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Summary :

This report includes all the “Notes” written on different versions of the Code ECIS. The
Chapter I relates the evolution of these codes since the first study of how to solve coupled-
channel equations by the method of “Equations Couplées en Itérations Séquentielles”. The
Chapter IT indicates how these codes have been used on various computers, because such
indications can help to solve future problems.

Chapter IIT presents the “generalised optical model” in the Dirac and the Schrodinger
formalism and the numerical methods. Chapter IV deals with the special treatment of long
range interaction. Possibilities to describe excitation of particle and target are the subject
of Chapter V and zero-range transfer reactions are presented in Chapter VI. Miscellaneous
topics are gathered in Chapter VII and Chapter VIII 1s a description of the last version of
the code, called ECIS94.

Sommaire :

Ce rapport reprend toutes les “Notes” écrites sur les différentes version du programme
ECIS. Le Chapitre I retrace I’évolution de ces programmes depuis la premiére étude de
la résolution des équations de voies couplées par la méthode des “Equations Couplées en
Itérations Séquentielles”. Le Chapitre IT montre comment ces programmes ont été utilisés sur
différents ordinateurs car ces indications peuvent étre précieuses pour ’avenir.

Le Chapitre IIT présente le “modéle optique généralisé” dans le formalisme de Dirac et de
Schrodinger ainsi que les méthodes numériques. Le sujet du Chapitre IV est le traitement
des intéractions a longue portée. La possibilité de décrire 'excitation de la particule et de la
cible est étudiée dans le Chapitre V et celle de réaction de transfert avec portée nulle dans
le Chapitre VII. Divers sujets sont rassemblés dans le Chapitre VIII et le Chapitre IX est la
description de la derniére version du programme, appelée ECIS94.






Chapter I

Introduction - History

The name “ECIS” i1s made of the first letters of “Equations Couplées en Itérations Séquentielles” | by
reference to the method of solution used in the codes, although the usual method of solution is also
present and has been written with as much care.

A Numerical methods

The numerical methods are a generalisation of those studied for the optical model in : [1] MELKANOFF,
M.A., SAWADA, T. and RAYNAL, J., “Nuclear Optical Model Calculations”, published in “Methods in
Computational Physics.6: Nuclear Physics” ALDER, B., FERNBACH, S. and ROTENBERG, M., eds.
(Academic Press, New York, 1966) page 1. The application to coupled equations has been presented
in : [2] RAYNAL, J., “Optical-Model and Coupled-Channel Calculations in Nuclear Physics”, published
in “Computing as a Language of Physics”, ICTP International Seminar Course, Trieste, Italy, Aug.2-10,
1971 (TAEA, 1972), page 281.

Al Integration methods

The programme uses integration methods related to the Numerov method described in : [3] NOUMEROV,
B. V., “A Method of Extrapolation of Perturbations”, Monthly Notices Roy. Astr. Soc. 84 (1924) page
592. The Numerov method do not deal with the function but with a combination of the function and its
second derivative depending on the step size.

Unhappily, the name of Numerov method is used in many Numerical Analysis books,
in many articles of Journal of Computational Physics and of Computational Physics Com-
munications for another method which deals only with the functions and which is named
Cowell method in Ref. [1] and [2] as it can been found in : [4] COWELL, P. H. and CROM-
MELIN, A. C. D., Appendix to Greenwich Observations for 1909, Edinburgh (1910) page
84.

The text of Ref. [3] is unambiguous on this point. NOUMEROV presents his method for an inhomo-
geneous equation (see Equation (20) of Ref. [2]) and begins by :

“I have pointed out in my previous work* the advantage which is to be got in the numerical
integration of the equations of perturbed motion by the introduction of special rectangular
co-ordinates. In fact, if we denote by 7, ¥, Z the special co-ordinates connected with ordinary
heliocentric rectangular co-ordinates by the equations
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*B. Noumerov, “Méthode nouvelle de la détermination des orbites et le calcul des éphémerides en tenant compte des
perturbations”,Publications de I’Observatoire Central de Russie, vol. ii., Moscou, 1923.
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where k is the Gaussian constant, w the interval of integration, and » the radius vector,...”

The reference [5] given above by NOUMEROV himself is quite difficult to find, but Ref. [3] can be found

in any Astronomy library.

In astronomical problems, NOUMEROYV had to solve a third order equation at each step. In coupled
channel calculations, the use of his method leads to solve a system of linear equations at each step. In Ref.
[1] was presented a method which replaces this resolution by a matrix multiplication. This “Modified
Numerov method” has a truncation error of the same order, but of reversed sign for a constant potential.
Details, comparison with methods used by other authors and discussions can be found in Ref. [2].

The programme ECIS uses the “Modified Numerov method” of integration with the usual methods of
coupled channels calculations (LO(21)=.TRUE. ), but only in the Schrédinger formalism. With iterations
(LO(21)=.FALSE.), which are compulsory with deformed spin-orbit and in Dirac formalism, it uses the
“Modified Numerov method” if LO(27)=.FALSE. or the Numerov method if LO(27)=.TRUE.. The option
LO(26)=.TRUE. (LO(30)=.TRUE. in ECIS79) given as “integration stabilised for long range potentials”
means the inclusion of the truncation error as described in Ref. [2], assuming a constant potential;
for usual coupled equations (LO(21)=.TRUE.), only the diagonal potential is taken into account; no
improvement of the inelastic scattering has to be expected from that and it effects mainly the elastic
result.

More details will be given in section (IT1.C).

A.2 Iteration methods

The iteration methods are described Ref.[2]. The first description was in : [6] RAYNAL, J., “Fquations
couplées et D.W.B.A.”, published in “Sur quelques Méthodes de Physique Nucléaire Théorique” Aussois
(France) Feb 26 - March 2 1968 (Institut de Physique Nucléaire de Lyon) (LYCEN-6804) pages 179
and another one can be found in : [7] RAYNAL, J., “Recurrence relations for distorted-wave Born
approzimation Coulomb excitation integrals and their use in coupled channel calculations”, Phys. Rev.

C23 (1981) page 2571.

A.2.a Scheme of iterations

The principle of the iterations is to write all the non-diagonal terms as inhomogeneous terms of single
equations. The procedure is obtained by considering an expansion of the solution in powers of the strength
of these inhomogeneous terms and by setting a recurrence relation between different powers. However,
this notion of power expansion is not respected because the last known solution is used to compute the
inhomogeneous term with the hope to obtain a quicker result. The computation will depend upon the
order of equations: it is why these iterations are called “sequential”.

In ECIS79, if LO(26)=.FALSE., the inhomogeneous differential equations are solved: (“Differential
method”). Tf LO(26)=.TRUE., an irregular solution of the single inhomogeneous equations is obtained, a
Green’s function is built with it and the “optical” solution and its integral with the inhomogeneous term
computed (“Integral method”). There is no noticeable difference of time between these two methods.
However, the solution by the “Differential method” can involve differences of large numbers and fail to
give the good result: it 1s the case when there is a closed channel with a large @ value, for which the
“Integral method” gives good results.

However, since the code ECIS88 as described by [8] RAYNAL, J., “Coupled Channel Calculations
and Computer Code ECIS”, published in “Workshop on Applied Nuclear Theory and Nuclear Model Cal-
culations for Nuclear Technology Applications”, Trieste, Ttaly, Feb. 15-March 18, 1988 (Trieste, 1988),
MEHTA, M., K. and SCHMIDT, J., J., eds. (World Scientific, 1989) page 506, the generalisation of
the Optical Model in the Dirac phenomenology introduced by [9] ARNOLDS, L. C., CLARK, B. C.,
MERCER, R. L. and SCWANDT, F., Dirac potential model analysis of —*° Ca elastic scattering at 180
MeV and the wine-bottle-bottom shape”, Phys. Rev. C23 (1981) page 1949 can be used. The equations
to solve have been described in : [10] RAYNAL, J., “Coupled Channels Description of Inelastic Scattering
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with a Dirac Equation”, published in “Proceedings of the 6th International Symposium on Polarization
Phenomena in Nuclear Physics”, Osaka, Japan, Aug. 26-30, 1985, KONDO, M., KOBAYASHI, S. and
TANTFUIJI, M., eds., J. Phys. Soc. Japan 55 (Suppl.) (1986) page 922, in : [11] RAYNAL, J., “Formal-
tsme des Voies Couplées et Programmes ECIS”, published in “Réunion des Spécialistes sur 1’Utilisation
du Modéle Optique pour le Calcul des Sections Efficaces Neutroniques au-dessous de 20MeV”, NEANDC-
222 “U”, Paris, France, Nov. 13-15, 1985 (OCDE, 1986) page 63 and in : [12] RAYNAL, J., “Ambiguity
on the tmaginary potentials in the Dirac formalism for the elastic and the inelastic scattering of nucle-
ons”, Phys. Lett. B196 (1987) page 7. If these equations are correctly solved and not approximated
as described in : [13] RAYNAL, J. and SHERIF, H., S., “Comparison between Dirac Equation and its
Equivalent Schrodinger Equation for Inelastic Scattering”, published in “Proceedings of the 6th Inter-
national Symposium on Polarization Phenomena in Nuclear Physics”, Osaka, Japan, Aug. 26-30, 1985,
KONDO, M., KOBAYASHI, S. and TANIFUJI, M., eds., J. Phys. Soc. Japan 55 (Suppl.) (1986) page
924, it is difficult to include the reorientation terms in the left side (uncoupled equations) of the iteration
procedure. So, since ECIS88, the reorientation terms are not used in the calculation of the uncoupled
solutions, except if LO(29)=.TRUE., which can be used only in the Schrodinger formalism.

Because the “Differential method” of iterations has no practical equivalent for Dirac equations and no
clear advantage in the Schrodinger formalism, there is only the “Integral method” (Green’s function) since
the code ECIS88. (The option LO(29) of ECIST79, “matching with derivatives” has also been discarded).

A.2.b Pade approximants

This iteration procedure is not converging in all cases. Problems arise chiefly for neutron scattering at
very low energy or for heavy ions scattering for the “grazing” J-value. After four iterations, the code looks
after the convergence of Pade approximants (see in : [14] PADE, H., “Sur la représentation approchée
d’une fonction par des fractions rationnelles, Ann. Sci. Ec. Norm. Sup. Paris 9 (1892) page 1 and 16
(1899) page 395 and in : [15] WALL, H. S.; “Continued Fractions”, Van Nostrand, New York 1948) built
with the results already obtained.

To explain the role of the Pade approximants let us multiply the inhomogeneous terms by some factor
x. There are some values (complex) of  for which there are solutions of the system which are purely
outgoing for all the equations: there are the Weinberg states, and the x’s are the Weinberg eigenvalues.
The solution of the system of coupled equations can be expressed with Weinberg eigenfunctions and
eigenvalues. If one does not use the “sequential” method but does an exact power expansion, this
expansion converge only when the smallest |z| is smaller than unity. The Pade approximant generates
poles which are the Weinberg eigenvalues and can be smaller than unity. It can be verified, in case of
non-convergence that the poles of the Pade approximants with small absolute value are the same for all
the equations. The use of the sequential approach do not change this situation.

The ability of Pade approximants to construct the poles from the power series depends drastically of
the precision of the intermediate calculations. The limit is about |z| > 1/6 and is better with the CDC
version of the programme than with the IBM version. It can be useful to use the CDC version on an IBM
after doubling its precision. However, for low energy neutrons, the computation with the usual methods
(LO(21)=.TRUE.) can be quite quick and can be used if one is not interested by spin-orbit deformation.

If L0(22)=.TRUE. , Pade approximants are not used. If LO(22)=.FALSE. Pade approximants are
computed after the fourth iteration if there 1s no natural convergence and if convergence has been obtained
for all the precedent equations in this iteration. There is convergence when two Pade approximants differ
by less than the precision required, even if there are not the ones evaluated with the maximum number of
parameters. The iteration procedure stops when the maximum number of iterations is reached or when
a phase-shift in the last iteration was larger than 10'? becanse there is no more hope to find a precise
result.

When convergence has not been obtained with Pade approximants, if LO(23)=.TRUE., the equations
for this J-value and parity are solved by usual methods as if LO(21)=.TRUE. and a warning printed.
On the contrary, if L0(23)=.FALSE., in the last iteration, the Pade approximants are computed even if
the precedent equations did not converge and the mean value of the two nearest results is kept as the
solution. The shift to usual methods of integration is forbidden in Dirac formalism.
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See also section (TT1.D.4).

A.2.¢c Increase of the imaginary potential

In low energy neutron scattering on a target with 0% — 2+ — 4% rotational band, there are usually
convergence problems which come from a large difference between coupled and uncoupled solutions of
the Schrodinger equations: the imaginary potential needed in coupled channel equations is weaker than
the one needed to describe elastic scattering. An attempt to avoid this problem is to use a stronger
imaginary potential and to introduce the difference as a reorientation term. For that, the reorientation
terms must be in the second member (LO(29)=.FALSE.). The ratio of increase is a data of the input.
Some examples are given in Ref. [8] and Ref. [11].

Advantages of this process in heavy-ion inelastic scattering have not been studied.

B History of different versions

The Buck and Hill’s code INCH for coupled channels was the starting point of ECIS. Some features remains,
chiefly in the input of data. The names given to the different versions are those with which they have
been kept on a tape for the oldest one, and those which have been explicitly introduced into the code for
the latest ones.

B.1 Earlier codes

B.1.a Code ECIS68

In ECIS68 the integration method of the code INCH was changed into the Numerov Method with matching
at two points as described in Ref. [2] in order to get more precise results. The geometrical coefficients
were replaced by those written at the Département de Calcul Electronique of Saclay by : [16] LAFON,
R., “Sous-Programmes DFCG-DFC3J, DFR6J el DFROJ (IBM 360)”, Report DCE-Saclay No. 326 (1967).
There was only the “Differential ECIS method”, including Pade approximants. The use of a large working
space cut into arrays by calls to subroutines to avoid fixed dimensions, was already introduced. This code
was used to compare the ECIS method to the usual methods. There was no comparison with experimental
data. Results can be found in Ref. [6] and in : [17] RAYNAL, J., “An iterative procedure for coupled
channel calculations”, Communication IV-129 in “Dubna publication D-3893” International Symposium

on Nuclear Structure, Dubna, URSS (1968).

B.1.b Code ECIS69

In ECIS69, the Coulomb functions for the open channels were replaced by those written at the Department
de Calcul Electronique Saclay by : [18] BARDIN, C., DANDEU, Y., GAUTIER, L., GUILLERMIN, J.,
LENA, T. and PERNET, J.M., Note CEA-N-906 (1968) and [19] BARDIN, C., DANDEU, Y., GAU-
THIER, C., GUILLERMIN, J., LENA, T., PERNET, J.-M., WOLTHER, H. H. and TAMURA, T.,
“Coulomb functions in entire (n,p)-plane 7, Comp. Phys. Comm. 3 (1972) page 72. The code was
largely rewritten to take into account the full Thomas form for the spin-orbit deformation. In peculiar,
the helicity formalism as in : [20] JACOB, M. and WICK, G. C., “On the General Theory of Colli-
sions for Particles with Spin”, Annals of Physics 7 (1959) page 404 or in : [21] RAYNAL, J., “Aspects
Géometriques des Réactions”, Note CEA-N-1529 (1972) (see also in : [22] RAYNAL, J., “Utilisation de
Faisceaur de Deutons Polarisés et Détermination des Parameétres du Modéle Optique”, Thesis, Faculté
d’Orsay, June 24 1964 (Rapport CEA-N-2511-1964) and translation ANL-TRANS-258, the Chapter I1.)
was introduced for the amplitudes. A 20 points Gauss-Legendre integration was used for the form factors
of the rotational model. Results obtained were reported in : [23] RAYNAL, J., “Couplage LS dans les de-
seriptions macroscopiques et microscopiques des réactions nucléaires”, published in “Symposium sur les
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Mécanismes de Réaction Nucléaire et Phénomenes de Polarisation” Québec, Canada, Sept. 1-2, 1969 (Les
Presses de I'Université Laval, 1970) page 75 and in : [24] RAYNAL, J., “Potentiel spin-orbite déformé en
équations couplées (abstract)”, published in “International Conference on Properties of Nuclear States”,
Montreal, Canada, Aout 25-30, 1969 HARVEY, M., CUSSON, R. Y., GEIGER, J., S. and PEARSON,
J., M. eds. (Les Presses de I'Université de Montréal, 1969) page 771.

B.1.c Code ECIST70

The version ECIST70 is shortly described in Ref. [2]. The asymmetric rotational model is added: the form
factors are calculated by integration on the sphere with 36 points, the weights of which were obtained once
for all by the inversion of the matrix of rotation matrix elements at these points (this procedure means
that the potential is supposed to be expanded only with 36 rotation matrix elements, the coefficients
of which are obtained by solving a set of 36 linear equations). The number of multipoles is limited to
15 (id est A = 8, whereas 36 is A = 14). In the usual method to solve coupled equations, a Schmidt’s
orthogonalisation procedure is introduced every n points to avoid a loss of independence between the
solutions. There was also an attempt to write on a scratch tape the couplings between equations. These
couplings are sums of form factors multiplied by a geometrical coefficient: if they are computed before
for the iteration method, the time can be divided by two in the rotational model. The use of a scratch
tape turned out to be worse than the computation at each iteration. Results obtained at that time
were presented in : [25] RAYNAL, J., “Effets de linteraction L.S nucléon-nucléon sur asymétrie de
la diffusion wnélastique de protons”, Colloque sur les Mécanismes des Réactions Nucléaires, Grenoble,
France, March 16-18, 1970, GUGENBERGER, P., eds. J. Physique 31C2 (1970) page 92, in : [26]
LOMBARD, R., M., MAYER, B. and RAYNAL, J., “Calculs d’asymétrie de protons polarisés de 20,3
MeV sur ** Mg, Mg et 2251”7, Colloque sur les Mécanismes des Réactions Nucléaires, Grenoble, France,
March 16-18, 1970, GUGENBERGER, P., eds. J. Physique 31C2 (1970) page 90 and in : [27] RAYNAT,
J., “Nuclear structure effects on asymmetry of proton scattering”, published in “Polarization Phenomen a
in Nuclear Reactions: Proceedings of the 3rd International Symposium”, Madison, USA,| Aug.31 - Sept.4,
1970 BARSCHALL, H., H. and HAEBERLI W., eds. (The University of Wisconsin Press, 1971) page
798.

ECIS70 was given to Karlsruhe where Dr. G. SCHWEIMER. adapted it for automatic
search on alpha inelastic scattering. In this code the spin orbit deformation was limited to spin one
half, only cross-section, polarisation, analysing power and spin-flip were computed.

B.1.d Code ECIS71

The ECIS71 code was an attempt to introduce automatic search in ECIS70. The integral version of the
ECIS method was added and turned out to be equivalent to the differential version at the point of view
of time. The spin orbit deformation is extended to any spin. The different attempts of automatic search

are described in Ref. [2].

With ECIS71 began the rewriting of the subroutines for integration, geometrical coefficients and
reduced rotation matrix element in IBM Assembler language. A subroutine written by RENARDY
defines as working array all the region left free by the programme and allows the use of a LOAD MODULE
with different sizes. At that time were written Ref. [2] and [28] RAYNAL, J., “Spin-Orbit Interaction in
Inelastic Nucleon Scattering”, published in “The Structure of Nuclei”, International Course on Nuclear
Theory, Trieste, Jan. 13 - March 12, 1971, (TAEA,1972) page 75. Results can be found in : [29] RAYNAL,
J., “Interaction spin-orbite dans la diffusion inélastique de nucléons”, published in “Sur Certains Aspects
Microscopiques des Réactions Nucléaires”, La Toussuire, France, Feb. 15-19, 1971 (IPN, Univérsité
Claude Bernard, Lyon I) LYCEN 7104, page C7.1 and in : [30] De SWINTARSKI, R. and RAYNAT,
J., “Déformations dans la couche s-d et diffusion inélastique de protons polarisés”, published in “Sur
Certains Aspects Microscopiques des Réactions Nucléaires”, La Toussuire, France, Feb. 15-19, 1971
(TPN, Univérsité Claude Bernard, Lyon T) LYCEN 7104, page S9.1.
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B.1.e Code ECIST2

In ECIS72, there were further attempts of automatic search in the same approach as in ECIS71. The
vibrational model 1s generalised to mixtures of one phonon and two phonons states. Publications of 1972
arein: [31] LOMBARD, R., KAMITSUBO, H., RAYNAL, J. and GOSSET, J., “Etude des états collectifs
de 325 et de 3*S par diffusion inélastique de protons polarisés”, C. R. Acad. Sci. B274 (1972) page 761,
in : [32] De SWINTARSKI, R., BACHER, A., D., RESMINI, F., G.,, PLATTNER, G., R., HENDRIE, D.,
L. and RAYNAL, J., “Determination of deformation parameters od *° Ne and > Ne by inelastic scattering
of polarized protons”, Phys. Rev. Lett. 28 (1972) page 1139 and in : [33] RAYNAL, J., “Sur linfuence
de linteraction spin-orbite a haute énergie”, published in “Compte-Rendu de la Conférence Européenne
de Physique Nucléaire. Vol 2”7, Aix-en-Provence, France, June 26 - July 1, 1972, page 149.

B.1.f Code ECIS73

In ECIST73, the observables which can be taken into account for automatic search are generalised to any
one, in the notations of Ref. [21]. They can be defined in the laboratory system or with an axis of
quantification perpendicular to the reaction plane. Publications of 1973 are in : [34] De SWINTARSKI,
R., GENOUX-LUBAIN, A., BAGIEU, G., CAVAIGNAC, J., F., WORLEDGE, D., H. and RAYNAL,
J., “A coupled-channels analysis of 30 MeV proton scattering from low-lying positive-parity states in '°F,
20Ne, 2Ne”, Phys. Lett. 43B (1973) page 27, in : [35] KUREPIN, A., B., LOMBARD, R., M. and
RAYNAL, J., “Method for identification of the nuclear collective modes”, Phys. Lett. 45B (1973) page
184 and in : [36] LOMBARD, R., M. and RAYNAL, J., “Polarized-proton inelastic scattering on 328
and possible evidence for an hexadecapole phonon state”, Phys. Rev. Lett. 31 (1973) page 1015.

In the same time, Dr G. SCHWEIMER used ECIS in Karlsruhe and introduced an automatic search
on parameters, using methods very different of those of Ref. [1] and [2]. He introduced also :

e the folding model,

e angular distribution which are sums of levels

but he was not interested in polarisation effects and could deal only with one cross-section for each level.
He used different subroutines with the same name to treat different problems: for example, the difference
between rotational and vibrational model is obtained by loading different subroutines for nuclear matrix
elements and for form factors.

B.1.g Code ECIS75

In June 1973, in collaboration with Dr. G. SCHWEIMER, best points of the the Karlsruhe version were
included to the code, giving ECIS75. Each subroutine includes many comment cards, and in peculiar
explanation of inputs and outputs at their beginning. This was already done by Dr. G. SCHWEIMER  in
his KARLSRUHE version of ECIS. All the cards are identified by the four first characters of the subroutine
and a sequence number in columns 73-80.

All personal attempts of automatic searches were stopped: the subroutines developed by Dr. G.
SCHWEIMER in KARLSRUHE were introduced in the code. However, the use of different modules
instead of loading different models at the same time with overlay, was not adopted. The folding model was
introduced, after generalisation to the spin-orbit potential. Its meaning is the folding of a nucleon-nucleus
potential with the intrinsic wave function of the incoming particle (the meaning of the KARLSRUHE
version was the folding of the density distribution of the target with an alpha-nucleon interaction). The
folding distribution can be Gaussian, the sum of two Yukawa or a Woods-Saxon distribution.

Other features from the KARLSRUHE version intruced in ECIS75 are :

e unresolved angular distributions,
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e constrained asymmetric rotational model,
e anharmonic vibrational model,

e use of the mean value of the two nearest Pade results.
Some other details were added independently:

e J-dependence of imaginary potentials (dropped since ECIS78),
o symmetrised y? for the cross-sections,
e factorisation of (1 — 2 cos @) in the amplitudes,

e possibility to save a search on a tape, if limited by the time.

A description of the INPUT was written on cards (681 cards). All these cards images were inserted
in FORMATs in a programme, which could be used to reproduce the listing of these cards. However, this
description was not inserted in the programme itself.

Publications of 1975 are in : [37] RAYNAL, J., “Application des équations couplées”, published in
“3éme Session d’Etudes Biennale de Physique Nucléaire”, La Toussuire, France, Feb. 10-15, 1975 (TPN,
Univérsité Claude Bernard, Lyon T) LYCEN 7502, page C7.1 and in : [38] RAYNAL, J., “Inelastic
Scattering (Coupled Channels)”, published in “Proceedings of the 4th International Symposium on Po-
larisation Phenomena in Nuclear Reactions”, Zurich, Switzerland, Aug. 25-29 1975, GRUEBLER, W.
and KONIG, V.| eds., (Birkhauser, 1976) page 677.

B.1.h Code ECIS76

The code ECIS was adapted on a CDC computer by Dr. Marek SIEMASKO, from Katowice. At the
same time, Dr. M. STEMASKO introduced Hauser-Feshbach corrections for compound nucleus. To
do that in the IBM versions, eight subroutines had to be modified, one of which was also translated
into Assembler language. The resulting programme is ECIS76, with his two mean versions, one for low
precision computers as the IBM and the other for large precision computers as CDC. However, due to the
use of LOGICAL*1 and INTEGER*2, the IBM version cannot be run on other computers as UNIVAC, IRIS or
Japanese FACCOM : some modifications had to be done on an IRIS computer at Bordeaux, a SIEMENS in
Berlin, a FACCOM in Japan and an UNIVAC in Copenhagen, leading to a third version, the UNIVAC one.

B.2 Codes with Coulomb corrections

B.2.a Code ECIS78

With the introduction of Coulomb corrections for heavy ions, as described in Ref. [7], the code has been
enlarged. In peculiar, in collaboration with Prof. H. V. von GERAMB, the possibility to use external
form factors has been added, but these form factors can be read only by points. Publication of 1978
in : [39] RAYNAL, J., “Déformation de l’interaction spin-orbite: relations avec la structure nucléaire et
effets possibles sur la section efficace de diffusion inélastique”, published in “La Physique Neutronique et
les Données Nucléaires: Compte-Rendu”, Harwell, GB, Sept. 1978 (OCDE, 1978) page 372.

B.2.b Code ECIS79

In ECIS79, the management of memories on CDC or UNIVAC computers has been changed. In the previous
versions, it was possible to use a LOAD MODULE with different sizes with respect to the problem, but this
size had to be known beforehand. In ECIS79, the core is requested when it is needed, as long as it is
available. However, such procedure cannot be used on an IBM computer on which this management of
memories must stay dummy.
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The possibility of external potentials has been extended by the use of standard form factors as Woods-
Saxon and its derivatives, rotational form factors, Laguerre polynomials and bound states in a potential.

The code ECIS79 was given to the Nuclear Data Bank of the OCDE in 1982.

Publications obtained with it are in : [40] RAYNAL, J., “Coupled channel calculations of heavy ion
inelastic scattering with DWBA approzimation for Coulomb interaction (communicated paper)”, Interna-
tional Conference on Nuclear Physics, Berkeley, USA, Aug. 24-30 1980, in : [41] RAYNAL, J., “Coulomb
effects in proton inelastic scattering on heavy target (communicated paper)”, International Conference on
Nuclear Physics, Berkeley, USA, Aug. 24-30 1980 and in : [42] RAYNAL, J., “Strong channel coupling
method for cross-section calculations (lecture notes)”, Workshop on Nuclear Model Computer Codes, Tri-
este, Italy, Jan. 16 - Feb. 3, 1984. For heavy ions problems, they are in : [43] BILWES, B., BILWES, R.,
BAEZA, A., DIAZ, J., FERRERO, J., L. and RAYNAL, J., “Inelastic scattering of 32S on 285i”, 12th
Winter Meeting on Nuclear Physics, Bormio, Italy, Jan. 23-27 1984, Ricerca Scientifica ed Educazione
Permanente 35 (Suppl.) (1984) page 422, in : [44] BAEZA, A., DIAZ, J., FERRERO, J., L., BILWES,
B., BILWES, R. and RAYNAL, J., “Mutual excitations of 325 4 285i at 90 and 97.09 MeV”, Phys. Lett.
149B (1984) page 73 and in : [45] BAEZA, A., BILWES, B., BILWES, R., DIAZ, J., FERRERO, J., L.
and RAYNAL, J., “Inelastic scattering of 325 on ?8Si”, Nucl. Phys. A437 (1985) page 93.

B.3 Codes with Dirac formalism

B.3.a Codes ECIS85 to ECIS87

In the Spring 1984 began some attempt to extend the Dirac phenomenology to inelastic scattering with the
collaboration of Pr. H. SHERIF who, for instance, provided comparison with other codes for the elastic
scattering. One of the points was to avoid the use of relativistic Coulomb functions by using Coulomb
corrections as described in Ref. [7]; anyway, relativistic Coulomb functions do not take into account the
effect of the anomalous magnetic moment. There was no difficulty to compute these corrections as long
as they were used only for elastic scattering. The formalism was presented in Ref. [11] and earliest results
were reported in Ref. [10] and Ref. [13]. Difference between ECIS86 and ECIS87 is essentially external
form-factors generalised in Hamburg with Pr. H. V. von GERAMB in November 1986. During the Spring
of 1987, ECIS87 was left in various places in Canada and United-States. Results are presented in Ref. [12],
in : [46] De SWINIARSKI, R., PHAM, D., L. and RAYNAL, J., “Analyse of 800 MeV inelastic polarized
proton scattering from 0 and *Fe through the coupled Schridinger or Dirac equations formalism
(abstract)”, published in “Conference on Nuclear Physics and Particle Physics”, Birmingham, GB, April
6-8 1987 (The Institute of Physics) page 26 and in : [47] SHIM, S.; CLARK, B., C., COOPER, E., D,
HAMA, S., MERCER, R., L., RAY, L., RAYNAL, J. and SHERIF, H., S., “Comparison of relativistic
and nonrelativistic approaches to the collective model treatment of p+*°Ca inelastic scattering”, Phys.

Rev. C42 (1990) 1592.

B.3.b Code ECIS88

After completion of the relativistic Coulomb corrections, this code was described in Ref. [8] and given to
the Nuclear Data Bank of the OCDE. However, some points were still missing, as the Bessel expansion
of the form factors.

Results obtained in Dirac formalism or their comparison to results of the Schrodinger formalism can be
found in : [48] RAYNAL, J., SHERIF, H., S., KOBOS, A., M., COOPER, E., D. and JOHANSSON;, J.,
1., “Dirac coupled channel calculations and nucleon scattering at large momentum transfer”, Phys. Lett.
B218 (1989) page 403, in : [49] De SWINARSKI, R., PHAM, D., L. and RAYNAL, J., “Dirac coupled-
channels analysis of inelastic scattering of 800 MeV polarized protons from 60, ** Mg and 2 M g”, Phys.
Lett. B213 page 247, in : [50] RAYNAL, J., “Which potentials have to be surface peaked to reproduce
large angle proton scattering at high energy”, Australian J. Phys. 43 (1990) page 9, in : [51] RAYNAL,
J., “Inelastic scattering of protons at 800 MeV on *°Ca at large angles”, Tth International Conference
on Polarization Phenomena in Nuclear Physics, Paris, France, July 9-13 1990, Abstracts of contributed
papers, page 32F and in : [52] De SWINTARSKI, R., PHAM, D., L. and RAYNAL, J., “Comparison
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of higher order deformations in several s-d shell nucler obtained through Schréodinger and Dirac coupled-
channel analysis of 900 MeV polarized protons inelastic scattering experiments”, 7. Physik A343 (1992)
page 179.

Results related to heavy ions are given in : [63] KIENER, J., GSOTTSCHNEIDER, G., GILS, H.,
J., REBEL, H., CORCIALCIUC, V., BASU, S., K., BAUR, G. and RAYNAL, J., “Investigation of the
sequential break-up °Li — ®Li*(314) — « + d of 156 MeV °Li projectiles on 2°®Pb in the very forward
angle hemisphere”, 7. Phys. A339 (1991) page 489 and in : [54] CORCIALCIUC, V., REBEL, H.,
KIENER, J., GSOTTSCHNEIDER, G., GILS, H., J., RAYNAL, J. and BAUR, G., “Analysis of the
sequential break-up SLi — SLi*(314) — a + d of 156 MeV SLi projectiles on 2°®Pb observed in the
very forward angle hemisphere (abstract)”, Frithjahrstagung Darmstadt 1991 - Physik der Hadronen und
Kerne, Darmstadt, Germany, March 11-15 1991, Verh. Dtsch. Phys. Ges. 6 (1991) page 6. But they
still used primarily ECIS79.

B.3.c Codes ECIS89 to ECISQ0

At the end of 1988, Dr A. Ventura of the Centro di Calcolo ENEA at Bologna, Italy, was interested by
the Bessel expansion of form factors. This part of the code has been completed with him. Some other
changes have been done :

. use of the deformation lengths instead of the deformations when fixed relative deformations
lengths are wanted,

. use of “symmetrised” Woods-Saxon form factors.

These codes have been given to some laboratories.

B.3.d Code ECIS94

This version will be the third given to the Nuclear Data Bank of the OCDE. Besides the use of Bessel
expansion for form factors, the use of deformation lengths and the use of “symmetrised” Woods-Saxon
potentials, it includes :

. two bound states transitions for particle hole excitations, with the possibility of the particle in
the continuum,

. expansion of cross-sections in terms of Legendre polynomials,

. possibility of angular distribution for uncoupled states without giving explicitly all the reduced
nuclear matrix elements,

. for Coulomb excitation, use of a magnetic multipole.






Chapter 11

Use on various computers

The code ECIS involves two versions with respect to the internal precision of the computer on which 1t 1s
used :

I If this precision is smaller than 10~8, potentials and wave functions are stored in single precision
but many quantities are in double precision: this happens for IBM, UNIVAC, VAX, PR1ME computers.

IT If this precision is larger than 1078, as it is for the ¢DC and CRAY computers, the code is completely
in single precision.

Some subroutines are identical between the two versions; for some others, the only difference is the
change of the card DOUBLE PRECISION into comment card by adding C in column 1.

Note that it is possible to run the two versions on a CONVEX computer, using the “-cfc” option for the

CDC version. In fact, it is the CDC version used this way which turns out to be the faster on a CONVEX
computer.

The code ECIS79 involved about 14250 FORTRAN cards, including 2300 COMMENT cards. It was intended
to be run with an OVERLAY structure. The code ECIS88 involved about 16700 FORTRAN cards, including
2500 COMMENT cards and the code ECIS94 involves about 18500 FORTRAN cards, including 3340 COMMENT
cards. Most of the topics related in this Chapter are related to the code ECIS79.As their knowledge
can help to solve future problem, these topics are not obsolete.

Even if the use of OVERLAY is no more of interest, there are two topics very machine dependent in the
code ECIS: the management of the working array and the control of the time limit of the job. How to
by-pass these two points is explained on comment cards in the MAIN subroutine. For example, the IBM
version of the MAIN subroutine of ECIS79, ECIS88 and ECIS94 is :

[C 24/09/79 1IBM MAIN-000
¢ THE ASSEMBLER SUBROUTINE ECIS(I) DEFINES THE DOUBLE PRECISION ARRAY W MAIN-001
|C AND CALLS CALC(W,W,W,IDMX) WHERE IDMX IS THE LENGTH OF W MAIN-002
|Cc W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT 2*I K FOR BUFFERS MAIN-003
|C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN: MAIN-004
I REAL*8 W(10000) MAIN-005
I CALL CALC(W,W,W,10000) MAIN-006
IC STOP MAIN-007
IC END MAIN-008
|¢ THE ASSEMBLER SUBROUTINE STIM(I) HAS NO FORTRAN EQUIVALENT MAIN-009
[C IT GIVES THE REMAINING TIME FOR THE JOB IN UNITS OF 26 MICROSECONDS MAIN-010
¢ IT CAN BE REPLACED BY: (ANY USE OF TIME WILL BE SENSELESS) MAIN-011
I SUBROUTINE STIM(I) MAIN-012

IC DATA K /0/ MAIN-013
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IC K=K-1 MAIN-014
IC I=K MAIN-015
¢ RETURN MAIN-016
IC END MAIN-017
|C***********************************************************************MAIN—O18
| CALL ECIS(3) MAIN-019
I STOP MAIN-020
I END MAIN-021

As shown above, each subroutine begins by a comment card giving the date of last revision and on which
computer it can be used. All the cards are identified by the name of the subroutine in columns 73-76, a
“~“in column 77 and by a number in columns 78-80, starting by 000.

A The IBM version

The dynamic allocation of memory is not possible on IBM.

Al Use on IBM360/370 - AMDHAL- SIEMENS-FUJITSU

The FORTRAN subroutines of ECIS79 for integration and for geometrical coefficients has been translated
into ASSEMBLER language. These subroutines involved around 7000 cards and only the 1200 cards of geo-
metrical coefficients and reduced matrix element can still be used in ECIS88 and ECIS94. The translation
into ASSEMBLER language was done for an IBM360/91 or a similar computer, on which DO LOOP smaller
than 16 machine instructions are very quick. These ASSEMBLER subroutines can be used on other comput-
ers: their output statements do not work on a SIEMENS-FUJITSU. However, the ASSEMBLER subroutines
ECIS and STIM are very machine dependent and cannot be replaced everywhere.

A.l.a Use with JCL

The subroutine ECIS defines as working array all the space available for the JOB in its region, except for
twice its argument 'K’ for BUFFERS. It is :

|[ECIS TITLE ’15/06/79-ECIS-CREATION DE ZONE DE TRAVAIL-ECIS79’ ECIS-000
|[ECIS CSECT ECIS-001
| * APPEL PAR CALL ECIS(N) OU N EST LA TAILLE EN DOUBLES K RESERVEE ECIS-002
| * AUX BUFFERS. ECIS-003
|* CE SOUS PROGRAMME CREE UNE ZONE DE TRAVAIL DE TAILLE MAXIMUM ECIS-004
|* ET APPELE CALC EN LUI PASSANT TROIS FOIS LA ZONE CREEE ET SA TAILLE ECIS-005
|* EN DOUBLE MOTS. ECIS-006
| SAVE (14,12),T,* ECIS-007
I USING ECIS,12 ECIS-008
I LR 12,15 ECIS-009
I SR 15,15 ECIS-010
I SPM 15 ECIS-011
I LA 4 ,SAVE ECIS-012
| ST 13,4(4) ECIS-013
| ST 4,8(13) ECIS-014
[ LR 13,4 ECIS-015
| L 1,0(1) ECIS-016
| L 1,0(1) ECIS-017
I SLL 1,11 ECIS-018
I

ST 1,MIN ECIS-019
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GETMAIN VU, A=ADGET,LA=MIN,SP=2

FREE L 0,MIN
0 0,=X’02000000" W IN SUBPOOL 2
FREEMAIN R,LV=(0),A=ADGET
L 0, ADGET+4
S 0,MIN
SRL 0,3
ST 0,LONG
A 1,MIN
ST 1,ARG

ST 1,ARG+4

I

I

I

I

I

I

I

I

[ L 1,ADGET
I

I

I

[ ST 1,ARG+8
I

I

I

I

LA 1,ARG
L 15, =V (CALC)

BALR 14,15 CALL CALC(W,W,W,INT)
L 13,4(13)

[ RETURN (14,12),T
| ADGET DS D

[MIN DC ACO,MAX)

| ARG DC A(0,0,0,L0NG)

| LONG DS A

| SAVE DS 184

| MAX EQU  X’400000° 4000K
I END

ECIS-020
ECIS-021
ECIS-022
ECIS-023
ECIS-024
ECIS-025
ECIS-026
ECIS-027
ECIS-028
ECIS-029
ECIS-030
ECIS-031
ECIS-032
ECIS-033
ECIS-034
ECIS-035
ECIS-036
ECIS-037
ECIS-038
ECIS-039
ECIS-040
ECIS-041
ECIS-042
ECIS-043
ECIS-044
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Use the indication at the end of a JOB to know the best REGION. If data are read with a large BLOCKSIZE,

from a tape for example, this argument has to be changed into :
| CALL ECIS(10)
instead of :

[ CALL ECIS(3)

MAIN-019

MAIN-019

The subroutine STIM gives the remaining time for the JOB in units of 1/38500 seconds. Tt is :

[STIM TITLE ’15/06/79-STIM-TEMPS D UNITE CENTRALE RESTANT-ECIS79’
| *% CALL STIM(N) N TEMPS RESTANT EN UNITES DE 26 MICROSECONDES
[+ N/384 TEMPS RESTANT EN CENTIEMES DE SECONDES

| % VERSION COMPATIBLE MVT/VS2/TSO

[STIM CSECT

[ USING *,15

| STM 0,12,20(13)

[ L RCVT, 16 ->CVT

| L RSHPC,88(,RCVT) ->SHPC (MVT)

| L RW,0(,RCVT) ->TCBWORDS

| ™ X’74° (RCVT),X’ 12’ vs2?

