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LECTURES ON STRINGS IN FLAT SPACE

AND PLANE WAVES FROM N = 4 SUPER YANG MILLS

Juan Maldacena

Institute for Advanced Study, Princeton, NJ 08540

In these lecture notes we explain how the string spectrum in flat space

and plane waves arises from the large N limit of U(N) M = 4 super Yang

Mills. We reproduce the spectrum by summing a subset of the planar Feynman

diagrams. We also describe some other aspects of string propagation on plane

wave backgrounds. These lecture notes are largely based on [1].

1. Introduction

The fact that large N gauge theories have a string theory description was

believed for a long time [2]. These strings live in more than four dimensions [3].

One of the surprising aspects of the AdS/CFT correspondence [4,5,6,7] is the

fact that for M = 4 super Yang Mills these strings move in ten dimensions and

are the usual strings of type IIB string theory. The radius of curvature of the

ten dimensional space goes as R/ls ~ {9YM^)1^4- ^^ e sPeetrum of strings on

AdSs x S5 corresponds to the spectrum of single trace operators in the Yang

Mills theory. The perturbative string spectrum is not known exactly for general

values of the 't Hooft coupling, but it is certainly known for large values of the

't Hooft coupling where we have the string spectrum in flat space. In these

notes we will explain how to reproduce this spectrum from the gauge theory

point of view. In fact we will be able to do slightly better than reproducing the

flat space spectrum. We will reproduce the spectrum on a plane wave. These

plane waves incorporate, in a precise sense, the first correction to the flat space

result for certain states.

The basic idea is the following. We consider chiral primary operators such

as Tr[ZJ] with large J. This state corresponds to a graviton with large mo-

mentum p + . Then we consider replacing some of the Zs in this operator by

other fields, such as 0, one of the other transverse scalars. The position of

(j) inside the operator will matter since we are in the planar limit. When we

include interactions (j) can start shifting position inside the operator. This mo-

tion of (j) among the Zs is described by a field in 1+1 dimensions. We then

identify this field with the field corresponding to one of the transverse scalars

of a string in light cone gauge. This can be shown by summing a subset of the

Yang Mills Feynman diagrams. We will present a heuristic argument for why

other diagrams are not important.

Since these results amount to a "derivation" of the string spectrum at large

't Hooft coupling from the gauge theory, it is quite plausible that by thinking

along the lines sketched in this paper one could find the string theory for other

cases, most interestingly cases where the string dual is not known (such as pure

non-supersymmetric Yang Mills).



These notes are organized as follows. In section two we describe various

aspects of plane waves. We discuss particle and string propagation on a plane

wave as well as their symmetries. In section three we describe how plane waves

arise from Penrose limits of various spacetimes, concentrating mostly on AdS§ x

S5. In section 4 we describe the computation of the spectrum from the Af = 4

Yang Mills point of view.

2. Plane waves

A plane wave is a geometry of the general form

ds2 = -4dx+dx~ + H(x+,y)(dx+)2 + dyW (2.1)

where the function H is independent of x~. We have dt transverse coordinates

y%. We will sometimes use the coordinates t,x defined by x± — (t ± x)/2. The

Ricci tensor has only the following nonzero component

= -\didiH (2.2)

where the index i only ranges over the y% coordinates. If we want (2.1) to

be a solution of vacuum Einstein equations then we need to impose that (2.2)

vanishes. One possibility would be to set

H = (2.3)

where / is arbitrary. This gives the gravitational field produced by a coherent

state of gravitons moving along the direction — i , with wavefunctions speci-

fied by / . If we take / = 6(x+) we get the metric outside a point particle

that is moving very close to the speed of light. These backgrounds are proper

gravitational waves that move in asymptotically flat Minkowski space.

Prom now on we will consider only plane waves such that H is quadratic

in y\

The matrix A can be a function of a?+. Prom (2.2) we see that i?+ + = ^Au(x+).

In these cases, as opposed to (2.3) the background is not asymptotically flat,

though it is flat where A vanishes.

We will often consider backgrounds with constant field strengths of the

form

F = dx+ A <p (2.5)

where (p is a constant form of Rdt, the space spanned by the yl coordinates.

