uz(mxl) + uz(mxz) + u2(mx3)
rny 2 rnxl2 mx2 2 mx3 2

and for some more elementary functions

function variance

y = ax+b u* (my) = & ui(my)

y = ax; + bx U’ (my) = & u(my) + b’ u(myy)

y = ax" uw(my)/mS? = n® u’(my)/md

y = In(x) U (my) = u(m)/m’

y = In(Xy +xp) u*(my) = [UP(Me) + U(Me)] / (M + Myo)?
y = In(X4/x2) U (my) = u(My) / my®+ (M) / my°
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Two random variables with possble depadercties
0% (2) = [(z—-Wy)? p(z) dz was defined as variance

[y =my) (z—my) p(y,z) dy dz =: cov(y,z) = cov(z)y)

Is defined as covariance, which givesa measure of the mutual
dependency of the two random variablesy and z.

an estimate may be obtained from n repeatd simultaneus
observations of y and z:

n

s(Y;, %) :ﬁ_ ) (Yi _myXZi _mz)

For convenience often arelative quantity namedcorrelaion
coefficient is used:

p(y,; 2) = cov(y,z)/a (y) o (2)
with the estimate
r(yi, z) = syi» z) 1 slyi) s(z)
These coefficients are pure numbersin the range-1 © +1 inclusive,
p positiveif y>my, and z>m,, or y<myandz<m,
appea togeher

p negativeif y<m, and z>m,, or y>myandz<m,
onthe avelege

Covariances— Basic Theory 12 S. Tagesen, Univ. of Vienna, Austria



RBUISNY BUUBIA JO "AlUN ‘Ussabe] 'S

€T

Aioay L o1seg —Saoue1len0)

UOIRB.II0D JO SDaUep Jualia JIp Josa|duexs Buimous sio|d e1ras

660=14d




For the case of existing crrelaion the formulafor determining the
combined standard uncertainty has to be generalized. The appropriate
expressonis

for some frequently needed simple functions this leads to

u2(a) =0
u?(at+x) = U(x)
u?(ax) = & W(X)
WX +y) = W(x) + U(y) + 2 cov(x, y)
WX —y) = W(X) + U¥(y) —2 cov(X, y)
U2(xxy) _ W(X) , UX(y) , 2COV(xxy)
(xxyp 2y XXy
u3(x/y) _ uA(x) | UA(y) _2cov(xxy)
(xiyp 2y XXy
cov(atx, bty) = cov(X,Y)
cov(ax,hy) = abcov(x,y)
cov(X, X+y) = U3(x) + cov(X, Y)
cov(X, X-Y) = W3(X) —cov(X,Y)
cov(x+y, X-y) = UA(X) — UA(y)
cov(X+y, X+y) = U(X) + U3(y) + 2cov(x, y)
cov(X-y, X-y) = W3(X) + u2(y) - 2cov(x, y)
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Example 2:

3 neutron cross sedions of different materials have leen
determined by ssmultaneus irradiation of 3 foils ina
common neutron field

—ipp

—_—

neutron _—
f lux

—————l

/N

foils #1 €2 &3

and subsequent measurement of the induced
radioadivity by a suitable y-detedor. The number of
counts c is determined by
C - N * O- * (p* 8 *f
consequently we can calculatethe crosssedion ¢ as
o=c/(N«@-¢g:f)
We want to cdculate the uncertainty of the ratio 0,/0,

and the product o, « 0,. For simplicity we assume no
uncertainty in N and in f.
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From atype A evaluation of standard urcertainties we
get the results for the individual components of
uncertainty contributing to the combined standard
uncertainty of the crosssedions. Because the cross
sedions are cdculated from a product of input

guantiti es the foll owing table summarizes the relative

standard uncertainties.

comporent |foil # -> 1 2 3
of

uncertainty
C 0.5% 1.0 % 0.3 %
£ 1.6 % 2.2 % 1.3%
) 2.0 % 2.0 % 2.0 %

due to the common cdibration of the y-detedor the

efficiencies for the respedive y-transitions are partly
correlated.

(€1, €2) =80 %, (g4, €3) = 50 %, (&, €3) = 60 %
as the comporents for each individual crosssedion are

not correlated we can cdculatethe respedive stancard
uncertainties by ssimply adding the variances and taking

the positive square roat:

u(x) %2 U (o) %? Uc(0i)
o) 0.52+ 1.62+ 2.02 6.81 2.61 %
0, 1.02+2.22+ 2.02 0.84 3.14%
O3 0.32+ 1.32+ 2.02 5.78 2.40%
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Taking just these uncertainties, we would get

U(01/0,) = u(01 + 02) =V U(01) + U (0)