I BO VsS2

| L RTCB,4(,RW) ->CURRENT TCB

| L RTCB,X’7¢’ (,RTCB) ->JOB STEP TCB

| L RTCB,X’84’ (,RTCB) ->TCB DE L’INIT

| L RTME, 120(,RTCB) TCBTME

[ SR RN,RN

I

LTIM L RTOX,12(,RTME) TOX

STIM-000
STIM-001
STIM-002
STIM-003
STIM-004
STIM-005
STIM-006
STIM-007
STIM-008
STIM-009
STIM-010
STIM-011
STIM-012
STIM-013
STIM-014
STIM-015
STIM-016
STIM-017
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[ LR RN,RTOX STIM-018
| S RN,0(,RSHPC) TOX-SHPC STIM-019
[ SLL RN, 1 UNITES 13,... MICROSECONDES STIM-020
| A RN, 80 TOX-SHPC+TIMER,EN 13 MICROSECONDES STIM-021
| C RTOX, 12(,RTME) SHPC MODIFIEE? STIM-022
[ BNE LTIM STIM-023
[ SRL RN, 1 26,... MICROSECONDES STIM-024
[ B STORE STIM-025
[ SPACE 2 STIM-026
|vs2 DS OH STIM-027
| L RA,12(,RW) ->ASCB STIM-028
| L RW,X’50’(,RA) JOB STEP TIME LIMIT,SECONDES STIM-029
[ MH RW,=H’100’ CENTIEMES DE S STIM-030
| LM RP,RI,X’40’(RA) ELAPSED STEP TIME EN STCK STIM-031
| SRDL RP,12 BIN(63) MICROSECONDES STIM-032
[ D RP,=F’10000° =>RP=MICROSECONDES,RI=1/100 DE S STIM-033
[ SR RI,RW -TEMPS RESTANT A L’ETAPE EN 1/100 DE S STIM-034
[ M RP,=F’384’ TIMER UNITS STIM-035
[ LPR RN,RI STIM-036
| STORE L 2,0(1) STIM-037
| ST RN,0(,2) STIM-038
| RETOUR LM 0,12,20(13) STIM-039
I BR 14 STIM-040
I LTORG STIM-041
|RN EQU 0 STIM-042
|RTOX EQU 2 STIM-043
|RCVT EQU 3 STIM-044
|RTCB EQU 3 STIM-045
| RTME EQU 3 STIM-046
| RSHPC EQU 4 STIM-047
|RW EQU 5 STIM-048
|RA EQU 6 ->ASCB STIM-049
|RP EQU 8 REGISTRE PAIR STIM-050
|IRI EQU RP+1 STIM-051
I END STIM-052
It can have to be changed by a local subroutine.
The OVERLAY cards are not the same for the different codes. Those of ECIS79 were :

| OVERLAY A 0OVLY-001
| INSERT CALX 0OVLY-002
| OVERLAY B 0OVLY-003
| INSERT LECT,LECD,DEPH,OBSE OVLY-004
| OVERLAY B OVLY-005
| INSERT INPA QVLY-006
| OVERLAY B QVLY-007
| INSERT INPB 0OVLY-008
| OVERLAY A OVLY-009
| INSERT COLF,FCOU,FCZO,PSI,YFRI,YFCL,YFAS,YFIR,COCL,SIGM,CORI,CORH OVLY-010
| OVERLAY A 0OVLY-011
| INSERT VARI,FIT1,FIT2,FITE,REST,EVAL OVLY-012
| OVERLAY A 0OVLY-013
| INSERT DJ6J 0VLY-014
| OVERLAY C OVLY-015
| INSERT DJCG,REDM,VIBM,ROAM,ROTM QVLY-016
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OVERLAY C
INSERT CAL1

OVERLAY D

INSERT POTE,DERI,COPO

OVERLAY E

INSERT VIBP,ROTD,ROTP

OVERLAY E

INSERT FOLD,HULT,FINT

OVERLAY E

INSERT EXTP,INTP,STDP

OVERLAY D

INSERT QUAN,DJ9J,DCGS,SCAM,CORA,CORB
OVERLAY F

INSERT INTI,INSI,INSH,COUP,SECM,PADE
OVERLAY F

INSERT INCH,CPCC,LINS

OVERLAY D

INSERT SCHE,RESU,SCAT,GRAL,EMRO,RESC, CPSF

Those of ECIS88 are :

OVERLAY A
INSERT CALX

OVERLAY B

INSERT LECL,LECT,LECD,DEPH,OBSE

OVERLAY B

INSERT INPA,INPB,INPC

OVERLAY A

INSERT COLF,FCOU,FCZO0,PSI,YFRI,YFCL,YFAS,YFIR,COCL,SIGM,CORI,CORO,CORZ
OVERLAY A

INSERT VARI,FIT1,FIT2,FITE,REST,EVAL,EXTP

OVERLAY A

INSERT DJ6J

OVERLAY C

INSERT DJCG,REDM,VIBM,ROAM,ROTM

OVERLAY C

INSERT CAL1

OVERLAY D

INSERT POTE,DERI,COPO,ROTZ,ROTD,ROTP,FOLD, INTP,STDP, STBF
OVERLAY D

INSERT QUAN,DJ9J,DCGS,SCHE,CORA,MTCH,CONU,PADE,DIAG
OVERLAY E

INSERT INTI,INSI,INSH

OVERLAY E

INSERT INTR,INRI,INRH

OVERLAY E

INSERT INCH,LINS

OVERLAY D

INSERT SCIN,RESU,SCAT,GRAL,EMRO,RESC

OVLY-017
0VLY-018
0VLY-019
0VLY-020
0VLY-021
0VLY-022
0VLY-023
0VLY-024
0VLY-025
0VLY-026
OVLY-027
0VLY-028
0VLY-029
0VLY-030
OVLY-031
0VLY-032
0VLY-033
0VLY-034

0v88-000
0v88-001
0v88-002
0v88-003
0v88-004
0v88-005
0v88-006
ov8s-007
0v88-008
0v88-009
0v88-010
0v88-011
0v88-012
0v88-013
0v88-014
0v88-015
0v88-016
oves-017
0v88-018
0v88-019
0v88-020
0v88-021
0v88-022
0v88-023
0v88-024
0v88-025
0v88-026
oves-027
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and none have been written for ECIS94. The difference 1s SCAM instead of SCHE in 0V88-17 and SCHE,LCSP

instead of SCIN in 0V88-27.
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A.1.b Use with MTS

This system do not allow OVERLAY, control of working space and of time. Follow indications in COMMENT
cards of the MAIN routine.

A.2 Use on UNIVAC

At the first attempt to run the code ECIS79 on an UNIVAC computer, the following indications are inserted
at the top of the MAIN subroutine

[C 30/01/80 MAIN FOR UNIVAC ECIS79 ECIS-000
|C THIS PROGRAM IS LIMITED TO 126K PLUS 5 TIMES THE PARAMETER OF ECIS-001
|C @XQT,X WHERE X IS TRANSFORMED TO 1 FOR A TO 26 FOR Z BY IOPTF. ECIS-002
|C THE SUBROUTINE PMARZ AVOIDS THE AUTOMATIC CHANGES OF PAGE. ECIS-003
| Ck**%** TO BE ABLE TO USE A BLANK FOR .FALSE. THE USER OF UNIVAC MUS ECIS-004
|¢ INTRODUCE: ECIS-005
¢ DO 29 I=1,100 AND ECIS-006
¢ 29 LO(I)=.FALSE. BEFORE CALX-123 ECIS-007
¢ LX=.FALSE. BEFORE LECD-033 ECIS-008
¢ LT1=.FALSE. AND ECIS-009
¢ LT2=.FALSE. BEFORE OBSE-097 ECIS-010
I LO(37)=.FALSE. BEFORE EVAL-033 ECIS-011
I LO(35)=.FALSE. BEFORE REST-038 ECIS-012
|C***********************************************************************ECIS—O13
| REAL*8 W(2048) ECIS-014
I COMMON /LARGE/ W ECIS-015
| CALL PMARZ(66,0,66) ECIS-016
| CALL MEMINI(126+I0PTF(0)#*5) ECIS-017
| CALL CALC(W,W,W,2048) ECIS-018
I STOP ECIS-019
I END ECIS-020

Without these modifications, a LOGICAL read previously as . TRUE. cannot be read with a blank but must
be read with a F. After ECIS79, the logicals are set .FALSE. before being read.

The use of files is done with :

| N$TAB 21,1,1,1,1,06 7 5 0 . NTAB-000
[ END . NTAB-001

The subroutine IOPTF, written in Copenhagen, allows to run jobs with a larger core in special cases, for
instance overnight.

I AXR$ . I0PT-000
[$(1), IOPTF* ER OPT$ . I0PT-001
I JZ A0,2,X11 . I0PT-002
I LSC A1,A0 . I0PT-003
I ANA,U A2,8 . I0PT-004
I LA AO,A2 . I0PT-005
[ J 2,X11 . I0PT-006
I END . I0PT-007

There is a dynamic allocation of core by the FORTRAN subroutine MEMO which is more similar to the one
used on CDC than to the one used on IBM. This allocation is obtained by :
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[C 14/05/80 UNIVAC

ECIS79 MEMO-000

| SUBROUTINE MEMO(IDMT,NPLACE,NQ,IX,W,L0) MEMO-001
|C THIS SUBROUTINE GETS THE WORKING SPACE. MEMO-002
[C IDMT PREVIOUS SPACE MEMO-003
|C NPLACE REQUESTED SPACE MEMO-004
[¢ NQ SPACE TO BE UPDATED MEMO-005
[¢c IX: CONTROL NUMBER IX=1 FIRST CALL STORE MINIMUM SIZE IN ID MEMO-006
¢ IX=2 DIMINUTION OF SPACE MEMO-007
Ic IX=3 REQUEST NPLACE+ISTART, AT LEAST NPLACE MEMO-008
¢ IX=4 REQUEST NPLACE MEMO-009
¢ IX=5 ABSOLUTE REQUEST MEMO-010
[C W: WORKING SPACE MEMO-011
|¢ LO: LOGICAL CONTROLS IF LO(94)=.TRUE. PRINT THE SIZE OF W MEMO-012
|C OUTPUT VARIABLES: IDMT SIZE OF WORKING SPACE MEMO-013
I L0O(216)=.TRUE. IF COMPUTATION CANNOT CONTINUE MEMO-014
|C***********************************************************************MEMO—O15
| DIMENSION W(1) MEMO-016
| LOGICAL L0O(250) MEMO-017
I DATA ISTART,IMOD /512,64/ MEMO-018
| IF (IX-2) 1, 2, 3 MEMO-019
I 1 ID=IDMT MEMO-020
| NT=MAXO(-IMOD,ISTART-IDMT) MEMO-021
I NPLACE=0 MEMO-022
I GO TO 4 MEM0O-023
| 2 NT=MAXO(NPLACE,ID)-IDMT MEMO-024
I GO TO 5 MEMO-025
I 3 NT=NPLACE-IDMT MEMO-026
| IF (IX.NE.3) GO TO 4 MEMO-027
I NT=NT+ISTART MEMO-028
| 4 NT=IMOD*(NT/IMOD+1) MEMO-029
| 5 CALL MEMORY(NT,NX,IR) MEMO-030
I IDMT=IDMT+NT+IR MEMO-031
| LO(216)=(IDMT.LT.NPLACE) .AND. ((IX-5)*(IX-3).EQ.0) MEMO-032
[ NQ=NQ+NT+IR MEMO-033
| IF (L0(94)) WRITE (6,1000) IX,NT,IR,NPLACE,IDMT,NX MEMO-034
| IF (.NOT.LO(216)) RETURN MEMO-035
| WRITE (6,1001) IX,IDMT,NPLACE MEMO-036
| WRITE (6,1002) MEMO-037
I RETURN MEMO-038
| 1000 FORMAT (/8H REQUEST,I2,4H FOR,I9,9H MEMORIES,I6,25H ARE MISSING. MEMO-039
| 1 NPLACE =,I19,7H SIZE =,I19,15H TOTAL LENGTH ,I10/) MEMO-040
| 1001 FORMAT (33H NOT ENOUGH PLACE ..... REQUEST,I2,110,8H ALLOWED,I10MEMO-041
I 1,10H REQUESTED/) MEMO-042
| 1002 FORMAT (/34H ...STOP... NEXT TIME, USE @XQT,Z/) MEMO-043
I END MEMO-044

with the machine language subroutin

I AXR$

[$(1)

| MEMORY *

[ L A1,%0,X11
[ Sz *2,X11

[ L A0,LASTD
[ JZ A1,RETOUR
I

A A0,A1

€ !

SUBROUTINE WRITTEN IN STRASBOURGMEMI-000

ON THE 23/01/80 MEMI-001
MEMI-002

CALL MEMORY(I,J,K) MEMI-003
I NUMBER OF MEMORIES REQUESTEDMEMI-004

J RETURNS THE SIZE OF THE MEMI-005
PROGRAM MEMI-006

K RETURNS DIFFERENCE BETWEEN MEMI-007

17
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I JP A1,MORE . NUMBER OF MEMORIES GIVENMEMI-008
I ER LCORE$ . AND NUMBER OF MEMORIES MEMI-009
I J LMCORE . REQUESTED MEMI-010
| MORE TLE AO,MAXCOR . MEMI-011
I J ERMCORE . MEMI-012
I ANU AO,MAXCOR . MEMI-013
I SN At1,%2,X11 . MEMI-014
I L AO,MAXCOR . MEMI-015
|ERMCORE  ER MCORE$ . MEMI-016
| LMCORE S AO,LASTD . MEMI-017
|RETOUR S AO,*1,X11 . MEMI-018
[ J 4,X11 . MEMI-019
[MEMINI* L A0,*0,X11 . ENTRY USED TO STORE THE MAXIMUMMEMI-020
I LSSL A0,10 . SIZE FOR THE RUN MEMI-021
I AN,U A0,1 . MEMI-022
| S AO,MAXCOR . CALL MEMINI(IMAX) MEMI-023
I J 2,X11 . IMAX MAXIMUM SIZE IN K MEMI-024
[$C0) . MEMI-025
| MAXCOR + 0 . MEMI-026
|LASTD + LASTD$ . MEMI-027
I END . MEMI-028

The subroutine STIM has been also written in Copenhagen :

I AXR$ . STIM-000
[$(1),STIM* LXI,U A1,PCTBD$ . STIM-001
I LA,U A2,RPCTA$ . STIM-002
[ LDJ A1,$+1 . STIM-003
I LA A0,03,A2 . STIM-004
I ANA A0,013,4A2 . STIM-005
[ LDJ A1,$+1 . STIM-006
[ MI,U A0,77 . STIM-007
I DI,U A0,10 . STIM-008
I SA A0,*0,X11 . STIM-009
[ J 2,X11 . STIM-010
I END . STIM-011

The programme ECIS79 had to be used with following OVERLAY :

[SEG S1

|IN ECISR.ECIS,.CALC, .HORA,.STIM, .NTAB$,.MEMO, .MEMORY
[SEG Al%

[IN ECISR.CALX

|SEG Bi%

|IN ECISR.LECT, .LECD,.IOPTF

|SEG B2#%,B1

| IN ECISR.DEPH, .0OBSE

[SEG A2%,41

|IN ECISR.COLF, .FCOU, .FCZ0,.PSI,.YFRI,.YFCL,.YFAS, .YFIR,.COCL,.SIGM
|IN ECISR.CORI, .CORH

[SEG A3%,41

|IN ECISR.VARI, .FIT1,.FIT2,.FITE, .REST,.EVAL

[SEG A4%,41

[IN ECISR.DJ6J

[SEG C1%
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[IN ECISR.DJCG,

[SEG C2%,C1
[IN ECISR.CAL1
|SEG Di%

[IN ECISR.POTE
[SEG E1%

[IN ECISR.ROTP,

[SEG E2%,E1
[IN ECISR.VIBP
|SEG E3%,E1

|[IN ECISR.DERI,

|SEG G1%

[IN ECISR.FOLD,

[SEG G2%,G1

|[IN ECISR.EXTP,

|SEG D2#%,D1

[IN ECISR.QUAN,

|SEG Fi%

[IN ECISR.INTI,

[SEG F2%,F1

[IN ECISR.INCH,

|SEG D3#%,D1

|[IN ECISR.SCHE,

|SEG Li*,()
|[IN LARGE

|SEG B3#*,B1
[IN ECISR.INPA
|SEG B4#*,B1
|[IN ECISR.INPB

REDM, .

ROTX

COPO

HULT, .

INTP, .

DJ9J,.

INSI,.

cPCC, .

RESU, .

A.3 Use on VAX

VIBM, .ROAM, .ROTM

FINT

STDP

DCGS, .SCAM, .CORA, . CORB

INSH, .COUP, .SECM, . PADE

LINS

SCAT, .GRAL, .EMRO, . CPSF
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Around 50 FORTRAN cards have to be changed in ECIS79, to deal with the larger floating value which
is 103%. The IBM versions of ECIS88 and ECIS94 need no change. There is no use of OVERLAY on this
computer and the working array can be taken the largest possible. At the Washington State University,
it has been possible to use as MAIN routine:

[c 26/11/81 VAX

|C THE ASSEMBLER SUBROUTINE ECIS(I) DEFINES THE DOUBLE PRECISION ARRAY W
|C AND CALLS CALC(W,W,W,IDMX) WHERE IDMX IS THE LENGTH OF W

[C W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT 2*I K FOR BUFFERS
|C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN:

| REAL*8 W(400000)
CALL CALC(W,W,W,400000)

I
[ STOP
[ END

MAIN-000
MAIN-001
MAIN-002
MAIN-003
MAIN-004
MAIN-005
MAIN-006
MAIN-007
MAIN-008

There is no control of the time allowed for the JOB. The CPU elapsed time is given by following subroutine

STIM :

[C 12/10/81 VAX

[ SUBROUTINE STIM(I)

[C RETURNS INTEGER VALUE OF CURRENT CPU TIME IN HUNDREDTH OF SECONDS

IC
IC

ACCUMULATED BY PROCESS

RJS

12-0CT-81 (WASHINGTON STATE UNIVERSITY)

STIM-000
STIM-001
STIM-002
STIM-003
STIM-004
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| IMPLICIT INTEGER*4 (A-Z) STIM-005
I PARAMETER JPI$_CPUTIM=’0407’X STIM-006
| INTEGER#2 LIST(8) STIM-007
I DATA LIST/4,JPI$_CPUTIM,6%0/ STIM-008
| EQUIVALENCE (TIMELOC,LIST(3)) STIM-009
| TIMELOC=%LOC(TIME) STIM-010
| STAT=SYS$GETJPI(,,,LIST,,,) STIM-011
I I=TIME STIM-012
I RETURN STIM-013
I END STIM-014

The subroutine HORA has been modified to suppress the transformation from IBM units.

A.4 Use on PR1ME

The code ECIST79 could not be used with F77, due to compilation errors found in the function SIGM and
the strange behaviour of equivalences. With FTN, in which there is no DASIN and no DSINH, the two
following subroutines must be added to the coulomb functions:

| FUNCTION DASIN(X)

| IMPLICIT REAL#*8 (A-H,0-Z)

| DASIN=DATAN2(X,DSQRT(1-X*X))

I RETURN

I END

| FUNCTION DSINH(X)

| IMPLICIT REAL#*8 (A-H,0-Z)

| DSINH=0.5D0* (DEXP(X)-DEXP(-X))

I RETURN

I END}

Further modifications had to be done : DFLOAT has to be replaced by DBLE(FLOAT( )) and a statement
had to be modified in subroutine FITE. The OVERLAY is not needed. The MAIN routine is :

¢ 27/01/82 PRIME MAIN-000
¢ THE ASSEMBLER SUBROUTINE ECIS(I) DEFINES THE DOUBLE PRECISION ARRAY W MAIN-001
|C AND CALLS CALC(W,W,W,IDMX) WHERE IDMX IS THE LENGTH OF W MAIN-002
|Cc W IS ALL THE REGION LEFT FREE BY THE PROGRAM EXCEPT 2*I K FOR BUFFERS MAIN-003
|C THE SUBROUTINE ECIS CAN BE ELIMINATED WITH THE FOLLOWING MAIN: MAIN-004
| REAL*8 W(160000) MAIN-005
I COMMON W MAIN-006
| CALL CALC(W,W,W,160000) MAIN-007
I STOP MAIN-008
I END MAIN-009

The STIM subroutine is :

[c 17/01/82 PRIME STIM-000
| SUBROUTINE STIM(I) STIM-001
|C RETURNS INTEGER VALUE OF CURRENT CPU TIME IN HUNDREDTH OF SECONDS STIM-002
| CALL CTIM$A(I) STIM-003
I RETURN STIM-004
I END STIM-005

The compilation is :

| FTN XX -SA -L -X -INTL -BIG -64V
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A5 Use on BURROUGH

The code ECIS79 has been run on the BURROUGH 7700 of the Technische Hogeschool in Eindhoven,
Netherlands.

Some errors without effect on other computers have been found:
e in subroutine HORA, MO and M2 must be put on data,

e insubroutine CORH the array SP was not declared as single precision: add REAL*4 SP after IMPLICIT
or change SP into OP and use IMPLICIT REAL*8 (A-H,P-Z),

e in the subroutine CAL1, in calls to CORB, an argument was of wrong type; use :

1,DW(NXC1) ,DW(NX1),NC,ISM,KAB,NW(NNIV) ,NW(NT) ,NW(NIVQ),DW(NFG) ,LMAXCAL1-075

[

I 21,LMAX3, INC,NW(NWR) ,LO) CAL1-076
| 1DW(NXC1) ,DW(NX) ,NCXN,ISM,LMAX2,NW(NNIV) ,NW(NT) ,NW(NIVQ) ,DW(NFG),LMCAL1-137
I 2AX1,LMAX3, INC,NW(NML) ,LO) CAL1-138

e in subroutine SCAT, the subroutine EMRO was not called with an array as argument; use :

| 1),X2,X3,9QX,MX,B(1),1) SCAT-073
| 1),X2,X3,9QX,MX,B(2),1) SCAT-075
| W1=B(1)*B(2) SCAT-076

e an error was found in subroutine HULT.

These changes have been done to the programme on the 10/05/82. Furthermore, the parity of the levels
cannot be read on this computer unless one uses :

[ IF (SPI.IS.SIGM) IPI(IV,1)=1 LECT-109

A.6 Use on SUN

This version of ECIS88 was run on a SUN computer without difficulty. As the system was UNIX, the
subroutine STIM described for a CONVEX computer was used.

B The CDC version

The object deck of ECIS79 was conveniently handled as a SOURCE file for UPDATE. Using UPDATE,D.,
the identification of the cards appears in the compilation. The UPDATE identification is the name of the
subroutine and the sequence number i1s the number of the card plus 2.

Due to the relative small size of CDC computers, the code must be used with segmentation (SEGLOAD).
These segmentation cards for ECIS79 are :

|[ECIS GLOBAL AZ,DBLPR,DECOU,TITR,FCL.C. 0VCD-001
[RESU  GLOBAL RESC 0VCD-002
|[ECIS INCLUDE CALC 0vVCD-003
|[LECT INCLUDE LECD,DEPH,OBSE 0VCD-004
|[FITE INCLUDE VARI,REST,EVAL 0VCD-005
[QUAN  INCLUDE CORB,SCAM 0VCD-006
[ROTP INCLUDE VIBP,EXTP,COPO 0VCD-007
|[RESU  INCLUDE SCHE,CPSF 0VCD-008
[A TREE ECIS-(CALX-(INPA,INPB,LECT),COLF,DJ6J-(REDM,B),FITE) 0VCD-009
IB TREE CAL1-(POTE-(ROTP,FOLD),QUAN-(INTI,INCH) ,RESU) 0vVCD-010

[ END 0VCD-011
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The time control is obtained by the CDC subroutine SECOND and a call to the CERN subroutine TIMING
at the beginning of the JOB.

The CDC version uses the dynamic allocation of memories, using the MACRO instruction MEMORY. For
that, the working array must be extended without overlapping the programme. The CERN subroutines
MEMORY and INCLCHM, used previously, include the size of the local computer. The maximum core can
depend on the user, the hour of computation, or on the JOB card. A COMPASS subroutine INCM calling
the MACRO MEMORY has been written by LE FUR, in order to get the maximum core allowed by the
installation :

I IDENT INCM INCM-000
I ENTRY INCM INCM-001
I VFD 36/4HINCM,24/INCM INCM-002
| SVAO DATA O INCM-003
| svxi DATA O INCM-004
| TAIL DATA O INCM-005
| INCM DATA O INCM-006
I SB7 1 INCM-007
I SX6 A0 INCM-008
I BX7 X1 INCM-009
I SA6 SVAO INCM-010
I SA7 A6+B7 INCM-011
I SA4 X1 INCM-012
I LX4 30 INCM-013
I BX6 X4 INCM-014
I SA6 TAIL INCM-015
I MEMORY SCM,TAIL,RECALL,,NABORT INCM-016
I SB7 1 INCM-017
I SA1 SVX1 INCM-018
I SA2 TAIL INCM-019
I AX2 30 INCM-020
I BX6 X2 INCM-021
I SA6 X1 INCM-022
I SA2 A1-B7 INCM-023
I SA0 X2 INCM-024
I EQ INCM INCM-025
I END INCM-026

called by the FORTRAN subroutine:

| SUBROUTINE MEMORY(N,NTOT,IER) INCM-027
I DATA KX /0/ INCM-028
I IF (KX.EQ.0) CALL INCM(KX) INCM-029
I N2=N INCM-030
I KZ=KX+N2 INCM-031
I DO 1 I=1,1000 INCM-032
I KX=KX+N2 INCM-033
I KY=KX INCM-034
| CALL INCM(KX) INCM-035
I IF (KX.GE.KY.AND.N2.EQ.N) GO TO 2 INCM-036
| N2=(2%N2)/3 INCM-037
I IF (N2.EQ.0) GO TO 2 INCM-038
I 1 CONTINUE INCM-039
I 2 NTOT=KX INCM-040
I IER=KX-KZ INCM-041
I RETURN INCM-042
I

END INCM-043
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B.1 Use on CDC 7600

The working array can be in the SCM or in the LCM.

B.1l.a Using SCM

The OVERLAY structure on a CDC 7600 puts the BLANK COMMON at the top of the root. In these circum-
stances, if the working array is in it, it cannot be extended without overlapping the programme.

The solution chosen (for ECIST9) is to add two cards before the END of the OVERLAY cards to create a
second level:

IB TREE CAL1-(POTE-(ROTP,FOLD),QUAN- (INTI,INCH) ,RESU) 0VCD-010
I LEVEL 0VCD-011
I TREE CALS 0VCD-012
I END O0VCD-013

and the subroutine CALS is :

[cDC 15/06/79 ECIS79 CALS-000
I SUBROUTINE CALS CALS-001
|C WITHOUT THE SUBROUTINE MEMORY TO GET THE SPACE, THIS SUBROUTINE MUST CALS-002
|C BE REPLACED BY CALS-003
I DIMENSION W(10000) CALS-004
¢ IDMX=10000 CALS-005
I CALL CALC(W,W,IDMX) CALS-006
|C***********************************************************************CALS—OO?
| DIMENSION W(10) CALS-008
| CALL CALC(W,W,10) CALS-009
I RETURN CALS-010
I END CALS-011

The MAIN programme is:

I CALL CALS ECIS-008
[ STOP ECIS-009
[ END ECIS-010

The subroutine CALS and the second level are overwritten by the working array but the computation
never go out of the subroutine CALC. The UPDATE instruction is :

| *COMPILE ECIS.CALS

B.1.b Using LCM

The code ECIS in its CDC version has been written in such a way that a quantity in the working array
never appears in the call of a subroutine except as an array. All the working array can be shifted into
the LCM by inserting :

[ LEVEL,A1,A2,A3..... ¥

in each subroutine, where A1,A2,A3... are the parts of the working array which are used. The MAIN
programme is then :
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| COMMON W(512) LEV2-002
I LEVEL 2,W LEV2-003
| CALL CALC(W,W,512) LEV2-004
I STOP ECIS-009
I END ECIS-010

The UPDATE (still for ECIS79) instruction is :

[ *ID LEV2 -ECIST79-
|*D ECIS.10 LEV2-001
| COMMON W(512) LEV2-002
I LEVEL 2,W LEV2-003
| CALL CALC(W,W,512) LEV2-004
A

|*D INCM.018 LEV2-013
I MEMORY LCM,TAIL,RECALL,,NABORT LEV2-014
A

[*I FIT1.39 LEV2-125
I LEVEL 2,I,W LEV2-126
|*I FIT2.55 LEV2-127
I LEVEL 2,4,D,IP LEV2-128
| *C ECIS.FIT2 LEV2-129

B.2 Use on CDC 6600

On a CDC 6600, it is convenient to reduce the size of the BUFFER in the first card of the MAIN routine.

In some places, ECIS can be run as on a CDC 7600 with SCM. In some other places, the use of the
MACRO MEMORY is inhibited unless the compilation is STATIC. The working array can be in the BLANK
COMMON and the use of the subroutine CALS and of the second level of OVERLAY avoided.

The size of the working array can be controlled by the CM parameter of the JOB card with the following
MAIN routine :

[cDC 16/10/78 ECIS-000
| PROGRAM ECIS(INPUT,OUTPUT,PUNCH, TAPES=INPUT,TAPE6=0UTPUT, TAPE7=PUNECIS-001
| 1CH, TAPE1) ECIS-002
[C ECIS-003
¢ THE MAIN SUBROUTINE DEFINES THE WORKING SPACE W AND CALL THE ECIS-004
|C SUBROUTINE CALC WITH THE LENGTH OF W AS LAST ARGUMENT. ECIS-005
[C ECIS-006
|C***********************************************************************ECIS—OO7
I COMMON // W(1) ECIS-008
| CALL CALC(W,W,LENGTHB(W)) ECIS-009
I STOP ECIS-010
I END ECIS-011

and the COMPASS subroutine written in Amsterdam :

I IDENT LENGTHB LENGTHB2
I ENTRY LENGTHB LENGTHB3
| MEMREPLY BSSZ 1 LENGTHB4
| LENGTHB BSS 1 LENGTHB5
I SX7 X1 LENGTHB6
I

SYSTEM MEM,R,MEMREPLY LENGTHB7
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SA1 MEMREPLY

I

I AX1 30

I IX6 X1-X7

[ EQ LENGTHB
I END

LENGTHBS
LENGTHB9
LENGTH10
LENGTH11
LENGTH12

The indication at the end of a JOB can be used to choose the best CM in a similar computation.

B.3 Use on CRAY

25

The code ECIS79 has been run on a CRAY computer. Due to the large size, the OVERLAY structure is not
needed. No information on time and memory management.

The code ECIS88 has been used with memory management. The MAIN subroutine is then :

[CRAY 21/03/88

1CH,TAPES8)
COMMON W(10)

STOP

I
I
I
I
I
[ END

CALL CALC(W,W,10)

and the subroutine MEMO is :

[CRAY 07/06/86

ECIS88

ECIS88

| SUBROUTINE MEMO(IDMT,NPLACE,NQ,IX,LO)
|C THIS SUBROUTINE GETS THE WORKING SPACE.

[C IDMT PREVIOUS SPACE

|C NPLACE REQUESTED SPACE

[¢ NQ SPACE TO BE UPDATED
[¢c IX: CONTROL NUMBER IX=1

[C IX=2

[C IX=3

[C IX=4

[C IX=5

FIRST CALL STORE MINIMUM SIZE IN ID
DIMINUTION OF SPACE

REQUEST NPLACE+ISTART, AT LEAST NPLACE
REQUEST NPLACE

ABSOLUTE REQUEST

[C LO: LOGICAL CONTROLS IF L0O(94)=.TRUE. PRINT THE SIZE OF W

[C OUTPUT VARIABLES: IDMT SIZE OF WORKING SPACE

IC L0(216)=.TRUE. IF COMPUTATION CANNOT CONTINUE
|| C ot ke ok sk ok s ook ok o sk ok sk ok sk ok ke ok ok sk ok sk ok ok ke ke ok sk ok ok ok sk sk okok sk ok sk skok sk sk ko sk ok sk skok sk ok ok kok ok skok ok ok ok kokok ok ok kkokMEMO -0 14

[ LOGICAL LO(250)

1 ID=IDMT

NPLACE=0

GO TO 4

IR=0
GO TO 5
3 NT=NPLACE-IDMT

NT=MAXO(IDMT,ISTART)

2 NT=MAXO(NPLACE,ID)-IDMT
CALL MEMORY(’UC’,NT)

DATA ISTART,IMOD /4096,1024/
IF (IXx-2) 1 , 2, 3

CALL MEMORY(’MAXFL’,IDMAX)
CALL MEMORY(’CURFL’,NX)
IDMAX=IDMAX-NX+IDMT

ECIS-000

PROGRAM ECIS(INPUT,OUTPUT,PUNCH,TAPES=INPUT,TAPES=0UTPUT, TAPE7=PUNECIS-001

ECIS-002
ECIS-003
ECIS-004
ECIS-005
ECIS-006

MEMO-000
MEMO-001
MEMO-002
MEM0O-003
MEMO-004
MEMO-005
MEMO-006
MEMO-007
MEMO-008
MEMO-009
MEMO-010
MEMO-011
MEMO-012
MEMO-013

MEMO-015
MEMO-016
MEMO-017
MEMO-018
MEMO-019
MEM0O-020
MEMO-021
MEMO-022
MEM0O-023
MEMO-024
MEM0O-025
MEMO-026
MEMO-027
MEM0O-028
MEMO-029
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| IF (IX.NE.3) GO TO 4 MEMO-030
I NT=NT+ISTART MEMO-031
| 4 NT=IMOD*(NT/IMOD+1) MEMO-032
| NV=MINO(NT, IDMAX-IDMT) MEMO-033
I IR=NV-NT MEMO-034
| CALL MEMORY(’UC’,NV) MEMO-035
| 5 CALL MEMORY(’CURFL’,NX) MEMO-036
I IDMT=IDMT+NT+IR MEMO-037
| LO(216)=(IDMT.LT.NPLACE) .AND. ((IX-5)*(IX-3).EQ.0) MEMO-038
[ NQ=NQ+NT+IR MEMO-039
| IF (L0(94)) WRITE (6,1000) IX,NT,IR,NPLACE,IDMT,NX,NX MEMO-040
| IF (.NOT.LO(216)) RETURN MEMO-041
| WRITE (6,1001) IX,IDMT,NPLACE MEMO-042
| WRITE (6,1002) MEMO-043
I RETURN MEMO-044
| 1000 FORMAT (/8H REQUEST,I2,4H FOR,I9,9H MEMORIES,I6,25H ARE MISSING. MEMO-045
| 1 NPLACE =,I19,7H SIZE =,I19,15H TOTAL LENGTH ,I8,4X,08,1HB/) MEMO-046
| 1001 FORMAT (33H NOT ENOUGH PLACE ..... REQUEST,I2,I110,8H ALLOWED,I10MEMO-047
I 1,10H REQUESTED/) MEMO-048
| 1002 FORMAT (/48H ...STOP... NEXT TIME, USE LARGER MFL PARAMETER/) MEMO-049
I END MEMO-050

The subroutine STIM is :

|CRAY 09/01/88 ECIS88 STIM-000
| SUBROUTINE STIM(K) STIM-001
| CALL TREMAIN(T) STIM-002
I K=38500.*T STIM-003
I RETURN STIM-004
I END STIM-005

without changing the IBM subroutine HORA.

C Use on a CONVEX

On a CONVEX computer, the two versions can be used. As there can be only control of the elapsed time,
a subroutine STIM, identical for the two versions, was written to stop the JOB just before an hour (the
allowed time of the QUEUE for long JOB). This subroutine is :

|c 16/12/87 CONVEX IBM AND CDC VERSIONS ECIS88 STIM-000
| SUBROUTINE STIM(I) STIM-001
|¢ RETURNS INTEGER VALUE OF CPU ELAPSED TIME IN HUNDREDTHS OF SECONDS STIM-002
| DIMENSION A(2) STIM-003
| B=ETIME(A) STIM-004
| 1=38500#(3300.-B) STIM-005
I RETURN STIM-006
I END STIM-007

It can be used on any computer with the UNIX system.

The IBM version has to be compile with “fc —72” and the CDC version with “fc —cfc —=72”. Even if all
the subroutines has been compiled beforehand and “fc” is used only to create a LOAD MODULE, one must
use “fc —cfc” to get the right answer from the subroutine STIM.



Chapter III

Coupled channels

The inelastic scattering of nucleons exciting low lying collective states of the nuclei is usually described
by coupled channel calculations using a collective model. A Dirac phenomenology using a scalar and
a vector potential has been introduced in Ref. [9] to describe elastic scattering at quite large energies.
Strictly speaking, these calculations are only valid for infinite mass targets because the center-of-mass is
separable in non relativistic Schrodinger equation and not in Dirac equation. In the same approximation,
deformation or vibration can be introduced in the scalar and in the vector potential of the Dirac formalism
to study the inelastic scattering in the collective model.