Then we see that Einstein's equations imply that J?++ = ^Au ~ \(p\2. In

principle <p can depend on x+, thought we often will consider the case where it

is independent of x*.

2.1. Light font kinematics

If we have a two dimensional metric of the form

ds2 = -Adx+dx' = -dt2 + dx2 (2.6)

we can define the corresponding momenta p± which generate translations in

the x^ coordinates. We find that these momenta are related to the energy and

Pby

p± = -E±P (2.7)

We see that for massive particles p± < 0 and for massless particles one of them

can be zero. Massless particles with p- nonzero and p+ = 0 are moving along

the +x direction. Their wavefunctions depend only on x~, so we can form a

wave packet localized in the x~ direction. Note that the waves given by (2.3)

move in the —x direction.

2.2. Particle propagation on plane waves

In order to understand the physics of these backgrounds let us consider

particle propagation on these plane waves. Starting with the particle action

H = -Aiji (2.4) S = - o-l V2 em2) (2.8)



where X is contracted with the spacetime metric. We now set x+ = r and we

insert the plane wave metric in (2.8)l. Since the metric is independent of x~

we can eliminate x~ using the fact that the corresponding momentum, which

is p- = —2e~l is conserved2. In this way we find an action where the einbein

e is eliminated and which depends only on the yl coordinates

• /

dt IP-I

The equations of motion for y% are

dx+' + = 0

The light cone hamiltonian which implements translations in x

(2.9)

(2.10)

is equal to

| p _ | ' 4 ^%3if * ' | p _ | &'11)

We see that for A = 0 we recover the usual dispersion relation. If A is indepen-

dent of x+ we get a set of harmonic oscillators for the y% coordinates, some of

which could have negative w2 if A has negative eigenvalues. If A depends on

time we essentially get harmonic oscillators with time dependent frequencies.

Note that y = 0 is a solution which corresponds to a particular geodesic.

Let us analyze a couple of cases. Let us first assume that the metric

is a solution of the vacuum Einstein equations. Then we see that A has some

negative eigenvalues and some positive eigenvalues. This is just the familiar fact

that tidal forces for geodesies near the y = 0 geodesic will point towards the

initial geodesic or away from it depending on the direction of the displacement,

i.e. they are "focusing" in some directions and "defocusing" in others.

If we have constant field strengths we can consider As with only positive

eigenvalues. In that case tidal forces are focusing and particles with nonzero

p_ feel in a gravitational potential well from which they cannot escape. The

1 We call this light cone gauge since p_ is lightlike, though in general x+ is not
lightlike.

2 Note that p~ is then naturally negative since e non negative.

frequency of oscillations in this well is independent of p-, thought the amplitude

of oscillations, for fixed p+ is proportional to l / \ / |P-l- We see that as we take

p_ —> 0 we obtain that particles move to y = oo and back in finite x + time.

Note that in the case that all eigenvalues of A are positive the x+ direction is

timelike except at y — 0.

If we have Aij = /i2<%. Then we have a set of harmonic oscillators of

frequency \x and their energies are

(2.12)

where n̂  is the occupation number of the oscillator i.

Another way to treat the problem would be to solve the wave equation

for a scalar field in the plane wave background. Fourier expanding the wave

equation in x~ and x+ (if A is x+ independent) we find the harmonic oscillator

equation for the yl coordinates.

2.3. Symmetries of plane waves

Let us start by considering a plane wave of the form

ds2 = -4dx+dx- - Ai^ + (2.13)

Let us first consider the bosonic symmetries. We start with general x* depen-

dent A. There is an obvious symmetry generated by the killing vector

P- = -iJ-^ (2-14)

Though it is not apparent from (2.13) a generic plane wave has also, in

addition, 2dt killing vectors. To understand the origin of these let us first

take the case where we have only one transverse dimension so that A is just a

single function and not a matrix. Let us choose ya(x
+), a = 1,2, two linearly

independent solutions of the equation (2.10). Then we can form two Killing

vectors of the form

A (2.15)
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It can be checked that these are killing vectors for (2.13). We also find that

their commutator is

(2.16)

Note that due to the equation of motion (2.10) the prefactor of p_ in (2.16)

is a constant independent of x+ . We see that once we diagonalize p_ these

two Killing vectors obey a Heisenberg algebra. This algebra is realized on

the light cone gauge Hilbert space as the Heisenberg algebra of position and

momentum for the coordinate y. We see that the simplicity of the particle action

in light cone gauge is intimately related to the existence of these Killing vectors.