=16.81+ 9.84 = 4.08%

but we have correlation due to @ which is fully

correlated and € with partial correlation. Consequently
we get

cov (o;, g;) by comporents |cov (g;, G))

cov (01, 0,) |1.6-22-08+20:20 |6.82%2

cov (04, 03) [1.6+1.3+-05+20+20 5.05 %2

cov (05, 03) |22+ 1.3+0.6+2.0+ 2.0 5.72 %?

hence the corred results are

u(o1 + ) =V U(0;) + uZ(ay) + 2 cov (Ty, Gy)
= 5.50%

u(o1/0,) =V ul(0y) + uA(0y) -2 cov (ay, Oy)
= 1.74%

The outlined cdculation (and representation) procedure
Isonly pradicd for asmall number of input quantities
and/or evaluation results. As can be seen already from
the above tables the whole problem is idedly suited for
matrix representation:

Covariances— Basic Theory 17 S. Tagesen, Univ. of Vienna, Austria




The (relative) variancesand ovariances ca
be arrangedas

6.81 -
V =6.82 9.84
504 572 578"

from where all desred guantities can b
cdculated easly

u.(o)loi=_ V. lij = Vij

i Vii ij

so the final reault could be given as

o1 *2.61% [11.00 []
o, *3.14% [10.83 1.00 []
o3 +2.40% [10.80 0.76 1.001
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3. General form for deriving combined
standard uncertainties by matrix formalism.

If al output quantitiesy,,ys, ... Yk, --- Ym (COmbined in a
vedor y) are alinea combination of thex,X,, ... X;, ...
Xn (combined in avedor x), the (mx1) column vedor y

Isrelated to the (nx1) vedor x by alinea
transformation

y=TXx+a

and the corresponding covariance matrices C, and C,
transform acording to

C,=TC,T
with T being the transformation matrix of dimension

(mxn) and T' its transpose.

Our introductory example then would appea in the
following ndation:

Input variables Gy, G, B
output variables N, No

the relationship reads:

N]_ - 1*G]_ + O*Gz -B
N2 — O*Gl + 1*62 -B
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s0 the transformation matrix T becomes

B

and the input covariance matrix is
00 O 0 E }1 0)
C. =00 981 0 T'=p0 1

X Ho o0 700 {1 -1

TxC, = ?OO 0 —700&
10 981 -700

600 700
TxC xT'= El H= C
1700 16817 ’

T I

from which we get

U(y) =+ =40 U(y2) =~ =41

and the correlation is

700/ (40. 41) = 0.427
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A nontlinea relationship can (for small uncertainties) be
approximated by the linear part of a Taylor’'s seriesexpaision sich
that the transformation matrix becanes

10 oy, [
ayl ayl :
[09%1 Xn [
0 - 0
0 0
T=0,
D mpy
dox, ox . [

For the elements of the mvariance matrix C, we get:

ov(X,Xj),

. J:

n n y
Covlyy) = 2. Za_

Cov(Yi.yx) = Var(yi) = 0°(yx)

The diagoral elementsin C, represent the variances of the outpu
guantiti es, the correlations can l& oldained from the off-diagordl
elements. In gereral, C, will not be diagoral (there exist norzero off-
diagonal elements) even if C, isadiagonal matrix (all off-diagorel
elements equal zero). The results y, may becorrelated even if the x;
are not) because the different y, share the same x;.

To ead element of acovariance natrix (e.g., C,) isasciated
an element of a correlationmatrix (e.g., Corry)

Cov(x;,X;) Cove(x X;)
Corr(x,X;) = Na(x, )Q/V ar(x, y S, By . |Corr(xi,x)| < 1

the diagoral elements are all equal to 1; the off-diagoral elements are
zero if no correlations exist.
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4. Construction of covariance matrices

If you take datafrom literature

» collect the acuually measued guantities

» review in cetall all reported corrections and
thelr uncertainties

» verify the reported urcertainty definition,
convert all to k=1 (standard urcertainty)

» note missng urcetanties
» revisereference datafor recent updates

If youwork on you own data

» makea lig of all uncertanty components
contributing in you experimental
procedure

» sort for purely statistical components and
comporents which produce correlation

» evaluate (type A or type B) standard
uncataintiesfor al input quantities
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General properties of adata
covariance matrix

1. A covariance matrix is by definition
symmetric

2. A covariance matrix is positive
(sami)definite, i.e. its eigenvalues ae
positive (or at least zero)

The latter is a consequence of the faa, that variances of
any function of physical quantities must be non-
negative and are usually not zero.

These general properties of a data covariance netrix are
normally corredly produced when such a metrix is
derived by including corred and complete uncertainty
Information into an evaluation. If dueto the lack of
complete information approximate methods have to e
used for the assgnment of covariances, specialcare has
to be taken to guaranee hatthe properties pointed out
above are met. Otherwise nonphysicd effeas will
appear when processing such a covariance matrix.
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