For elastic scattering, there is a fully equivalent Schrodinger equation for the Dirac equation. The
presence of some 1/72 terms for charged particles do not affect strongly the results. For inelastic scattering,
this transformation has to be done on the tri-dimensional Dirac equation. Then, the spin orbit potential
appears as the cross product of the gradient of the potential with a gradient acting on the wave function.
Such expression for the spin-orbit is used since a long time in the description of nucleon inelastic scattering
by : [65] SHERIF, H., BLAIR, J. S., “Inelastic proton scattering and the deformed spin dependent optical
potential”, Physics Letters 26B (1968) 489. and : [66] SHERIF, H., “Spin-dependent effects in proton
inelastic scattering”, Thesis University of Washington (1968). However, to write the Schrddinger equation,
the wave function has been multiplied by the square root of the potential. As long as the potential is
a given function of the radius, it is the only difference between Dirac and Schrodinger formalism. The
potential used has usually Woods-Saxon form-factors in the two formalisms; the Schrodinger potential
equivalent to the Dirac one gets a wine-bottle-bottom shape as said in the title of Ref. [9].

Coupled channel calculations are necessary even at large energies as 500 or 800 MeV as shown in Ref.
[48] and [50]. At these energies, the elastic scattering of protons to backwards angles is well described
when the strong low-lying collective states are taken into account. The difference between Schrodinger
and Dirac approaches seems limited to the influence of the shape of the potential as shown in : [57]
COOPER, E., D., “Are the Dirac imaginary potentials surface peaked?”, Nucl. Phys. A495 (1989) page
483 and in Ref. [50].

A Dirac and Schrodinger formalisms

In order to describe inelastic nucleon scattering, we must start from Dirac equation because spin-orbit
effects can not be understood without it.

A.l The Dirac equation

To describe the scattering of a nucleon with “magnetic anomalous moment” in a Coulomb field Ve (7),
the Dirac equation is :

(?aﬁ + Bm + VC(F)%B&.{ﬁVC(F)})w(F) = By(F). (IIL.1)
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More generally, this equation can be generalised to describe the scattering of this nucleon by a nucleus
into the equation :

(?w + B{m + Vs (7)) + Vi (7) + %5&.{6%(;)})1@(;) = Fy(F) (IT1.2)

where Vg (7), Vi (7), Vp(7) are three finite range complex potentials of which the real and the imaginary
part are approximated by a Woods-Saxon form factor but can be replaced by any other form factor given
by a theory.

The Equ. (IT1.1) is valid in the laboratory system and the Equ. (TI1.2) can be used only for a target
with an infinite mass with respect to the nucleon, so that the laboratory system is also the center of mass
system and m is the rest mass of the nucleon.

We consider the mass m as a parameter which can be :

e the rest mass if LO(98)=.TRUE.,

e the reduced mass if LO(98)=.FALSE., which allows a correct limit at low energy.

In this equation, the vector potential Vi (7) and the tensor potential Vp(#) include the Coulomb
potential V(7); in fact, for a nucleon with an “anomalous magnetic moment” p,, the tensor potential
is reduced here to the Coulomb potential multiplied (at the low energy limit) by p,, + %z where z is the
charge of the nucleon.

The & and 3 are four-dimensional Dirac matrices. They can be expressed in terms of two-dimensional
unit matrix and Pauli matrices & as follows and allow to write the wave function :

coa=le A o= (m.3)

in terms of the large component F(#) and the small component G(7). They allow to write a set of
two linear coupled equations with the Pauli matrices :

a =

S

QL o

- hoo-
NV G(F) = [E—m— W (F)—Vs(F)F(F)+ om? [VVp (7)]G(7)
- I
—hdV F(F) = [F4+m—W({)+ Vs(7)]G(F) + %&' [VVp (#)]F(7) (TIT.4)
A.2 Reduction to Schrodinger equation
The terms [VV7(7)] are almost eliminated by the substitution :
2\ — VT(F) = =\ VT(F) =
G(F) = exp (W) G(7), F(r)_exp(— - )F(r), (TT1.5)
respectively, to get :
hEN G(F) = exp ( VTm’”)) [E—m— Wy (7) — Vs (7)] F(7)
—h@.V F(F) = exp ( Tn(f)) [E+m — Vi (F) + Vs (7)]G(7) (I11.6)
From the second equation, using :
Vo (7
D(F) = E+m — Vi (7) + Vs (F), Dr(7) = exp ( TTS”))D(;) (IT1.7)
we get :
G(F) = — L % F(7) (T11.8)
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which gives in the first equation, using :
(3.4)(3.B) = (A.B) +i3.(A x B) (T11.9)
and after multiplication by Dp(7) :

_hz{A _ #(F) [V Dy (7)].V —iG.[V Dy (7)] x 6}1&(;) = D(F)[E—m—W(F) = Vs(F)F(F) (TT1.10)

f(F) = Dp(F)"2F(F) = D(7) "2 F(F) (IT1.11)

to obtain :

w{a- §(M9)2 L LADD) s 1 e (7)] V)

4\ Dp(7) 2 Dp(F)
+H = 2BV (7) — 2mVis (7) + V(7) = VE(F) + 02K D7) = 0 (I11.12)
with A*k? = B2 — m?.
This equation can be written :
h? ) L o VL
{ - 5= [A+ K]+ (7) — [V In V(7)) x 7}f(r) =0 (IT1.13)
with
K’ (3 /(VDp(F)\? 1 ADr(F) 1 ) )

7)) = — (XN 2TV L Jopv (7)) 4+ 2 ) — Vi (F 7
nr = {3 Dr(7) ) -3 D7 (7) } o G {2EV () 2V () = Vi ()7 + V(7
Va(7) = Dp(7) (TI1.14)

A.3 The Schrodinger formalism
As long as there 1s only elastic scattering, the potentials have no angular dependence. Using :
- rd 1, =
the spin term of the Dirac equation for Dp(7) independent of # reduces to :
L [rd - 1d Lz
—w‘.{;% lnDT(r)} %V =~ In Dr(r)(#.0) (ITL.16)
and Equ. (TT1.13) can be written :
h? , 1.d 2= ey
— S [A R A + [ ()](EL) pAGE) = 0 (IT1.17)

The Schrodinger formalism is the use of Equ. (TIT.17).

An important difference is the use of the Coulomb potential Vi (r) directly as a part of Vi (r); it does
not contribute to the spin-orbit potential. This allows the use of nonrelativistic coulomb functions. In the
equivalent Schrédinger equation, the Coulomb potential is multiplied by the ratio E/m which is larger
than 1 and its square appears also in V; (r) and V5(r) at large distances. This terms in 1/r? are taken into
account with the relativistic Coulomb functions. However, taking into account an “anomalous magnetic
moment”, terms in 1/r% appears into the spin-orbit potential in both formalisms. The elastic scattering
in the Dirac formalism cannot allow to determine a tensor potential, as shown in : [58] CLARK, B., C.,
HAMA, S., KALBERMANN;, S., G., COOPER, E., D. and MERCER, R., L., “Equivalent local Dirac
potentials”, Phys. Rev. C31 (1985) page 694, because it depends only upon the two potentials Vi (r) and
Va(r) defined in Equ. (TT1.14). Nevertheless, it does not means that a known tensor potential has not to
be used.
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A.4 Radial dependence of potentials

The potentials Vs (7), V4 () and Vi (7) in Dirac equation, Vi (7) and Va(7) in Schrédinger equation are
usually complex with a real and an imaginary parts parametrised by a depth V' multiplying a Woods
Saxon form factor :

1
f(r, a, R) = m where R/ = RAl/S (11118)

a

where A is the mass of the target. These are called volume potentials.

The imaginary part of ¥ can include also a surface potential with the form factor :

1 d 1
! R) = — e — h R = RAY/3 I11.19
f(r,a, ) 4CldR’{1—|—exp (T_R)} where ( )

a

and we generalise that to its real part. So, the two formalism deals with the same number of potentials.

Instead of the Woods-Saxon potential defined by Equ. (TTT.18), one can use a “symmetrised” Woods-
Saxon potential which is :

fo(r,a,R) = {1 n expl(r_aRl)} {1 - expl(“rai)} (111.20)

The potentials Vi (7) and Vi (7) include the Coulomb potential Ve (7) which is :

+7¢*(3—(r/RL)?)/R., for r <R,
-\ 2 c ) c

Ve(r) = { Ze2[r, for r> R, (TTT.21)
where R, = R.A'Y? and Z is the product of charges of the particle and the target. Ve (7) can also
be computed from a diffuse charge with a density distribution given by a Woods-Saxon form factor,
eventually multiplied by a factor (1 + er?) where ¢ is a “third Coulomb parameter”.

The potential can also be obtain from a microscopic description or replaced by a Fourier expansion
on Bessel functions.

B The generalised optical model

In the generalised optical model, the potential describes also the different states of the target nucleus.
See for example in : [59] TAMURA, T., “Analyse of the Scattering of Nuclear Particles by Collective
Nuclei in Terms of the Coupled-Channel Calculation”, Rev. Mod. Phys. 37 (1965) 679 and in : [60]
TAMURA, T., “Coupled-channel approach to nuclear reactions”; Ann. Rev. Nucl. Sci. 19 (1969) 99.

B.1 The macroscopic models

We give here the physical meaning of the macroscopic models used in ECIS.

B.1.a The symmetric rotational model

In the symmetric rotational model, the potentials are some functions V(7,7'), where # is the intrinsic
axis of the nucleus. These potentials are parametrised by quadrupole and hexadecupole deformations 3,
and B4,...using a radius R(f) such that :

R(0) = Ro[1+ B2Y5(0) + B4V (0) .. .] (T11.22)
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where 6 is the angle between 7 and 7’. There are only even deformations. This radius is used instead of
R in the usual expressions of the optical model. The potential can be expanded into multipoles :

1 s

V(7 #) =4r Y V()Y RV (), W(r) = 5 / V/ (7, #') Py (cos ) sin 0d6, (111.23)
A 0

where there are only even values of A. This is obtained by a symmetric ten-points Legendre integral over

6 of the potential multiplied by an adequate Legendre polynomial Py(cos 8).

In this model, the target states are :

@ >= 2 ek () R (9) + (/e ()R () (111.24)

where &g (r') is the intrinsic function, © the rotation between the laboratory system and the intrinsic
frame and j appears in the rotation of m around an axis perpendicular to the axis of symmetry for each
component of the intrinsic state.

B.1.b The vibrational model

In the vibrational model, the radius 1s replaced by :

R=Ro[1+ > alV{(0,¢)] (T11.25)
A p

where :

6#
ol = A (b +
A \/W A ( )
in which b, , are phonon creation operators and b+ are phonon annihilation operators. The potential
is usually expanded in powers of the a’s :

bt M) (IT1.26)

d 1 d 2
V(r, Ro) + =V (r, Fo) JRo Y ahY[(6,6) + QdRZV(r, Ro)Rg(Zajyf(e,qs)) (IT1.27)
A A

with only the first derivative for the first order vibrational model, the first and the second derivatives
for the second order vibrational model, but also the third derivative with nuclear matrix elements
to be given in the anharmonic vibrational model.

In the harmonic vibrational model, the target states are :

|BL; >=b;0/10 >, |®; >=[(L1L2)IM >= (T11.28)

: +15L1,L2 {bleLJLm >,

for the 1-phonon and the 2-phonons states respectively.

B.1l.c The vibration-rotational model

In the vibration-rotational model there is a static deformation like in the rotational model and a dynamical
vibration a¥ of the intrinsic state. Like in the vibrational model Ry of Equ. (I11.22) has to be replaced
by R of the Equ. (IT1.25) but the expansion given by Equ. (TI1.27) is limited to the first derivative. Here,
the value of M is important. The form factors are :

/—v 7 [YM(0) — 2 M (9)]v M (9)do (T1T.29)
where the term xYlM(H) is there only for the form factors with [ = 0 and [ = 1 to correct them for center

of mass motion or translation and is defined by the condition that [ VlM(r)rH'zdr =0.

In the literature, the derivation of this model is presented with the summation of the two spherical
harmonics, giving a sum with Clebsch-Gordan coefficients.

The nuclear states are those given by Equ. (IT1.24) with or without o acting on &x ().
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B.1.d The asymmetric rotational model

In the asymmetric rotational model, The radius is given by :

fua):f%(1+¢%[amyy§w)+g§§gn7{ygw)+:x;%9n]+¢ﬂcoyyy£w)+..) (IT1.30)

and the potential are :

V@M=%WM+WWMW@+WWM§§ﬁ@+Hﬂw+~~ (ITL31)

They are obtained by integration on the sphere with 36 points, the weights of which were obtained once
for all by the inversion of the matrix of spherical harmonics at these points. This means that the potential
is supposed to be expanded only with 36 terms, the coefficients of which are obtained by solving a set of
36 equations. The number of multipoles is limited to 15 (i. e. L = 8, whereas 36 is I = 14).

The nuclear states, as described in : [61] DAVYDOV, A., S. and FILIPPOV, G. F., “Rotational states
in even atomic nuclei”; Nucl. Phys. 8 (1958) page 237, can be written :

(J) (J)
Ry/,+ R
o3 > = ﬁ%&(r’)[cowﬁ%?g(m+sin6$ 62%
R§), + R

+ sin }Lsin Zcos 2 M4 =4 + ... 111.32
B B B 7 ( )

for I = 2m even with the possibility of 1 4+ m different states and :

(1) (1) (1) (1)
Ry, — R Ry/,— R
(') {COS 5721 M2 M=2 5721 cos 52 M 4 M,—4

V2 V2

for I = 2m + 1 odd with the possibility of only m different states.

21 +1
872

|®lr >= (T11.33)

If the asymmetric rotational model is “constrained”, the first state must be the 0T and the second
state must be the first 2%. If there is a third state, it must be the second 2t. There is no protection
in the code against using only elastic scattering, but no v will be taken into account. The value read as
B1 for the first 2% is taken as the value of the v in Equ. (II1.30). The result given in Ref. [61] can be
written :

1 3 sin+y cos 3y — cos 7y sin 3y 1 1
tan f; = — B = Py + 5 (TT1.34)

sinysin 3y + 3 cos~ycos 3y + \/9—85111237’

because a sign does not matter.

B.2 The coupled equations

We shall take as example the rotational model. The equation to solve is :
[T+V - E]¥ =0 (I11.35)

where T is the kinetic energy and V' the generalised optical potential.

B.2.a Schrodinger formalism

The total wave function is written :

- 1
() = ;l;J Jijra(r)Yisjrom (T11.36)
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where :
YlstJM:il Z <jalamam/|‘]aM> (<lasa/'tao-|jam>Ylu(f)|80->)q)rfnl (11137)
w,0,m,m’
are the target-spin-angular functions involving the target state ¢r.

Projecting the total equation on all the functions Y, ;77a3, we obtain a system of coupled second order
differential equations :

2 2 L. (],
: [% - 277;]% b (l;j Dokl =3 {S v e} g ) (1T1.38)
7! A

Qmi

where ¢ and ¢ stands for any set of quantum numbers (I, 4,1, J), k; and n; are the wave number and
the coulomb parameter for equation i and G2, is a geometrical coefficient for the transition form factor
V*(r). For A =0 and i = ¢/, the second member of Equ. (IT1.38) includes the optical model. In general,
G2, is the product of a “nuclear” part, which is the “reduced matrix element” and a geometric coefficient
of the partial waves. For example, in the rotational model, a state of the target, member of a rotational
band starting with 0% is described by Equ. (T11.24) with K = 0 :

2T+ 1
(@1 p >= 1/ RO Q) x () (I11.39)

where x(r') is the intrinsic wave function. The result of integration on the nuclear state is :

<O, a, V(7 )W, >= VA Y VA YE(F) x (-)M \/(212» +1)(21; + 1)(2A + 1)

L oI A\[( L I A
111.4
(0 0 0) (Mf M u) (ILL40)

and the total result is :

SRR+ D@1+ 124+ )24+ 1)

A
L I AN\ [ X i\[(L I X (L)
0 0 o/\-L o 1)Vi s J '

where there i1s a part which depends only upon the target and a part which depends only upon the
nucleon, the two of them related by a 65 coefficient.

If there are n channels and if the spin of the particle is s;, the spin of the target I; and the product
of the intrinsic parities n; for the channel i, the total number of coupled equations for a total spin J
sufficiently large and a parity 7 is :

N = Zn: Ni = Zn: %[(212» +1)(2s; + 1) + € (=)7*7] (T11.42)

n=1
where ¢ = 0 if I; or s; is half integer and ¢} = ¢;(—)%iT%i if I; and s; are integers.

For the scattering of protons on a 0T — 2% — 4% — 6% rotational band, this number is 28. For the
scattering of « particles on the same levels, there are 16 equations or 12 equations according to the parity.

In the most general problem, the interaction V' can be written as the scalar product of a tensor
operator QIt acting on the target, a tensor operator Q° acting on the spin of the particle and the tensor
L YM () multiplying a radial form factor V7 g7¢(r). Taking into account a factor 1/+/4r introduced in
the form factor, the geometrical coefficient is :

It

<[y sy L)1 Y2 () @17 QN[ 5:) 1) >=< 5, 11Q5Isi >< T IQT 111 > (111.43)

1
Vamr
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x (=) THIRIE AL T )20 4 1) (20 + 1)(2h + 1247 +1)(2: + 1)

o Iy I L

Iy L L\ [j 4 I o

(6 0 0){; Logfy s (TTT.44)
P jroai I

where the part of the second member written in Equ. (T11.43) is the “reduced nuclear matrix el-
ement” and the one written in Equ. (T11.44) is the geometrical factor computed by the code. This
expression has the advantage to reduce the geometrical factor to the usual one of macroscopic excitations
when S = 0 but is not symmetric when particle and target are exchanged : the reduced matrix element
for a given L and S = L, I' = 0 is +/25 + 1 the one for the same L and S = 0, I* = L. Nevertheless,
Equ. (T11.44) was used up to ECIS88. To reduce this disadvantage, a factor /25 + 1 has been introduced
in the geometrical coefficient (T11.44) in the code ECIS94. This correspond to use operators coupled to a
scalar instead of the scalar product because :

t . Jr. . 20 ; J
()" <[y spyra )N v (), %, QT LI sy 1] >
= VAT T < [(Iy s i) [ vM (7) Q5] QT [ sy 1] > (ITL.45)
is symmetric for the exchange of @° and Qlt. In fact, the separation between reduced matrix element

and geometrical coefficient correspond to the use of the expression given in Equ. (IT1.45) divided by
V/(2S + 1)(2I* + 1) in order to coincide with the usual notations for the macroscopic models.

Deformed spin-orbit interaction and magnetic multipole Coulomb interaction need a
different approach. In the macroscopic models, there is no Q¥ and this coefficient can be simplified.

B.2.b Spin-orbit deformation

Tt has been shown by DWBA calculations in Ref. [55] and [56] that the spin-orbit interaction should be the
“full Thomas form” which is :

| <ls

V V() x ~.& (I11.46)

o~

derived from Dirac’s equation by elimination of small components, in order to fit experimental data in
proton elastic scattering.

B.2.b.i Spin-orbit deformation for spin one-half

For a multipole Vi (r) Y{'(#) of the interaction V'(7), it can be shown by elementary manipulation of
Pauli matrices as given by Equ. (T11.9) and with the expression of the gradient gien by Equ. (ITI.15) that
the expression above is :

MIACRAGIE ?5 =- [%VA(r)}YA“(f)(E Iy - V*y) (7. D) %
+ Vja (r) (F.DyE)]@.0) - Vja (r) [Ivio)].2 (IT1.47)
(see in Ref. [23] and [28]).
For any spin, the eigenvalue of 2(L.5) is :
2TA) = LG+ 1)~ 10+ 1) = s(5 4 1] (TIT.48)

that is for spin % :

o Li=1 it j=1+1
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o Li=-1-1 if j=1-1

When taken between partial waves |l;j; > and |l;j; >, the operators L.# can be replaced by their
eigenvalues vy on |lfj; > or v; on |l;j; >. The same holds for {EY;(?)} .I . Taking carefully into account
on what acts the operator, one gets the same geometrical factor Gf‘f as for a central term, multiplied by :

Va(r) (7s — W)% N er(zr) {A(AJF D= (v =) (v — 7 £ 1) (IT1.49)

! {%VA(T)}% +

r

where +1 holds if the wave function is/is not multiplied by r. For the optical model, A = 0 and ~; = ~;
and the expression (T11.49) reduces to the usual one. This expression as been shown to be equivalent to
the zero-range limit of a two-body spin-orbit interaction in Ref.[23] and [28] using the helicity formalism
as defined in : [62] RAYNAL, J., “Multipole expansion of a two-body interaction in helicity formalism
and its application to nuclear structure and nuclear reaction calculations”, Nucl. Phys. A97 (1967) 572.

To compare with some earlier works using :

lrd Yi + ¢

- =V } —_ T11.50
r {dr 7 (1) 2 ( )
and to be able to study the effects of each terms in the above expressions, six parameters z1, 22, 23, 24,

z5 and zg have been introduced to get :

lrd Va(r) d
- {EVA(T)} (21 + 2% + 2a77) + — =z (v — 1) 7
Vi(r
+s —?Q(z : {ZzA(A + 1) —rly vy =y £ 1) (ITL.51)

These parameters allow also to increase the spin-orbit transition without changing anything else.

The deformed spin-orbit in the “full Thomas form” introduces a first derivative of the wave function
in the Schrodinger equation. The quick integration methods cannot deal with first derivatives (one has
to use some Runge-Kutta method). However, the derivative terms are non diagonal because they have a
factor 4; — v¢.The deformed spin-orbit can be used only with the iteration method.

B.2.b.ii Behaviour of the spin-orbit deformation

The behaviour of the deformed spin orbit interaction is a vector behaviour: the difference v; — 7y is
also found to be the ratio of the geometries for a transfer of spin and a scalar interaction :

o s oL
i1y _ W= L1 (1T1.52)
22 3T+ | 2 ¢

Jjogi J Jjogi J

To compare deformed spin-orbit and other interactions, let us write consider a 0t — 2% reaction.
There is one equation for the 0T state and 5 equations for the 24 state. Let us consider their behaviour
when the angular momenta increase. Among the five geometrical coefficients, there are :

1. those between I; = j; &+ % and Iy = j; :I:% :

e for a central interaction, we shall take them as reference,
o for a AS =1 interaction, Equ. (TT1.52) shows that there are of the same order,

e for a spin-orbit interaction, the factor 7; increases linearly with [ and the other are constant.
2. those between [; = j; &+ % and Iy = j; F % which :

e are a factor [ smaller than the first ones for a central term,
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o for a AS = 1 interaction, the Equ. (IT1.52) shows that there are multiplied by a factor [ and
become of the same order as the central interaction (1);

e for a spin-orbit interaction, the factors 7; and 4; — 7¢ increase linearly with / and the factor
6 — (vi —v¢)(v —vr + 1) increases quadratically.

This behaviour shows that spin-orbit interaction should become predominant at high energy.
B.2.b.iii Spin-orbit deformation for any spin

The “full Thomas form” of the spin-orbit interaction is conserved when the nucleon-nucleus potential
is folded with the intrinsic wave function of the particle if this wave function involves only relative S-
states. This is well known for the optical model of deuteron (see for example Ref. [22] Chapter TV). If the
nucleon-nucleus spin-orbit form factor is %% (r), the deuteron spin-orbit form factor is %iF(r) where

dr
F(r) is obtained from f(r) by folding, only if the deuteron D-wave is neglected.

This property of the folding for a structureless incident particle allows to extend the “full Thomas
form” of the spin-orbit to any spin as done in Ref. [38]. For a spin 3, 25 can be replaced by the sum of 2
|s| Pauli matrices o; in Equ. (T11.9) and Equ. (TT1.47) derived for each Pauli matrix. ITn this result, the
term without Pauli matrices is multiplied by 2 |s|, the terms with one Pauli matrix are summed up to 2§
and the terms with two Pauli matrices need some recoupling. The total result is :

1dV, Vi d Vx YiYf
——= i — V) —— + == AA+ D) =L+ 1) =1 1 r I1T.
e G =gt g DO D =l ) = Ll 0]+ G FY (TS
with : )
i i s=11 L Ji s
F=-2 sicflesic 4. i I11.54
ol fussifiseis {Jf ly A }{Jf s A} (TTL54)
and :
foj = <lsjl(ED)ls—1j>
o I+ -G =) —s+ DG +s) G +s+1) =l +1)]
= — (TT1.55)
2]s|
The parametrisation introduced for spin one-half has been extended to :
1dVy W d
;W(Zl + 23%i + 2a7f) + 26(vi — ’Yf)7$
V) i
tzsg o {Isl[2AO+ 1) = Ll + 1) = L (0 + )] 495 + P;g"‘ +F} (TIT.56)

B.2.c Dirac formalism

The large and the small component have a different angular dependence. This point is taken into account
by writing instead of Equ. (TT1.36) :

. 1 Fiira(r)

3\ >= — Ly b o Yies I11.57

== Z ( ~iGj1,(r)(G0) ) T (HL.57)

Ly, 1, J

where Yj,;irsar is the same as for Schrodinger equation and is given by Equ. (II1.37). Here, ! stands
instead of the parity quantum number.

The operator —(&.7) interchanges the spin angular functions of the large and the small
components.
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Projecting the total equation on all the function Yj,;77ar, we obtain the set of linear coupled equations :

dr r 2m  dr
L Ko L vl

n[L K LW G ) 4+ [Bemm =V -V R) = i)

dr r 2m  dr

[Fir) + [ 4 m 4 VS - VG = Ti(r) (IT1.58)

where the suffix i stands for (I, s, 7,1, .J), V" indicates the monopole parts of the interactions and :

1

Ki=(=)""3(j+ ) (I11.59)
The second members are :
Si(r) = ZG?‘ ) {{V* 4 VA}F'(T) + i{(i + M)VA}G(T)}
' " B o vt 2m " Ndr r T
h d K: — K;
Ti(r) = > GY [{‘@ — VG () 5 - { (- + %)V%}Fj(r)} (I11.60)
A

where V* are the multipoles of the interactions and the geometrical coefficients are the same as for the
Schrodinger equation :

e between F; and Fj, expressions are identical,

e between (G; and G, the operators (&.7) commute with the expression and their product being
unity, the result is the same as between F; and Fj,

e between F; and G, the operators (6".6) and (&.7) are treated like the spin-orbit deformation in
the Schrodinger equation.

There is no reason to limit the coupling to macroscopic ones (AS = 0). For AS # 0, the rules given
above are no more valid and the coefficient of the central term in the second equation (IT1.60) is no more
the same as the coefficient of the first one and must be computed separately.

The codes ECIS88 and ECIS94 offer two possibilities :

e to solve exactly the Dirac equation as described above with LO(100)=.TRUE.,

e to write the equivalent Schrodinger equation and to solve it, neglecting the presence
of D(7)% in the definition given by Equ. (IIL.11) of the function if L0O(99)=.TRUE.

The result 1s exactly the same for the elastic scattering.

B.3 Solutions and angular distributions

We assume that there is no long range interactions. They shall be explained in Chapter (TV).

B.3.a Solution of the equation

Beyond a matching point for which all the potentials except the Coulomb one vanish, the solution f;(r) of
the Schrédinger equation is a superposition of the regular Coulomb function Fy, (;; k;r) and the irregular
Coulomb function Gy, (n;; kir). For the equivalent Schrodinger equation of the Dirac equation, there are
long range terms r~2 and =3 which implies the use of relativistic Coulomb functions instead of the usual,
non-relativistic ones.

Coulomb corrections described in Ref. [7] allow the use of the non-relativistic Coulomb
functions in the Dirac phenomenology for nucleon scattering. They were derived for heavy-ion
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scattering to reduce the matching radius to the point where nuclear interactions vanish and to correct
the non relativistic Coulomb functions at this point for the effect of the long range Coulomb interaction
which decrease only as »~'~!. We consider here that the Coulomb functions are corrected for these long
range effects.

The solution must vanish at the origin, due to the factor 1/7 in the definition of the radial functions.
They must have a plane wave incoming part for the initial channel ¢ and an outgoing wave for all the
channels, normalised to the same flux (that is divided by \/E) Their asymptotic form is :

k’imf

Fr(M)rseo = 5i,fFlf(77f;kf7°)+Ci(kfm,) Gy (nyps k) + iy (g5 k)]

= 8P (npsker) + Cy[Gry(npskyr) +iFy (np; kgr)] (TIT.61)

and numerical integration gives the coefficients 6} by linear combination of the n solutions which vanish

at the origin. The 63; are multiplied by \/kfm; /(kim¢) to get the C’} with are symmetric for the exchange
of ¢ and f as will be shown by Equ. (IT1.86). The same relation holds in Dirac formalism for the solution
of the equivalent Schrodinger equation. An equivalent definition of the C’} will be given by Equ. (T11.104)
and (TIT.105).

By identification we obtain :

47 . . : . .
Jusorpio(0) = ?Zexp(wll +i01, ) O} < liy s, vi, 04ji,mi >< iy Ly my, i J, MO>
1

X < lf,S, vy, 0'f|jf, my >< jr, Iy, mf,uf|J, M > Yll:’*(k’z)yl:f(k’f) (11162)
where o and p are the projections of the spins of the particle and the target, oy, and ¢;, are the Coulomb

phase-shifts.

B.3.b Helicity formalism and cross-section

These amplitude are simplified by the helicity formalism (defined in Ref. [20]; see also Ref. [21] and [22])
in which the spin of the particle is projected on its momentum and the spin of the target is projected on
the inverse direction.

The axis of quantisation is along k; for the initial state and along ];/:f for the final state
and the helicity of the target is opposite of the projection of its spin.

The helicity amplitude involve only a reduced rotation matrix element rfi)m, () :
hel. _ p(Coul) hel. ) J) hel. (J)
ufafulol(g) _f;(ifofu),ol (6)6Zf +Zf;gf)ofulolrof—uf,al—u,(g) (11163)
J

with :

. 1 . . i .
f;([,{zrfz,cl{,(g) = k—iZexp(wll + wlf)C'f\/(Qli + 12l +1) < l;, 8,0, 04045, 0 >
X < ji,fi,O'Z',—pLﬂJ,Mi >< lf,Sf,0,0’f|jf,0’f >< jf,[f,O’f,—ﬂf|J,Mf > (111.64)

The coulomb helicity amplitude, which appears only in the incident channel, is the usual coulomb ampli-
tude multiplied by the reduced rotation matrix elements for the spin s; of the particle and the spin I; of
the target :

flCoul) hel-(g) = S — exp ( — 2inInsin g + 2i0'0)r(s’) (H)T(I’) () (T11.65)

HfOflhioi _kain2 [ Of,0i —php,—Hi
2

Note that in the codes ECIS, o( is used only to compute Coulomb corrections and that the Coulomb
phase-shift o; is replaced everywhere else by o; — g, independently for each level.
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The direct interaction differential cross-section is :

do(0) _ 1 hel. 2
aQ (2s; +1)(21; + 1) Z | “f”f“’g’(gﬂ ¢ (TT1.66)

OiOflilly

and the total differential cross-section is obtained by adding the differential compound cross-section
which is computed from the coefficients C’}.

In the code ECIS, the compound differential cross-section is expressed as a sum of terms, each of them
being a sum of squares of reduced rotation matrix elements; usually, these squares are expanded into sums
of Legendre polynomuials.

B.3.c Observables

The formalism used to express the observables as been described in Ref. [21]. All the observables P can
be expresses as :

dO’(a) A3ptadafia Asiadafia
P(g) FTe) = $A151A2Z2 A)\lzl)\QZQ (11167)
Aifti
where :
Qatataa el. 55 I, l. s I
Aot = Trace{fh ! (9)[7')\1“1 ® TA2N2] Fhet o)t [TA;:ME; ® TALM]} (TT1.68)

and, in peculiar, A8550 is the cross-section. Here, the 7 are tensor operators in spin space defined for

0<A<2sand =A< pu<Aby:

< sq|m,ls ¢ >= (—)5_‘1’\/25 +1<s,8¢—4q,Mp,ec69 (T11.69)

Due to the helicity formalism, the description of the polarisation of the outgoing particles i1s along the
outgoing direction in the center of mass system. The description can be shortened, using the relations :

*
T A A Ao Ny—
hermiticity AsHataka - (_)ZNA 3—HsAa—fa
Sty N (IT1.70)
1 Aafhzdafia _ A gAs—psAa—pa .
parity Nifi1Aalie = (—)Z A>\1—u1>\z—uz

As consequences

1. if the sum on X is even, A is real,
2. 1f the sum on A is odd, A is pure imaginary,

3. for the same X’s and opposite u’s, the A differs by (—)ZH'E“.

For example, the spin-flip SP is :
do (0 1
spo) O L AL+ A1) (.

Experiments are in the laboratory system; if some axis in the reaction plane is requested to describe
the final polarisation, a small rotation of the spin is needed for the scattering matrix. These rotations
will be explained in sectio (VITA).

Some observables as ) are defined with only the incident direction :

Q(9) dzg) =/241100 (TT1.72)

and need a rotation of angle # on the scattering matrix.

There are many ways to define an observable for the codes ECIS (with an axis perpendicular to
the scattering plane, using magnetic quantum numbers, usual tensors operators). The codes transform
informations into A’s, store information for necessity of rotation of the scattering matrix and compute
do-loops to use Equ. (TI1.68).
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C Integration methods

More details on these topics can be found in Ref. [1] for single equations, in Ref. [2] for coupled equations.

C.1 Single equation

The second order linear differential equation without first derivative :
(ry=V(r) f(r) (TT1.73)

is easily solved, using the relation between the function and its second derivative at three equidistant
points :

h? 11 5h? 17 h? 17
Er+h) = fr+h) =5/ (r+h) = 2f(r) + == f"(r) = f(r = h) + 5 /" (r = h) (I11.74)
with the truncation error : ; (VI)( )
_ h®f r
A=——rr (I11.75)

(it is called Cowell method in Ref. [1]). If there is no need of the function f(r), the integration can be
performed using :

E(r+h)=28(r) = &(r — h) +u(r), u(r) = %{(ﬂ (TT1.76)

which 1s the Numerov’s method and has the same truncation error.

For coupled equations, V(r) is a matrix and the computation of u(r) involves the resolution of a linear
system of equations. Tt is easier to use the Modified Numerov method by expanding the fraction up
to the terms in h* :

2 h* s
u(r) = {n2V () + S5V he () (IT1.77)
with a truncation error :
RSV3(r) f(r) RS FVD(r)
144 240
For a constant potential, this truncation error is —% the previous one. Such an expansion in the Cowell
method has been used in : [63] BEURTEY, R., GUILLOU and RAYNAL J., “Etude de la diffusion

élastique des particules chargées a l'aide du modéle optique”, Le Journal de Physique et le Radium 21
(1960) page 402. Tf needed, the wave function can be obtained by one of the two expressions :

A=

(IT1.78)

1
Ir) =€)+ ulr)

Fr) = ol — B+ 106() + £+ )] (111.79)

with an error of the same order.

Note that (see Ref. [1]) :

e the Schrodinger equation is easily solved numerically by these methods, starting from 0 at the
origin and a small value ¢ at the point A,

e to have a precise result, the starting values have to be modified for the angular momentum{ = 1,
e for high angular momenta, the first few points do not matter for the result,

e as the solution increases quickly, it has to be divided by a large number as soon as it becomes too
large,
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o for coupled equations (see Ref. [2]), the starting values are € for only one component, but a
Schmidt’s orthogonalisation procedure can be needed from time to time to avoid that solutions
align between them,

e the Schrodinger equivalent of the Dirac equation for the angular momentum [ = 0 with Coulomb
potential down to the origin can need a power expansion as starting values, but it is not used in
ECIS.

Matching with the asymptotic expressions can be done by writing the matching conditions at the
points R &+ h, using :

ol V() = Ryl VE)~ - F VR0, Gyl V() = Golns [V~ - GE 0 T£0) (1150

where the values of Fy(n;||V & () are obtained by writing three Numerov integration between r — h and
7+ h with steps h/2 and :

T[f(r+h)— f(r —h)]+16[f(r +h/2) = f(r —h/2)]=3R2[f"(r+h/2) — f’(r—h/2)] = 30hf'(r) (ITL.81)
and eliminating the functions at R 4+ h/2 between these four equations.

The linear system of matching conditions :

ren = 3o Ry R+ 08y + 86, R+ ) +)F (i R+ 0]}
E(R—h) = Zaj{ﬂ(m;n—oan+€'>[G><n>;7e—<>+>f><n>;n—<>]} (111.82)

is simplified by writing “pseudo-Wronskians” of the numerical solutions with the regular and the irregular
Coulomb functions, that is, expressions giving Wronskians when A tends to 0. Writing the matrices :

o 5’»€<R+h>9< R— ()= &R = (G (n: R+
' Fy(my; R+ 04 (ny; R = () = F ;R = (G (n); R+ ()
e 5k<R+ WAy R = () = &R = )F () R +) )
Z Fy(m; R+ (G () R = () = F(my; R = 04 (m; R+ () '
the matching conditions become :
= ok o+ iy, Bf =->" a?@‘f, (111.84)
J J
and the solution is given by the linear system :
BE =" (4f +iBE)T. (111.85)

J

It should be noted that the solution of these equation for only one set of second members B¥ for fixed
i gives the CY for fixed i whereas the CY are needed for fixed j. Wronskian relations give :
k’ —t j —J
—C = —=C} (TTT.86)
m; m]'
which can be used to obtain result from only one system of linear equations. This relation prove the
symmetry of the matrix C' defined in Equ. (II1.61) for m; = m;.

The error on the collision matrix is of the order of A*. They are equivalent to an error to the potential
by a term :

ht db ht db h?
=——— AV = —— — — V3 111.87
240 dr®’ 2a0dr 1’ ") (ITL.87)
for the Numerov method and for the Modified Numerov method respectively. They have a coherent
contribution. The step size in kr can be as large as % but smaller than the diffusenesses. A good value

1s h=0.5.
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C.2 Green function for Schrodinger equation

The differential equation written :

(o[ -2 SO ) vt ) Ve L) =~ SV (IG0) (1TLsg)

2m; r r? -
Fi

and the boundary conditions for the solution :

Fi(P)r o0 = 6; 0 Fy, (i3 kir) + T [Ga, (g ki) + 3 F, (i br)] (111.89)

where 6; o means only in the incident channel, can be replaced by an integral equation built with two
kinds of solution of the single equations of the right member:

1) the regular or optical solution completely defined as vanishing at the origin and by its asymptotic
value :

9 (M) rseo = Fr, (i ki) 4+ O [G1, (nis ki) + iy, (nis Rar)] (TT1.90)
obtained by numerical integration from the origin.

2) the irregular solution completely defined by its asymptotic value :
ff”(r)T_mo = Gy, (mis kir) + 1F, (i k) (T11.91)
obtained by numerical backward integration from the matching point.

These solutions are such that the Wronskian is :
F () £ ) = £ () £ () =k (111.92)

In practice, the irregular solution will be divided by k; so that the Wronskian is unity. With these
functions, the solution is :

Qmi

h2k;

) [ ) S v (' (1.93)

ir) = 000 = g {7710 [ A7) V)0

and the coefficient of the outgoing wave is :
—0 opt sz « re
qzquﬂ%Ajﬁ@;%wmmr (IT1.94)
The DWBA approximation is to replace f;(r) by f;eg(r) in Equ. (II1.94).