These two Killing vectors are realized on the particle light cone Hilbert space as

creation and annihilation operators for the corresponding harmonic oscillator

modes. More explicitly, if A = JJL, independent of x+ , we can choose y± ~ e
±ifMX

then (2.16) becomes the commutation relation of harmonic oscillators. In the

case that A is a matrix we can similarly find 2dt Killing vectors by solving

(2.10) and choosing 2dt linearly independent solutions, etc.

If A is x+ independent there is another Killing vector, p+5 corresponding

to translations in x+ . This becomes the energy in light cone gauge. Note that

in this case [—p+, y±] = ^y±. So we see that the energies of the harmonic oscil-

lators on the light cone lagrangian are determined by the spacetime symmetry

algebra.

If (2.13) is a solution of a supersymmetric lagrangian we can ask whether

we preserve any supersymmetries. In general we preserve half of the supersym-

metries, the half given the equation

r_e = (2.17)

on the supersymmetry generating spinor parameter e. We call these super-

symmetries Q-a- The a index depends on the theory we consider. These

supersymmetries obey usual anti commutation relations of the form

{Q-ajQ-b} ~ -P-Sab

7

(2.18)

If we have a constant field strength of the form (2.5) we find that the x+

dependence of the susy generating spinor parameter is of the form

e = e (2.19)

where eo is constant, independent of a:+, and obeys (2.17). In the case of type

IIB string theory we can choose

F = dx+<p , tp = yi{dy1dy2dyzdyA + dy5dy6dy7dy8) (2.20)

which would give a self dual F5 3. In this case we see that

e = e ̂  €0 , 1 _ C o = U , 1 = 1 . (Z.zi)

where we used the self duality condition as well as the positive chirality of e in

ten dimensions.

These supersymmetries are very analogous to the bosonic symmetries we

had above. When we act with Q_ on the light cone Hilbert space we raise or

lower the energy by ±/i.

Finally in type IIB supergravity, if Aij = fJ?Sij we have sixteen extra

supersymmetries. Their explicit form can be found in [8]. What we want to

note here is that they obey an algebra of the form

\Q+aiQ+bf = -~P+Oab + 1 ^ {I.II)

where the currents J appearing on the right hand side are the 50(4) x 50(4)

generators which rotate the first four or the second four coordinates. The field

strength (2.20) breaks the 50(8) symmetry of the metric to 50(4) x 50(4).

These supersymmetries are fairly standard supersymmetries in light cone gauge.

They anticommute to the Hamiltonian plus the currents. Similarly if we com-

mute or anticommute Q+ with Q__ or the killing vectors (2.15) we obtain some

combination of (2.15) and Q_ respectively, see [8]. These plane waves are max-

imally supersymmetric backgrounds that preserve 32 supersymmetries.

3 Note that the self duality condition relates the + component of F to the +
component of F due to the off diagonal term in the metric (2.13).



2.4. Strings on plane wave backgrounds

Let us consider first bosonic strings. We start with the metric (2.13) and

we choose light cone gauge x+ = r where r is the worldsheet time. We can

then follow all the steps performed in the light cone treatment of the Polyakov

action (see for example [9]). As we found above for the particle case we can see

that the action reduces to a quadratic action for the transverse coordinates

-I r

J
ira'\p-\ -j

In addition we need to impose the constraint that the total momentum in the

sigma direction of the string worldsheet is zero. We see that the length of the

string in the a direction is L = 7ra'|p_|. We can then decompose the fields

into Fourier modes in o as y% = ]Pn y
l
n{r)e2lT%n(T ̂  L. Then the action decouples

into a sum of harmonic oscillators with time dependent frequency. The fact

that the frequency of these oscillators can depend on time gives rise to particle

creation on the worldsheet. Note that in spacetime there is no particle, or

string, creation since the background has a lightlike Killing vector which could

be used to define positive and negative frequencies. The particle creation on

the string worldsheet means that a string that crosses the plane wave will get

excited, for example we could send in a graviton and get a highly excited string

state on the other side. The string number does not change but the mass of

the string can change. These effects due to x+ dependence of A were studied

in various papers [10].

