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1. Introduction

a simple example:

Given two samples of a certain radioisotope to be used as relative
radiation sources for instrument testing.

Available information:

sample 1 counts 900
sample 2 counts 981
background 700

Question:

Calculate the ratio of the net source activities, including its
uncertainty.
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All terms and definitions based on

1. VIM (1984): International vocabulary of
basic and general terms in metrology
published jointly by ISO/IEC/OIML/BIPM

2. "The Guide": Guide to the expression of
uncertainty in measurement, (developed
jointly by BIPM, IEC, IFCC, ISO, IUPAC,
OIML), ISO/TAG 4/WG 3
published in bookform by the International
Organization for Standardization, Geneva,
Switzerland (2 nd edition 1995).

Many of the recommendations therein are available on
the Internet, e.g. at

http://physics.nist.gov/Pubs/guidelines/
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a few clarifications, concerning frequently
used terms

error:

the deviation of the result of a particular
measurement from the unknown "true value"

of the measurand

errors may be due to
 incorrect human working methods, which could be

traced by thoroughly considering the whole
measurement procedure

 non-perfect, non-ideal instrument behavior, or
 fluctuations due to physical phenomena

uncertainty:

a parameter, associated with the result of a
measurement, that characterizes the dispersion

of the values that could reasonably be
attributed to the measurand
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deviations, for which the algebraic sign and magnitude
are unknown and fluctuating, leading to scatter in the

results of a measurement:

random (statistical) errors

deviations, which influence a series of measurements in
the same way and in the same, but unknown direction,

yielding a shift in the results:

"systematic" (correlated) errors

accuracy of measurement:

closeness of the agreement between the result of a
measurement and the value of the measurand.

repeatability (of results of measurements):

closeness of the agreement between the results of
successive measurements of the same measurand carried
out under the same conditions of measurement.

reproducibility (of results of measurements):

closeness of the agreement between the results of
measurements of the same measurand carried out under
changed conditions of measurement.
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2. Evaluation of measurement uncertainties:

2.1. Type A (evaluation of uncertainties)

=: components of uncertainty evaluated by statistical methods
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Let x be a random variable and t a parameter,
then the distribution function F(t) is defined as

F(t) = P( x < t) for -∞ < t < ∞

and the derivative

f(t) = dF(t) / dt  =  F’ (t)

is called the probability density function

If we know the probabilit y density function p(z) for a random variable
z, we can calculate the expectation or mean value of the variable

E(z)  =  µz  =  ∫ z p(z) dz

and its variance

σ2 (z)  =  ∫ (z – µz)
2 p(z) dz

The positive square root of the variance, σ (z), is called the standard
deviation of a measurement and is generally quoted as standard
uncertainty.
For a given probabilit y density function this determines a confidence
level for the result of the measurement  = a probability that the “ true
value” lies within a given interval around the mean.

for a normal or Gauss distribution this means

for an interval x ± k σ(x) the probabilit y is

k  =  1.00 68.30%
k  =  2.00 95.45%
k  =  3.00 99.73%

k  =  1.64 90%
k  =  1.96 95%
k  =  2.58 99%
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Statistical estimate of uncertainty from repeated observations of the
same quantity:
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2.2. Type B (evaluation of uncertainties)

Method of evaluation of a standard uncertainty u(xi) by means other
than the statistical analysis of a series of observations.

Judgement using all relevant information on the possible variabilit y of
xi. The pool of information may include

• previous measurement data
• experience with or general knowledge of the behavior and

properties of relevant materials and instruments
• manufacturers specif ications
• uncertainties assigned to reference data taken from handbooks
• data provided in calibration and other certif icates

Proper use of the pool of available information calls for insight based
on experience and general knowledge.
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A type B evaluation of standard uncertainty can be as reliable as a
type A evaluation, especially in a measurement situation, where a type
A evaluation is based on a small number of statistically i ndependent
observations.

relative standard deviation of the experimental standard deviation of
the mean of a sample of n observations (assumed normal distribution)

# of observations n       rel. standard dev. (%)

2 76
3 52
4 42
5 36
10 24

If reasonable assumptions on the distribution of the measurements
around an estimated mean can be made, e.g. equal probability between
some upper and lower bound or triangular probabilit y around the
mean, it is also possible to determine a standard uncertainty with a
similar confidence level than in a type A evaluation with assumption
of normally distributed measurement results.
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2.3. Determining combined standard uncertainty:

If y is a function F of several independent observable quantities xk

y = F(x1, x2, ...., xk)

the combined standard uncertainty of the estimate y is designated
uc(y) and is the positive square root of the combined variance uc