The derivative terms generated by the deformed spin orbit are in the second member of Equ. (TTT1.88).
In fact, it is g(r) = rf’(r) which is needed because the form factor stored for the derivative term of Equ.
(TI1.49) is Vi (r)/r?. It is obtained by numerical derivation related to the formulae giving the derivative
x of the function y :

e for the 3 first points :

vy = [147y1 — 360y2 + 450ys — 400y4 + 225ys — T2ys + 10y7]/(60R)
2o = [10y1 + TTys — 150ys + 1004 — 50ys + 1556 — 2y7]/(60h)
25 = [—2y1 + 24y + 35ys — 80y4 + 30ys — 8ys + y7]/(60h) (I11.95)

e from the 4th point to N — 3 if there are N points :

2 = [45(yi—1 — Yit1) — 9 Yiz2 — Yit2) + Yi—z — Yi+3]/(60R) (I11.96)
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e for the 3 last points :

tn_s = [ynv—e — 8ynv—s + 30ynv_a — 80yn_3 + 3byn—2 + 24yn_1 — 2yn]/(60h)
-1 = [—2yn—6+ 15yn—5 —B0yn_a + 100yn_3 — 150yn_2 + TTyn—_1 + 10yn]/(60R)
o — [IOyN_6 —T2yn—5 + 22byn—_4 — 400yn3 + 450yn_o — 360yn_1 + 1473/]\7]/(60]1)

(IT1.97)

In fact, in this application, the formulae for the first three points are shifted, taking into account that
the function to derive is zero at the origin.

Integrals with the Green function are not straightforward, due to the discontinuity of the integrand.
With :
[ se = 21s0) 4 s+ i) - o+
A 12 720

For Schrodinger equation, the integrand vanishes at the origin and at co and its derivative has the
discontinuity given by Equ. (T11.92). Using :

FIV () (111.98)

F(nh) =" "W (ih) 7 (ih), G(nh) =Y W(ih)f"" (ih) (T11.99)
i=1 i=n+1
where W (ih) is the second member of Equ. TT1.85, the integral is :
irr re th
f(nh) o< f""(nh)F(nh) + f7°9(nh)G(nh) — EW(nh) (TTT.100)

with an error of the order h*. In this equation k is the Wronskian given by Equ. (I11.92) and reduces to
unity in actual calculation with a redefinition of the irregular functions.

C.3 Green function for Dirac equation

The Dirac equation can be written as :

A~ AIGH) + BVF() = Si)
—h[% + A, (") Fi(r) + Di(r)Gs(r) = Ti(r) (TI1.101)
with :
My = Koy LA e VOV Bi(r) = Br—m— V- V2. (I1L102)

r 2m dr
S;(r) and T;(r) are given by Equ. (T11.60).

Two independent solutions of uncoupled equations are obtained by :

1. the two linear coupled equations are replaced by the equivalent Schrodinger equation,

2. its regular solution f7¢9(r) defined by Equ. (I11.90) and its irregular solution f”(r) defined by
Equ. (TT1.91) are obtained,

3. they are multiplied by D(r)% to obtain F9(r) and F"(r) (there is no difficulty to obtain
continuous square root, of the complex function D(r) as long as we assume that the real part is very
large with respect to its imaginary part),

4. the small components G"9(r) and G'""(r) are obtained from the Dirac equation by numerical
derivation using Equ. (T11.95) to Equ. (T11.97).
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Due to the number of operations and their difficulties, all the reorientation terms are shifted in the
second member of Equ. (TT1.58) (this is also done in the Schrodinger formalism if LO(29)=.TRUE.) and
these functions are kept if there are needed for the system with an higher total J.

With the relation (IT1.92) for f7°/(r) and fi""(r) and the Dirac equation, one obtains the Wronskian :
Eim(r) GI9(r) — Gi (r) F/9(r) = hk; (T11.103)

Here also, the irregular solution will be normalised such that the Wronskian is unity. With these functions,
the system of equations (IT1.58) and its boundary conditions can be replaced by the integral equation :

reg L L irr r ! reg 7“/ . 7“/ reg 7“/ X 7“/ 7“/
Fir) = F0)0 = s { P [ I00800) + 6T

e [T 0 + G T

Gilr) = G0 - {670 [ IS0 + G T
+G7(r) /Oo [F7 () Si(r') + G;i”(r’)Ti(r’)]dr’} (IT1.104)
and the coefficient of the outgoing wave is the coefficient of the regular functions at oo :
Ci =05, — ﬁ /0 CLEI (S () 4 GO T (111.105)

It is more difficult to obtain a precise value of this integral than in the Schrodinger formalism. The
two terms of Equ. (TT1.98) introduce corrections and Equ. (TT1.100) does not hold.

To find the error coming from the first term of Equ. (IT1.98) let us add two elementary step sizes
around r = 7’ :

LR ) G0 T 4 FE ()G () Ty ()]

g[G;i”(r) FIe9(r) Si(r) + GT9 (r) FI (#) S5 ()] = h [G;i”(r) FIo9(r) + %} Si(r) (IIL.106)

(3 (3

[r oy -

(3

which is an error of order & if this correction is neglected.

With the second term of Equ. (TI1.98), we obtain a correction :

h2k;
12

h2k;
12

(D151 (1) + AT ) + L7301}

(BT + B{A)5:(0) + 5.0}, (1m.107)

for F;(r) and G;(r) respectively. All these correction give an error of the order h*. However, the derivatives
of S;(r) and T;(r) are neglected in the code ECIS for the three first and the three last points.

C.4 Calculations

The actual calculations are quite different of what was presented here. In the Schrodinger formalism, the
system of coupled equations (TT1.88) is replaced by :

> omik; L+ 1 2mi .
P nr . rj e hﬂz{% "(r) - Vn(r)}}gi(r) = ijvij(r)gj(r) (IT1.108)
with : X
fi(r) = mZ gi(r), Vii(r) = 2 (IT1.109)

hZ
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The result differs from the C' matrix defined by Equ. (IT1.61) : its matrix elements have to be multiplied
by \/k;/k; to obtain the C7.

Calculations are also simplified by using ™" such that the Wronskian given by Equ. (II11.92) and
(TTT.103) is unity.

D Equations couplées en iterations séquentielles

The usual method of numerical integration of coupled differential equations can be applied only in the
Schrodinger formalism without spin-orbit deformation. It needs a lot of computing time and involves all
the solutions whereas we need only one or a few of them.

In the ECIS method (Sequential Iteration for Coupled Equations), we suppose the equations
ordered in decreasing order of coupling. The equations for the initial channel for which there is an
incoming wave are in front.

The first one is labelled fo(r).

If there are more than one, the other solutions are obtained from a circular permutation of the
equations.

With compound nucleus, all solutions are needed to compute the transmission coefficients and, if
requested, to diagonalise the scattering matrix.

In its first presentation, there was the “differential” ECIS method which consist to solve single inhomo-
geneous second order differential equations and the “integral” ECIS method which has been generalised
to Dirac formalism. They gave same results and they need same computational time and storage. The
“differential” ECIS method have been suppressed because :

e there is no simple extension to the Dirac formalism,

e result is obtained as a difference of two numbers and can be quite wrong with high energy close
channel.

D.1 0th order of iteration

We assume a multiplicative factor )\ in front of the second members of the equations and
do a power expansion with respect to A and take the result for A = 1.

For :

{ B2 {d_2 _ 2giki Ll ;1— 1) i kﬂ V) 4 Vﬁ(r)}fi(r) = AWi(r) (I1.110)

2m; Ldr? r r

the solution is :

filr) = f7%(r)di0 + A/OOO G (V, VYW, (V) [V’ (TTT.111)

with :

(7.7 = G () ()

the Oth order of iteration is obtained with A = 0. Therefore, it is :

Omy=poe cP=crt fPm=0 TV =0 (IT1.113)
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D.2 1st order iteration:
Fori=1
100 = = [ 6@ v WA@Y
o 2"“/ 799 Wao (') 59 () d! (IT1.114)

which gives the DWBA result.

For ¢ = 2
Ay = - ge<v,v'>[ve,{£’><v>+v6w{<oz°><v>}(v’
ol 2”“/ 29 () [Vao () A5 () 4 Vr () VG0 | (11as)

which takes into account the result already obtained for fl(l) (r).
and the same up to the last equation.

After the last equation go back toi=20:

B0 = 20 [T o T ) - D@ e
O opt 2myg reg /
G’ o= G- ko / Voo ZVOZ 1 }dr (ITL116)

1) .
are less than a given e.

The result is obtained if C’él) and all the 62(

D.3 nth order iteration
For 1 <:< N
)—co N
10 = = [T e@ T e+ o ]
|=c0 =)
—(n 2 % re / n— / = ! n /
= =2 [ e a0 + e )
7j=1
+Z‘/ij(r’)f}"_1)(r’)}dr’ (ITL.117)
and for 1=0
ey = pres / G/(V, V)[v,,( (0 +ZV,|{ }
n O 2 7‘8 Tl !
cm oot hﬂ}:)/ 9( VOO( 1) +ZV0] () } ¥ (IIL118)

The result is obtained if |C’én) - C’én_l)| and all the |€£n) - 62(»”_1)| are less than a given e.
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D.4 Convergence and padé approximation

This method of iteration can give divergent results. The convergence can be accelerated and the
possibility of divergence avoided by Padé approximants.

From the fourth iteration, if convergence is not obtained for the current equation but was obtained

for all the previous equations in this iteration, the results C’Z»(m) for 1 < m < n are considered as :

™M =3"aN  for  A=1 (I1.119)

even if each iteration do not correspond to a definite power of the A introduced in the equation.

The polynomial of coefficients a‘g is replaced by the ratio of two polynomials P(A)/Q(X) with the

same number of coefficients. This ratio is obtained as a continued fraction in such a way that a new C;"
adds only a new coefficient. If the continued fraction evaluated with all the coefficients and the continued
fraction evaluated without the last coefficient differ by less than ¢, their value is assumed to be the result.

The smallest or the few smallest zeroes of the denominator polynomial Q(X) are the same for all the
equations. There are complex values. If the coupling of the equations is multiplied by one of these zeroes,
the coefficient of the outgoing wave of all the equations blows up. For this value, the set of coupled
equations has a solution which is purely outgoing in all the channel: in an exact power expansion with
respect to the coupling (that is without the sequential procedure) it is a Weinberg state. If A; are the
Weinberg eigenvalues and x‘z the amplitudes of the outgoing waves with a proper normalisation :

1 (n) v 1
Ci(A) =)« Sy o =3 » > v (T11.120)
7 7 m=1

If A; is small, each iteration gives the result of last one multiplied by 1/A;. Iterations are stopped if these
results become too large, or by a maximum number of iterations.

The minimum value of |};| is the convergence radius of the Taylor expansion. In practice, Padé
approximants give good results up to 6 times the radius of convergence : that is for 20
iterations, results as large as 10'5. Indications on the actions of the code were given in section (I.A.2.b).






Chapter IV

Long range interactions

The description of this topic in Ref. [7] applies only to ECIS79. From the code ECIS88, this method allows
to use non relativistic Coulomb functions as already stated in Ref. [7] which needs no generalisation for
that. The Coulomb excitation in the Dirac formalism needed a drastic change of formulae. The use of
such methods for the Coulomb spin-orbit interaction of chargeless particles needs a completely different
calculation, even in Schrodinger formalism. Note that, in the Schrodinger formalism, the integral related
to Coulomb spin-orbit interaction cannot be computed by this method when the sum of the two angular
momenta is equal to the angular momentum transfer; the code neglect this correction.

A Long range contributions

For large values of r with deformed Coulomb interaction, the coupling between equations is :
2m e
h—ZVZ'f(r):Zaf‘fr A=t (IV.1)
A

where af‘f is the geometrical coefficient Gf‘f multiplied by some constant.

Al Iterations in the Schrodinger formalism

In Equ. (TT1.117) and (TT1.118) describing the nth iteration of ECIS, for sufficiently large values of r, we
can assume that :

F90r) = Fi(nskir) + CF G (g kir) + 05y, (i Rir)]

Hrr)y = G kar) + iFy (i kar)

F) = B k)i + OV [Gr (s kar) + iFy, (mis kar)] (V.2)

The long range contribution can be expressed with the integrals :
(o) 1 : _
M(H, K kR); "' = /_ WHl,(m; ep) K, (ng3 e p)dp (IV.3)
kR

with k = \/kiks, € = Vki/ky and H and K are the regular or the irregular Coulomb function or any

combination of them. We shall also use :

V(H,K);; = Za”k—M (H, K, kR); (IV .4)
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The equations (IT1.117) and (TT1.118) can be replaced by :

500 = o sl [ Z Vi) 1 i+ 4}
fzrr {/ freg ZVZ} )dr}
: o+ 1 {/ 79 (r va (') dr" +B} (IV.5)

where m = n if j < ¢ and m = n — 1 if j > ¢, the equation 0 being the last one. The corrections A are :

2
z
I

A=k Zv F)ij8j0+ C\MV(H®  HE)Y, (TV..6)
and the corrections B are :
= ki Y [V(F,F)ij+C{"V(H™M F); 51650
J
+CV(F, S, + OV (H) ) (IV.7)

where Hl(;l_)(m; kir) = Gp, (nis kir) + i Fy, (n;; ki) is the Coulomb outgoing function.
All the integrals involved are for natural parity, that is with I; + 1y + A even.

A.2 Usual coupled equations

For n equations and with F and G replaced by corrected values, the system of Equ. (IT1.82) cannot be
solved as a system of n linear equations similar to Equ. (ITI.83). The linear system of equation would
be of dimension 2n. However, one can obtain the results solving successively two systems of n linear
equations.

The first step is to obtain a C-matrix by matching with the “uncorrected” Coulomb functions. In
this step the values of Fy, (1y; R + () and Gy, (1); R £ () are obtained taking into account the long range
term (TV.1) in the three Numerov integration steps and in Equ. (TT1.81). The method to use is described
by Equ. (T11.83) to (TT1.85). This is equivalent to the matching with Coulomb function and its derivative
at the point R.

In the second step, the Equ. (ITI.61) at oo is rewritten at the matching point R. The Coulomb
functions at oo are replaced by the values which they get at the point R, taking into account the coupling
given by Equ. (TV.1), that is for equation j :

Fi(nioc) = Pyngski {6 = MO, F)iy i Py ki B) 4+ VO, By B (1363 R)

B (go0) = G (0 kg BY{6i7 + MO B0 1P (s ki R) b = VHS, B, 4 By (05 k5 R)

(TV.8)
In the result, replacing :
1 (ni; kiR) ZC H®) (;:k;R) (IV.9)
one obtains the system of linear equations :
S (0504 VR HS) ;4 ch H) ) Ol = =V (F, F)ji+ 3 Ch (6 = V(H®, F)y)
l ’ (TV.10)

which 1s also of dimension n.

The integrals involved are the same as with iterations.
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A.3 Coulomb spin-orbit interaction

For this interaction, instead of Equ. (TV.1), the coupling between two equations is :

2m
h’ dr

d
= Zaf‘f [{z1 - (A + 1)1‘2}7“_)‘_3—1—1‘37“_)‘_25] (TV.11)
)

1 d J
Vig(r) = Z)\:a;\f[xlr_A_?)*‘l‘z;E(r_)‘_l)+x3r‘>‘_2_]

where 21, 29 and 3 are the three coefficients which appear in Equ. (T11.49) and (IT1.53) in front of the
three form factors. The coefficient x3 implies a derivation of the wave function which is a pure Coulomb
function. One can use one of the two formulae :

2 2
n?. 1 d | 7§ ne. L d 1l n
1+29% 5 (n: :(———)F ), 1+29% R(n; :(————)F_ p), (IV.12
(435)" Froalp) = (o4 o4y Filme), ()" Flnip) = (= gt 47 ) B (), (IV.12)
to express the derivative with the Coulomb function itself and another Coulomb function with the angular
momentum increased by one unit (it could be decreased). The result involves three terms :

1. with the same angular momentum and a factor #~! which can be summed with the contributions
of x1 and x4,

2. with the same angular momentum and without power of r,
3. with angular momentum increased by one unit.

So, three integrals are needed for spin-orbit interaction, one with »=*~3 and two with #*~2.

The integrals involved are of natural parity and also of non natural parity, with ; +1; + A odd.

A4 Dirac formalism

In this formalism, the multipoles of the scalar and the vector potentials act only between larges com-
ponents or small components whereas the multipoles of a tensor potential acts between large and small
components.

For the Coulomb potential, which is a vector potential, the geometrical coefficient for large components
is the same as the geometrical coefficient between small components. However, there are quite different
for a magnetic multipole excitation (in particular, one or the other can vanish). The coefficients between
large and small components of equations ¢ and j are multiplied by the normalisation factors :

1 FE; E; 1% 1 FE; E;q=
Np=—-|(1+ 2)(14+— Ng=-|(1-23)1-— V.1
r=s[0+ 0+ 2] Ne=g[0- 2o -] (IV.13)

respectively. The two integrals are computed independently because they involve different quantum
numbers.

The tensor potential involve no derivative of the wave function. The two integrals are computed
independently, with normalisations similar to those of Equ. (TV.13).

All the integral involved are of natural parity except for relativistic corrections of uncoupled equations.

In the Dirac formalism and in the iteration method for the Schrodinger formalism, the integrals M
of Equ. (TV.3) must be corrected for finite step errors. For a step h, taking into account the numerical
integration described by Equ. (IT1.99) and (TT1.100), the result is too large : in a next step between R
and R+ h, described by Equ. (IT1.98), the contribution at R has been already taken into account. The
value needed is :

N o L h o
M(H, K, kR);}~" = /_ WHI,(W;GP)AM(UJ‘;E 1P)dp—§WH1,(772';6R)K”(W;6 'R)
hdy o1 . o
~ S T s R K (g5 R) | (IV.14)

On the contrary, with usual coupled equations, no finite step correction is needed.
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A5 Asymptotic J-region

Using the integrals defined by Equ. (TV.3), we divided the r-space into :

e r < R, the coupled channels region in which a numerical integration of the coupled equations is
needed,

e r > R, aregion in which only DWBA results are used.

When the total angular momentum J of the system increases, the result of the numerical integrals
become smaller and smaller. For some critical value J,,, it does no more contribute, but the integrals of
Equ. (TV.3) are still important because their mean contribution comes from r >> R; the computation
must be continued up to some J = Jys. So, in the J-space, there are also two regions :

e J < Jp, the coupled channels region in which a numerical integration of the coupled equations is
needed,

o Jn < J < Jy, an asymptotic region in which the optical solutions of the diagonal equations are
pure regular Coulomb functions.

In the asymptotic region, the integrals can be extended to the origin, keeping the expression given in
Equ. (TV.1) because the wave functions are very small in the interior region. The result is :

o =3 ok M(F,F0)70 (IV.15)
A

These integrals are real. This first order does not respect unitarity. However, the coupled channel problem
can be formulated differently, in terms of the reactance matrix K, which is the coefficient of the irregular
function (instead of the outgoing function) in the solution, with the normalised regular function in one
channel only. The matrix C' is obtained, solving a linear system of equation :

K
Tk

Kip =Y o} M(F,F,0); 7", C (TV.16)
A

The value of Jyr can be very large. Valuable results can be obtained with a smaller value of Jy, using
factorisation of (1 — cosf) in the amplitudes. Details will be given in section (VII.C.3).

B Recurrence relations

In the Schrodinger formalism, the product of the wave number k; and the Coulomb parameter 5; of a
channel 7 is a constant C; = k;7; independent of the channel i. All the considerations of Ref. [7] are based
on this properties; the same restrictions are present also in the previous studies of the integrals from 0 to
infinity in : [64] BIEDENHARN, L. C., McHALE, J., L. and THALER, R., M., “Quantum calculation of
Coulomb excitation. I”, Phys. Rev. 100 (1955) page 376 as well in : [65] ALDER, K., BOHR, A., HUUS,
T., MOTTELSON, B. and WINTHER, A., “Study of Nuclear Structure by FElectromagnetic Excitation
with Accelerated Tons”, Rev. Mod. Phys. 28 (1956) page 432. In the Dirac formalism, the products n;k;
are proportional to the total energy and all the considerations of these references have to be extended.
However, the approach is quite similar.

B.1 General recurrence

In the Dirac phenomenology, the product n;k; is proportional to the total energy of the incident particle,
which varies from level to level. Therefore, the formula (36) of Ref. [7], which was a generalisation to
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integrals from R to oo with regular or irregular Coulomb functions of formula (2.B.64) of Ref. [65] (which
was written for integrals from 0 to co involving only regular Coulomb functions) has to be replaced by :

|l 4l

|lf—|—1—|—i7]f| Ty — A — - Ty —A—
ri€ BT M(H, K, kR)[7{ + wse — M(H, K, kR); 77,
_oll 4+ 1+ - Ty A1 Ly + iny| - Ty —A—1
—I3€ 1ZZTM(H, [X’kR)l,-I-l,lf — X4€ TM(H, [X’kR)l,,lf—l
., *ans S L/ - U/ l‘Mf)M H K. FR)->!
(Ezf+1 T Ly rp ) MUL R,
—[o1(ly = 1)+ @oli — ws(li + 1) — a(ly + A+ V)| M(H, K, kR); ) >
1 T - —-17;
= (z1 + 734)WHI1(77%€ kR) Ky, (ns, ¢ kR)
© 1 rd . .
+(x1+ @2+ w3t wa) [ A—H{—Hl,(ﬁmp)}ﬁlf(ﬁf& p)dp (IV.17)
kR P dp

where ¢ has been given below Equ. (TV.3) and 21, #2, 23 and 24 are independent parameters. Independent
recurrence relations can be obtained by using various values of the #’s such that :

l‘1+l‘2—|—l‘3—|—l‘420 (IV18)

This formula can be obtained from the Equ. (TV.12).

Other recurrence relations can be obtained by combining those obtained from Equ. (IV.13) with
peculiar choices of the z’s.

Of particular interest are the recurrence relations between integrals with the same values
for A and the difference ¢ =1y — ;. There are :

e three terms relations for A=¢ =10

o four terms relations for A =|¢| =0

o five terms relations for A # ¢.

In the non relativistic case, for Wllich nik; = nikp, with A =Tand ly =, + 1, 21 = 22 = 0, the
coefficient of the fifth term M(H, K, k’R)Ef‘l_fl vanishes, allowing to express the dipole integral in terms
of two monopole integrals. As the monopole integrals fulfill a three terms recurrence relation in all

cases, the dipole integrals with [; = I; 4+ 1 fulfill also a three terms recurrence relation, but only in the
non-relativistic case.

B.2 Stored recurrence

In practice, we are interested in integrals with A < 4. The structure of recurrence relation is such that
any of them can be expressed in terms of four other ones. The simplest approach is to express all of them
through local recurrences in terms of integrals with some fixed value of A and ¢. Integrals with the
chosen values for A\ and ¢ will be evaluated beforehand, also by recurrence, with the best
precision possible.

One cannot choose the monopole integrals A = ¢ = 0, nor the integrals for which A = |g¢|, because
their recurrence involves less than five terms. Therefore, all the four integrals needed cannot be of one of
these kinds.

For the stored integrals, we choose those with ¢ = 0 to obtain symmetric expressions for
the local recurrences with respect to the exchange of /; and {; and A = 1 for simplicity of
the expressions. Furthermore, the stored integrals used for diagonal terms are the corrections from
non relativistic to relativistic Coulomb functions (for that, they can been obtained with equations much
simpler than those needed in the general case and described below).
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The five term recurrence relation for A = 1, ¢ = 0 is not easy to handle directly. It can be replaced by
an inhomogeneous three terms recurrence relation involving the monopole integrals with A =0, ¢ = 0 as
inhomogeneous terms. This is similar to what was obtained for non relativistic corrections in Equ. (37a)
and (37b) in Ref. [7], but the inhomogeneous terms A = 1, ¢ = 1 used in the non relativistic case have to
be replaced by the monopole integrals because they do not have a three terms recurrence relation in the

relativistic case.

The monopole integrals are given by :

20 +2 _ o
21+1|l+“72||l+“7f|M(H K, kR); 10— 1_{2772771“1‘1(1"‘1)( +e 2)}M(H’A’kR)l,ll
+2H_1|l+1+”h||l+1+“7f|M(H K RR)SY

l—I—l
= { |l—|-l77f|Hl niy ki R) K- 1(77fakfR)+—|l+”h|Hl 1(mis ki R)Ky(np; kf R)
1

- T {1(21 1)+ niky + nfki}H,(m; ki R) K (5 kfR)} (IV.19)

The recurrence which replace formula (37a) of Ref. [7] is :

2l —
2041

Il+lmlll+”7f|[(l+1) (ki = k7)) + (kfni — kgnf)]M(H, K, kR) %,
T k (kim? — Kdn2) (22 + 20 + 1) + (k} — k(1 + 1)212}}M(H, K,kR);;
2 + 3

+—21+1|l+1+im||l+1+inf|[z2(k§—k;)+(k§ — ki) M(H, K kR)l+1 1

. . I 1
= —7(’%2 — k7Y (miks + npk) |+ imi||[l 4 ing M (H, K, kR), ) — g(k’? — k%)

k ki .
({174 gy = (0 2k} g 0 o Ml = (4 2)ngkg ) 2| MO R BR)
k(17 +n7) - k2(1* 4 n7)
2012 (kR)3

_|_

IZER(k? D= ki) il |+ ing | Hioy (ni; kiR) Ki—a (g5 ky R) —

{Ufll + |20+ 1) + (L4 2)mik; — Ingk ] Hi(nis ki R)Ki—1 (ny; kg R)
il + i |20+ 1) + (L4 2) ks — Iniks Hi—1 (0 ki R) K1 (1 k’fR)}
{k?(12 +07) + k(1 4 n7)

T [202(1 + 1)2(20 + 1) + 1(L 4 2) (2L + 1) (ki + npkys)

L2+ )RR img] — — [(kint — k) + 10 + 2) (K202 + K202) (K2 — k)

20kR
kin? — k4
- (Zi }Hl 7]2,147 R)Al(ﬁf,k’fR)
kiky
(TV.20)
In practice, we introduced :
kin? — ki

Cx =k +kinj  Dx =kini—kin} Dy =——-"LL  Dpr=k}—#} (1V .21)

kiky

The Equ. (TV.20) is homogeneous in Dy, Dx and Dy, which can be multiplied by a common factor :

o DX =0,DT=1and DY =n;ny,
o if DX #0andif DT # 0, DX and DY are divided by DT and DT is replaced by 1.
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With these notations, Equ. (TV.20) is :

N1 | , e
m” + inilll+ ing|[(1+1)*Dr + Dx M (H, K, kR)l—zl,l—l
“[Dx Cx + Dy (202 + 20+ 1)+ Dp(l + 1)21%( + 6—2)} M(H, K, kR);}

204 3 . . R
+m|z + 14 am||l + 1+ ing|[I?Dr + Dx|M(H, K, kR),fUH

1 . . e
= =7 Dr(niky +neka)ll + i |+ ing | M (H, K, KR) iy

1 I
— =D ({P + i HIngks — (14 2)mikiye ™ + {8 4+ 9 {Iniki — (L4 2)nekg ) | M(H, K, kR)}

2
1 . , .

o Dx I il ing [ iy (s ki R) Ko (g5 ke )
———(©*Dr+D L+ine|[20(1+ D)2+ (L4 2)niki — gk Hy(ni ki R) K1 (ne: k¢ R

212(kR)3( i X){Ufl ing[20(L+ 1)+ (1 + 2)n kgl H (i kiR) K11 (ns; k¢ R)
il + im0+ 1) + (L + 2)nrky — Ik Hizo (ns; ki R) Ko (5 k’fR)}

1 _

+W{[12DT + Dx[20°(1 4+ 1)° (20 + 1) + 10+ 2) (20 + 1) (miki + nsky) + 20+ D(RR) ning]
~l(kR)*[Cx Dx +1(1+2)Cx Dy — 21Dy]}H,(m; kiR)Ki(ns; ks R) (1V.22)

The four integrals M (H, K, kR)yy , M(H,K,kR)]} , M(H,K,kR);> and M(H,K,kR)]] are
needed to start the recurrence. As in : [66] RAWITSCHER, G. H. and RASMUSSEN, C. H., “Brror
analysis of code AROSA for quantal Coulomb excitation calculations”, Comput. Phys. Commun. 11
(1976) page 183, they can be obtained by integration of the product of the asymptotic expansions from
the matching point to co. For the asymptotic expansion, see for example in : [67] ABRAMOVITH, M.
and STEGUN, 1., A., “Handbook of Mathematical Functions” Dover, New-York, (1972) page 541. For
I =0 and n < 30, this asymptotic expansion can be used only (see Ref. [19]) for kR > 5n/3 + 7.5; for
larger values of 7, a look on the asymptotic formula shows a quadratic behaviour of the lower radius;
kR > 0.06n? seems to be a safe limit. To use a smaller matching point than the larger value R,, of
kiRm = bn;/3+ 7.5, ktRy = bny/3 + 7.5 and kR, = .06ming, the integral between R and R, is
computed by 40 points Gauss integrations, each Gauss integration being for AkR < 20. This allows
results for any R whereas the method of Ref. [66] gives results for a R which increases with angular
momentum.

This procedure is convenient for M (G, G, ER)l_l2 , which increases quickly with I. For M (G, F, ER)l_l2

and M (F, G, ER)l_l2 , which remain of the same order of magnitude when n; and n; are not very different.

On the contrary, M (F, F, ER)l_J2 , which decreases when [ increases, is not given accurately. The down-
ward recurrence, starting from zero values for the integrals and using the usual procedure of downward
recurrence for the regular Coulomb function of the inhomogeneous terms, give a very accurate value of the
integral from the origin to the matching point; then M (F, F, ER)l_J2 is obtained by taking the difference

with M (F, F, O)Z_lz, which is needed anyway in the asymptotic region.

B.3 Local recurrence

Due to the complexity of the expressions in the general case, when n;k; # n;k;, the expression of the
integrals had to be changed with respect to what was described in Ref. [7]. Any integral is expressed as :

M(H, K, kR); 37" = aaM(H, K, kR);%, ,_ +asM(H, K, kR);",

+ asM(H, K, kR);3, oy + aaM (H, K, kR); 2, 140



56 CHAPTER 1V. LONG RANGE INTERACTIONS

+ BiHn(is kiR)Kn(ng; kg R) + BoHn(ni; ki R) Kn i1 (ng; kg R)

+  BsHnyr(mis ki R) Ko (ngs kg R) + BaHnpr (i ki R) Knqa (g3 kp R) (1V.23)
with :

1
n = Integer part of 5(12 +1;—A+3) (TV.24)

If I; and I; are decreased by the same amount down to the first values for which the integral from 0 to
oo converges, the value of n is 1. The four coefficients o depend upon A, ¢ =1y —1I;, n, the Coulomb
parameters and the wave numbers; the coefficients 3 depend upon the same parameters and also upon

the radius R.
Using 7 = /miny, € = /N7 /n (¢ = € in the non relativistic case) Equ. (IV.23) can be written :

<1
/ — i, (6/_1ﬁ; er) Ky, (e'n; e_lr)dr

R r
4 00 1 4
= Z a; / r—an_H_z(e/_lﬁ; er) Ky pi—o(€7; 6_16_17°)d7° + Z Bi(R)P;(R) (TV.25)
i=1 R i=1
with :
P (R) = Hn(el_lﬁ; er)Kn(G_lﬁ; €'r)
Py(R) = Hn(el_lﬁ; er)KnH(e_lﬁ; é'r)
Ps(R) = Hn+1(€/_1ﬁ; er)[(n(e_lﬁ; €'r)
Py(R) = Hpp (7 er)Knp (e, ¢'r) (TV.26)

Using the recurrence relation of the Coulomb functions :

I+ 1)

(2 + 1)+ | Funs p) = 041 + il Fraa (o p) + 0+ 1)1+ in] Fiza (5 ) (1v.27)

to express all the H with H, and H,1; and all the K with K, and K,4+1 (the power of p_1 always
increases), we obtain :

co 4 4
/ > Ci(r)Pi(r)dr = Bi(R)Pi(R) (IV.28)
R i=1
where the C;(r) are known polynomials of =1 and the 3;(R) unknown polynomials in R~!, that is :
N N—1
Citry=>Y_ M g(R) =Y 8RR (IV.29)
n=2 n=1
Differentiating with respect to R, we get :
N N—1 4
SR = 3 [P RT T 4 Y Quys R (IV 30)
n=2 n=1 7j=1
with the diagonal matrix :
n—20—2 0 0 0
0 n 0 0
P(n) = 0 . 0 , (IV.31)
0 0 0 n+2042
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and with the diagonal matrix :

—mie —mpemt =L+ Tangle™t —[l4+ 14 in;e 0
R e T 0 =l 1 e
Q=g , (1V.32)
[T+ 1+dn;le 0 nie —npe! —|l+ 14 nsle!
0 [+ 1+inle  [I+1+nele™t  metnpe?

If the highest power of =1 in the C;(r) is m, Equ. (IV.30) allows to obtain first the coefficients of R="+1
in the §; and, then, those of all the lower degree. As :

Cy includes [(.../r? 4+ ... /r4+ . Jar +ag + ... a4]/r?
(/e o+ (o e+ Y]/ r?
(/e o+ (o e+ Y]/ r?

cartas+ (P4 e Y] /r?

C5 includes

('3 includes

— — —

C4 includes

the coefficients ﬁl(n) for n > 3 do not depends on the a’s. The Equ. (TV.30) written for n = 2 and zero

values for the ﬁ;l) is a linear system of equations giving the a’s. The coefficients 62(2), which are in this
equation, involve a specific dependence of [;, [; and A and a very simple dependence upon oy and a4.

The dipoles integral are slightly different : in particular, when n; = n; and k; = k;, a different formula
has to be used to avoid a division by zero.

All the expressions are simpler in the non-relativistic case, when X = n;k; —n;k; vanishes. They have
been separated into a “non-relativistic” part, which is their value for X = 0, and a “relativistic” part, in
which X can be factorised.

The linear system of equations expressing the « as functions of the ﬁfz) can be inverted. The co-
efficients of the inverse system are quite complex when X do not vanish. The coefficients ay and ay
depends only on 652) and ﬁf) respectively, the coefficients s and ag depends on all the 3(2). A close
expression of the coefficients a can be obtained only when some 3 vanish, that is for I; =1, +1, A =1
and l; = [;, A = 2. The subroutine CORA stores the values of the B2 for the cases of interest and compute
the coefficients «. It do not seem that this increase of intermediate computations decrease too much the
precision of the results.

All these coefficients have been obtained up to A = 5 for even parity integrals (I; +{; + A even) as well
as odd parity integrals (I; +{; + A odd). For A = 6, only the even parity integrals with X = 0 have been
obtained except for |l; — [;| = 6. These last results allows the computation of A = 4 for the Coulomb
spin-orbit in the Schrodinger formalism. However, these results involve around 1100 cards and their use
in ECIS is not absolutely needed. In ECIS88 there are only the complete expressions for natural and
unnatural parity up to A = 3 and the expressions of natural parity integrals for A = 4 with X = 0; this
insure the use of Coulomb corrections up to A = 4 for the central potential in any case, up to A = 2 for
the Coulomb spin-orbit in Schrodinger phenomenology and A = 3 in Dirac phenomenology. In ECIS94,
all the results obtained have been introduced, but the difference with ECIS88 is on COMMENT cards which
can easily been activated. In this domain, it is not possible to derive the expressions “by hand”. They
were obtained using symbolic calculations on computer with AMP (“Algebraic Manipulation Program”) as
described in : [68] DROUFFE, J.-M., "TAMP Language Reference Manual, Version 6”, Note CEA-n-2297,
(1982).

If k; = k; and n; = ny = n, the matrix @ given by Equ. (IV.32) is singular of rank 2. If Equ. (IV.30)
is used to compute some 31 only two of them are independent because the coefficients of r~! are :

28+ |1+ Ll [B5 + 850] = 0

g - =0

g - =0

2B + |1+ 1+ in|[857 + 857 =0 (IV.33)
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that is : ﬁgl) = ﬁil) and § = ﬁél) + ﬁgl) simple function of 651). Consequently, Equ. (TV.23) holds with
a1 = ag = 0 and the first term of the polynomial expansion of the 3;(r) is r=!. In fact, the five terms
recurrences reduce to three terms recurrence. This behaviour was used in ECIS79 but has been dropped
since ECIS88.

B.4 Integrals from 0 to oo

The integrals from 0 to co are quite similar to those published in Ref. [65]: in general, the variables
of the generalised hypergeometric functions of two variables depend upon the wave numbers and their
parameters depend upon the Coulomb parameters. The formula (IIB.62), of Ref. [65], valid if |l; — {;] is
not equal to A, becomes when k; > k; :

M(F F 0) — ﬂ_k_flf (2]{7')>\_2 eXpﬂ'% (Z'X)A-I—l,—lf—l |F(lf + 1 + an)| F(Qll + 1)
Ll k; sinh ¢ IT(L + 1 4am)| T(20; + DDl — 1 + 1)
ks
XFz(lf T . 1,lf +1 —|—i7]f,—ll' — im,?lf =+ 2,—212'; k—X, —X)
!
_Fﬁl’(% -2 exp —7§ iﬁX)A+lf—l,—1 IT(l + 1+ ins)| T2l +1)
ky sinh 7€ IT(; + 1+ ins)| T2+ )T(ly —; + 1)
ks
XFQ(ZZ' —lf +A-1,+1 —|—i7]l',—lf - iﬁf,?li —|—2,—21f;—X, k_X)
!
+ﬂ_(k’l — k’f)A exp —71'% |F(ll + 1+ Z7]Z)|
2kik ¢ sinh & |T(l; + 1+ iny)]
U(ly +1+iny) __ jlmlimast (i (_ﬁx)—iw
TA+ 14T + 1 +4m) k¢
ki
XF3(—ZZ' + o, —lf - iﬁf,li + 14 im,lf +1-— iﬁf,/\—l— 14 1¢; X, k_X)} (IV34)
!
where : _
§=mni—ny X=- (IV.35)
2k;

Similarly, the formula (IIB.58) of Ref. [65] valid for {; = [; + A, becomes :

E 0L+ 1+ig)| (ki a2 fIT( A+Z€)|
M(F, F,0 = S RWiA 1wl (RN o ITAA+ )17
( Ity = exp PToINU + 1 +iny)] (kf) (2ks) { 2\)

X Fo(=2X + 1, l»+1—im,l»+1+im,—A+1+z£,—A+1—z£,X,X)

T(ly +1—ing)T(=A = i)
%QSX)\+Z§ f f
+ Tl + 14 dm)

X Fy(= X+ 14 i€, 1y +1—ing, i + 1 —im,/\—i—1—|—i£,—/\—|—1—|—i£;X,X)” (IV.36)

where :

S=-1, if (i —ns)(ky —ki) <0 and A is odd;
S=1, otherwise (TV.37)

These formulae holds even if k; = k¢, that is X = 0: in the first formula, Equ. (IV.34), only the
highest degree terms of the two generalised hypergeometric functions of two variables F'2 remain, all the
others vanish; the generalised hypergeometric function F'3 of the first formula and one of the two F'2 of
the Equ. (IV.25) reduce to unity; the second F2 of the Equ. (IV.36) disappears. If n; = 1y, careful
limits of the expressions have to be taken, with derivative of gamma function inserted in each term of
the generalised hypergeometric series. The special case ; = ny = 0 will be discussed in next section.
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The monopole integrals are given by a different formula, corresponding to formula (ITB.56) of Ref.