If A is x+ independent we do not have particle creation on the string

worldsheet. In fact from now on we will consider only the type IIB case where

Aij = fj-Sij and F5 is (2.20), so that we get the metric

ds2 = - - n2yiyj(dx+)2 4- dyidyi (2.24)

In the superstring case we can start with the Green Schwarz action and choose

light cone gauge as described in [11] by choosing x+ = r and T-9a — 0, a = 1,2.

Then, as it was shown in [12,13] we obtain the action

5 =
na'\p-\ r-j -j -j

0 ^ [2Z ~ 2 Z - 2 ' iS(fi (2.25)

where / = F1234 and 5 is a Majorana spinor on the worldsheet and a positive

chirality SO(8) spinor under rotations in the eight transverse directions. We

quantize this action by expanding all fields in Fourier modes on the circle labeled

by a. For each Fourier mode we get a harmonic oscillator (bosonic or fermionic

depending on the field). Then the light cone Hamiltonian is

+ 0 0

Kb-l/2)2 (2.26)

Here n is the label of the fourier mode, n > 0 label left movers and n < 0

right movers. Nn denotes the total occupation number of that mode, including

bosons and fermions. Note that the ground state energy of bosonic oscillators

is canceled by that of the fermionic oscillators.

The constraint on the momentum in the sigma direction reads

P= nNn=0 (2.27)

It is useful to understand how the symmetries we discussed above act on

the string Hilbert space. The spacetime symmetries generated by Q_a and the

Killing vectors (2.15), are realized by the zero momentum modes on the string.

The rest of the symmetries, the symmetries that act linearly on the fields of

the light cone gauge lagrangian, are the SO(4) x SO(4) rotations and the Q+

supersymmetry. If we first find multiplets of Q+ supersymmetries with no zero

momentum oscillators, then we can find the full spacetime multiplets by adding

the zero momentum oscillators in all possible ways.

When only the n = 0 modes are excited we reproduce the spectrum of

massless supergravity modes propagating on the plane wave geometry. Since

the zero momentum modes are related to symmetries of the background we see

that all gravity modes with the same p_ are in the same multiplet.

9 10



In the limit that fi is very small, or in other words if

(2.28)

we recover the flat space spectrum. Indeed we see from (2.24) that the metric

reduces to the flat space metric if we set p to zero. The quantity p\p-\ measures

the size of the tidal forces that particles (or strings) propagating along geodesies

close to the y = 0 geodesic feel. The limit (2.28) corresponds to the case that

the tension is much larger than these tidal forces. In this limit the length of

the string L ~ a ; |p_| <C /x"1.

It is also interesting to consider the opposite limit, where

/xa;p+ > 1 (2.29)

This limit corresponds to strong tidal forces on the strings. It corresponds to

strong curvatures. In this limit all the low lying string oscillator modes have

almost the same energy. This limit corresponds to a highly curved background

with RR fields. In fact we will later see that the appearance of a large number

of light modes is expected from the Yang-Mills theory. In this limit the size of

the string L^> p~l, so the typical excitation will correspond to well separated

massive particles that are not moving very fast along the string. Since these

"particles" along the string correspond to oscillations of the string in the target

space we can say that in this limit different pieces of the string are oscillating

independently.

It is interesting to note that in the plane wave (2.24) we can also have

giant gravitons as we have in AdSs x 55 . These giants are D3 branes classically

sitting at fixed x~ and wrapping the S3 of the first four directions or the S3 of

the second four directions with a size

r2 = irg\p^\pa/2 (2.30)

where p_ is the momentum carried by the giant graviton. This result follows

in a straightforward fashion from the results in [14]. Its p + eigenvalue is zero.