2(my)
obtained from

which is also known as the law of propagation of uncertainty.
The partial derivatives δF/δxi describe, how the output estimate y
varies with changes in the values of the input estimates xi and are
therefore often referred to as sensitivity coefficients.
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in particular, we get for a linear combination of variables

y = ax1  +  bx2  +  cx3

u²(my)  =  a² u²(mx1)  +  b² u²(mx2)  +  c² u²(mx3)

for a product of variables

y  =  a x1 x2 x3

and for some more elementary functions

function variance

y  =  ax + b u2 (my)  =  a2 u2(mx)

y  =  ax1  +  bx2 u2 (my)  =  a2 u2(mx1)  +  b2 u2(mx2)

y  =  axn u2 (my) / my
2  =  n2   u2(mx) / mx

2

y  =  ln(x) u2 (my)  =   u2(mx) / mx
2

y  =  ln(x1 + x2) u2 (my)  =  [u2(mx1)  +  u2(mx2)] / (mx1 + mx2)
2

y  =  ln(x1/x2) u2 (my)  =  u2(mx1) / mx1
2 +  u2(mx2) / mx2
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Two random variables with possible dependencies

σ2 (z)  =  ∫ (z – µz)
2 p(z) dz was defined as variance

∫∫(y – my) (z – mz) p(y,z) dy dz  =:  cov(y,z)  =  cov(z,y)

is defined as covariance, which gives a measure of the mutual
dependency of the two random variables y and z.

an estimate may be obtained from n repeated simultaneous
observations of y and z:
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For convenience often a relative quantity named correlation
coeff icient is used:

ρ(y, z)  =  cov(y, z) / σ (y) σ (z)

with the estimate

r(yi, zi)  =  s(yi, zi) / s(yi) s(zi)

These coeff icients are pure numbers in the range –1 to +1 inclusive.

ρ positive if  y > my  and  z > mz,  or  y < my and z < mz

   appear together

ρ negative if  y < my  and  z > mz,  or  y > my and z < mz

   on the average
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For the case of existing correlation the formula for determining the
combined standard uncertainty has to be generalized. The appropriate
expression is

∑ ∑∑

∑∑
−

= +==

= =

∂
∂

∂
∂+





∂
∂=

∂
∂

∂
∂=

1

1 1

2

2

1

1 1

2

),(2)(

),()(

n

i

n

ij
ji

ji
i

n

i i

ji
j

n

i

n

j i
c

xxu
x

F

x

F
xu

x

F

xxu
x

F

x

F
yu

for some frequently needed simple functions this leads to

u²(a)  =  0

u²(a+x) =  u²(x)

u²(ax) =  a² u²(x)

u²(x + y) =  u²(x) + u²(y) + 2 cov(x, y)

u²(x – y) =  u²(x) + u²(y) – 2 cov(x, y)
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cov(a+x, b+y) =  cov(x, y)

cov(ax,by) =  a b cov(x, y)

cov(x, x+y) =  u²(x) + cov(x, y)

cov(x, x-y) =  u²(x) – cov(x, y)

cov(x+y, x-y) =  u²(x) – u²(y)

cov(x+y, x+y) =  u²(x) + u²(y) + 2 cov(x, y)

cov(x-y, x-y) =  u²(x) + u²(y) - 2 cov(x, y)



Covariances – Basic Theory 15 S. Tagesen, Univ. of Vienna, Austria

Example 2:

3 neutron cross sections of different materials have been
determined by simultaneous irradiation of 3 foils in a
common neutron field

and subsequent measurement of the induced
radioactivity by a suitable γ-detector. The number of
counts c is determined by

c = N * σ * φ * ε *f

consequently we can calculate the cross section σ as

σ = c / (N * φ * ε * f)

We want to calculate the uncertainty of the ratio σ1/σ2

and the product σ1 * σ2. For simplicity we assume no
uncertainty in N and in f.
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From a type A evaluation of standard uncertainties we
get the results for the individual components of
uncertainty contributing to the combined standard
uncertainty of the cross sections. Because the cross
sections are calculated from a product of input
quantities the following table summarizes the relative
standard uncertainties.

component
of

uncertainty

foil #  -> 1 2 3

c 0.5 % 1.0 % 0.3 %
ε 1.6 % 2.2 % 1.3 %
φ 2.0 % 2.0 % 2.0 %

due to the common calibration of the γ-detector the
eff iciencies for the respective γ-transitions are partly
correlated:

(ε1, ε2) = 80 %, (ε1, ε3) = 50 %, (ε2, ε3) = 60 %

as the components for each individual cross section are
not correlated we can calculate the respective standard
uncertainties by simply adding the variances and taking
the positive square root:

u2(xi)  %² uc
2(σi)  %² uc(σi)

σ1 0.5² + 1.6² + 2.0² 6.81 2.61 %
σ2 1.0² + 2.2² + 2.0² 9.84 3.14 %
σ3 0.3² + 1.3² + 2.0² 5.78 2.40%
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Taking just these uncertainties, we would get
                                               ________________

u(σ1/σ2) = u(σ1 * σ2) = √ uc
2(σ1) + uc

2(σ2)
                                                                                               ______________________