[65] :

4kzkf }H'l 1

ki + kg sinh m|T(0+ 1 4 in)||T(L+ 1+ ing )]
ke — k’iyg T+ 1+a)T(+1—1ns)
ks + ky T(1+ &)

M(FaFaO)l_,llz |:

. . o Tky — k2
o (l+1—dnp, I+ 14 in, 1+ [m} }

(IV.38)

This formula do not hold if k; = k; and has to be modified if n; = 5y but not zero; for n; = ny = 0, see
below. All these formulae and their limits have been used to check the Coulomb integrals.

Equ. (TV.38) and (TV.34) are used to obtain the integrals for / = 0,/ =1 and A =0, A = 1. All
the other are obtained with the recurrence equations Equ. (TV.19) and (TV.20) (without the products of
Coulomb functions). In fact, as downward recurrence is used to obtain stored integrals, only the integrals
for I = 0 are necessary. Any integral is obtain by Equ. (TV.23), without the 3’s.

If n; = n; and k; = k;, the stored integrals are :

!
_ 1 coshmy 1 2n
M(F,F,0 2:—{ — = - = 7} V.39
( i 41+ 2 T T sinh N + Z n2+n? ( )

n=0

which 1s used instead of the recurrence relation.

B.5 Coulomb corrections for chargeless particles

If there 1s no charge, the recurrence relations do not relate natural parity and unnatural parity integral,
that is those for which [; + [; + X is even with those for which /; + [; + A is odd. The Equ. (IV.17)
becomes :
- Ty —A—1 -1 - Ty —A—1 -1 - Ty —A—1
z1eM(H, K, kR)l,,lf+1 + zoe T M(H, K, kR)l,—l,lf —x3c M(H, K, kR)l,+1,lf
—z4eM(H, K, kR); 7Y — [o1(ly — 1) 4 @aly — ws(li + 1) —wa(ly + A+ )] M(H, K, kR); ;77

1 — R =
= (l‘l + I4)WH11(0,€]€R) [X/lf (0,6 1]{7R)

[ee]

d . _

(e 4+ 2o+ 23+ m)/— e [ HL (0, p)] K, (0, p)dp (IV .40)
kR P dp

The integrals needed are all of natural parity. Therefore, it is no more possible to compute them from
stored integrals with [; = [y and A = 1. They have to be computed from stored integrals with ; = [y and
A = 2. The recurrence relation is then :

21— )M (H, K, kR) > _| — L+ 1)(" + € *)M(H, K, kR);} + 2(1+ 2)M (H, K, kR) % |,
1

- T Hi_y (ki R)Ki_1 (k¢ R) — Hyy1 (ki R)Ki_y (ks R) (IV.41)

The integral from 0 to oo, when k; > kj, is given by :

!
M. KR! — T ky U(5[li +1 = A+ 2))T(N)
(H, K kR) G = o5 L—At2 (L[, _ iy _ 1.
2! D5l +1; = A+ NT(GL =1 + X+ DT (5[L 41 + A+ 1])
1 1 k
szl[i(zin—A+2),§(zi—zf—A+1);1—A;1—(k—f)z] (TV.42)

This expression has to be used with A = 2 and I; = Iy = 1 to start the recurrence; a second value is not
needed because the recurrence can be started by assuming the product of the angular momentum with
the integral to be % for [; =1y = 0. When k; = ky, the integrals are simply :

1

(IV .43)
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To express any integral with the stored integrals, the coefficients described above in the general case
are such that a; = a4 = 0. The dipole integral cannot be expressed if k; = k;, but these integrals
are used only for the Coulomb spin-orbit and it is the quadrupole integral which is needed for a dipole
excitation. All the coefficients up to A = 6 have been obtained, but only those up to A = 4 are in ECIS88
and all are on COMMENT cards in ECIS94.

C Coulomb excitations

The Coulomb potential as given by Equ. (TT1.21) is proportional to the product of charges of the particle
and the target. In fact, it is the monopole folding of a charge distribution with the interaction 1/|ry —ra].
This charge distribution can be :

e a sphere with constant density,
e a plain Woods-Saxon distribution,

e a Woods-Saxon distribution multiplies by 1 + ¢r?,

of which the volume integral is the product of charges.

C.1 Coulomb deformation and heavy-ion option

This excitation is defined by the reduced electric transition probability B(FA) which is related to the

Coulomb deformation 3, by :

B(EX) = (%Zeﬁc}z’}“) ’ (IV.44)

where 7 is the charge of the excited nucleus (see for example in : [69] HODGSON, P., E., “Nucleon
Heavy-ITon Reactions”, Clarendon Press Oxford (1978) page 268 or in : [70] SATCHLER, G., R., “Direct
Nuclear Reactions”, “International series of monographs on physics 68", Clarendon Press Oxford, Oxford
University Press New-York (1983) page 629. This relation do not give the sign of the deformation. A
transition distribution is obtained with the deformation length 5. R, and the transition form factor is the
result of multipolarity A obtained in the folding with 1/|r; — rs|.

In the usual notations, R, = R.AY3 where R, is the “reduced Coulomb radius” and A is the mass
of the target. In the “heavy-ion option”, for a target of mass A and a particle of mass a, the radius R’
is given in terms of the reduced radius R by :

R = R(A'3 4 4'/3) (IV .45)

and, as it is the deformation length which matters, the deformations are replaced by :

, A1/3
3 = Wﬁ, (TV.46)
except for the Coulomb deformations (central and spin-orbit) which are replaced by :
AL/ A
r_
Bc - (Al/S + 01/3) 66, (IV47)

for a multipole A. However, if LO(6)=.TRUE., which means that deformations lengths are read instead of
deformations, only Coulomb deformations are changed with a power A — 1 instead of A in Equ. (TV.47).

The introduction of magnetic multipole Coulomb excitation followed a question of Mme I. LINK from
Strasbourg and was subject of discussions with Dr M. MERMAZ at Saclay and J. KIENER at Orsay.
For relations between electric and magnetic excitation, we follow Ref. [65].
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C.2 Electric multipole excitation

An electric multipole transition B(EA) is defined as an angular momentum transfer AL = A a spin
transfer 2A5 = 0 and J transfer 2AJ = 2X but can as well being defined with the same angular transfer,
a spin transfer 2A5 = 2X and a J transfer 2AJ = 0. In Ref. [65], formulae (TT B.32) and (1T B.34) gives

for an electric excitation :
Zl € ) 2 4]€Z k’f
(

dogy = (225
7B (hvi 2A + 1)°

BEXNY | <k |2 Wau(b,, 6p)) [ ki > [d, (TV.48)
1
in the exterior region. This interaction needs geometrical factors given by Equ. (IT1.45) and (T1T1.44).

C.3 Magnetic multipole excitation

A magnetic multipole transition B(M A) is defined as an angular momentum transfer AL = A+ 1, a spin
transfer 2AS = 0 and J transfer 2AJ = 2X. It is defined in the code by 2AS = —2 but 2AS = —1 in
the input. The use of AL = A+ 1 is necessary to go through the parity verifications.

In Ref. [65], formulae (TT B.33) and (IT B.35) gives for a magnetic excitation :

Zle)zvf 4

s = (2

< mB(MA)Z | <k |l NVplry T Va0, 6p)] | Bi > [2dQ. (1V.49)
! 1

in the exterior region. The ratio of a magnetic excitation A — 1 to an electric excitation A given by Equ.

(TV.47) is :

dopn—1 vy (2X +1)° BMX—1) 2, | < ki 11 NV o (rg *Vaz1,(0, 6p)) | i > A9
dopx kikee? (A=1)2(2X=1)3  B(EX) Yl < ];ff 172 Yo (6, 6p)) |];Z > |2dQ
(TV.50)
that is the product of a coefficient of the potentials Rz such that :
h (2X+1)3 3 /B(MX—1)\z
R, = — V.51
P me ((/\ —1)2(2) — 1)3) ( B(E)) ) ( )
obtained using :
(2 vy h
— === — V.52

and a ratio R; such that :

o <y |1 Vo (1 Yoo 14(0p, 0p)) | Ky > 7dQ2

R} = - - (IV.53)
2op | <kplrp T Yau(0p, 0p)) [ kp > [2dQ2
The coefficient R, is the product of three terms :
B _ (B(MX-1)\z _h B (2X+1)3 3
RP_RZMRZMRP:M RP1 - (W) ) sz— %a Rpa— ((/\_1)2(2/\_1)3)
(TV.54)

In practice :

e  the factor R,, will be taken into account in the reduced nuclear matrix element multiplying by it
the reduced nuclear matrix element of the electric transition to obtain the reduced nuclear matrix
element of the magnetic transition,

. the factor R,, will be taken into account by multiplying by it a normalised Coulomb transition
form factor of an electric excitation to obtain the magnetic transition form factor,
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. the factor R,, will be factorised with R, for convenience.

For the coefficient R, the gradient acting on r=*Y),(F) generates only terms in »=*~1¥y 1 (7). So,
in the exterior region, the form factors of a magnetic excitation B(M A —1) is the same as the form factor
of an electric excitation B(EX). As the interior region has no importance in this case, we can use for
the magnetic transition form factor a Coulomb electric transition form factor multiplied by the ratio R,,
given in Equ. (IV.54). Between partial waves |; > and |/; >, the ratio of a magnetic multipole excitation
B(MX —=1) to an electric multipole excitation B(FEM) is :

<Y, (0,0) [TV (r YAl 1,(0,0)) |i4Vim, (0, 6) >
<Yy (0,0) [ P31V (0, 0) [4Yi,m, (0, 6) >

:—@A—UDMWFHMQ+UEE:FVHerﬁq( A 1 A—l)

7 —H—=q 9 H

( l; 1 h)( l; A I )(u Al )*
-m;+q —q m mi—q p+q —my mp g —my

:@A—UMM%H%MQ+Uﬁ{q ﬁ A;l}(h A—1 lf)<h» A lf)4

my Iz —my m; g —my

122 —173 1
= 51 g) W+l A D+ L= Ak 1) =L+ X (G = 1+ )

-1
Loa—1 4, \[(lL X v55)
m; I —my m;  p —my ’
using :

lf l; A—1 :(_)ll_l_lf_l_)\l{(lf—|—li—|—/\—|—1)(lf—|—li—/\—|—1)(lf—ZZ'—I—/\)(ZZ'—lf—I—/\) 3
and taking into account that [; + [ 4+ A is even. This formula agrees with (IT B.48) of Ref. [65] if 2/; is
replaced by (2[; + 1) in it.

(IV.56)

The ratio of the couplings between a state |(l;s)j;I;.J > and a state |(Izs)jfI;J > is :

1
2

1722 —1)7%
—= l L+X+1)( L=A+1)(I=L+XN; =1 A
A e M URR R SRR RN ENUE Y]

g A=t far A= G fae A AT e X a7 sy
Iz' J If lz s lf Iz' J If lz s lf '
that is Equ. (I11.44) written with S =0, I' = L = X but with L = A — 1 instead of L = X in the 65 and

the 95 coefficients, multiplied by the factor written in the first line of Equ. (TV.57).

For an excitation 1T — 27, the relative values of the coefficient el of the electric transition and ma
of the magnetic one are :

J=Ul=1 el=1/J ma=J
J=L=10%1 el=1 ma =
J=L£1,0 =1 el=1 ma=J (IV.58)
JIli:tl,lfIli:FQ el =0 ma =0
C.4 Magnetic reduced matrix elements

The reduced matrix element of the magnetic excitation B(MA — 1) is the one of the electric excitation
B(EX) multiplied by the ratio R,, reduced transition probabilities given in Equ. (IV.54). To do so, they
should be expressed in compatible units (see [71] SKORKA, S., J;, HERTEL, J. and RETZ-SCHMIDT,
T., W., “Compilation of electromagnetic transition rates in light nuclei (A < 40)”, Nuclear Data Sheet
A2 (1967) page 347). Usually, the reduced electric probabilities B(Fl) are given in units e2fm? and the
reduced magnetic probabilities B(M!) in units pgfmzl_z : the value of B(MI) must be multiplied by
.01106 to obtain it in units e*fm?.



Chapter V

Excitation of particle and target

We consider the scattering of ®Be on 54 Ni to have integer values of the masses at the power one third.
We use the rotational model with a positive deformation for %4 Ni and a negative deformation for ®Be.
The following test case :

|BES + NIB4 EXCITATION OF NI64 - 1 - (ECIS94)
| TFFFFFFFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 3

| .25 10.

I 10. 8. 64. 0.
[2. 1.

[ 2 4

| .45

[20. 1 .5
[10. 1 .5

I 1 .5

I 1 .5

I 1 .5

I 1 .5
[1.

I 1. .5
[2. 2. 178.
|[FIN

describes the excitation of a 2% state in 4 Ni at 1 MeV. The computation is limited to 3 J-values because
the output is very detailed: the coefficients of each form-factor for all sets of equations are printed
(LO(58) .TRUE.) to compare one test with the others. The coulomb potential has been suppressed to
get, significant results. The usual coupled equations (LO(21)=.TRUE.) with Schmidt’s orthogonalisation
(LO(42)=.TRUE.) are used for more precision.

This Chapter is the transcription of the similar study in “Notes on ECIS79” which was starting with :

|BES + NI64 EXCITATION OF NI64 - 1 - (ECIST9)

| TFFFFFFFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTFF

| TTTTTTTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFTFFTFFFFFF

I 2

| .25 10. 2.

I 10. 8. 64. 0.
[2. 1.

I 2 4 .45
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[20. 1. .5
[10. 1. .5

I

I

I

[1.

[2. 2. 178.
|[FIN

The second cards 3, 4 and 5 are changed; the input of deformations is, different and there are two more
potentials. The new input is the same for ECIS88, but there will be differences between ECIS88 and
ECIS94 from the Hth example.

A Excitation of the particle

Al Interchange particle-target

The excitation of a 2% state at Mev in ®Be can be described by interchanging particle and target and
choosing a Laboratory energy such that the Center of Mass energy is the same as in the previous case :

|BES + NIB4 EXCITATION OF BES8 -2 -
| TFFFFFFFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

I 2 3

| .25 10.

I 80. 64. 8. 0.
2. 1.

I 2 4

[-.9

[20. 1 .5

[10. 1 .5

I 1 .5

I 1 .5

I 1 .5

I 1 .5

[1.

I 1. .5

2. 2. 178.

|FIN

In this case, the result would be the same as in the test case “— 1 =7 if 83 = .9 had been used instead of
G = —.9.

A.2 Use of external potentials

However, the test case “~ 1 =7 can be done with external potentials, using LO(7)=.TRUE. :

|IBE8 + NI64 EXCITATION OF NI64 . EXTERNAL POTENTIALS - 3 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTFF

| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 3

| .25 10.
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I 10. 8. 64. 0.
[2. 1.

[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000
I 2 2 2

I 1 2 0 0 1.195228338242
I 2 4 0 0 1.195228338242
I 1 1 1 2 -5
[20 6. 5

I .3

I 1 1 2 2 -5
[10 6. 5

I .3

I 1 1 3 -1
I

I 1 1 4 -1
I

I 1 1 7 -1
lo 6

I 2 2 1 1 2 -5
[20 6. 5

I .3

I 2 2 1 2 2 -5
[10 6. 5

I .3

I 2 2 1 3 -2
I

I 2 2 1 4 -2
I

I 2 2 2 1 2 -5
[20 6. 5

I .3

I 2 2 2 2 2 -5
[10 6. 5

I .3

I 2 2 2 3 -2
I

I 2 2 2 4 -2
I

|[FIN

and the test case “— 2 -7 can be done by changing only the energy in the laboratory system and the sign
of the deformation and exchanging the masses :

|BES + NIB4 EXCITATION OF BE8. EXTERNAL POTENTIALS - 4 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 3

| .25 10.

I 10. 8. 64. 0.
[2. 1.

[2. 2. 178.

[ 1 1

[ 1 2 1
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I 1 2 0 0 -1.000000000000
I 2 2 2

I 1 2 0 0 1.195228338242
I 2 4 0 0 1.195228338242
I 1 1 1 2 -5
[20 6. 5

I -.3

I 1 1 2 2 -5
[10 6. 5

I -.3

I 1 1 3 -1
I

I 1 1 4 -1
I

I 1 1 7 -1
lo 6

I 2 2 1 1 2 -5
[20 6 5

I -.3

I 2 2 1 2 2 -5
[10 6. 5

I -.3

I 2 2 1 3 -2
I

I 2 2 1 4 -2
I

I 2 2 2 1 2 -5
[20 6. 5

I -.3

I 2 2 2 2 2 -5
[10 6. 5

I -.3

I 2 2 2 3 -2
I

I 2 2 2 4 -2
I

|[FIN

A.3 Change of spin for the particle

The excited state of the particle can be described as the scattering of a spin 2 particle on a target of spin

0:

|BE8 + NI64 EXCITATION OF PARTICLE.EXTERNAL POTENTIALS - 5 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 3

| .25 10.

I 10. 8. 64. 0.
I 1. 2. 8. 64. 0.
[2. 2. 178.

I 1 1 0

I 1 2 1

| 1 2 4 0 -1.000000000000 (1)

I 2 2 2
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| 1 2 4 0 1.195228338242 (1)
| 8 0 1.195228338242 (1)
I 1 1 1 2 -5
[20 6. 5

I -.3

I 1 1 2 2 -5
[10 6. 5

I -.3

I 1 1 3 -1
I

I 1 1 4 -1
I

I 1 1 5 -1
I

I 1 1 6 -1
I

I 1 1 7 -1
lo 6

I 1 1 8 -1
I

I 2 2 1 1 2 -5
[20 6. 5

I -.3

I 2 2 1 2 2 -5
[10 6. 5

I -.3

I 2 2 1 3 -2
I

I 2 2 1 4 -2
I

I 2 2 2 1 2 -5
[20 6. 5

I -.3

I 2 2 2 2 2 -5
[10 6. 5

I -.3

I 2 2 2 3 -2
I

I 2 2 2 4 -2
I

I

The interaction which was L = 2, S = 0, J = 2 in the previous test cases isnow L =2, S =2, J =0
and the one which was L =4, 5 =0, J =4isnow L =4, S =4, J = 0. The nuclear reduced matrix
elements (1) are the same as the previous one, but were multiplied by the reduced “spin” matrix element

which 1s /25 4+ 1 in ECIS79 and ECISSS.

As the particle of one of the levels does not have a spin zero, a complex spin-orbit
potential and a coulomb spin orbit potential must be read. As this last one is 0, use
L0(46)=.TRUE. to avoid long range “Coulomb corrections” for this calculation.

B Excitation of the target and of the particle

We assume that there is no interaction between the level for which the target is excited and the one for
which the particle is excited. In the rotational model, such an interaction could be only of second order
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and it is smaller than the reorientation terms. In the second order vibrational model, such an interaction
exists and is identical to the reorientation terms.

This is obtained by adding the test case “— 3 =7 to the test case “— 4 —"or the test case “— 5 7.
However, the deformation of the optical potential of test case “— 3 —” 1s positive and the one of the other
test cases is negative. We shall use an optical potential without deformation.

B.1 Excitation of the two nuclei

The three levels involved are the scattering of a spin zero particle on a spin zero target, of the spin zero
particle on a 27 state as in test case “— 3 —”, and of a spin two particle on a spin zero target as in test
case “—bH -7 :

|BES + NIB4 EXCITATION OF PARTICLE AND TARGET - 6 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 3 3

| .25 10.

I 10. 8. 64. 0.
[2. 1.

I 1. 2. 8. 64. 0.
[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000

I 1 3 1

| 2 2 4 0 -1.000000000000 (1)
I 2 2 2

I 1 2 0 0 1.195228338242

I 3 4 0 0 1.195228338242

I 2 3 0

I 3 3 2

| 2 2 4 0 1.195228338242 (1)
| 4 4 8 1.195228338242 (1)
I 1 1 1 2 -1

[20 6 .5

I 1 1 2 2 -1

[10 6. .5

I 1 1 3 -1

I

I 1 1 4 -1

I

I 1 1 5 -1

I

I 1 1 6 -1

I

I 1 1 7 -1

lo 6

I 1 1 8 -1

I

I 2 2 1 1 2 -5

[20 6. 5

I .3

I 2 2 1 2 2 -5

I
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I .3

I 2 2 1 3 -2
|

I 2 2 1 4 -2
|

I 2 2 2 1 2 -5
[20 6. 5

I .3

I 2 2 2 2 2 -5
[10 6. 5

I .3

I 2 2 2 3 -2
|

I 2 2 2 4 -2
|

I 3 3 1 1 2 -5
[20 6. 5

I -.3

I 3 3 1 2 2 -5
[10 6. 5

I -.3

I 3 3 1 3 -2
|

I 3 3 1 4 -2
|

I 3 3 2 1 2 -5
[20 6. 5

I -.3

I 3 3 2 2 2 -5
[10 6. 5

I -.3

I 3 3 2 3 -2
|

I 3 3 2 4 -2
|

|FIN

The reduced nuclear matrix elements are the ones of test cases “— 2 =7 and “— 5 —”. The form factors
“1” and “3” are the ones of test case “— 2 =7 (positive deformation) and the form factors “2” and “4”are
the ones of the test case “— 5 =7 (negative deformation). The nuclear matrix elements (1) have no more

to be multiplied by /25 + 1 in ECIS94.

B.2 Two excitations of the target

In this test case, the three levels are the scattering of a spin zero particle on a spin zero target and two
2% states of the target :

|BES + NI64 TWO EXCITATIONS OF TARGET - 7 -

| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTFF

| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 3 3

| .25 10.

I 10. 8. 64. 0.
[2. 1.

[2. 1.
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[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000
I 1 3 1

I 2 2 0 0 -1.000000000000
I 2 2 2

I 1 2 0 0 1.195228338242
I 3 4 0 0 1.195228338242
I 2 3 0

I 3 3 2

I 2 2 0 0 1.195228338242
I 4 4 0 1.195228338242
I 1 1 1 2 -1
[20 6 .5

I 1 1 2 2 -1
[10 6. .5

I 1 1 3 -1
I

I 1 1 4 -1
I

I 1 1 7 -1
lo 6

I 2 2 1 1 2 -5
[20. 6. 5

I .3

The reduced nuclear matrix elements are the ones of the pure rotational model and there is no complex
spin-orbit to be read with the optical potential because the particle has spin zero for all the levels.

C Double excitation

The double excitation can be described as the scattering of a particle with spin 2 on a target with spin
2, or as the sum of levels with spin 0 to 4 which are the channel spins.

C.1 One level description

The four channels are the scattering of a particle of spin zero and of spin two on a target with a spin
zero and two. The coupling between the levels where the particle has a fixed spin and the target the
spins zero and two is the same as in the rotational model for the excitation of a 2% state by a particle of
spin zero or two. The coupling between the channels where the target has a given spin is the same as in
test case “— 5 =" . The reorientation terms of the double excitation level are the sum of the reorientation
terms of the 2% of ®Be and the 2% state state of %4 Ns :

|BES + NI64 DOUBLE EXCITATION DESCRIPTION ONE LEVEL - 8 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTFF

| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 4 3

| .25 10.

I 10. 8. 64. 0.

[2. 1.

I 2. 2. 8. 64. 0.
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[2. 3.

[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000

I 1 3 1

| 2 2 4 0 -1.000000000000 (1)
I 1 4 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 3 4 0 0 1.195228338242

I 2 3 0

I 2 4 1

| 2 2 4 0 -2.2360680 (2)
I 3 3 2

| 2 2 4 0 1.195228338242 (1)
| 4 4 8 0 1.195228338242 (1)
I 3 4 1

I 1 2 0 0 -1.000000000000

I 4 4 4

I 1 2 0 0 1.195228338242

I 3 4 0 0 1.195228338242

| 2 2 4 0 2.672612419 (2)
| 4 4 8 0 2.672612419 (2)

[t SAME CARDS AS IN - 6 — ............

The reduced nuclear matrix (2) are the usual nuclear matrix elements multiplied by the reduced matrix
element in the spin space of the target /27 + 1. This remains in ECIS94, whereas the reduced matrix
elements (1) and (2) had to be multiplied by /25 + 1 in ECIS79 and ECIS88.

C.2 Many levels description

The level where the particle and the target are in a 27 state can be replaced by five levels with spin 0T,
1, 2%, 3% and 47, resulting from the coupling of the spins of the particle and of the target (channel
spin). The cross-section will be the sum of the five cross-sections. The data set is :

|BE8 + NI64 DOUBLE EXCITATION DESCRIPTION FIVE LEVELS - 9 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 8 3

| .25 10.

I 10. 8 64. 0.
[2. 1.

I 2. 2 8 64. 0
I 3. 8 64. 0
[1. 3.

[2. 3.

[3. 3.

4. 3.

[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000

I 1 3 1

| 2 2 4 0 -1.000000000000 (1)
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I 1 4 0

I 1 5 0

I 1 6 0

I 1 7 0

I 1 8 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 3 4 0 0 1.195228338242

I 2 3 0

I 2 4 1

| 2 2 0 0 -.4472135955 (3)
I 2 5 1

| 2 2 0 0 7745966692 (3)
I 2 6 1

| 2 2 0 0 -1. (3)
I 2 7 1

| 2 2 0 0 1.183215957 (3)
I 2 8 1

| 2 2 0 0 -1.341640786 (3)
I 3 3 2

| 2 2 4 0 1.195228338242 (1)
| 4 4 8 0 1.195228338242 (1)
I 3 4 1

| 1 2 4 0 -0.447213596000 (4)
I 3 5 1

| 1 2 4 2 0.774596669 (4)
I 3 6 1

| 1 2 4 4 -1.0000000000 (4)
I 3 7 1

| 1 2 4 6 1.183215957 (4)
I 3 8 1

| 1 2 4 8 -1.341640786000 (4)
I 4 4 0

I 4 5 0

I 4 6 2

| 1 2 0 0 .534522483825 (5)
| 2 2 0 0 .534522483825 (5)
I 4 7 0

I 4 8 2

| 3 4 0 0 .534522483825 (5)
| 4 4 0 0 .534522483825 (5)
I 5 5 2

| 1 2 0 0 -.547722555751 (5)
| 2 2 0 0 -.547722555751 (5)
I 5 6 2

| 1 2 0 0 -.462910049886 (5)
| 2 2 0 0 462910049886 (5)
I 5 7 4

| 1 2 0 0 .585540043769 (5)
| 2 2 0 0 .585540043769 (5)
| 3 4 0 0 -.377964473009 (5)
| 4 4 0 0 -.377964473009 (5)
I 5 8 2

| 3 4 0 0 -.8451542654729 (5)
| 4 4 0 0 .845154264729 (5)
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I 6 6 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0
I 6 7 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0
I 6 8 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0
I 7 7 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0
I 7 8 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0
I 8 8 4

I 1 2 0 0
I 2 2 0 0
I 3 4 0 0
I 4 4 0 0

[t SAME CARDS AS IN - 6 -

-.256120416286
-.256120416286

.341493888381
.341493888381

-.808122035642

.808122035642
.714285714286

-.714285714286

.458162128993
.458162128993
.895404529326
.895404529326

.292770021885
.292770021885

-.886405260428
-.886405260428

-.958314847500

.958314847500

-.749149177244

.749149177244

1.20131123696
1.20131123696

.456568516759
.456568516759

(5)
(5)
(5)
(5)

(5)
(5)
(5)
(5)

(5)
(5)
(5)
(5)

(5)
(5)
(5)
(5)

(5)
(5)
(5)
(5)
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The reduced nuclear matrix element in the spins spaces between a target of spin 7; and a particle of spin
s1, coupled to Jy and a target of spin I, and a particle of spin s9, coupled to Js is :

LI, T
VERI+ D25+ DRL+ D)2/ + )22+ 1){ s1 sy S (V.1)
S Jy L

where S = 0 for the form factors 1 and 3, I = 0 for the form factors 2 and 4.

. For the reduced nuclear matrix elements (3) above, s1 = I = 0 and the 95 coefficient reduces to
0.04(—)7=.
. For the reduced nuclear matrix elements (4) above, I; = S = 0 and the 95 coefficient reduces

to 0.04. They are multiplied by a reduced matrix element in the spin space which is /5. However,
they must be multiplied by (—)72 (?) .

° For the reduced nuclear matrix elements (5) above, Iy = Jo = s; =sa =2 and I =0 or S = 0.
In this reduced nuclear matrix element, the 95 coefficient becomes a 6-j coefficient and the result

18

with a phase (=)72 if S = 0 and (=)7t if I = 0.

VL +1)(211 +1)(2]2 + 1) /5 {

i T L} v.2)

2 2 2

In fact, the explanation given above is what was given in the “Notes on ECIS79” and do
not seem accurate. Perhaps, the result is due to the occurence of 0 for S or I. Nevertheless, using the
vibrational model with two different phonons 2+ and with 0%, 17, 2%, 3%, 4% 2-phonons states :
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. the reduced nuclear matrix elements (3) and (4) are the same if the second phonon is coupled to
the first one (with the other order, the sign of the matrix elements between the 1-phonon 2% states
and the 1% and 3% 2-phonons states is changed),

. the second order vibrational nuclear matrix elements :

L =0 does not exist here,
L =2 are multiplied here by v/5/2,
L =4 are multiplied here by 5/6.

The excitation of the particle can be replaced by the excitation of a second 2% in the target. The
data set is:

|BE8 + NI64 DOUBLE EXCITATION DESCRIPTION FIVE LEVELS - 10 -
| TFFFFFTFFFFTFFFTFFFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 8 3

| .25 10.

I 10. 8 64. 0.
[2. 1.

[2. 2.

I 3.

[1. 3.

[2. 3.

[3. 3.

4. 3.

[2. 2. 178.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000

I 1 3 1

I 2 2 0 0 -1.000000000000

I 1 4 0

I 1 5 0

I 1 6 0

I 1 7 0

I 1 8 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 3 4 0 0 1.195228338242

I 2 3 0

I 2 4 1

| 2 2 0 0 -.4472135955 (3)
I 2 5 1

| 2 2 0 0 7745966692 (3)
I 2 6 1

| 2 2 0 0 -1. (3)
I 2 7 1

| 2 2 0 0 1.183215957 (3)
I 2 8 1

| 2 2 0 0 -1.341640786 (3)
I 3 3 2

I 2 2 0 0 1.195228338242

I 4 4 0 0 1.195228338242

I 3 4 1

| 1 2 0 0 -0.447213596000 (3)
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I 3 5 1
| 1 2 0 0 -0.774596669 (3)
I 3 6 1
| 1 2 0 0 -1.0000000000 (3)
I 3 7 1
| 1 2 0 0 -1.183215957 (3)
I 3 8 1
| 1 2 0 0 -1.341640786 (3)
I 4 4 0
I 4 5 0
I 4 6 2
| 1 2 0 0 .534522483825 (5)
| 2 2 0 0 .534522483825 (5)
I 4 7 0
I 4 8 2
| 3 4 0 0 .534522483825 (5)
| 4 4 0 0 .534522483825 (5)
I 5 5 2
| 1 2 0 0 -.547722555751 (5)
| 2 2 0 0 -.547722555751 (5)
I 5 6 2
| 1 2 0 0 -.462910049886 (5)
| 2 2 0 0 462910049886 (5)
I 5 7 4
| 1 2 0 0 .585540043769 (5)
| 2 2 0 0 .585540043769 (5)
| 3 4 0 0 -.377964473009 (5)
| 4 4 0 0 -.377964473009 (5)
I 5 8 2
| 3 4 0 0 -.8451542654729 (5)
| 4 4 0 0 .845154264729 (5)
I 6 6 4
| 1 2 0 0 -.266120416286 (5)
| 2 2 0 0 -.266120416286 (5)
| 3 4 0 0 .341493888381 (5)
| 4 4 0 0 .341493888381 (5)
I 6 7 4
| 1 2 0 0 -.808122035642 (5)
| 2 2 0 0 .808122035642 (5)
| 3 4 0 0 714285714286 (5)
| 4 4 0 0 -.714285714286 (5)
I 6 8 4
| 1 2 0 0 458162128993 (5)
| 2 2 0 0 458162128993 (5)
| 3 4 0 0 .895404529326 (5)
| 4 4 0 0 .895404529326 (5)
I 7 7 4
| 1 2 0 0 .292770021885 (5)
| 2 2 0 0 .292770021885 (5)
| 3 4 0 0 -.886405260428 (5)
| 4 4 0 0 -.886405260428 (5)
I 7 8 4
| 1 2 0 0 -.958314847500 (5)
| 2 2 0 0 958314847500 (5)
| 3 4 0 0 -.749149177244 (5)
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| 4 4 0 0 749149177244 (5)
I 8 8 4

| 1 2 0 0 1.20131123696 (5)
| 2 2 0 0 1.20131123696 (5)
| 3 4 0 0 .456568516759 (5)
| 4 4 0 0 .456568516759 (5)
[....

SAME CARDS AS IN - 9 - WITHOUT SPIN-ORBIT ...

There is a change of sign for the reduced nuclear matrix elements of the second and the third level with
the double excitation states with spins 11 and 3% ,due to the reversal of the coupling of the two 27.

D Identical projectile and target

In the description of Input for ECIS94, there is :

18- L0O(18) PROJECTILE-TARGET ANTISYMMETRISATION, VALID ONLY FOR  ECIS-068
SAME SPIN OF THE PARTICLE AND THE TARGET. FOR SPIN 0, ECIS-069

I
I
| THE S-MATRIX IS COMPUTED ONLY FOR EVEN TOTAL SPINS. ECIS-070
| FOR SPIN NON 0., THE AMPLITUDES ARE SYMMETRISED BUT ECIS-071
| THIS DO NOT CORRECT THE LACK OF SYMMETRY OF THE ECIS-072
| INTERACTION BETWEEN PARTICLE AND TARGET. ECIS-073

which means that the cross-sections are computed correctly, but the reaction cross-sections printed at
the beginning of each angular distribution must be multiplied by two. The elastic cross-section includes
a symmetrised Coulomb amplitude, but is divided by the Rutherford’s cross-section which is not sym-
metrised. With usual parameters, the calculation is not correct because it takes into account only the
excitation of the target. To discuss and explain how to do such a calculation, we consider the dummy
test case of ®Be on 2Be in the rotational model. The test cases are limited to J = 4 and use a reduced
radius of 1.5 with the heavy ions convention. The data set for the usual rotational model is :

|BES + BES EXCITATION OF BE8 TARGET - 11 -
| TFFFFFFFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 5

| .25 10.

I 10. 8. 8. 0.
[2. 1.

[ 2 4

[-.6

[20. 1.5 5
[10. 1.5 5
I 1.5 5
I 1.5 5
I 1.5 5
I 1.5 5
[1.5

I 1.5 .5
[2. 2. 90.
|[FIN

We shall repeat the indications given above for non identical particle and target and we shall give the
simplifications which appear when particle and target are identical.
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D.1 Excitation of the particle

The same test case can be run with matrix elements and potentials read from cards with LO(7)=.TRUE. :

|BES + BES EXCITATION OF BE8 . EXTERNAL POTENTIALS - 12 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 5

| .25 10.

I 10. 8. 8. 0.
[2. 1.

[2. 2. 90.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000
I 2 2 2

I 1 2 0 0 1.195228338242
I 2 4 0 0 1.195228338242
I 1 1 1 2 -5
[20 6. 5

I -.3

I 1 1 2 2 -5
[10 6. 5

I -.3

I 1 1 3 -1
I

I 1 1 4 -1
I

I 1 1 7 -1
lo 6

I 2 2 1 1 2 -5
[20 6. 5

I -.3

I 2 2 1 2 2 -5
[10 6. 5

I -.3

I 2 2 1 3 -2
I

I 2 2 1 4 -2
I

I 2 2 2 1 2 -5
[20 6. 5

I -.3

I 2 2 2 2 2 -5
[10 6. 5

I -.3

I 2 2 2 3 -2
I

I 2 2 2 4 -2
I

|[FIN

The same result is obtained if the particle has a spin 2 in the final state and the target a spin 0 as in the
test case “— 5 =7 above. The interaction L =2, S =0, J = 2 between the ground state and the excited
state 1s changed into an interaction L = 2, S = 2, J = 0. It is the same for the reorientation interaction
L = 2. The reorientation interaction L = 4, S = 0, J = 4 becomes an interaction L =4, S =4, J = 0.
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The nuclear nuclear matrix were multiplied by /25 4 1 for ECIS79 and ECIS88 but not for ECIS94. As
the excited state has a non-zero spin, a complex spin-orbit potential and a coulomb spin-orbit potential
must be given anf LO(46) set . TRUE..

|BE8 + BE8 EXCITATION OF BE8.EXCHANGE PARTICLE-TARGET - 13 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 5

| .25 10.

I 10. 8. 8. 0.
I 1. 2. 8. 8. 0.
[2. 2. 90.

I 1 1 0

I 1 2 1

| 1 2 4 0 -1.000000000000 (1)
I 2 2 2

| 1 2 4 0 1.195228338242 (1)
| 2 4 8 0 1.195228338242 (1)
I 1 1 1 2 -5

[20 6. 5

I -.3

I 1 1 2 2 -5

[10 6. 5

I -.3

I 1 1 3 -1

I

I 1 1 4 -1

I

I 1 1 5 -1

I

I 1 1 6 -1

I

I 1 1 7 -1

lo 6

I 1 1 8 -1

I

I 2 2 1 1 2 -5

[20 6. 5

I -.3

I 2 2 1 2 2 -5

[10 6. 5

I -.3

I 2 2 1 3 -2

I

I 2 2 1 4 -2

I

I 2 2 2 1 2 -5

[20 6. 5

I -.3

I 2 2 2 2 2 -5

[10 6. 5

I -.3

I 2 2 2 3 -2

I

I

I
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|FIN

D.2 Excitation of the particle and the target

The two channels of excitation of the particle and of the target can be taken into account with the
following data :

|BES + BES EXCITATION OF PARTICLE AND TARGET - 14 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

I 3 5

| .25 10.

I 10. 8. 8. 0.
2. 1.

I 1. 2. 8. 8. 0.
2. 2. 90.

I 1 1 0

I 1 2 1

| 1 2 0 0 -1.000000000000

I 1 3 1

| 1 2 4 0 -1.000000000000 (1)

I 2 2 2

| 1 2 0 0 1.195228338242

| 2 4 0 0 1.195228338242

I 2 3 0

I 3 3 2

| 1 2 4 0 1.195228338242 (1)

| 2 4 8 0 1.195228338242 (1)
[ SAME CARDS AS IN - 13 - ...........
This data set is similar to the test case “— 6 =7 when particle and target are not identical, but there is

only one kind of deformation and the central potential is kept deformed. The interaction between the
excited state of the target and the excited state of the particle have been neglected. The result of this
test case is not the same as the one of test cases “— 11 -7 to “~ 12 7.

As above, in test case “— 7 =7, the two excited states can be attributed to the target. As they are

degenerated, the waves functions for the two excited states are identical and can be replaced by only one
wave function in the equations after some modifications of the nuclear matrix elements. Data are the
following :

|BES + BES SIMPLIFIED EXCIT. OF PARTICLE AND TARGET - 15 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 5

| .25 10.

I 10. 8. 8. 0.
[2. 1.

[2. 2. 90.

I 1 1 0

I 1 2 1

| 1 2 0 0 -1.414213562 (6)
I 2 2 2

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

[t SAME CARDS AS IN - 12 - ........
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The interaction between the ground state and the excited state has been multiplied by /2 and the
reorientation terms are the sum of the reorientation terms and of the coupling terms between the two
excited states, but we did not consider the interaction between the two excited states in this example.