We see that the description of these states in terms of D-branes is correct when

their size is much bigger than the string scale. If we are at weak string coupling

this size is substringy and the description of the states in terms of fundamental

strings is good.

It is well known that in conformal gauge the equation of motion for the

background is conformal invariance of the two dimensional worldsheet theory.

It would be nice to understand what the equation of motion for the background

is in these more general massive cases, where we have chosen the light cone

gauge. In flat space conditions like D = 26 appear, in light cone gauge, from

the proper realization of the non-linearly realized Lorentz generators. These

plane wave backgrounds generically break those Lorentz generators.

3. Plane waves as Penrose limits.

Penrose showed that plane waves can be obtained as limits of various back-

grounds [15]. Here we first consider a specific case and then we will say some-

thing about the general case.

3.1. Type IIB plane wave from AdS§ x 5 5

In this subsection we obtain the maximally supersymmetric plane wave of

type IIB string theory as a limit of AdS§ x 55 .

The idea is to consider the trajectory of a particle that is moving very fast

along the S5 and to focus on the geometry that this particle sees. We start

with the AdSs x S5 metric written as

ds = R2 \^dt2 cosh2 p + dp2 + sinh2 pdQ2 + # 2 cos2 6 + d92 + sin2 OdSl'

(3.1)

We want to consider a particle moving along the ip direction and sitting at p = 0

and 0 = 0. We will focus on the geometry near this trajectory. We can do this

systematically by introducing coordinates x^ = ^4p and then performing the

rescaling

R
y_
R ' (3-2)
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In this limit the metric (3.1) becomes

ds2 = ~4dx+dx~~ ~{f2 + y 2){dx+)2 + dy2 (3.3)

where y and r parametrize points on R4. We can also see that only the com-

ponents of F with a plus index survive the limit. The mass parameter fj, can

be introduced by rescaling (3.2) x~ —> x~~//z and x+ —> fix*. These solutions

where studied in [8].

It will be convenient for us to understand how the energy and angular

momentum along ip scale in the limit (3.2). The energy in global coordinates

in AdS is given by E = idt and the angular momentum by J = —id^. This

angular momentum generator can be thought of as the generator that rotates

the 56 plane of i?6. In terms of the dual CFT these are the energy and R-

charge of a state of the field theory on S3 x R where the S3 has unit radius.

Alternatively, we can say that E = A is the conformal dimension of an operator

on R4. We find that

2p~ —p+ =i = i(dt = A — J

fe
Configurations with fixed non zero p_ in the limit (3.2) correspond to states

in AdS with large angular momentum J ~ R2 ~ (gN)1/2. It is useful also to

rewrite (2.26) in terms of the Yang Mills parameters. Then we find that the

contribution of each oscillator to A — J is

(A- )n = wn = i / l
AirgNn2

(3.5)

Notice that gN/J2 remains fixed in the gN —> oo limit that we are taking.

When we perform the rescalings (3.2) we can perform the limit in two ways.

If we want to get the plane wave with finite string coupling then we take the

N —> oo limit keeping the string coupling g fixed and we focus on operators

with J - AT1/2 and A - J fixed.

On the other hand we could first take the 't Hooft limit g —• 0, gN =fixed,

and then after taking this limit, we take the limit of large 't Hooft coupling

keeping J/y/gN fixed and A — J fixed. Taking the limit in this fashion gives us

a plane wave background with zero string coupling. Since we will be interested

in these notes in the free string spectrum of the theory it will be more convenient

for us to take this second limit.

From this point of view it is clear that the full supersymmetry algebra of

the metric (3.1) is a contraction of that of AdS$ x S5 [8], This algebra implies

that p± > 0.

In other AdSd x Sp geometries we can take similar limits, see [16]. The only

minor difference as compared to the above computation is that in general the

radius of AdSd and the sphere are not the same. Performing the limit for AdS-j x

S4 or AdS4 x S7 we get the same geometry, the maximally supersymmetric plane

wave metric discussed in [17,18]. For the AdSz x 5 3 geometries that arise in

the D1-D5 system the two radii are equal and the computation is identical to

the one we did above for AdS§ x 55 .