                                  = √6.81 + 9.84  = 4.08 %

but we have correlation due to φ which is fully
correlated and ε with partial correlation. Consequently
we get

cov (σi, σj) by components cov (σi, σj)
cov (σ1, σ2) 1.6 * 2.2 * 0.8 + 2.0 * 2.0 6.82 %²
cov (σ1, σ3) 1.6 * 1.3 * 0.5 + 2.0 * 2.0 5.05 %²
cov (σ2, σ3) 2.2 * 1.3 * 0.6 + 2.0 * 2.0 5.72 %²

hence the correct results are
                          _______________________________

u(σ1 * σ2) = √ uc
2(σ1) + uc

2(σ2) + 2 cov (σσσσ1, σσσσ2)
=  5.50 %

                           _______________________________

u(σ1/σ2)   = √ uc
2(σ1) + uc

2(σ2)  - 2 cov (σσσσ1, σσσσ2)
=  1.74 %

The outlined calculation (and representation) procedure
is only practical for a small number of input quantities
and/or evaluation results. As can be seen already from
the above tables the whole problem is ideally suited for
matrix representation:
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The (relative) variances and covariances can
be arranged as
















=
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from where all desired quantities can be
calculated easily

uc(σi)/σi = 
iiv rij = 

jjii

ij

vv

v

so the final result could be given as

σ1   ± 2.61 %  1.00 
σ2   ± 3.14 %  0.83    1.00 
σ3   ± 2.40 %  0.80    0.76    1.00
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3. General form for deriving combined
standard uncertainties by matrix formalism.

If all output quantities y1,y2, ... yk, ... ym  (combined in a
vector y) are a linear combination of the x1,x2, ... xi, ...
xn (combined in a vector x), the (m×1) column vector y
is related to the (n×1) vector x by a linear
transformation

y = T x + a

and the corresponding covariance matrices Cx and Cy

transform according to

Cy = T Cx T
t

with T being the transformation matrix of dimension
(m×n) and Tt its transpose.

Our introductory example then would appear in the
following notation:

Input variables         G1, G2, B
output variables       N1, N2

the relationship reads:

N1 = 1*G1 + 0*G2 - B
N2 = 0*G1 + 1*G2 - B
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so the transformation matrix T becomes
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and the input covariance matrix is
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from which we get

uc(y1) = 
1600

  = 40 uc(y2) = 
1681

  = 41

and the correlation is

700 / (40 * 41) = 0.427
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A non-linear relationship can (for small uncertainties) be
approximated by the linear part of a Taylor’s series expansion such
that the transformation matrix becomes

T = 
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For the elements of the covariance matrix Cy we get:
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Cov(yk,yk) = Var(yk) = σ2(yk)

The diagonal elements in Cy represent the variances of the output
quantities, the correlations can be obtained from the off-diagonal
elements. In general, Cy will not be diagonal (there exist nonzero off -
diagonal elements) even if Cx is a diagonal matrix (all off -diagonal
elements equal zero). The results yk may be correlated (even if the xi

are not) because the different yk share the same xi.

To each element of a covariance matrix (e.g., Cx) is associated
an element of a correlation matrix (e.g., Corrx)

Corr(xi,xj) =
Cov x x

Var x Var x

Cov x x

s s
i j

i j

e i j

x xi j

( , )

( ) ( )

( , )

⋅
≈

⋅   , |Corr(xi,xj)| ≤ 1

the diagonal elements are all equal to 1; the off -diagonal elements are
zero if no correlations exist.

x = <x>
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4. Construction of covariance matrices

If you take data from literature

 collect the actually measured quantities

 review in detail all reported corrections and
their uncertainties

 verify the reported uncertainty definition,
convert all to k=1 (standard uncertainty)

 note missing uncertainties

 revise reference data for recent updates

If you work on your own data

 make a list of all uncertainty components
contributing in your experimental
procedure

 sort for purely statistical components and
components which produce correlation

 evaluate (type A or type B) standard
uncertainties for all input quantities
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General properties of a data
covariance matrix

1.  A covariance matrix is by definition
symmetric

2.  A covariance matrix is positive
(semi)definite, i.e. its eigenvalues are
positive (or at least zero).

The latter is a consequence of the fact, that variances of
any function of physical quantities must be non-
negative and are usually not zero.

These general properties of a data covariance matrix are
normally correctly produced when such a matrix is
derived by including correct and complete uncertainty
information into an evaluation. If due to the lack of
complete information approximate methods have to be
used for the assignment of covariances, special care has
to be taken to guarantee that the properties pointed out
above are met. Otherwise nonphysical effects will
appear when processing such a covariance matrix.