As there is only one kind of deformations involved, this calculation can be done in the frame-
work of standard rotational model by giving the nuclear matrix elements on card (LO(15)=.TRUE.,
LO(7)=.FALSE.). The data set is :

|BES + BES SIMPLIFIED EXCIT. OF PARTICLE AND TARGET - 16 -
| TFFFFFFFFFFTFFTTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 2 5

[.25 10.

I 10. 8. 8. 0.
[2. 1.

[ 2 4

[-.6

[20. 1.5 5

[10. 1.5 5

I 1.5 5

I 1.5 5

I 1.5 5

I 1.5 5

[1.5

I 1.5 5

[2 2. 90

I 1 1 0

I 1 2 1

| 3000 2 0 0 -1.414213562 (6)
I 2 2 2

| 3000 2 0 0 1.195228338242
| 5000 4 0 0 1.195228338242
|[FIN

which almost as simple as the data set “— 11 —”.

D.3 Double excitation

The data set for the excitation of the target, the excitation of the particle and the simultaneous excitation
of the target and the particle is obtained from the cases “~ 12 =7 and “~ 13 =7 when there is no interaction
between the excited states. The nuclear matrix elements for the excitation of the target are independent
of the excitation of particle and the one of the particle are independent of the the excitation of the target :

|BES + BES DOUBLE EXCITATION DESCRIPTION ONE LEVEL - 17 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 4 5

| .25 10.

I 10. 8. 8. 0.
[2. 1

I 1. 2 8 8 0
[2. 2.

[2. 2 90.

[ 1 1

[ 1 2 1
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I 1 2 0 0 -1.000000000000

I 1 3 1

| 1 2 4 0 -1.000000000000 (1)
I 1 4 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

I 2 3 0

I 2 4 1

| 1 2 4 0 -2.236067977 (2)
I 3 3 2

| 1 2 4 0 1.195228338242 (1)
| 2 4 8 0 1.195228338242 (1)
I 3 4 1

I 1 2 0 0 -1.000000000000

I 4 4 4

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

| 1 2 4 0 2.672612419 (2)
| 2 4 8 0 2.672612419 (2)

[t SAME CARDS AS IN - 13 - ..........

where the interaction of the two single excitation channels with the double excitation were not the same
with ECIS79 and ECIS88 but are the same for ECIS94.

One can use the channel spin description of the double excitation as for the test case “— 9 =7 or “-
10 7. One can see on the test case “— 10 = that the 11 and the 3% states are not coupled to the other
states, so they must not be taken into account. The equivalent to the test case “— 9 -7 is :

|BES + BES DOUBLE EXCIT. DESCRIPTION THREE LEVELS - 18 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 6 5

| .25 10.

I 10. 8. 8. 0.
[2. 1

I 1 2 8 8. 0
I 2. 8 8. 0
[2. 2.

4. 2

[2. 2. 90.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000

I 1 3 1

| 1 2 4 0 -1.000000000000 (1)

I 1 4 0

I 1 5 0

I 1 6 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

I 2 3 0

I 2 4 1

| 1 2 0 0 -.4472135955 (3)

I 2 5 1
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| 1 2 0 0 -1. (3)
I 2 6 1

| 1 2 0 0 -1.341640786 (3)
I 3 3 2

| 1 2 4 0 1.195228338242 (1)
| 2 4 8 0 1.195228338242 (1)
I 3 4 1

| 1 2 4 0 -0.447213596000 (4)
I 3 5 1

| 1 2 4 4 -1.0000000000 (4)
I 3 6 1

| 1 2 4 8 -1.341640786000 (4)
I 4 4 0

I 4 5 1

| 1 2 0 0 1.06904496765 (5)
I 4 6 1

| 2 4 0 0 1.06904496765 (5)
I 5 5 2

| 1 2 0 0 -.512240832572 (5)
| 2 4 0 0 .682087 776762 (5)
I 5 6 2

| 1 2 0 0 .916324257986 (5)
| 2 4 0 0 1.79080905865 (5)
I 6 6 2

| 1 2 0 0 2.40262247392 (5)
| 2 4 0 0 .913137033518 (5)

[t SAME CARDS AS IN - 13 - ..........
and the equivalent of test case “— 10 -7 1s :

|BES + BES DOUBLE EXCIT. DESCRIPTION THREE LEVELS - 19 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 6 5

| .25 10.

I 10. 8. 8. 0.
[2. 1.

[2. 1.

I 2.

[2. 2.

4. 2.

[2. 2. 90.

I 1 1 0

I 1 2 1

I 1 2 0 0 -1.000000000000
I 1 3 1

I 1 2 0 0 -1.000000000000
I 1 4 0

I 1 5 0

I 1 6 0

I 2 2 2

I 1 2 0 0 1.195228338242
I 2 4 0 0 1.195228338242
I 2 3 0

I 2 4 1

| 1 2 0 0 -.4472135955 (3)
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I 2 5 1

| 1 2 0 0 -1. (3)
I 2 6 1

| 1 2 0 0 -1.341640786 (3)
I 3 3 2

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

I 3 4 1

| 1 2 0 0 -0.447213596000 (3)
I 3 5 1

| 1 2 0 0 -1.0000000000 (3)
I 3 6 1

| 1 2 0 0 -1.341640786000 (3)
I 4 4 0

I 4 5 1

| 1 2 0 0 1.06904496765 (5)
I 4 6 1

| 2 4 0 0 1.06904496765 (5)
I 5 5 2

| 1 2 0 0 -.512240832572 (5)
| 2 4 0 0 .682087 776762 (5)
I 5 6 2

| 1 2 0 0 .916324257986 (5)
| 2 4 0 0 1.79080905865 (5)
I 6 6 2

| 1 2 0 0 2.40262247392 (5)
| 2 4 0 0 .913137033518 (5)

[t SAME CARDS AS IN - 12 - ..........

The absence of the double excitation channels 17 and 3% reduces the number of equations from 20 to
17. Furthermore, as the two single excitation levels are degenerated and have the same coupling to the
other states, they can be replaced by a single level with reduced matrix elements multiplied by /2 as for
the test case “— 16 —”. The number of coupled equations decreases to 13. The data are :

|BES + BES DOUBLE EXCIT. DESCRIPTION THREE LEVELS - 20 -
| TFFFFFTFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFTFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 5 5

| .25 10.

I 10. 8. 8. 0.
[2. 1

I 2.

[2. 2.

4. 2

[2. 2. 90.

I 1 1 0

I 1 2 1

| 1 2 0 0 -1.414213562 (6)
I 1 3 0

I 1 4 0

I 1 5 0

I 2 2 2

I 1 2 0 0 1.195228338242

I 2 4 0 0 1.195228338242

I 2 3 1

| 1 2 0 0 -.632455532034 (6)
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I 2 4 1
| 1 2 0 0 -1.414213562 (6)
I 2 5 1
| 1 2 0 0 -1.8973665961 (6)
I 3 3 0
I 3 4 1
| 1 2 0 0 1.06904496765 (5)
I 3 5 1
| 2 4 0 0 1.06904496765 (5)
I 4 4 2
| 1 2 0 0 -.512240832572 (5)
| 2 4 0 0 .682087 776762 (5)
I 4 5 2
| 1 2 0 0 .916324257986 (5)
| 2 4 0 0 1.79080905865 (5)
I 5 5 2
| 1 2 0 0 2.40262247392 (5)
| 2 4 0 0 .913137033518 (5)

[t SAME CARDS AS IN - 12 - ..........

This calculation can be done with the usual rotational model by giving the nuclear reduced matrix
elements on cards (LO(15)=.TRUE.) as in the test case “~ 15 -7 with respect to the “~ 14 - 7. This was
already possible for the test case test case “— 19 =7 but not for the test case “— 18 =7 which involves
transfers of spin. The data set is :

|BES + BES DOUBLE EXCIT. DESCRIPTION THREE LEVELS - 21 -
| TFFFFFFFFFFTFFTTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFTEF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 5 5

| .25 10.

I 10. 8. 8. 0.
[2. 1

I 2.

[2. 2.

4. 2.

[ 2 4

[-.6

[20. 1.5 5

[10. 1.5 5

I 1.5 5

I 1.5 5

I 1.5 5

I 1.5 5

[1.5

I 1.5 .5

[2. 2. 90.

I 1 1 0

I 1 2 1

| 3000 2 0 0 -1.414213562 (6)
I 1 3 0

I 1 4 0

I 1 5 0

I 2 2 2

| 3000 2 0 0 1.195228338242
| 5000 4 0 0 1.195228338242
I 2 3 1
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| 3000 2 0 0 -.632455532034 (3)
I 2 4 1

| 3000 2 0 0 -1.414213562 (6)
I 2 5 1

| 3000 2 0 0 -1.8973665961 (3)
I 3 3 0

I 3 4 1

| 3000 2 0 0 1.06904496765 (5)
I 3 5 1

| 5000 4 0 0 1.06904496765 (5)
I 4 4 2

| 3000 2 0 0 -.512240832572 (5)
| 5000 4 0 0 .682087 776762 (5)
I 4 5 2

| 3000 2 0 0 .916324257986 (5)
| 5000 4 0 0 1.79080905865 (5)
I 5 5 2

| 3000 2 0 0 2.40262247392 (5)
| 5000 4 0 0 .913137033518 (5)
|[FIN

This is the simplest data set involving the minimum number of coupled equations in the rotational model.

The drawback of the use of channel spin is that the programme does not give the cross-section for
double excitation but the five or three cross-sections must be summed to get the result.

E Miscellaneous

Until here, we have considered only the rotational model. In this case, there are no description of the
interaction between the excited states available in the programme. We shall give some indications for the
vibrational model and derive the modifications of the couplings due to the elimination of identical levels.

E.1 Vibrational model

Between heavy ions, the vibrational model can be derived, assuming two distinct phonons, one for each
nuclei. Assuming two different nuclei of mass 8 with a 2% state at 1 Mev for one and 2 Mev for the other,
the test case is :

|BES + BES VIBRATIONAL TWO DIFFERENT LEVELS - 22 -
| FTFFFFFFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
| TTTTTTTTFFFFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 8 5

| .25 10.

I 10. 8. 8. 0.
I

[2. 1.

[ 1 1

[2. 2.

[ 1 2

I 3.

I 2 1 2
[1. 3.

I 2 1 2

[2. 3.
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I 2 1 2

[3. 3

I 2 1 2

4. 3

I 2 1 2

I 2 6

I 2 .

[20. 1.5 5
[10. 1.5 5
I

I

I

I

[1.5

I

[2. 2. 90.
|[FIN

Here, the channel spin is used naturally because the double excitation state appears as five degenerated
two-phonons states with spins 07, 1, 2+ 3+ and 4%,

If the two 2% are degenerated, the 17 and the 3% two-phonons states are no more coupled to the
ground-state. We can skip them and the data set 1s :

|BES + BES VIBRATIONAL TWO IDENTICAL LEVELS - 23 -
| FTFFFFFFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
| TTTTTTTTFFTFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 6 5

| .25 10.

I 10. 8. 8. 0.
I

[2. 1.5

[ 1 1

[2. 1.5

[ 1 2

I 3.

I 2 1 2

[2. 3.

I 2 1 2

4. 3.

I 2 1 2

I 2 6

I 2 .

[20. 1.5 5
[10. 1.5 5
I

I

I

I

[1.5

I

[2. 2. 90.
|[FIN

One of the 2% levels can be eliminated if the nuclear matrix elements with the ground state and with
the double excitation states are multiplied by v/2 and the interaction between these two levels added
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to the reorientation terms. By adding the nuclear matrix elements related to the same form factor as

printed in the output of test case “— 23 =7 one get the test case :

|BES + BES

VIBRATIONAL SYMMETRISED LEVELS

- 24 -

| FTFFFFFFFFFTFFTTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

| TTTTTTTTFFTFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

5

WP WWwwwwweEr NDNENEFENWWWNWE WO, WRE P2 PR W

5

OB P O NPOWONONBEBENOEAERNONEE ONPAOWNNOR

10.
10.

O WO RrR O, ORPROFPLRORPRORFP,LOOODWORFRrRORFR,rORFR OR O P

90.

.000000000000

.414213562373

.894427191000

.069044967650

.434274331201

.260990336000

.138089935300

.868548662402

.632455532034

.414213562373

.897366596101

.800000000000

.956182887468

.282853961180

.260990337000

(7

(8)

(7
(7
(7
(8)
(8)
(8)
(7
(7
(7

(7
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| 3 2 0 0 -0.458162128992 7
| 3 4 0 0 0.819585332306 7
I 4 5 2

| 3 2 0 0 0.819585332306 7
| 3 4 0 0 2.148970870382 7
I 5 5 3

| 3 0 0 0 8.400000000000 7
| 3 2 0 0 2.148970870382 7
| 3 4 0 0 1.095764440222 7
I

FIN

As all the nuclear matrix elements of first order have been multiplied by /2 : there are noted by (6).
The nuclear matrix elements noted by (7) are sums on the two phonons and those noted by (8) are sums
of couplings and reorientation terms.

In the first order vibrational model it is not needed to give the nuclear matrix elements on cards :
the deformation can be multiplied by /2 and the double excitation states defined with two different
phonons to avoid some symmetrisation factor. A dummy second phonon can be introduced by defining
the double excitation 2% state as a two-phonon state with different phonons. The test case “— 22 —” with
L0(2)=.FALSE. instead of .TRUE. can be replaced by :

|BE8 + BE8 FIRST ORDER VIBRATIONAL ONE LEVEL - 25 -
| FFFFFFFFFFFTFFFTFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
| TTTTTTTTFFTFFFFFFFFFTFFTFFFFFFFFFFFFFFFFFFFFFFFFFF

[ 5 3

| .25 10.

I 10. 8. 8. 0.
I

[2 1.5

[ 1 1

I 3.

I 2 1 2

[2 3

I 2 1 2

4. 3

I 2 1 2

I 2 .848528

I 2 1.848528

[20. 1.5 .5
[10. 1.5 .5
I

I

I

I

[1.5

I

[2. 2. 90
|[FIN

If double excitation is not taken into account, it is enought to multiply the deformation by v/2 to
generate the couplings in the first order as well as the second order vibrational model.

E.2 Justification of the elimination of one level

Let us note by w1, y2 ,y3 and y4 the four functions of the ground state, the excited state of the target,
the excited state of the particle and double excitation level, for a given J-value and parity. In fact there
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are more than one function ys, yz or y4, but the result is the same. The system of equations is :

0 = j_:Z v+ Viyr + Viayr + Vizyz + Visys + Viaya
0 = j_:Z Y2 + Vays + Visyr + Vasys + Waoys + Vaaya
0 = j_:Z ys + Vays + Viayr + Waays 4+ Vaoys + Vaaya
0 = j_:Z Ya + Vays + Viayr + Vaaya + Vaays + Viaya (V.3)

where V1, Vs, V4 are the potentials, Vi1, Vag, Via the reorientation terms, Vis, Via, Was, Vau the couplings
between different channels. Using :

1 1
= —(uy + us), = —=(uy — u3), V.4
Yo \/5( 2 3) Y3 \/5( 2 3) ( )
this system of equations can be written :
d2
0 = ozt Viyi 4+ Viiyn + V2Visus + Viaya
d2
0 = i + Vaus +V2Vioy + (Voo + Wao)us + V2Vauys
d2
0 = oz Yat Vay + Viays + V2Vaqus + Vaaya
d2
0 = 2z s + Vauz + (Vag — Wag)us (V.5)

The last equation is not coupled to the others. As it is not the ground state, its solution is zero and
Yo = Yz = uz/\/§ The C-matrix elements of y, or y3 are those of uy divided by \/5, so the cross-sections
related to ys and ys are the half of the one computed with us. The cross-section obtained with us 1s the
sum of the excitation of the target and of the particle. The symmetrisation, skipping odd J-values and
doubling even J-values is independent of the problem of excitation of the target and of the particle.

In the three first equations above, the coupling between wy and y; or y4 1s the coupling of y, or ys
with y; or y4 multiplied by V2. The reorientation terms for us is Vas + Waa, that is the sum of the
reorientation terms of y, or y3 and the coupling terms between ys and ys.

In the rotational model, the coupling between the two excited states must be smaller and of the order
of the reorientation terms in second order vibrational model. They should be obtained by an angular
integration on a multipole. We have neglected them here. The use of the multipole of order zero for
the central potential can also be discussed to know if the deformation should be increased (multiplied
by \/5) With such an increase, it is not necessary to give the nuclear reduced matrix elements on cards
as far as double excitation is not included. In the rotational model, it is not equivalent to increase the
deformation or the nuclear matrix element.

In the vibrational model, after the correction introduced in January 1981 to the second order coupling
between two one boson states, which makes it equal to the reorientation terms, the particle and target
excitation can be taken into account by multiplying the deformation by /2 as well in the second order
as in the first order if double excitation is not taken into account.

E.3 Summary of test cases

The output of these test cases varies from one to another. The total output is very large because the
main value is 1200 lines by test.

The following test cases must give identical results:

1. “~1-" and “- 3 = excitation of ®*N7i.
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2. “-2-"  “4-"and “- 5 " excitation of ®Be.

3. “-6-"and “ 7" excitation of ¥*Ni and ®Be.

4. =8, “-9 - and “-~ 10 -7 in summing the last five levels of the two last tests to obtain the
last cross-section of the first one.

5. “~11-", “-12 " and “- 13 - excitation of one ®Be.

6. “— 14", “- 15" and “- 16 - excitation of the two ®Be.

7. ““ 17" 187, “~19 =" | “=20 =7 and “-~ 21 -7 double excitation, but, in some cases, some

cross-sections are the sum of cross-sections obtained in another tests.
8. “- 922 " gecond order vibrational model for two 21 in 8 Be.

9. “-23-"and “- 24 " double excitation of ®Be in second order vibrational model (only these two
examples deal with mutual excitation).

10.  “= 25 = first order vibrational model for double excitation in 2% of ®Be.
The nuclear reduced matrix elements are -1. between the ground state and the excited state and the

two reorientation ones are 1/10/7 in the rotational model. The others couplings in the vibrational model
are too various to be listed here. The signification of the indications between parenthesis is :

(1) were multiplied by v/25 + 1 with 25 in column 15 in ECIS79 and ECIS88, without change for
ECIS94.

(2)  multiplied by /(25 + 1)(2I + 1) where [ is the spin of the target in ECIS79 and ECIS88, by

v2I + 1 in ECIS94.

multiplied by a 9j coefficient as discussed after test case “— 9 7.
multiplied by a 9j coefficient as discussed after test case “— 9 7.
multiplied by a 9j coefficient as discussed after test case “— 9 7.
multiplied by /2 to eliminate one level.

summed on equivalent form factors.

summation of coupling and reorientation terms.



Chapter VI

Transfer reactions

We consider the most general case of transfer reaction. We define the approximations which allows to use
the codes ECIS and indicate the input of these codes. We shall follow : [72] OHMURA, T., IMANISHI,
B., ICHIMURA, M., KAWAI, M., “Study of Deuteron Stripping Reaction by Coupled Channel Theory.
I - Variational Formulation and Discussion on Basic FEquation -” Progress of Theor. Phys., 41 (1969)
391; ... II — Properties of Interaction Kernel and Method of Numerical Solution -”, Progress of Theor.
Phys., 43 (1970) 347; “...III - Numerical Results without Non Orthogonality —”, Progress of Theor.
Phys.,44 (1970) 1242 with slightly generalised notations.

Results of ECIS79 have been compared with results of CHUCK and results of ECIS94 with DWUCK.

A Notations

Let us consider a target of mass M, at the point ]%a and a particle of mass My which is a bound state
of a “neutron” of mass M, at the point R, and of a “proton” of mass M, at the point ]%p. In an other
channel, the “neutron” can be bound to the nucleus of mass M,: the target is then a nucleus of mass
My = M, + M,, at the point ]%b and the particle is the proton.

Al Systems of coordinates

There are two systems of Jacobi coordinates after elimination of the centre of mass. The first, suitable
for the first level is :

_ M,R, + M,R, =~ -
ad = W_RGIR’
n P
R., = R,— R, (VL1)

The second one is more suitable for the second level :

[l
=

i = Mnén‘i‘Maéa
e A VA

-

Ry = Rn—Ra. (V1.2)

Any of these vectors can be expressed in terms of two others. These relations will be useful. They
are :
My (Mo 4+ My + M,)

éad = - énp +

Ma + Mn =
R
Ma (M, + M,)

b
M, P
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M,

CHAPTER VL

M, (Mg + M, + M,)

TRANSFER REACTIONS

e
Mn T Mp bp +

-

RE’an + Rnpa

__r
M, + M,
M, (M, + M,)

—

Rad +

-
Ran

(Mg + My)(M, + M,)

(Mo + Mp)(My, + My) =

My (M 4+ My, + M)
ébp — M _aoverM, + Mné(m
My, + M,
M,

-

(Rad - éan)a

and :

-

M,
Rad +

(My + M, + M,

My, (Mg + My, + M)

(VL.3)

-

a Mn
Ry M, + M, M,

Rnp +

(
M, 5

7Ran

M, + M,

M,

M, + M, =

+ Mp)(M,, + M)~

(Ma+Mn+Mp) i

ad —
M,

-

M,
Rad - L

M, + M,
Ma + Mn =d =d
Ta(Rbp - R”P)

(Ma + My)(My + M) =

juu]l
o

an np

My (Mg + M,)

ap

My (Mq + My)

-

My (M, + M, + M) 4

A.2 Hamiltonian and wave function

. 1.4
M (Mo + M, + M) (V14)

The total Hamiltonian can be written in two alternative forms. For the deuteron channel :

H= Ha - anpARnp |R + Vnp(énp) - adAR|Rnp + Van (Ran) + Vap (éap)

For the proton channel :

H = Hy — apAr|Rnp + Vap(éap) + Vnp(énp)

with :

Hy = Hy — anAg +

w7

-

(VL5)

(VL6)

-

Van (Ran

) (VL7)

Here the a’s are related to the reduced masses (or the reduced energies in the relativistic option). They

are:
a _ Ma+Mn+Mp 2
CT oM, (M, + M)
Ma+Mn+Mp 2
Clp_

C2M, (Mg + M,)

Mn + Mp 2
np = D
e = oMM,
M, + M, ,
L= Mot Mngo V1.8
= oMM, (VL8)

The intrinsic wave functions of the target A, the target B and the particle in the initial channel are
respectively Fo(%), Fy(Z, Ran), Fa(Rnp) where & are internal coordinates. They satisfy the equations :

HoFo ()

HyFp(Z, Ran
[ — anpAR,, + Vnp(énp)} Fa(Rnp)
Furthermore, we assume that :
Fou(Z, Ran)
| = an A, + Van (Ran)| Fa(Ran)

a
n

= FE. F (%),

= Ebe(f, éan)a

= E4Fi(Rnp). (VL.9)
- Fa(f)Fn(éan)a

= EpFo(Ran) (VI.10)
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The total wave function is :

F(%, Rap, Byp) = Fu(Z)Fa(Rnp) Fi (R) + Fo(&, Ran) P (7) (VL.11)

B System of coupled equations

The system of coupled equations is obtained from :
[H — E] F(Z, Ran, Rbp) = 0 (V1.12)

by projection on Fa(f)Fd(ﬁnp) and on Fy (7, éan) In the first case, the total expression is integrated on
the variables # and R,, and the result is a function of R,q = R. In the second case, the total expression
is integrated on ¥ and R,, and the result is a function of Ry = 7.

B.1 Tri-dimensional equations

The first equation obtained is :

—aa(Ag + k2) Fi(R) + Uaa(R) Fi (R)

b [ FalFiog) [ = (Bl + 1) + Vi (Fog) + Vi (o) Fo(Ron) Fa( iy =0 (VL13)
with :

Uaa(R) = / Fa(Rony) [vm(éa ) + Vip (Ra )} Fy(Bop)d By (VL.14)

The second equation is :

—ap (A + ky ) Fa () + Uy (7) Fa(7)

+ / Fo(Ran) [ — ap (AR, + 52) 4 Vap(Rap) + vn,,(énp)} Fy(Rnp)F1(R)dRun = 0 (VL15)

with :

Unp () = [ FolFon) [V (o) + Vi (o) | Fo(Fan) o (VI16)

In these integro-differential equations, all the variables can be expressed in terms of R and 7 this
introduces the Jacobian of the transformation from Rad, Rnp or Rbp, R(m to Rad, Rbp in front of these
integrals. These two Jacobians are :

(M, + M) (Mo + M,)13
- I.1
d {Mn(Ma—i—Mn—i—Mp) ] (VI1T)
We obtain:
—a4(Ar + k2) Fi (R) 4 Uaa(R) Fi (R) +/K(é,f)F2(f)df = 0,

—ap (A + k) Fo(F) + Upy (7) Fo(7) + /K(é, A (R)dR = 0 (VI.18)

with : . . . . .
K(R,7) = J Fa(Rnp) { — ap (AR, + k) + Vap (Rap) + Vnp(Rnp)} Fo(Ran) (VIL.19)

The derivative term can be replaced by derivation of the bound functions Fd(ﬁnp) and F, (ﬁan) (see Ref.
[72]). The result is :

K(R, 7 =J [— ap (Ar|r + k2) + Vip(Rap) + vn,,(énp)} Fo(Ran) Fa(Bop) (V1.20)
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and can be divided into a non-orthogonality term :
KN(R7) = J | = ay (Acln +82) + Unp (Bop)| Fa(Ban) Fal ) (V1.21)
which do not exist in inelastic scattering and :

Ky (8,7 = T [Vap (Bag) + Vi (Rog) = Ung (Bog) | Fo (Ra) Fa( By (V1.22)

which is the only term which remains in DWBA because I(N(ﬁ, 7) is identical to the homogeneous part of
the equation for Fa(7), multiplied by some function.

B.2 Radial equations

If the waves functions Fl(ﬁ) and F»(7) are expanded into partial waves, a set of radial equations are
obtained. The transition potential K (R, ) is characterised by :

e the transfer of an angular momentum L which is the angular momentum L, of the “neutron” in

-

Fn (Ran)a
e the transfer of a spin to the particle, which is the one of the “neutron”,
e the transfer of a total spin J to the nucleus, which is the total momentum of the “neutron” wave

function F), (ﬁan)

The geometrical coefficients are the one implied by these three transfers. Note, in ECIS, the phase
i'» and the extra phase i for odd values of L, .

Without taking into account the spins, the wave functions Fy and Fs can be written :
F(R) = Z LYM(R) = Fl(L R),
Fy(F) = ZZ’Y, F1 (1, 7). (V1.23)

The system of coupled equations is :

Li(Li + 1)

{dz ki =

1| == }Fl(LZ,R )+ UaalLi, Lj, R)F\ (L, R)

LJ
—|—Z/GL“lerK(R, r)Fy(lj, r)ydr = 0
l,
d? Li(li + 1)
_ap{ﬁJrkf, - T}Fz L)+ 37 Unpls, 1y, r) Fo(ly, 7)
l]

+Z/G,“LerK(R, r)Fy(L;, RYdR = 0 (V1.24)

where G'1; is some geometrical coefficient.

C Zero-range approximation

We neglect, the non-orthogonality term KN( ,7) and we assume Vap( ap) (Rbp) in Ky (R ,F). The

zero-range approximation is obtained if we replace the product V,,,(R.p)F, ( ») by a é-function of R,,.
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C.1 Coupled differential equations

In the interaction :

K(R,7) = J Vap(Rnp)Fa(Bnp) Fo(Ran) (V1.25)
the product Vnp(énp)Fd(énp) is replaced by a d-function of :

5 o MM+ M) 5 (Mot Ma)(Ma + My)

Rpp = — ad + VI1.26
P My (Mg + My + M) " "My (M, + M, + M,) ( )

multiplied by some strength Cy which is usually -122.5 mev ( 124.7 MeV in Ref. [72]). The é-function
can be replaced by a §-function on the lengths divided by :

M, (M, + M) (M, + M,)%Rr

VI1.27
(VMo (Mo + My, 1)) (V127)
with a d-function on directions of R and r. So :
(& (M + My)(Ma + Mn)? 5 0(Rnp)
K = Fn(Ran 1.2
(B T) = Co o v M, 1 gy Fen) =, (V1.28)
and after integration the system of coupled equations becomes :
d? 5  Li(Li+1)
_ad{ﬁ Ty T}Fl(LZ, R) + ; Uaa(Li, L, R)Fy(L;, R)
M + M Ma _
+ZCOGL v ——— (R Fa(ly, mR) =0,
d? Li(li +1
ap [W + k; _ ﬁ}Fz ll,r + Zpr l; lj,?“)Fz(lj,?“)
l]
Ma-i-Mn My + M, My + M,
+ZCOG, T )2F,( i r)Fi(Lj, Tar) =0. (VI1.29)

These equations are not symmetric. Note that M, and M, + M, are the masses of the target for the two
levels. From now on, we shall use:

My=M, My=M,+ M, (VL.30)

C.2 Symmetric equations

To obtain more symmetric equations, we shall use different units of lengths in each channel: in channel
i, we use s = M;R; /My, that is the step size h; = hMq/M;, where My is the mass of the target in some
first channel labelled by 0. The equations are :

_ad(Mo) {5_522—1— (%?) kd %}Fl([/ias)+ZUad(Li,Lj,S)F1(Lj,S)
L;

+ZCOGL,J]M n(s)Fa(ly,8) =0,

_ap(ﬁz) [j—;Jr (%)ka WSJ}FZ (liys)+ > Upp(li, 1, 8) Fa(l;, )
I

—|—ZCOG, I, 2F(s)Fi(Lj,5) = 0. (VL.31)
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With the following notations :

Vit = Usals), Vio = 6Ca[ 2] Falo), Vas = Usp(5), (VL.32)
and using the coefficients :
o) [ aee n
P Miaj Miap
wave functions and potentials can be redefined with :
Fi(s) = A;Gs(s) Us;(s) = BiB;Vi;(s) (V1.34)

to get the symmetric set of equations :

S %)%3—@]&(5) +U11() G (5) + Una(s)Ga(s) = 0
[ %)2/@%—1(1; D1 Ga(s) +Ua(s)Cials) + Ura(s)Gisls) = 0 (VI.35)

in which [Mqo/M;]kg and [My/Ms]k, appear instead of the wave numbers. In ECIS, the mass of the target
in the first channel is chosen as M. In the subroutine COLF the wave number is multiplied by Mq/M,
because this product plays the same role in all parts of the code.

D Use of ECIS94

D.1 Possibilities of the code

The code ECIS94 as well as ECIS79 allows zero-range calculations without the non-orthogonality term
using external nuclear matrix elements and form factors (LO(7)=.TRUE. ). The step sizes for each levels are
related with respect to the difference of masses, unless tt LO(93)=.TRUE. (L0(48)=.TRUE. in ECIS79):
this control can be used to interchange particle and target in some level, in which case there is no recoil
correction. For the transfer of a neutron with angular momentum L,, and total spin J,,, the data needed
for the reduced matrix elements are :

e columns 1- 5 Sequence number or blank.
e columns 6-10 angular momentum L,.
e columns 11-15 1 (twice the spin of the neutron).

e columns 16-20 2J,, twice the total spin.

e columns 21-40 the nuclear matrix element which depends upon the form factor, but in-
cludes :

— a reduced nuclear matrix element in the spin space which is not the same in ECIS79 and
ECIS94,

— areduced nuclear matrix element in the target space,
— arecoil factor [(a+ 1)/a]?/? if LO(48)=.FALSE..

The form factor can be given by points. However, they are two “standard” possibilities:

-7 Laguerre polynomial,

-8 solution in a real Woods-Saxon potential of which the depth is searched for a given binding energy.

In these two cases, there 1s a discrepancy in the code between these form factors and the macroscopic
ones such that the reduced nuclear matrix element has to be divided by /4.
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D.2 Example

97

The following example has been chosen to compare ECIS79 with the code CHUCK. The original test case

was intended for Zr but the mass of the target has been decreased to enforce the recoil effects.

For ECIS94, this test case is :

| COMPARAISON AVEC CHUCK POUR BE8
| FFFFFFTFFFFFFFFFFFFFFFFFFFFFTFFFFFFFFFFFFFFFFTFFFF
| TTTTTFFFFFFFFFFFFFFFTFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

I 2 1 2 3 3
[.12 18.
I 15. 1. 2. 8. 4,
[3.5 2 -5. .5 1. 9. 4,
[0. 2.5 137.5
[ 1 1
1 2
1 4 7 142.84024 (1)
2 2
1 1 0 1 0 0 0 -1
104.3 2.14 78
1 1 0 2 0 0 0 -1

13.9 2.52 .8

3.5 2.14 .78

54.9 2.3713 7
2 2 0 2 0 0 0 -1
.41 2.7249 .63

8.7875 2.7249 .63
2 2 0 5 0 0 0 -1
8.3825 2.609 .53

[7.2 9. 1. 0. 0. 1.25 .65
0. 1. 1. 1.
|FIN

There 1s no spin-orbit for the bound wave-functions because CHUCK takes 1s proportional to the central
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potential and ECIS keeps it constant. As the first channel i1s the deuteron channel, there is no need to
indicate to the code to use the deuteron step size : for the inverse reaction, a “2” should be in column 45
of the third card before FIN. The “deformation” in the test with the code CHUCK was 122.5 . The value
(1) used here is the same

divided by V4w, due to the normalisation of bound-states in ECIS,

e multiplied by the reduced matrix element in the spin space which is \/5/2 in ECIS94 but was /3
for ECIST79,

multiplied by the reduced matrix element in the target space, which is v/8,

o multiplied by the recoil factor which is (9./8.)3/2.



Chapter VII

Miscellaneous

A Relativistic cinematics

This section is to explain some expressions which are used in the programme when relativistic cinematics
are used (LO(8)=.TRUE.) and compare then to the non-relativistic ones (LO(8)=.FALSE.). The code
includes in subroutine CALC the following values :

| CM=931.5017646D0 CALC-085
| CHB=197.328604D0 CALC-086
| CZ=137.0360411D0 CALC-087

in the IBM version (single precision in the CDC version). They are the values of the Atomic Mass Unit
M, in MeV fm/c? and of he in MeV fm respectively where c is the speed of light in vacuum. In these
explanations, we supposes the masses multiplied by CM and the wave numbers by CHB.

Al Notations

Let us consider a particle of mass m; and energy Fj,p in the Laboratory system and a target of mass M;;
in the final state with an excitation energy (), an outgoing particle of mass m; and a residual nucleus of
mass M;:

e in non-relativistic cinematics, the mass M; is unaltered;

e 1In relativistic cinematics :

Mf :mi—I—Mi—mf—l—Q/Mu (VHl)

in such a way that the total energy in the center of mass system is a constant. However, this
correction 1s dropped in the Schrodinger formalism if they are Coulomb corrections.

A.2 Energy in the center of mass system

The relativistic energy of the incoming particle in the Laboratory System is given by e; = m; + Ejqp, as
a pure extension of the non-relativistic case. Its momentum p; is such that e = m? + p?. A change of
frame along the quantification axis is obtained by :

P =pcoshz +esinhz, E = psinh x + ecosh (VI1.2)
The change to the Center of mass system is obtained with :

P., = p;cosha + e; sinhx + M; sinhx = 0, Eem = pisinhz + e; coshz + M; coshz  (VIL3)
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from which sinh z and cosh £ can be eliminated to obtain :
Ecm, = Ecm — m; — Mz = [(mz + Mz)2 + 2ElabMi]%a Ecmf = Ecm, - Q/Mu (VII4)

for each channel.

A.3 Wave numbers - Momenta
From : ) )
Eem = (m} +p7)7 4+ (M} +p7)= (VIL5)
we get :
P = [(Bem —myg = Mg)(Eem + my + Mg)(Eemn + my — Mg)(Eer — my + My)

4E2

= Y Eem, + mi + M;)? '

With relativistic cinematics without Dirac formalism, the reduced mass p,, is replaced by the reduced
energy py :
L L
my My _(mjzf‘ijzf)Q(M?‘FP?)Q _Eﬁm_(m?_M?)z
my + Mf’ Hr = Ecm B 4E§m ’

(VILT)

but, with Coulomb corrections, M; is used instead of M; in order to have the same reduced mass for all
the levels : until their generalisation, the Coulomb corrections are valid only with a product of the wave
number by the Coulomb parameter constant in all the channels.

Without relativistic cinematics, the residual target mass M} is not corrected by the excitation energy.
The center of mass energy of each levels are given by :
Eiap M;
m; + M;’

2M,, Ecmfmef

Ecm =
' hz mf—l—Mf

Eemy = Bem, —Q, P} = (VIL8)

A4 Observables in the laboratory system

We shall note the incoming particle, the initial target, the outgoing particle and the residual target as
particles 1, 2, 3 and 4 respectively. In order to compute the rotation to be applied to the S matrix
to obtain a description of polarisation phenomena in the Laboratory system, we have to consider the
following frames :

1. the center of mass with Oz in incoming direction;

2. the center of mass with Oz in outgoing direction of particle 3;

o

the system in which particle 3 is at rest and Oz opposite to outgoing direction of particle 4; the
description of polarisations is invariant in this change of frame;

4. the system in which particle 3 is at rest and Oz opposite to incoming particle 2; the description
of polarisations has to be rotated for this change of frame;

5. the system where particle 2 is at rest and Oz along the outgoing particle 3; the polarisations are
invariant;

6. the system where particle 2 is at rest and Oz along the incoming particle m;; the description in
this frame can be obtained easily from the description in frame (1).

We note by p, the momentum of the particle n in the center of mass frame; by e, their relativistic
energy and by m,, their mass. In fact, py = ps and ps = ps. We shall give z,  and time components of
the quadri-vector (7, €) for each particle in each frame.



A.  RELATIVISTIC CINEMATICS 101

A.4.a Center of mass system - Oz incoming direction

For an outgoing particle 3 at the angle « in the center of mass system, the 4 quadri-vectors are:

P - p3cosc —p3cosc
(1| o (2)] 0 (3)| pssina (4)| —pssina (VIL.9)
€1 €9 €3 €4

A.4.b Center of mass system - Oz outgoing direction

This new frame is obtained by a rotation in the ordinary space :

p1cosa —p1cosa Ps —ps
(1)| —p1sina (2) | p1cosa (3)| 0 (4)| 0 (VII.10)
€1 €9 €3 €4

A.4.c Particle 3 rest system - Oz outgoing direction

This new frame is obtained by a special Lorentz transformation with cosha = e3/ms and sinhz =
—Ps/m3 :
(prescosa — ey ps)/ms —(p1escosa + eaps)/ms 0 —ps(es + eq)/m3
(1)| —p1sina (2)| pisina (3)| 0 4)| 0
(eres — p1pscos a)/mg (eses3 + p1pacosa)/ms ms (eseq + p3)/ma
(VIL11)

A.4.d Particle 3 rest system - Oz opposite to particle 2

The axis Oz must be opposite to the momentum of particle 2. This rotation 3 is such that :

. sin « €3p1 COS @ + €9p3
sinf = — cos 3 =
) pimsy
9 m%p% + p%p% cos? o + 2p1pseses cos o + p%e%
= 75 (VIT.12)
pymg
The expressions obtained are :
214 —pPiy 0 244
(1)| —(e1 +ea)prsina/(mgy) (2)| 0 ()| 0 (4)| —(es+ ea)pssine/(may)
(e1e3 — p1p3cos a)/ms3 (eaes + p1ps cos a)/ms3 ms (eses + p3)/ms
(VIT.13)
where :
i =yl — (e1 + 62)])3(632])1 cos & + e3p3) ’ s = (es + 64)])3(632])1 cos o + eap3) . (VI1.14)
mszp1y msp1y

The angle § 1s the angle of transformation of the scattering matrix in the helicity formalism. In the
non-relativistic case, e3 = mg and es = my ; the angle § is then the angle in the Laboratory system
minus the angle in the Center of mass system. For the target, the quantification axis is opposite to the
momentum is the Center of mass system: in the formulae above, ps must be changed into —p3, eg and
mg in eq and my respectively.