In general the geometry could depend on other parameters besides the

radius parameter R. It is clear that in such cases we could also define other

interesting limits by rescaling these other parameters as well. For example

one could consider the geometry that arises by considering D3 branes on Ak-i

singularities [19]. These correspond to geometries of the form AdS§ x Sb/Zk

[20]. The Zk quotient leaves an S1 fixed in the 5 5 if we parametrize this Sl

by the ijj direction and we perform the above scaling limit we find the same

geometry that we had above except that now y in (3.3) parametrizes an Ak-i

singularity. It seems possible to deform a bit the singularity and scale the

deformation parameter with R in such a way to retain a finite deformation in

the limit. We will not study these limits in detail below but they are of clear

physical interest.

3.2. Penrose limits in general

Penrose showed that the neighborhood of any light like geodesic in any

manifold looks like a plane wave [15].
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Penrose showed that if we take a null geodesic in any spacetime then the

metric near it can be written as

ds2 = e2 [-idx+dx~ - dyidyi + o(e)] (3.6)

where € is a small parameter, i.e. by taking x^,yl fixed we are looking at a

small neighborhood of the geodesic x~~ = y% = 0. This shows that the geometry

close to this geodesic is that of a plane wave.

If we can rescale the overall factor in the metric to get rid of the factor

of e then we would obtain a plane wave in the limit. Einstein's equations are

invariant under such rescaling, so that the rescaled metric will also be a solution.

If there are other fields present in the initial solution, then one can show [21],

that only the + component is left in the limit. Similarly, all supergravity

theories normally encountered in string theory are invariant under an overall

scaling of the metric and the fieldstrengths [21], [22]. Stringy corrections to the

metric are not invariant under such a rescaling, but fortunately the rescaling

goes in the direction of making these corrections less and less relevant for the

asymptotic regions of the plane waves.

4. Strings from AT = 4 Super Yang Mills

After taking the 't Hooft limit, we are interested in the limit of large 't Hooft

coupling gN —> oo. We want to consider states which carry parametrically

large R charge J ~ \JgN. 4 This R charge generator, J, is the SO(2) generator

rotating two of the six scalar fields. We want to find the spectrum of states

with A — J finite in this limit. We are interested in single trace states of the

Yang Mills theory on S3 x R, or equivalently, the spectrum of dimensions of

single trace operators of the euclidean theory on i?4. We will often go back and

forth between the states and the corresponding operators.

Let us first start by understanding the operator with lowest value of A—J =

0. There is a unique single trace operator with A —J = 0, namely Tr[ZJ]1 where

Z = <j)h -f icj)6 and the trace is over the N color indices. We are taking J to

be the SO(2) generator rotating the plane 56. At weak coupling the dimension

of this operator is J since each Z field has dimension one. This operator is a

chiral primary and hence its dimension is protected by super symmetry. It is

associated to the vacuum state in light cone gauge, which is the unique state

with zero light cone hamiltonian. In other words we have the correspondence

1
Tr[ZJ) (4.1)

We have normalized the operator as follows. When we compute (Tr[ZJ](x)Tr[ZJ](0))^

we have J possibilities for the contraction of the first Z but then planarity im-

plies that we contract the second Z with a Z that is next to the first one we

contracted and so on. Each of these contraction gives a factor of N. Normaliz-

ing this two point function to one we get the normalization factor in (4.1).5

Now we can consider other operators that we can build in the free theory.

We can add other fields, or we can add derivatives of fields like d^ • • • dir^(j)r,

where we only take the traceless combinations since the traces can be eliminated

via the equations of motion. The order in which these operators are inserted

in the trace is important. All operators are all "words" constructed by these

fields up to the cyclic symmetry, these were discussed and counted in [3]. We

will find it convenient to divide all fields, and derivatives of fields, that appear

in the free theory according to their A — J eigenvalue. There is only one mode

that has A — J = 0, which is the mode used in (4.1). There are eight bosonic

and eight fermionic modes with A — J = 1. They arise as follows. First we have

the four scalars in the directions not rotated by J, i.e. <̂ *, i = 1,2,3,4. Then