A5 Angles in the laboratory system

The transformations can be continued :
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A.5.a Laboratory system - Oz outgoing direction

This frame is obtained by a special Lorentz transformation with :

coshz = 222 +Pipscosa , sinhz = 224 (VII.15)
mamsg ma
The expressions obtained are :
215 0 map1y/ma Z4s5
(1)| —(e1 +ea)pssina/(may) (2)| 0  (3)| 0 (4)| —(es + ea)pssina/(may)
(6162 -|—p%)/m2 mo (6263 + p1pscos Oé)/mz (6264 — P1P3COs Oé)/mz
(VIL.16)
where :
o= (e1 + e2)(eapscos a + e3p1) as = pipaes(eq — e3) cos o + pleses — pied + pipasin® a
momsy ' mamsap1y
(VIL17)

The scattering angle in the Laboratory system ~ corresponding to the scattering angle a in the center
of mass system 1s such that :

. sin o €2P3 COS O + e3P
sy = , cosy =
z pimsz
2 p%p% cos® o + 2p1pseaes cos o + p%m% + e%p%
2= — (VIL.18)
p3ms

A.5.b Laboratory system - Oz incoming direction

This frame is obtained by a rotation of angle v in the tri-dimensional space or from the first frame by a
special Lorentz transformation with cosh = e3/ms and sinhz = py /ms :

P1(61 + 62)/m2 0 (p362 cosa+p163)/m2 (P164 — P3€2 COS Oé)/mz
()| o (2)| 0 (3)| pasina (4)| —pssina
(6162 + P%)/mz msy (6263 + p1pscos Oé)/mz (6264 — P1P3 COs Oé)/mz
(VH.19)

The angle v in the laboratory system is given in function of the angle « in the center of mass system by :

€23 COS o + e3P

siny = zsina, cosy ==z (VI1.20)
mMaps3
Using :
A= B =P (VIL21)
mo maps
we have : )
sin a
t = — VII1.22
MY Aeosa + B ( )

This relation can be inverted by :

Bcosy + AC
Ccosy — ABsin’y’

C? = (A? — B?)sin? v + cos’ 5 (VI1.23)

tan o = sin %y

The factor multiplying the cross-section in the center of mass system to obtain the cross-section in
the Laboratory system is:

wjw

d(cos a) _ [(Acosa + B)? +sin” a] (V1T 24)
d(cos ) A+ Bcosa

In the non relativistic case, these formulae are simplified only by the fact that A = 1 because e; =
m=2. .
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A.6 Conclusions

If the observables are not defined in the center of mass system, the scattering matrix has to be rotated.
For a scattering angle « in the center of mass system, the rotation needed to describe the polarisation of
the outgoing particle is given by Equ. (VII.12), that is :

p1mgsin o

tan 8 = — (VI1.25)
e3Pl Cos a0 + €2p3
and the rotation needed to describe the polarisation of the target nucleus is :
tan § = — ARG (VIL.26)

€4P1 COS X — €24

with relativistic kinematics. In the non relativistic approximation, the energies e are replaced by the
masses m in Equ. (VI1.24) and (VII.26).

If the observables are defined with only one axis of quantification along the incoming direction, the
collision matrix must be rotated with the angle —c«.

If an angular distribution is requested in the Laboratory system, the angle o in the center of mass
system is given by Equ. (VII.23) for the angle v in the Laboratory system. Cross-sections only must be
multiplyed by the factor given by Equ. (VII1.24). Here also, the non relativistic approximation is obtained
by replacing the energies e by the masses m.

B Coefficients 37, 65 and 95

Clebsch-Gordan coefficients are used only in the computation of reduced nuclear matrix elements, with the
function DJCG. These reduced matrix elements need also some 65 computed by the function DJ6J. Clebsch-
Gordan coefficients with magnetic quantum numbers zero or (1/2,0, —1/2) are given by the function DCGS.
The subroutine QUAN, which computes the couplings of Equ. (IT1.44) needs the 9j coefficients given by
the function DJ9J only for transitions with AS # 0 and functions DCGS and DJ6J for all transitions.

On the contrary, the Clebsch-Gordan needed in subroutine SCHE to transform the results into the
helicity formalism by Equ. (TT1.64) are obtained by recurrence.

An array of logarithms of factorials is used by the functions DJCG, DJ6J and DCGS.

B.1 The functions for geometric coefficients

All the arguments of these four functions are integer double values of the quantum numbers.

B.1l.a Clebsch-Gordan coefficients

If one of the angular momenta is zero, the simple result is returned. If one of the magnetic quantum
numbers is zero and the others 0 and :I:%, the simpler formula of function DCGS is used.

In the general case, the subroutine use the formula (21) of Appendix C in : [73] MESSTAH, A.
“Mécanique quantique”, Dunod, Paris (1960) page 910. The last term of the sum is computed. The sum
is then obtained by the DO LOOP :

[C K2,K3,K4,N1,N2,N3 ARE THE ARGUMENTS OF THE FACTORIALS IN THE LAST TERMDJCG-061

| DO 2 I=1,K DJCG-062
[ A1=(K2-I)*(K3-I)*(K4-I) DJCG-063
[ A2=(N1+I)*(N2+I)*(N3+I) DJCG-064
| 2 DJCG=A4-DJCG*A2/A1 DJCG-065

Exponential is used only for the first term.
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B.1.b 6j coefficients

If one of the angular momenta is zero, a simple result is returned.

In the general case, the subroutine use the formula (36) of Appendix C in Ref. [73] page 915. As
for Clebsch-Gordan coefficients, the last term of the sum i1s computed. The sum is then obtained by a
similar DO LOOP.

B.1.c Simple 3; coefficients

Due to the relation :
j' J \/— v J A A |
=—/(20 + 1)(2 1 VIL.27

such a 3j coefficient can be used to compute Equ. (T11.44) when S = 0 and the spins are % This relation

shows up in the helicity formalism for multipole expansion of an interaction (see Ref. [62]).

The function DCGS computes :

Y - - j L J
CGS = (=) T2/(2j + 1) (25’ + 1) (_% 0 %) (VIIL.28)
if 7 and j' are half integers and :
. "
_ i (d L 1.2
CGS = (-) (0 0 0) (VI1.29)
if j and j are integers.
Using :
2.4.6..n : :
! 1 sEr oy if nois even
g(n) _ m = 35.7..(n-1) (VH.30)
(nl) 2 240021 it s odd
where m is the integer part of n/2, these coefficients are :
0GS = (o) It+-i42)/2) oltj+i+1) (VIL31)

g(L+j—7)9(L—=j+7)9(+5 - L)

If j and j' are integer, this result must be :

e multiplyed by 2 if L + j + j' is even,

o (0ifL+j+7 isodd.

These two conditions are Int{(L+j+j +1)/2} —Int{(L+5i—7")/2}—Int{(L—j+7")/2} —Int{(+5 —L)/2}

positive or zero respectively. If this quantity is negative, j and j’ are half integers.

B.1.d 9j coefficients
The subroutine use the formula (41) of Appendix C in Ref. [73] page 917, which is :
Ji o J2 Js

A . B JioJe Js\ JJa Js s | 7 Js e
Ja Js Js —Z( )296{ : x}{ . }{x s j4} (VIL.32)

i s o . Js Jo J2 Js J1
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A cyclic permutation of the lines is done to get the shortest sum on z in Equ. (VII.32). Then, the three
series of 6j coefficients are computed by recurrence. For the first of them :

(a:—i—l)A(x){jl 2 }+B(x){j1 2 j;’}—i—xA(x—l—l){j:l 2 s }:0 (VII.33)

Je Jo w—1 Js  Jo Js Jo x+1
with :
Ax) = {(jl—jsa—l‘)(jl—j9+l‘)(j1+j9—l‘-i-l)(jl+j9+x—|—1)(j2—j6—$)(j2—j6+90)
(jz+j6—x+1)(jz+j6+x+1)}%
B(z) = (290-1-1){(1'1—jg)(j1+j9+1)(j6—j2)(j2+j6+1)+[j1(j1—|—1)—|—j2(j2—|—1)

+j6(js + 1) + jo(jo + 1) — 2j3(js + 1) — a(x + 1)] z(x + 1)} (VII1.34)

This is not a relation between “contiguous” 6j coefficients as defined in : [74] RAYNAL, J.,On the
definition and properties of generalized 6-j symbols”, J. Math. Phys. 20 (1979) page 2398, but can
be obtained by writing three such relations and eliminating two 65 coefficients between them. This
relation is used to compute the 6; coefficients for z,, < # < xy with z,, = max{|j1 — ja|, |js — Jo|} and
zpr = min{ji + j2, Jo + jo} starting from x = xps with the value 1. The first recurrence reduces to a two
terms relations because the coefficient of the 6; coefficient for # = zar + 1, which does not exist, vanishes.
The sum N; of the values obtained multiplied by (2z + 1) is computed; if it is larger than 105, all the
values obtained before are divided by 10'® and N is divided by 103°. This method needs a working array
to store all these unnormalised 65 coefficients and no table of logarithm. As used in ECIS, the series of
65 coefficients are short because two of the three quantum numbers L, S or I are in each of them.

The result of Equ. (VI1.32) must be normalised by dividing by the square root of the product Ny N2 Ns.
As the sign of the 6; coefficient with x = z7 is (—=)?”™ as can be seen in formula (36) in Ref. [73] when
the sum reduces to only one term and as all the three z3; and x are integer or half integer at the same
time, the product of all these signs is plus. The result has the correct sign.

B.2 Recurrence for 3; coefficients

Two different recurrence relations are used in the code ECIS94 for two very different purposes.

B.2.a Transformation to helicity formalism

To use conveniently Equ. (T11.64), for a given total angular momentum J and parity m, one needs a
tri-dimensional array of which the dimensions correspond to :

1. all sets of quantum numbers (I;, s;, ji, ;) or (¢, sy, fr, Iy) involved for this value of J and ,

2. all the (2s + 1) Clebsch-Gordan < I,s,0,0|j, o > for these values of (I, s, j),

3. all the (27 4+ 1) Clebsch-Gordan jlo—uJM for these values of (j, o, 7).

In practice, this array is built with the dimensions in the order (2),(3),(1).

The Clebsch-Gordan coefficients are ordered by increasing helicity. They can be obtained by ele-
mentary recurrence relations between “contiguous” coefficients as defined in : [75] RAYNAL, J., “On the
definition and properties of generalized 3-j symbols”, J. Math. Phys. 19 (1978) page 467. More explicitly,
a part of the Equ. (A7) in Ref. [74] is :

cte = {—%[a(a—i—l)—I—b(b-l—l)—C(C‘Fl)]_aﬁ_%(a_ﬁ)}(2 g ’j)
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St a)a—at - Bo+5+1} (20 0t 1)

= {%[a(a+1)+b(b+1)—6(c+1)]+aﬁ_%(a_ﬁ)}(Z g ’j)

+{(a —a)(a+a+1)b+B)b— B+ 1)}% (aj—l 6i X ,j) (VIL35)

which can be simplified in this simple case into :

0 = {(a-q-a)(a—oz—I-1)(5—5)(5‘1‘5"‘1)}%(ail 5-117-1 ,‘;)

+{[a(a+1)+b(b+1)—c(c+1>]+20‘5}(Z g ;)

+{(a —o)at+a+ )b+ B)b-B+ 1)}% (aj—l 6i X ,j) (VIL36)

and give for the < j, I, 0, —ul|J, ¢ — p > the following recurrence relation :
0 = {(I—u)(1+u+1)(J—u+0)(J+u—0+1)}5<j,f,0,—u—1|J,0—u—1>
—{[I(I+1)+J(J+1)—j(j+1)]+2u(0—u)} <j Lo —plJo—p>

H+m—p+ )T +p—0)J—p+o+1)} <jlo—p+11Jo—p+1>
(VIL37)

and a simpler recurrence relation for < [,s,0,0]j,0 >. The sign of < [,s,0,—s|j,—s > is positive
and if this coefficient does not exist, the sign of < [,5,0,—j|j,—j > is (—)*7/. Similarly, the sign of
< j,I,0,—1I|J,—1I > is also positive and if this coefficient does not exist the sign of < j, I, o0, —J—c|J, —J >
is (—)I=7=9. Consequently, starting the recurrences from the most negative values, the sign is given by
the number of coefficients which do not verify the usual relations on quantum numbers. Normalised
values are easily obtained, summing the squares of the unnormalised coefficients for each recurrence.

B.2.b Cross-section expansion in Legendre polynomials

Two similar recurrence computations of Clebsch-Gordan coefficients are needed to obtain the coefficients
of Legendre polynomials describing cross-sections.

The first of them is to obtain the product of the two reduced rotation matrix elements in the helicity
Coulomb amplitude as given by Equ. (IT1.65). As given by Equ. (69) of Appendix C in Ref. [73] page
920, their product is :

I+s
I . . ;
rgi)ygl(ﬁ)r(_zfy_ul(ﬁ): Z < s, 1,05, —pilj, o0 — i >< s, 1,08, —pslj,or — piy >rf,‘7f)_wygl_ul(9)

j:lI—sl
(VIL38)
The recurrence relation needed here is not between “contiguous” coefficients, but similar to the one used
for 65 coefficients when computing 95 coefficients as shown in section (B.1.d) by Equ. (VII.33) and
(VI1.34). The recurrence relation can be found of Appendix C in Ref. [73], formula (20) page 910, which
is :
A(J) < g1,y jasmi,mo|J = 1, M > +B(J) < j1, jo, m1, ma|J, M >
+AT +1) < ji,j2,mi,mo]lJ + 1, M >=0
A(T) = 112 = M2)[(G1 + J2 + 1) = T2 = (1 — j2)°]
- J (2J — 1)(2J + 1) ’

Jo(le+ 1) — (i + 1)
T+ 1)

B(J)=mi —my+ M (VIL39)
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This recurrence relation is used for increasing values of j. The normalisation is obtained by dividing by
the square root of the sum of unnormalised values. The sign is such that the product of Clebsch-Gordan
coefficients is positive for the highest value of j in Equ. (VII.38).

The second occurence is for the angular distribution of compound nucleus, which is given by :

dO’(H) _ 1 hel c.n. ) 2
( T )n_ (2s: + (2T + 1) D XSt G g i OO, (VIL40)

oiofpipiy J

which can be expressed in terms of Legendre polynonials with the relation :

2J
D O = () ST < JJom, =m0 >< J, Jym!, —m'|A, 0> Py(cos ) (VILA1)
A=0

The recurrence relation needed here is the same. After simplification for this application, Equ. (VII.39)
is :

A(J) < 4, 4,m,—m|J — 1,0 > +B(J) < j, j,m,—m|J,0 >

+AJ+1) <4, jym—m|J+1,0>=0

A(J) = Jw?(ijjll))(z;ﬁ), B(J) = 2m (VI1.42)

Recurrences start from values 1 for A = 0 because :

(=)™ < T, T, m, —ml|0,0 >< J,J,m’,—m'|0,0 >= (VIT.43)

2J+1

Contributions of odd values of J disappear in the sum on helicities.

C Reduced rotation matrix elements

The subroutine EMRO computes an array of reduced rotation matrix elements r(J) A(0) for Jp, < J < Jy
where Jp, = max{m,m’'} and Jy is the maximum value involved. But reduced matrix elements are
also computed by recurrence to rotate the scattering matrix, to factorise (1 — x cos#) in the amplitudes
and to express the cross-sections with Legendre polynomials. For reduced rotation matrix elements, see
Ref. [73] and in : [76] VARSHALOVICH, D.; A., MOSKALIEV, A., N. and KHERSONSKII, V., K.,
“Kvantovaya Teoriya Uglovogo Momenta”, ( “Quantum Theory of Angular Momenta”), Nauka, Leningrad
(1975) Chapter 4.

C.1 Recurrence with respect to .J

This recurrence is a simplification of Equ. (1) of section (4.8) of Ref. [76], page 79. Tt can be rewritten
as :

(J+ DT +m)(J —m)(J +m')(J —m) 50 (0) + (2 + 1) [mm’ — (T + 1) cos 6] #)) ,(6)
+ IV T+ T+ m)(J + 1—m)(J + L+ m)(J +1—m) el (0) =0 (VI1.44)
which allows the computation of r%’ﬁjl)(@) for Jp, = max{m,m'} if rfn m),(ﬁ) is known because the

coefficient of rfi’zgl)(ﬁ) vanishes. This starting value is given by Equ. (73) of Appendix C in Ref. [73]
page 922 :

W) (g — (24)! J4m j—m — cogt —«nt
Fm(0) = \/(] T p— EITMy , & = cos 29, 7 = sin 29 (VI1.45)
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which is obtained easily because the arguments of the subroutine EMRO, which computes the reduced
rotation matrix elements include &, 7, cos  and an array of square roots of integers. The recurrence given
by Equ. (VIT.44) used upwards seems to be stable without limitation.

If m’ = 0, the recurrence of Equ. (VII1.44) can be simplified to give :

(T +m)(J —m) r$/50(0) = (27 + 1) cos 0 5T (0) + /(T + L+ m)(J + L —m) vl +1(6) = 0 (VIL46)

m7
If m = 0, we obtain the same equation with m’ instead of m. The starting value are :

r)(0) = (_)jr({g(g) = % (&n)’ (VIL.47)

TS0 (0) = (27 + 1) cos 0 #57)(0) + (T + 1) #FV(0) = 0 (VII.48)

starting with ré%(ﬁ) =1.

For the angular distribution of a level, this calculation is done only once for all the amplitudes involving
the same values of m and m/, but also for —m and —m/’, using the relation :

P (0) = (=) e i (6) (VI1.49)
C.2 Recurrence with respect to m

It can be necessary to multiply the scattering matrix by the reduced rotation matrix r(j)(a) where j is the
spin of the outgoing particle or of the recoil nucleus and a the angle given by Equ. (VII.25) or (VII.26)
respectively or @ = —0 for observables described with only one axis of quantification. The recurrence
relation is Equ. (16) or (17) of section (4.8) in [76], page 81. Tt is :

- - ; m—m'cosa (;
VTG =m0 el (o) + 25— 0D (o) = ) G+ 1) 7 (a) =0
(VIL50)
which can start with r( ) ;(a) given by :

VT m)G—m+ 1) il (a) =22 =200 () 4 /= m) G+ m+ 1) rh (@) = 0 (VIL51)

sin «

()

o ]( «) for m varying from —j to j, starting with :

This relation is used to compute r

PY) = (—sin %a)zj (VI1.52)

—0J

)

and Equ. (VII.50) is used to compute rm m for m’ varying from j to m. The other reduced rotation
matrix elements are obtained from Equ. (VH 49).

C.3  Factorisation of (1 — x cos )

To accelerate convergence with respect to the total spin J, it is convenient to replace the amplitude f by
an amplitude f’ such that :

J (J) _ 1 ’(J ()
ZJ: f;gflrf,u,a,rm,m' (0) = T 2cosd ZJ: fu(fa)f,u,a,rm,m' (9) (VIL.53)
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with m = oy — pup and m’ = o; — pt;. Multiplying the two sides by (1—x cos ) and using the Equ. (VII.44)
to express the product of a reduced rotation matrix element by cos, we can identify the coefficients of
the same ) (0) to get :

m,m?!

mm/’

() V0 =m)(G+m) (i —m)(G+m)

- _ (4-1) e ()
fufo-fyﬂzo-z - z 3(2] + 1) fN]foyuzUz + 1 $J(J+ 1) fN]foyuzUz
GH1=—m)G+T14+mG+1-—m)G+1+m)
_g;\/ f;(iyf-lo—i?u,m (VI1.54)

G+DEi+1)

which allows to obtain f/Y) up to j = Jar — 1 if the values of ) are known up to j = J,,. Writting this
new amplitude /) = £ — 2 £7() the value of  is obtained by :

j=Jm—1 j=Ja—1

. . . . : X D1

- = ; 20 ¢(4) prr(5)* (3)* £11(5) — ; 20 p11(3) p11(3)* - =

D1—2'§ (2) + 1)2[fO) pria)x 4 = prla)], D2—’§ @+ 1[I =
J=Jnm—5 j=Jm—5

(VI1.55)

but with the restriction |z| < 1. The value of z is stored instead of the real part of FUM) This process
can be done again several times.

C4 Expression of cross-sections in Legendre polynomials

If the inelastic scattering amplitudes or the elastic scattering amplitude of a chargeless particle is known
up to Jar, the cross-section can be expressed as a sum of Legendre polynomials P;(cos @) with [ from
Il =0tol =2Jy. For the elastic cross-section of a charged particle, the Coulomb cross-section must
be subtracted; the remaining cross-section cannot be expanded into Legendre polynomials because it
involves an interference term with the Coulomb amplitude and the Legendre expansion of the Coulomb
amplitude does not converge. So, the difference between elastic and pure Coulomb cross-section must be
multiplied by some power of (1 — cosf) before being expanded in Legendre polynomials.

C.4.a Legendre expansion without Coulomb amplitude

The contribution to the cross-section of an helicity amplitude being :

2
do(0) 1 (1) hel. (J)
= e 0 1T.
Q2 (2si + 1) (21 + 1) ZJ: fufgfulglrgf_uf’m_ul( ) (VILEE)
its expression as an expansion on Legendre polynomials and the coefficients are :
do(6 1 [ do(f
U( ) = Z(?L + I)ALPL(COS 9)’ A = —/ U( )PL(COS H)dCOSH (VH57)
Q2 - 2 Q2
The coefficient of Py(cosf) is quite trivial :
Ag = 1 Z 1 ‘f(J) hel. (VIL58)
(2s; + 1)(2; + 1) = 2J 1 [FHso1HT ’
and can be generalised to any Pr(cos @) if one defines :
el. J) (J
Fp = Prcos@)fit o =S FelD L (0) (VIL59)
J
and use : ) )
Ap = 3 JUT) hel plT) = (VIL.60)

(25; + 1)(20; + 1) &= 2] + 1 /#1718

J
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The Fr, can be obtained with the same recurrence relations as the Pr(cos@). This give for their
coefficients, using again m = oy — uy and m’ = o; — y; :

7y _L—l 2L—1 \/J m)(J +m)(J —m')(J + m’') (J—1) mm/’ (1)
neo= L il { J(2J = 1) Fioa +J(J—|—1)F
\/(J—i—l—m)(J—i—l—l—m)(J—i—1—m’)(J—|—1—|—m’) (J4+1)
F .61
* (J+1)(2J +3) L=t } (VIL61)

easy to use because the dependence on L is very simple and the dependence in J is the same for every L
and can be stored. In this process, the number of J values increases with L.

C.4.b Legendre expansion of Coulomb amplitude

To generalise this calculation to the elastic scattering of charged particle, the helicity amplitude in Equ.
(VI1.59) does not include the coulomb amplitude. To obtain Fy :

1. the helicity amplitude without Coulomb amplitude is multiplied by (1 — cos #)?, using recurrence
relations on the reduced rotation matrix elements and also by (1 + cosf) for identical particles,

giving h(0),

2. the two reduced matrix elements in the spin space are multiplied as shown by Equ. (VII.38),
giving some function ¢(9),

3. the Legendre expansion of the Coulomb amplitude multiplied by (1 — cos#)™ or (1 — cos? §)" is
generated as :
c(0) =Y (2L + 1)C)" Pr(cos0) (VIL62)
L
4. g(#) is multiplied by ¢(f) and added to A(f) to get the function Fy used in Equ. (VII.60) to

compute Ag :

Fo = h(0) +g(0) c(6) = h(0) + >_ (2L +1)C Gy, (VIL63)

where the G are defined with respect to g(f) as Fr was defined with the helicity amplitude in
Equ. (VIT.59).

Then, the computation of the coefficients A;, can be done as in the absence of Coulomb amplitude. This
expansion must be done up to Jyr + Las where Ly is the maximum L value for the Ay requested and
Jar the maximum J value of the amplitudes.

The Legendre expansion of the coulomb amplitude multiplied by any power of (1 — cos#8) is

(1—cos0)" f(6) = > (2 + 1)C{" P (cos 0) (VIL.64)

For a symmetrised amplitude, we can use the relation :
1 —cos?)" = ——————(—)"2"""(1 = cos )" VIL65
( 7= Y e ()2 (= eost) (VIL.65)
m=0
The coefficients C’l(n) have quite simple recurrence relations. For a given value of n, all the coefficients

needed are given by :
l—l—l—n—l—inc(n)

Qi i | 11
i I+ 14+n—in (VIL.66)
starting with : .
() _ _gn_ i ~(0) 1
Cy p— inCO (VIL.67)

With the convention oy = 0 used in ECIS, C’ = 1/(2ik).
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Description of the subroutines

We shall describe the subroutines in the order of their appearance in the code ECIS94. The Table of
Contents of these paragraph will reproduce a flow chart of the programme.ltalic characters shifted to the
right side indicates comments related to a calling subroutine.

All the steps of the calculation are managed by 240 logicals from LO(1) to LO(250). They are :

(a) from LO(1) to LO(100), the values read in the second and the third cards of the input; the meaning
of those which are used can be found in the “DESCRIPTION OF INPUT”.

(b) from LO(101) to LO(200), the opposite values of the preceding one.

(c) from LO(201) to LO(250), internal controls of the code; the meaning of those which are used is given
as comment cards in subroutine CALC reproduced below.

[C LO(201) IS TRUE IF THERE IS NO REAL SPIN-ORBIT POTENTIAL CALC-038
[C LO(202) IS TRUE IF THERE IS NO IMAGINARY SPIN-ORBIT POTENTIAL CALC-039
[C LO(203) IS TRUE IF THERE IS NO COULOMB SPIN-ORBIT POTENTIAL CALC-040
[C LO(204) IS TRUE IF CONVERGENCE IS OBTAINED IN THE ITERATION CALC-041
[C LO(205) IS TRUE IF CONVERGENCE IS OBTAINED FOR THIS EQUATION CALC-042
[C LO(206) IS TRUE WHEN THE ITERATION IS NOT THE LAST ONE PERMITTED CALC-043
[C LO(207) IS TRUE IF ALL THE COUPLINGS HAVE TO BE CALCULATED BEFOREHAND CALC-044
[C LO(208) IS TRUE IF THE DIAGONAL COULOMB CORRECTIONS ARE NEEDED CALC-045
[C LO(209) IS TRUE FOR DIRAC POTENTIALS CALC-046
[C LO(210) IS TRUE IF DERIVATIVES ARE NEEDED CALC-047
[C LO(211) IS TRUE IF DEFORMATIONS ARE CHANGED IN SEARCH CALC-048
[C LO(212) IS TRUE IF NUCLEAR PARAMETERS ARE CHANGED IN SEARCH CALC-049
[C LO(213) IS TRUE IF NUCLEAR MATRIX ELEMENTS ARE CHANGED IN SEARCH CALC-050
[C LO(214) IS TRUE IF SPIN-ORBIT PARAMETRISATION IS CHANGED IN SEARCH CALC-051
[C LO(215) IS TRUE FOR NO OUTPUT CALC-052
[C LO(216) IS TRUE FOR A STOP, FOR EXAMPLE THE WORKING FIELD IS TOO SMALLCALC-053
[C LO(217) IS TRUE FOR ALL THE CALCULATIONS EXCEPT THE FIRST CALC-054
[C LO(218) IS TRUE FOR LAST RESULTS CALC-055
[C LO(219) IS TRUE FOR RESULTS WITHOUT DOING THE CALCULATION AGAIN CALC-056
[C LO(220) IS TRUE FOR OUTPUT AND LAST CALCULATION IS THE BEST ONE CALC-057
[C LO(221) IS TRUE FOR OPTICAL MODEL WITHOUT COUPLING CALC-058
[C LO(222) IS TRUE IF IT IS THE FIRST COMPUTATION FOR THIS ENERGY CALC-059

[C LO(223) IS TRUE IF LO(18) IS .TRUE. AND NO SPIN IN THE INITIAL STATE CALC-060
[C LO(224) IS TRUE FOR COMPOUND NUCLEUS OR PUNCH OF TRANSMISSION COEFF. CALC-061
[C LO(225) IS TRUE IN CAL1 FOR A CALL TO USUAL COUPLED EQUATIONS SUBR. CALC-062
[C LO(226) IS TRUE IF THERE ARE OBSERVABLES IN THE LABORATORY SYSTEM CALC-063
[C LO(227) IS TRUE FOR COULOMB CORRECTIONS WITH PURE REGULAR FUNCTIONS CALC-064
[C LO(228) IS TRUE FOR NO COPY OF UNCOUPLED FUNCTIONS AND PHASE-SHIFT CALC-065
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A Subroutines ECIS/CALS, HORA, STIM and MEMO

For the MAIN, the subroutines ECIS/CALS, HORA, STIM and MEMO, see Chapter II, “Use on various Com-
puters”.

1.  The MAIN defines only the working array and calls CALC, directly or via the Assembler subroutine
ECIS on IBM, or via CALS on CDC 7600.

2. The subroutine HORA is called from different places to give the elapsed CPU time for the JOB. It
uses the subroutine STIM to get the allowed remaining CPU time.

3. The subroutine STIM should give the time remaining for the JOB. This subroutine is very machine
dependent. It is called directly by CALC to obtain the time needed by a single calculation to stop
an automatic search when L0O(34)=.TRUE. and to save results or a search before being stopped by
time limitation. STIM allows to the subroutine HORA to print the elapsed time.

4.  The subroutine MEMO is called from anywhere to increase the size of the working array. On
computers other than CDC or UNIVAC this subroutine stops the calculation if the request is absolute.
This subroutine is also very machine dependent.

We shall not quote the calls to HORA or MEMO in the description of the subroutines.

B Subroutine CALC

The main subroutine is CALC, from which the calculation never returns. Its arguments are the working
array and its length. The same working array is floating values and integers in the CDC version, also
double precision in the IBM version. This subroutine calls the subroutines CALX, COLF, REDM, EXTP, CAL1,
VARI, FITE, REST, EVAL which we describe below. Meaning of addresses stored in the common /DECOU/
and defined in CALC after the return from CALX are given on COMMENT cards.

The computation is normally stopped by a control word read in subroutine CALX, so there is usually
a warning at the compilation “subprogram exit cannot be reached from entry”.

The calculation never returns to the first instructions which are values of the Atomic Mass Unit M,,,
he and fine structure constant, as shown in section (VII.A) and the calculation of M/(hc), 2M/(he)? and
hca. Then CALC calls CALX.

C Subroutine CALX

At the beginning of this subroutine is given on comment cards the meaning of the arrays SP, IPI, WV
which store all the informations relative to the levels. They are followed by the meaning of data and
addresses stored in the common /DECOU/ and some informations on other commons. The subroutine calls
INPA, INPB, INPC, LECL, LECT, DEPH, LECD and OBSE.

This subroutine reads all the input except for nuclear matrix elements and external form factors and
new parameters if LO(37)=.TRUE.. This input starts by a title card :

e if this title is “FIN ”, the calculation 1s stopped,

e if this title is “DESCRIPTION ”, the description of the input is printed.
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C.1 Subroutines INPA, INPB, INPC

These three subroutine are called one after the other if the title 1s “DESCRIPTION ”. They include only
WRITE statements and they have been generated from the text written on cards with a special programme.
Output can be listed as FORTRAN or by “enscript -2Bhr -L58” after suppression of the first column. It is
27 pages long.

After the printing, a new title card is read in CALX. If the title card is neither ‘FIN ”
or ‘DESCRIPTION ”, the subroutine CALX reads the first card of logical control (card 2) : if
LO(36)=.TRUE. (restart of a computation from file 8), the subroutine returns to CALC which
calls to the subroutine REST. If LO(36)=.FALSE., the second card of logical control (card 3)
and card j (integers) are read. Some logical controls can be changed (for example, the real
spin-orbit must be deformed if the imaginary spin-orbit is deformed) before being printed.
Then the card 5 (floating values) is read and default values for card 4 and 5 are set and the
values printed. The logicals from LO(211) to LO(220) are set .FALSE. and L0O(222) is set
.TRUE..

Then, informations needed when some logicals are . TRUE. are read :
e limatation on angular momenta for coulomb corrections 1f LO(45)=.TRUE.,

e compound nucleus data or indication to calculate the Legendre Polynomial expression
of cross-sections if LO(84), LO(85), LO(86) or LO(65) s .TRUE.,

e interpolation on total spin if LO(43)=.TRUE..

Some default options are set. The subroutine computes storage requirements as soon as it can
be done and calls LECL, LECT and DEPH with only some storage calculations between them.

C.2 Subroutine LECL

This subroutine reads energies, masses, spins and product of charges for all the levels. Informations
relevant of the nuclear model are read for coupled states but not for uncoupled states introduced in a
compound nucleus calculation. For the level I, the informations are stored in SP(3,I), IPI(3,I) and
WV(11,I) in the following order :

SP(1,I) s7 spin of incident particle,

SP(2,1) I7 spin of the target,

SP(3,1I) Z1 product of the charges of the particle and the target,

IPI(1,I) w7 parity (0 for “4” and 1 for “-”),

IPI(2,I) ny = 2s7 + 1 multiplicity of the incident particle,

IPI(3,I) Ni = 217 + 1 multiplicity of the target,

IPI(4,I) position of the potential used,

IPI(5-6,I) beginning and end in the description of amplitudes (defined in DEPH),
IPI(7-8,I) beginning and end in the description of observables (defined in DEPH),

IPI(9,I) cross-reference to potentials (if there are more potentials than levels, this table is extended
to the number of potentials),

Wv(1,I) my mass of the incident particle,

WV(2,I) M mass of the target (for relativistic kinematics, LO(8)=.TRUE., the target mass is corrected
by addition of @ /M, but this correction is dropped if L0(44)=.TRUE. to compute the wave number
in the Schrédinger formalism),
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Wv(3,I) Er energy in the center of mass system; for the incident channel, this energy is given by
Equ. (VII.8) if LO(8)=.FALSE. (non relativistic kinematics) or by Equ. (VII.4) if L0(8)=.TRUE.
(relativistic kinematics); for the other channels Ef = F1 — Q.

For the other entries of WV, see description of COLF.

The wave number of the ground state 1s computed only to obtain the default options of matching
radius and step size in LECT. The same computation will be done in COLF for all the levels.

C.3 Subroutine LECT

This subroutine reads the description of the phonons if there are some in the nuclear model, the deforma-
tions for the rotational model and the optical potentials if LO(7)=.FALSE. (no external potential). The
default value of the matching radius is so that the largest potential is less than the data ACONV of card
5 and the default value of the step size to the smaller of half diffuseness and 1/(2k) where k is the wave
number of the ground state. The step size is modified to be the matching radius divided by an integer.
The logical asking for deformation of the real spin-orbit, the imaginary spin-orbit, the coulomb or the
spin-orbit coulomb potentials 1s set .FALSE. if these interactions vanish.

If LO(7)=.TRUE., the default value of the matching radius is 20fm and the default value of the step size
is given only by the wave number. The logicals for deformation of spin-orbit potentials can be changed if
there is no spins in the levels. However, without spin-orbit coulomb potential and no coulomb corrections,
one must use LO(46)=.TRUE.. This subroutine returns also in the COMMON TITLE the factor XZ equal to
10 divided by the multiplicity of the initial channel (IPI(2,1) and IPI(3,1) defined in LECL), used by
the subroutine SCAT to express the cross-sections in millibarns.

Then the subroutine reads :

e angles for equidistant angular distributions if LO(66)=.FALSE.,
e spin-orbit parametrisation if LO(4)=.TRUE.,

e Hauser-Feshbach parameters if LO(82)=.TRUE.,

e TFission penetrabilities if LO(85)=.TRUE.,

e Gamma penetrabilities if LO(86)=.TRUE..

C.4 Subroutine DEPH

There are two parts with comment cards before each to explain how are stored informations on each
amplitude. The levels taken into account are those which are coupled plus those which are not coupled
but of which an angular distribution is wanted.

In the first one, the amplitudes are counted and arrays of quantum number stored. Indications to
compute only once the reduced rotation matrix elements when they can be used for more than one
amplitude to a sign are also stored. The number of solutions and of equation for each parity is obtained
in NCT. For each level, beginning and end addresses are stored in IPI(5,I) and IPI(6,I) respectively.

In the second part, the default output is generated unless LO(94)=.TRUE., in which case the in-
structions are read. For each level, beginning and end addresses of instructions are stored in IPI(7,I)
and IPI(8,I) respectively. This subroutine reads also instructions for restricted coulomb corrections if
L0(44) and L0O(46)=.TRUE.. Addresses of coulomb corrections are stored after the array of beginning
and end of coupling NIV (see REDM) in NIV(I,J,3).

If LO(31)=.TRUE., the subroutine CALX reads number of angular distributions and of pa-
rameters in search.
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C.5 Subroutine LECD

This subroutine reads the angular distributions.

The subroutine CALX reads identifications and step sizes of the parameters in search if
L0(32)=.TRUE. and if their number and the number of angular distributions are non zero.

C.6 Subroutine 0BSE

This subroutine computes for all the observables the indications (described on COMMENT cards) for the do-
loops and the geometrical coefficients which will be needed in SCAT to obtain the observables requested.
A first part reads indications for non standard observables and transform them into tensor notations. A
second part computes geometrical coefficients and do-loop limits. This part is run twice, the first time
to obtain storage requirements, the second one for effective computation.

After return from OBSE, the subroutine CALX computes some storage requirement and a
table of logarithms of factorial as long as needed.

After return to CALC from CALX, the subroutine REST is called with KF=1 1f LO(36)=.TRUE.
(restart of a search). If LO(36)=.FALSE. the subroutine COLF is called.

D Subroutine COLF

This subroutine and the other subroutines called in it compute the matching values and the stored inte-
grals for coulomb corrections. The array WV(11,I) is completed for all the levels, coupled or uncoupled.
Using the recoil ratio R.. to take into account recoil corrections for a zero-range interaction when the
masses are not the same in all the channels (R.. = 1 for the incident channel, but for the excited channels
Ree = My /M; if the mass of the particle is not the same and if L0(93)=.FALSE.), the content of this
array 1is :

Wv( 4,1) k; wave number; if LO(8)=.FALSE. : it is given by Equ. (VIL.8) and if LO(8)=.TRUE. by
Equ. (VIL.6),

Wwv( 5,I) nr coulomb parameter,

Wwv( 6,I) \/m, square root of ratio of wave numbers,

wv( 7,I) Errer relativistic energy in the center of mass system in Dirac formalism in Mev,
WV( 8,I)  square root of 2m/h’,

wv( 9,I) ki Re., wave number multiplied by ratio of step sizes,

wv(10,I) hlzklz where h; is the last item,

Wv(11,I) h; = hq R.. step size of this channel.

The subroutine COCL 1s called for closed channels and the subroutine FCOU for open channels.

D.1 Subroutine COCL

This subroutine computes matching values for closed channels. For L = 0, it uses asymptotic expan-
sion with/without backwards integration. For the other values of L, it uses upwards recurrence. This
subroutine comes from the Buck and Hill’s code INCH.
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D.2 Subroutine FCOU

This subroutine and the subroutines called by it are described in Ref. [18] and Ref. [19]. The calculation
of phase-shifts has been suppressed except for L = 0, the factorisation of some power of 10 has been
changed from modulo 60 to modulo 15 for VAX computers to handle squares of Coulomb functions.

The subroutine FCOU calls FCZ0 to obtain coulomb functions and their derivatives for . = 0 and
computes the other ones by recurrence. It uses upwards recurrence for irregular to the end and for
regular functions as long as p > n + [ + L(L + 1)]%, downwards recurrence for the regular function
starting from the maximum L requested plus 25 + 5|n| normalised with the last value obtained from
upwards recurrence.

D.2.a Subroutines FCZ0

The subroutine FCZ0 computes the coulomb functions for . = 0. Tt calls the function SIGM to obtain
the phase-shift. For some values of the coulomb parameter and the radius, it calls the subroutines
YFRI or YFAS. For some other values near the origin, it computes the regular function by expansion into
Chebyschev polynomial (Clenshaw expansion) or series expansion and calls YFIR for the irregular one.

D.2.b Subroutine YFRI

For some values of the matching radius and of the coulomb parameter, it calls YFCL. For other values, it
uses Riccati methods, “Riccati at the origin” or “asymptotic Riccati”.

D.2.¢c Subroutine YFAS

Computes coulomb functions with the asymptotic expansions.

D.2.d Subroutine YFIR

Computes irregular coulomb functions by Taylor expansion around the origin or around the point R =
7.5+ 4/3n at which the functions and their derivatives are obtained with the subroutine YFAS. For the
expansion around the origin, this subroutine calls the function PSI.

D.2.e Subroutine YFCL

This subroutine is called by YFRI. It uses an expansion on Chebyschev polynomials in the asymptotic
region or a MacLaurin series expansion near the origin for which it needs the function PSI.

D.2.f Functions SIGM, PSI

These functions compute respectively the coulomb phase-shift for . = 0 and the real part of the loga-
rithmic derivative of the gamma function for a complex argument.

The subroutine COLF checks if some coulomb functions are too large. If the power of 10.'°
returned by FCOU is not zero, it limits the number of Coulomb functions to avoid them (with a
ratio 1030 between reqular and irreqular functions, the phase-shift obtained by the code cannot
be significative). If coulomb corrections have to be used, it calls subroutine CORI to compute
the stored integrals with all the previous channel up this one, if the pair of channels are both
open and the corrections requested.
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D.3 Subroutine CORI

If n; > 2.2, the code is unable to do the calculation and stops. If n; = 0, n; must be also zero : the
subroutine CORZ is called and CORI returns.

In any other case, the subroutine CORI calls the subroutine CORO to obtain the integrals from R,, to
oo of product of regular and irregular Coulomb functions with . = 0 and L = 1, divided by = and »2.
Then, if n; = ny and k; = k¢, the integrals from 0 to infinity of the product of two regular Coulomb
functions divided by »? are obtained by Equ IV.23. Details are given in section (IV.B).

D.3.a Subroutine CORO

This subroutine computes the integrals from R, to oo of the product of two different regular or irregular
coulomb functions with the same angular momentum L = 0 and L = 1 divided by r and r? (16 values).
With 3R, = max[(5|ni|+22.5)\/ky [ki, (5|ng|+22.5)\/ki/ky, .18,/ = iny), these integrals are computed
from max(Rm,, Rs) to oo by a generalisation of the method described in Ref. [66]. If Ry > Ry, the
integral between R, and R; is computed by 40 points Gauss integrations, each Gauss integration being

for Ar < 20.

D.3.b Subroutine CORZ

This subroutine computes integrals from R,, to oo of products of regular and irregular functions of the
same I divided by ® and integrals from 0 to co of regular functions od the same I divided by 3.

Then the coulomb phase-shift minus the one for L = 0 are computed in COLF.
After return from COLF, the subroutine CALC calls REDM.

E Subroutine REDM

This subroutine generates or reads the reduced nuclear matrix elements between the coupled levels.
If LO(7)=.FALSE. (standard nuclear model) and LO(15)=.FALSE. (reduced nuclear matrix elements not
read), REDM calls the subroutines VIBM, ROTM or ROAM. If LO(7)=.TRUE. or LO(15)=.TRUE. this subroutine
reads the reduced matrix elements. Then, the informations are stored in IQ(4,I) and T(4,I) which are
in equivalence, for I=1 to IT.

IQ(1,I) Form factor identification (see DESCRIPTION OF INPUT),
I1Q(2,I) L transferred angular momentum,

1Q(3,I) 10000(2AS) + 10(2AJ) + 10a + b, where a = b = 0 usually, but @ = 1 for existence of

spin-orbit deformation and b = 1 for a magnetic Coulomb excitation with A = 1. — 1,

T(4,I) Reduced nuclear matrix element multiplied by (—1)Int(L/2).

The address of the first and the last reduced nuclear matrix element between level I and level J are in
NIV(1,I,J) and NIV(2,I,J) respectively. The table NIV is completed if there are uncoupled states for
which an angular distribution is requested and the reduced nuclear matrix elements written on file 7 as
they should be read if LO(61)=.TRUE. .

Then, the table of IM multipoles, IVQ(3,I) is generated :

IvQ(1,I) L transferred angular momentum,

vQ(2,I) 2AS twice the transferred spin to the particle,
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IvQ(3,I) 2AJ twice the transferred spin to the target or 0 if AS = 0.

followed by a table of form factors IVZ(7,I) including correction terms (with external potentials and
monopole or dipole corrections to vibrations in the rotational model) :

IVvZ(1,I) Form factor control number,

IvZ(2,I) Address in the table of multipoles,

IVZ(3,I) 0 or address of the first spin-orbit form factor,

IVZ(4,1) 0 or address of the temporary Coulomb form factor,

IVZ(5,I) 0 or address of the temporary Coulomb spin-orbit form factor,

IVZ(6,I) 0 or address of correction term (positive for corrected term, negative for correction term),

IVZ(7,I) L transferred angular momentum.

The array IQ has been changed to be :

I19(L,1)
19(2,1)

1Q(3,1)

Address in the table of form factors IVZ
Address in the table of multipoles TVQ

0 or address of the spin-orbit form factor

but T(4,I) is unchanged. A table ITX of the 8 starting addresses of potentials and 8 starting addresses
of transition form-factors is built with :

NV

MV

INVT

INLS

INVC

INVD

INTC

Number of real form factors (INVT+2 INLS),

Number of imaginary form factors,

Number of transitions, without correction terms,

Number of spin-orbit form factors not taking into account multiplication by 2,
Number of coulomb transition form factors,

Idem for coulomb spin-orbit,

Same as INVT but including correction terms.

These numbers include dummy central form factors for magnetic coulomb excitations.

The reduced nuclear matrix elements are written and/or punch on file 7 on request.

In a search, this subroutine is called again if some nuclear parameter is changed (there is no nuclear
parameter if LO(7)=.TRUE.). At the end of a search is called again if reduced nuclear matrix elements
have to be printed or punched.

E.1l

Subroutine VIBM

Computes the reduced nuclear matrix elements of the vibrational model, taking into account that the
phonons amplitudes and a factor (n!y/4r)~! is shifted to the radial form factors. This subroutine is
limited to two-phonons states and second order vibrations and uses the functions DJCG and DJ6J. There
1s a transposition relation :
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E.2 Subroutine ROTM

Computes the reduced nuclear matrix elements of the symmetric rotational model. This subroutine calls
the function DJCG.

E.3 Subroutine ROAM

Computes the reduced nuclear matrix elements of the asymmetric rotational model. This subroutine calls
the function DJCG. If LO(2)=.TRUE. the mixing parameter of the second level is used as the asymmetry
gamma angle and the mixing parameter of the first levels are computed from it.

E.4 Function DJCG

Computes Clebsh-Gordan coefficients. The subroutine verifies triangular relations. For more details see
section (VIT.B.1.a).

E.5 Function DJ6J

Computes 65 coefficients. The function tests if some angular momentum is zero to use simpler expression.
For more details see section (VII.B.1.b).

After the call to REDM, at the first calculation (L0(225)=.TRUE. ), if LO(7)=.TRUE. (exter-
nal potentials), the subroutine EXTP is called. After return from it, informations from REDM
are copied after those of EXTP and the whole is shifted down (to prevent against variation of
the size of informations from REDM in a search).

F Subroutine EXTP

The subroutine EXTP calls only the function DCGS to obtain the geometrical coefficient of a particle-hole
excitation. The form factors are read in any order. In case of error, the subroutine prints the list of form
factors not yet read under the form (I,J) where I varies from 1 to 8 and J is the potential if less or equal
to the number n, of potentials and J—n, is the form factor in the order printed by REDM if j > n,; the
subroutine stops after this output.

The subroutine CALC computes storage requirements for potentials, calls the subroutine
STIM fo obtain remaining time before calculation. Then, CALC calls CAL1.

G Subroutine CAL1

This subroutine computes from form factors to final results. It calls the subroutines POTE, CONU, QUAN,
MTCH, INTI, INTR, INCH, SCAM, SCHE and RESU. If the computation is the last one of a search :

e if no printing is requested, LO(219)=.TRUE.,

e if the printing related to LO(53) or LO(55) to LO(58) and the punching related to LO(62), L0(64)
or LO(65) (this last one if LO(41)=.TRUE.) are not requested, and if the last x? is the best one,
L0(220)=.TRUE.,

e if LO(220)=.FALSE., all the calculation has to be done again.

If L0(220)=.TRUE. and the printing of potentials is requested, CAL1 calls the subroutine POTE and the
subroutine SCHE after return. If LO(219)=.TRUE., CAL1 calls the subroutine SCHE.

First, CAL1 set to 0 all the memories needed for the computation of potentials and calls POTE.
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G.1 Subroutine POTE

This subroutine computes the form factors.
It calls the subroutines ROTP, FOLD and STDP.
If L0(220)=.TRUE. and LO(51)=.TRUE., this subroutine prints only the form factors.

For standard models, there is a do-loop on the potentials, of which only the first is deformed. For each
potential, POTE calls the subroutine ROTP and, if LO(17)=.TRUE. (folding), the subroutine FOLD. Instead
of that, if LO(7)=.TRUE. (external potentials), POTE calls the subroutine STDP. If LO(61)=.TRUE., the
potentials are punched on file 7 with the format needed by subroutine EXTP. In the Schrodinger formalism,
volume and surface potentials are added together.

If there are some, corrections are done. Separately for central | spin-orbit, coulomb and spin-orbit
coulomb transition form factor in the Schrodinger formalism, the scalar, vector, tensor, coulomb tran-
sition form factors in the Dirac formalism, the correction form factor is added to the form factor to be
corrected in such a way that the integral with »“+? vanishes. For spin-orbit transition form factors in
the Schrodinger formalism, it is the form factor V3 /r? which is used with a factor rZ+4.

From there, the subroutine proceeds quite differently for the two formalism :

¢ Schrddinger formalism including equivalent for a Dirac formalism.
The coulomb potentials are added to the central ones, keeping their strengths in V€O for the po-
tentials (correction to r~' behaviour) and in VDO for the transitions. The coulomb magnetic form
factors are multiplied by he/m, M,,. The potentials are printed on request.
¢ Dirac formalism
The Schrodinger potential for each level j is computed separately and stored in the array V(*,I,J)
with I=1 to I=14, real part for odd I and imaginary part for even I :
V(*, 1,7) Central potential,
V(*, 3,1) Spin-orbit potential,
V(*, 5,J) D=F+m-—1V,+V, divided by he,
V(*, 7,1) D' =F—-m-—YV, -V, divided by hc,
V(*, 9,1) (E4+m-—V, + Vs)% more precisely square root of V(*, 5,J),
V(*,11,7) (E 4+ m —V, + V5)~! multiplied by he,
V(*,13,7) Tensor potential multiplied by he.

The transitions are stored after that beginning by the scalar and vector ones :

V(*, 1,I) VA 4+ V2 to use between large components,

V(*, 3,1) VA — V2 to use between small components.
followed by the tensor ones :
. . . d A
V(*, 1,7) derivative of the tensor potential - V7',

V(*, 3,1) tensor potential qu‘ divided by r.

The strengths of the coulomb potentials are kept in VCO and those of coulomb transitions in VDO. The
coulomb magnetic form factors are multiplied by hc/m, M, . The potentials are printed on request.
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G.l.a Subroutine ROTP

This subroutine computes the potentials and the transition form factors for all the standard models. Tt
calls the subroutines ROTD, ROTZ, COPO and DERI.

If a diffuseness, except for the coulomb potentials, is less than .02 times the step size, it is changed
into the maximum of its opposite and .02*step size; if a radius is less than the step size and symmetrised
Woods-Saxon potentials are not used, it 1s changed into the maximum of its opposite and the step size
(this can be useful in a search).

For the asymmetric rotational model, this subroutine uses a large array of weights and rotation matrix
elements which are DATA in ROTD. The symmetric rotational model uses one half of a 20 points Gauss-
Legendre integration of which abscissae and weights are DATA in POTE. A table of deformation is built
for all the transition for factors and the subroutine ROTD is called to get the number of points of angular
integration, starting values, increments and so on.

For each value of r and for each angle (see ROTD), up to the fourth derivative can be needed (spin-orbit
transition for the third order of the anharmonic vibrational model). They are stored in VR(6,10) (10
for the 8 components of the potential plus 2 Schrodinger spin-orbit, 6 for up to the second derivative
and third order vibration in the Dirac formalism). In the Dirac formalism using Schrédinger equivalent
(LO(99)=.TRUE.), the subroutine ROTZ is called. Tn other formalisms, the coulomb potentials and tran-
sitions for a non diffuse charge are computed; the charge distributions of diffuse charges are obtained as
the other components of the potential. The angular integrated values are stored differently in the two
formalism.

If there is a charge diffuseness, ROTP calls COPO to obtain the coulomb potential or transition form
factor from the charge distribution or transition. For spin-orbit coulomb potentials, ROTP has also to call
the subroutine DERI.

G.l.a.1 Subroutine ROTD

This subroutine returns the number of angular integration points, the weight, the radii and its two
first derivatives at each point of each form factor.

e In the symmetric rotational model, 20 points Gauss-Legendre integration method is used, reduced
to 10 points by symmetry. For a vibration, the angular dependence of the boson is included in the
weight.

. In the asymmetric rotational model; 36 values of (8, ¢) have been chosen : the values od ¢ are
N /14 and for each value of N, there are N + 1 values of ¢ equidistant from 0 to 7/2. The matrix
of which the elements are the rotation matrix elements for these angles and . < 14 with L and K
even has been inverted. The coefficients of the 15 lowest (L, i) are stored as integration weights.

. In the vibrational model, the angular integration reduces to one point.

G.l.a.i1 Subroutine ROTZ

The Schrodinger equivalent equation to the Dirac equation is supposed to describe also the inelastic
scattering. For the vibrational model, the result of elastic scattering should be the same than the fure
Dirac formalism; inelastic scattering is described by derivatives of these potential. In the rotational
model, result should be different because gradient and Laplacian are computed on potentials depending
on 6 instead of its monopole part.

G.l.a.iil Subroutine COP0O

Computes the coulomb potential and the coulomb interactions from the density distribution of charge
and the form factors of charge transition.
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G.l.a.iv Subroutine DERI

Tis subroutine returns the derivative z(r) = — %y(r) of a function y(r) known by n equidistant points
by steps h or this result divided by r. The formulae used are given by Equ. (I11.95) to Equ. (TI1.97).
The subroutine stops if there are less than 7 points.

G.1.b Subroutine FOLD

When called directly from POTE, this subroutine folds separately the real potential, the imaginary potential
and the coulomb potential with a particle density which can be a Woods-Saxon distribution or a Gaussian
one. This subroutine can be called from the subroutine STDP to perform the same operations on each
components of the potentials and of the transition form factors independently. To obtain spin-orbit form
factors, and derivatives in Dirac formalism, the subroutine DERI is used.

G.l.c Subroutine STDP

This subroutine computes the external form factors of which the parameters are read in EXTP and calls
the subroutines INTP, STBF, COPO, DERI and FOLD. The form factors can be :

. Copy of another form factor,

. Interpolated from values read on cards by subroutine INTP, eventually derived with subroutine
DERI for spin-orbit form factors or Dirac formalism,

. Woods-Saxon volume and surface form factors at some power and their derivatives which can
be deformed with even or odd deformation,

Single or product of two Laguerre polynomials or solutions in a Woods-Saxon potential computed
ib subroutine STBF,

. Sums of Bessel functions or their derivatives. For L = 0, the zeros are z, = nm; for L = 1 to
L = 11, the L + 1 first zeros are stored as data; all the others are given by Mc Mahon formula
which can be written here :

o = g lpe HEED G THEAD 6 166L2(L +1)? — 408L(L + 1) + 360
ro 2 (2n+ L)w 3(2n+ L)2n2 15(2n + L)4r?
+6949L3(L +1)3 = 3352L%(L + 1)? + 81180L(L + 1) — 75600]

105(2n 4 L)6x6

(VIIL1)

(see Ref. [67], page 371).

If folding is requested for some form-factors, STDP calls FOLD.

G.l.c.i Subroutine INTP

Interpolates the form factors between the points given multiplied by a normalisation factor ¢g. It is :

i=4
r—r;
Viry=g>_ Vi) ]] — (VIIL.2)
i=1 g2t

with, as long as possible, z1 < 25 < < x3 < 4.
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G.l.c.ii Subroutine STBF

This subroutine computes a Laguerre polynomials or search on the depth of a real Woods-Saxon
potential for a bound state with a given binding energy. With negative binding energy, this subroutine
returns a real scattering state normalised to sinkr 4+ § at infinity.

For the last calculation, after return from POTE, CAL1 calls SCHE if LO(220)=.TRUE.. In
all other cases, the memories needed for the S-matriz, the compound nucleus results and the
integrated cross-sections are set to 0. If there is compound nucleus (LO(81)=.TRUE.), the
subroutine CONU is called.

G.2 Subroutine CONU

This subroutine does the preliminary calculations for compound nucleus, as introduced in ANLECIS by
[77] MOLDAUER, P., A., “ANLECIS”, presented at the Workshop on Nuclear Model Computer Codes,
Trieste (1984). If there are uncoupled states, CONU computes their transmission coefficients, using the
subroutines MTCH and INSH or INRH in the Schrodinger and the Dirac formalism respectively.

There is a pseudo-loop on parities (first, same parity for the levels and the angular momen-
tum and, last, opposite parities) and inside it, another do-loop on the total angular momentum.
Inside these two pseudo-loops, CAL1 calls the subroutine QUAN.

G.3 Subroutine QUAN

This subroutine find the quantum numbers of all the equations coupled for a given total angular mo-
mentum J and a given parity. If there are none for the first level, it returns to CAL1. The subroutine
computes all the coupling between equations and scans if some coefficients are zeros or can be summed
up. The coefficients between levels I1 and I2 are multiplied by WV(8,I1)*WV(8,I2). Results less than
10719 are eliminated. The address of the first coefficient is stored in NVI(1,I1,I2), the address of the
last one in NVI(2,I1,I2) and the address of the last derivative one in NVI(3,I1,I2). The subroutine
counts the number of couplings coupling between the equations and tests if there will be derivatives of
the functions. This subroutine calls the functions DCGS, DJ6J and DJ9J.

G.3.a Function DCGS

This subroutine computes special Clebsch-Gordan coefficients for which the formula involves no summa-
tion. For more details, see section (VII.B.1.c).

G.3.b Function DJ9J

Computes 9-j coefficients. The subroutine verifies triangular relations. For more details see section

(VILB.1.d).

After the return from QUAN, if there is no equation for the first level, the pseudo-loop is
ended; otherwise, CAL1 calls the subroutine MTCH. Up to the call to subroutine SCAM, all the
levels are considered as incoming if compound nucleus or output of transmission coefficients
are requested.
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G.4 Subroutine MTCH

If L0(227)=.FALSE., as in the beginning of the do-loop on angular momenta of the subroutine CAL1, this
subroutine computes matching values for each equation and corrections to the S-matrix by integrals from
the matching radius to infinity of regular and irregular Coulomb functions divided by some power of r
if Coulomb corrections are requested. At the end of the do-loop, it can be called with L0O(227)=.TRUE.
and computes only integrals from 0 to infinity of products of regular Coulomb functions to obtain the
reactance K-matrix. MTCH calls the subroutines CORA to get the coefficients o and § of Equ TV.23 and
LINS to obtain the S-matrix from a K-matrix. For more details, see section (TV.A).

G.4.a Subroutine CORA

For given angular momenta, this subroutine returns the four coefficients a needed in the asymptotic
region in Equ TV.23, if its last argument is .TRUE. (this argument is LO(227). When this last argument
is .FALSE., it returns also the four other coefficients § needed for finite integrals. For limitations, see
INPUT DESCRIPTION.

G.4.b Subroutine LINS

This subroutine solves a complex linear system of equations with real and imaginary parts in different
array. This subroutine is also called by INCH.

After return from MTCH and after some storage evaluations :

. If LO(227)=.TRUE., the subroutine CAL1 skips the numerical integration and calls
SCAM at the end of the loop on total angular momentum,

. IfLO(100)=.TRUE. (Dirac formalism), the subroutine CAL1 calls first INTR and then
SCAM,

. If LO(21)=.TRUE. or LO(225)=.TRUE. (Schrédinger formalism with usual coupled
equations), the subroutine CAL1 calls first INCH and then SCAM.

. In other cases, the subroutine CAL1 calls INTI and then :

—  If convergence is not obtained (L0O(204)=.FALSE. ) and if LO(23)=.TRUE. {0 allow
that, LO(225) is set .TRUE. and the subroutine QUAN is called again with the same
quantum numbers.

— In any other case, the subroutine CAL1 calls SCAM.

G.5 Subroutine INTI

This subroutine solves the set of coupled equations by iterations. First, it calls the subroutine INSH to
solve the diagonal homogeneous equations, unless there is indications from QUAN that this solution has
been conserved. If all the coupling have to be computed (LO(207)=.TRUE.), their are computed and the
address of the real and the imaginary coupling between equation I1 and I2 are stored in NVI(1,I1,I2)
and NVI(2,I1,I2), those of the derivative coupling in NVI(3,I1,I2) and NVI(4,I1,I2). The system is
solved for each equations related to the first level :

. This uncoupled solution and its phase-shift is transferred as the corresponding function of the
complete solution, eventually with a preliminary call to the subroutine INSI to derive the uncoupled
function,

. The iteration procedure is started :

- If there are Coulomb corrections, the matching conditions are computed, using the phase-
shifts known at that stage,
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— The subroutine INSI is called,
— The equations of which the coupling is too small are counted,

- The maximum phase-shift is computed to be compared to 10'° to decide that it is the last
iteration.

G.5.a Subroutine INSH

This subroutine solves a single homogeneous equation. It computes the potential and solve the equation
with the Numerov or the Modified Numerov method, with a correction term if LO(26)=.TRUE.. The
matching is with two points. If there is only elastic scattering, computation of transmission coefficients
for uncoupled state, the subroutine returns. Otherwise, the solution is normalised, the point from which
the solution is larger than a minimum value obtained. For DWBA (LO(92)=.TRUE. ), the subroutine returns
at this point; otherwise, the irregular solution computed by backward integration down to this point.

G.5.b Subroutine INSI

This subroutine solves the inhomogeneous equation. The second members are obtained by multiplica-
tion of the coupled solution with the potentials and the geometrical coefficient or with the coupling
if LO(207)=.TRUE. (usually quicker). The contribution of the derivative of coupled solution is added.
the subroutine compute from which point the inhomogeneous term is not too small. Unless there is no
inhomogeneous term :

e the integral of the regular uncoupled function with the inhomogeneous term is computed,
e the phase-shift is obtained,

e ifLO(92)=.FALSE. (not pure DWBA) the backward integral with the irregular uncoupled function
and the solution taking into account correction for the Green’s function are obtained in the same
loop,

e the subroutine computes the point from which the solution is not too small.

If the difference with last iteration is too large, that the iteration is at least the fourth one, that
convergence was obtained for all the other equations in this iteration, INSI calls the subroutine PADE.
If needed, it computes the derivative multiplied by r with formulae analogous to those of DERI. This
subroutine can be used to do only this last derivation.

G.5.¢c Subroutine PADE

This subroutine is called by INSI and INRI. It computes Pade approximants with the results of all the
iterations. It evaluates them with all the partial series and returns the mean value of the two nearest
successive results if convergence is obtained.

G.5.d Subroutine INCH

This subroutine is called by CAL1 as an alternative to the call to subroutine INTI to use usual coupled
equations instead of iterations. It solves the system of coupled equations with the Modified Numerov
method. It computes the matrices of coupling in as many points as possible, leaving free the place of
a first matrix. Then it computes Vz/,] =Vi; — h?>, VikVi j/12, shifting the result downwards. These
values are used in the integration procedure. If LO(42)=.TRUE., there is a Schmidt’s orthogonalisation
procedure between the solutions every ITERM points. The matching uses the values at two points. The
C-matrix is obtained by a call to the subroutine LINS. Lines of the C-matrix are computed instead of
columns. However, if coulomb corrections, Hauser-Feshbach corrections or punch of penetrabilities are
requested, the complete matrix is computed. For Coulomb corrections, another system of linear equations

is built and solved with the subroutine LINS (see Ref. [7], Equ (35) and explanations above it).
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G.6 Subroutine INTR

This subroutine is similar to INTI. It calls the subroutines INRH and INRI instead of INSH and INSI. The
mean difference is the storage of tensor form factors.

G.6.a Subroutine INRH

This subroutine solves a single homogeneous equation with the Schrodinger equivalent potential obtained
in POTE. It computes the potential and solve the equation with the Numerov or the Modified Numerov
method, with a correction term if LO(26)=.TRUE.. The matching is with two points. If there is only
elastic scattering, computation of transmission coefficients for uncoupled state, the subroutine returns.
Otherwise, the large component is computed and the point from which it is larger than a minimum value
obtained, the two solutions are derived and the small components obtained with the Dirac equation.

G.6.b Subroutine INRI

This subroutine solves the inhomogeneous equation in the Dirac formalism. With tensor interaction
instead of deformed spin-orbit, the operations are very similar to those of subroutine INSI. The subroutine
INRI calls the subroutine PADE in the same circumstances as subroutine INSI. Corrections for finite step
size are given by Equ. (IT1.106) and (TT1.107).

G.7 Subroutine SCAM

This subroutine computes the transmission coefficients if they are requested. For compound nucleus,
SCAM computes gamma, fission and find transmission coefficients of uncoupled states related to this total
angular momentum. This subroutine stores the results of coupled equations in a two dimensional array
in such a way that one index is the total angular momentum and, for a fixed values of the other, the
quantum numbers are increased by the difference of total angular momentum. This disposition will make
interpolation easier. If iterations are used, the crude results are multiplied by WV(6,I) where I is the
level, to avoid any further factor in the computation of cross-sections. If usual coupled equations are
used, they are divided by this quantities to take into account that a line of the matrix has been obtained
instead of a column. If compound nucleus 1s used, results related to this total angular momentum are
computed and stored. SCAM calls the subroutine DIAG to diagonalise the S-matrix if LO(83)=.FALSE..

G.7.a Subroutine DIAG

This subroutine diagonalises a hermitian complex matrix with an extension of Jacobi’s method. Real
and imaginary values are in different array.

In subroutine CAL1, there are the tests of convergence to end the pseudo-loop on total
angular momentum or to shift from nuclear to asymptotic region when there are coulomb
corrections.

If the pseudo-loops are ended, CAL1 calls the subroutine SCHE, RESU, set L0O(217)=.TRUE.,
L0(222)=.FALSE. and returns.

G.8 Subroutine SCHE

This subroutine computes an array of square roots of integer. If LO(219)=.TRUE., the subroutine re-
turns; if LO(220)=.TRUE., it calls LCSP if requested and returns. In other cases, this subroutine replaces
the values stored by the subroutine SCAM by the scattering coefficients in the helicity formalism. First,
the subroutine computes a table of quantum numbers. Then, the interpolations are done if they are
needed (on the complex values or on their polar expression, by the method used in subroutine INTP).
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Then, for each total angular momentum and parity, the subroutine computes by recurrence the Clebsch-
Gordan coefficients needed to go to the helicity formalism, transforms the scattering coefficients and
computes the Hauser-Feshbach corrections if they are requested. The scattering coefficients are sym-
metrised for identical particle and target with non zero spins. Then, the reactions cross-sections are
computed. Tf L0(65)=.TRUE. (Legendre expansions printed and punched), the subroutine LCSP is called.
If L0(220)=.FALSE. and LO(41)=.TRUE. (factorisation of 1 — # cosf), new amplitudes 7 are computed
as described in section (VII.C.3).

G.8.a Subroutine LCSP

This subroutine computes the coefficients of the expansion of the cross-sections in terms of Legendre
polynomials. For charges particles elastic scattering, the cross-section is multiplied by (1 — cos 8)™ where
n is given (default option n = 2) for different particle and target, by (1 — cos? 8)" for identical particle
and target. Only even coefficients are given for compound nucleus contribution. See section (VII.C.4).

G.9 Subroutine RESU

This subroutine prints comparison of computed values and experimental values, computes experimental
normalisations and Y2, prints results at equidistant angles. In a search, if the computation is ended, the
subroutine copies the scattering matrices related to the best x?. Then, for each angular distribution,
RESU calls the subroutine SCAT for each data and computes the partial y2. If the x? is the best obtained
up here, the scattering matrices are copied in another array. If complete output is requested, results are
printed and a graph can be drawn by a call to the subroutine GRAL; cross-sections and polarisations are
computed at equidistant angles by the subroutine SCAT and a graph can be drawn by the subroutine
GRAL. If results are requested in the Laboratory system, the angles are transformed by Equ. (VII.23)
before the call to subroutine SCAT and the cross-sections multiplyed by the factor given in Equ. (VII.24).

G.9.a Subroutine SCAT

This subroutine computes the observables. In a first part it computes the helicity amplitudes with
the reduced rotation matrix elements obtained by a call to subroutine EMRO. A simple loop gives the
cross-section in all cases (they are the sum of the squares of the amplitudes multiplied by XZ computed
in subroutine LECT) and the vector polarisation and analysing power for spins 1/2 and 1. The other
observables involve do-loops and coefficients which were computed in subroutine OBSE and are used after
transfer in some memories in equivalence. If observables are in the Laboratory system or with axis of
quantification along the incoming direction, the collision matrix is rotated as indicated by Equ. (VII.25),

(VIT1.26) or the angle —6.

G.9.b Subroutine EMRO

This subroutine computes a series of reduced rotation matrix elements with increasing angular momentum
and the same magnetic quantum numbers. It uses upwards recurrence relations. Square roots are avoided
by a table of square roots of integer as argument. In fact, there are three independent computations: one
if none of the two magnetic quantum numbers are zeros, the second if one of them is zero and the third
if both of them are zeros.

G.9.¢c Subroutine GRAL

This subroutine prints graphs of cross-sections or polarisations. For different values of its last argument,
it can print or not experimental data on the same graph.

After the return from CAL1, in the subroutine CALC :
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. iof there is no automatic search of if it is to its end,
— 1f LO(37)=.TRUE. the subroutine EVAL 1s called,
— of LO(37)=.FALSE. the working array ts given back and the subroutine CAL1 is
called; the computation can be stopped by a card “FIN ”.
. iof there is an automatic search which is not finished,
— the subroutine STIM is called to get the time needed in CAL1,
the subroutine VARI is called with KF=1,
— 1f LO(35)=.TRUE. and it is the last run allowed for the job, the subroutine REST
15 called with KF=0,
then the subroutine FITE s called,
- the subroutine VARI s called with KF=0.

H Subroutine VARI

This subroutine is called before FITE with its first argument XKF=1 and after the return from FITE with
KF=. Tts second argument is the control KE of FITE. At the first call (KF=1 and KE=0), the subroutine
defines the variables in search. For all the calls with KF=1, the y? value are only printed. When called
after FITE, the parameters are set to their values for the next evaluation and if the calculation has to be
stopped for any reason, the final parameters are printed.

I Subroutine REST

The first argument of this subroutine, KF can be 0 or 1. If KF=0, the commons and the beginning of the
working array which is needed to restart the calculation are written on tape 8. If KF=1, these commons
and the working array are read from the tape to restart the search.

J Subroutine FITE

This is the y? minimising subroutine FITEX written by G. SCHWEIMER, slightly modified. It calls the
subroutines FIT1 and FIT2.

J.1 Subroutine FIT1

Minimisation of the y? for one variable. Tt is used if there is only one variable in search but also if the
subroutine FITE find a linear dependency of the x? on the variables.

J.2 Subroutine FIT2

This subroutine replaces the subroutines LILESQ and INVATA of G. SCHWEIMER. If the last argument
LLO=.TRUE. , it solves a linear least square problem ||B — A * D|| = Min. If LLO=.FALSE., it inverses
the product matrix AT A. The same Householder transformation is used in the two cases.

After return from the second call to VARI, CALC calls REDM if a nuclear parameter has been
changed or at the end of a search if the nuclear matriz elements have to be printed or punched.
Then, CALC calls again CAL1.

If LO(36)=.TRUE. after return from CALX, CAL1 calls REST with KF=1 to restart a search.
Then CAL1 calls FITE if the search is not ended or goes to the second call of VARI of the search
was ended.

At the end of a search, CALC calls REST with XF=0 if LO(35)=.TRUE. and calls EVAL if
L0(37)=.TRUE.. Otherwise, CALC calls again CALX.
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K Subroutine EVAL

This subroutine is called if LO(37)=.TRUE. . All the parameters on which there can be automatic search
can be changed for a new calculation. The total energy can also be changed in this subroutine, to simplify
the input for the calculation of an excitation function.

After the call to EVAL, the subroutine CALC calls again the subroutine COLF if the total
energy has been changed, the subroutine REDM if some nuclear parameters or nuclear matriz
elements are modified, the subroutine CAL1 in the other cases.

L Summary

Without the calls to MEMO, HORA and STIM, the structure of the code is given by the following table :

| CALC CALX (INPA, INPB, INPC, LECL, LECT, DEPH, LECD, OBSE)
| *» COLF FCOU FCZO......

| ) ) coCL

[ »» CORI CORO FCOU FCZO.....

| ) ) ) CORZ

| °» REDM VIBM (DJCG, DJ6J)

| »» ROTM DJCG

| »» ROAM DJCG

| > EXTP DJCG

| »» CAL1 POTE ROTP (ROTD, ROTZ, COPO, DERI)

| ) »» STDP STBF FCOU FCZO......

| 1) 1) 1) 1) FOLD DERI

| ) ) »» (INTP, COPO, DERI)

| ) ’»  FOLD DERI

| ’»  CONU MTCh (CORA, LINS)

| ) »»  (INSH, INRH)

| »» QUAN (DCGS, FJ6J, DJ9J)

| »» MTCH (CORA, LINS)

| »» INTI INSH

| ) »» INSI PADE

| »» INCH (INSH, LINS)

| »» INTR INRH

| ) »» INRI PADE

| »» SCAM DIAG

| »»  SCHE (DJ6J, LCSP)

[ »» RESU SCAT EMRO

I
I
I
I
I

1) 1) 1) GRAL
»? VARI
»? REST
»? FITE (FIT1, FIT2)
»? EVAL

where (PRO1,PR02,PR03) means that these 3 subroutine are called by the subroutine written on the left
and call nothing by themselves. For Coulomb functions, this Table must be complete by :

| FCOU FCZO YFAS
| »» YFIR (YFAS,PSI)
| »» YFRI YFCL PSI
| ) ) SIGM

which occurs in 3 places.






Chapter IX

Conclusion

A Test cases

Nine test cases have been chosen to help to use ECIS94. There are quite arbitrary. There are identifyed
by TSTx in columns 73-80.

The first of them, with the titles :

ESSAI DU NOYAU COMPOSE - USUAL COUPLED EQUATIONS TST1-000
ESSAI DU NOYAU COMPOSE - USUAL ITERATIONS TST1-024
ESSAI DU NOYAU COMPOSE - ITERATIONS WITH DEFORMED SPIN-ORBIT POTENTIAL TST1-048

is compound nucleus at low energy. The same calculation with 3 levels and 2 uncoupled levels is done :

e without spin-orbit deformation, without iterations and without angular distribution of uncoupled
states,

e without spin-orbit deformation, with iterations and with angular distribution of the first uncoupled
states,

e with spin-orbit deformation, with iterations and with angular distribution of the two uncoupled
states,

Results show that the spin-orbit deformation does not matter in this case.

The second test case, with the title :
28 SI + 104 MEV ALPHAS, SYMMETRIC ROTATOR, NON STANDARD OBSERVABLES TST2-000

shows different ways to define observables.

The third test case, with the title :
CA40 A 497 MEV RELATIVISTE SAME AS ECIS88 TST3-000

shows the use of Dirac formalism.

The fourth test case, with the title :

12N+208PB 780 MEV ELECTIC AND MAGNETIC COULOM INTERACTION TST4-000
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use a magnetic M1 and electric £2 Coulomb interactions.
The fifth test case, with the title :

COMPARAISON AVEC CHUCK POUR BE8 DWBA TST5-000
COMPARAISON AVEC CHUCK POUR BE8 COUPLED EQUATIONS TST5-047

is the example of section (VI.D.2) and shows that the result with coupled equations is quite different of
the result of DWBA.
The sixth test case, with the title :

TEST EXTERNAL POTENTIALS INPUT AS ECIS88 TST6-000
TEST EXTERNAL POTENTIALS NEW INPUT TST6-106

compare an input with external potentials as needed by ECIS88 with one of the new possibilities of
ECIS94. The last calculation i1s done again to show the use of the subroutine EVAL.

The seventh test case, with the title :
ESSAT PARTICULES IDENTIQUES ET POLYNOMES DE LEGENDRE TST7-000

is a calculation with identical particle of spin one half. The expansion in Legendre polynomials of the
cross-sections are written on file 7.
The eighth test case, with the title :

28SI + 160 b656.MEV G.S. , 1.78 MEV. HEAVY IONS OPTION TST8-000
28SI + 160 b656.MEV G.S. , 1.78 MEV. RESTART TST8-110

is an automatic search on 3 parameters which needs about 24 calculations. After 12 calculations, the job
is saved on file 8 and restarted to the end.

The ninth test case, with the title :

NEUTRON DE 14. MEV SUR GADOLINIUM COUL. SPIN-ORBITE DEFORME TST9-000
NEUTRON DE 14. MEV SUR GADOLINIUM COUL. SPIN-ORBITE NON DEFORME TST9-019

is a calculation for neutron with spin-orbit Coulomb potential. The two calculations, with and without
deformation of this interaction gives almost the same results.

B Missing topics

Many points quite important are not in this report :

. a detailed description of the reduced matrix elements used in the macroscopic models,

. relation between form factors of ECIS94 and of DWBA91

. more details on identical particle and target,

. more details on the use of form factors expanded with Bessel functions,
. details on the manipulation of symmetrised Woods-Saxon form factors,
. explanations on the interpolations,

. and so on.

The most important point missing here is Compound Nucleus.
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