we have derivatives of the field Z, DiZ = diZ + [Ai, Z]r where i = 1,2,3,4 are

four directions in R4. Finally there are eight fermionic operators xa
J=i which

are the eight components with J = | of the sixteen component gaugino \ (the

other eight components have J = — \). These eight components transform in

4 Since we first took the 't Hooft limit then giant gravitons are not important.

5 In general in the free theory any contraction of a single trace operator with its
complex conjugate one will give us a factor of Nn, where n is the number of fields
appearing in the operator.
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the positive chirality spinor representation of SO {A) x SO {A) 6. We will focus

first on operators built out of these fields and then we will discuss what happens

when we include other fields, with A — J > 1, such as Z.

The state (4.1) describes a particular mode often dimensional supergravity

in a particular wavefunction [6]. Let us now discuss how to generate all other

massless supergravity modes. On the string theory side we construct all these

states by applying the zero momentum oscillators az
Oy i = 1,...,8 and SQ,

b = 1,... 8 on the light cone vacuum |O,p+)j.c.. Since the modes on the string

are massive all these zero momentum oscillators are harmonic oscillators, they

all have the same light cone energy. So the total light cone energy is equal to

the total number of oscillators that are acting on the light cone ground state.

We know that in AdS$ x S5 all gravity modes are in the same supermultiplet

as the state of the form (4.1) [23]. The same is clearly true in the limit that we

are considering. More precisely, the action of all supersymmetries and bosonic

symmetries of the plane wave background (which are intimately related to the

AdS$ x S5 symmetries) generate all other ten dimensional massless modes with

given p_. For example, by acting by some of the rotations of S5 that do not

commute with the SO(2) symmetry that we singled out we create states of the

form

Tr[Zl(f)rZJ-1} = T 17J\

tfJ/2+1/2
Tr[<t>rZ (4.2)

where (jf', r = 1,2,3,4 is one of the scalars neutral under J. In (4.2) we used the

cyclicity of the trace. Note that we have normalized the states appropriately in

the planar limit. We can act any number of times by these generators and we

get operators roughly of the form ]T ̂ r["" • Z(P"z''' z<fik]. where the sum is over

6 The first SO(4) corresponds to rotations in i?4, the space where the Yang Mills
theory is defined, the second SO{4) C SO(6) corresponds to rotations of the first four
scalar fields, this is the subgroup of SO(6) that commutes with the SO(2), generated
by J, that we singled out to perform the analysis. By positive chiraiity in SO(4) x
SO(4) we mean that it has positive chirality under both S0(4)s or negative under
both SO{4). Combining the spinor indices into 50(8), SO(4) x SO(4) C SO(8) it has
positive chirality under 5O(8). Note that SO(S) is not a symmetry of the background.

all the possible orderings of the <j)s. We can repeat this discussion with the other

A — J = 1 fields. Each time we insert a new operator we sum over all possible

locations where we can insert it. Here we are neglecting possible extra terms

that we need when two A — J = 1 fields are at the same position, these are

subleading in a 1/J expansion and can be neglected in the large J limit that we

are considering. We are also ignoring the fact that J typically decreases when

we act with these operators. In other words, when we act with the symmetries

that do not leave Z invariant we will change one of the Zs in (4.1) to a field

with A — J = 1, when we act again with one of the symmetries we can change

one of the Zs that was left unchanged in the first step or we can act on the field

that was already changed in the first step. This second possibility is of lower

order in a 1/J expansion and we neglect it. We will always work in a "dilute

gas" approximation where most of the fields in the operator are Zs and there

are a few other fields sprinkled in the operator.

For example, a state with two excitations will be of the form

(4.3)

where we used the cyclicity of the trace to put the <f>r operator at the beginning

of the expression. We associate (4.3) to the string state O^SQ fe|O,p+)j.c.. Note

that for planar diagrams it is very important to keep track of the position of

the operators. For example, two operators of the form Tr[(j>lZl(f)2ZJ~l] with

different values of I are orthogonal to each other in the planar limit (in the free

theory).

The conclusion is that there is a precise correspondence between the super-

gravity modes and the operators. This is of course well known [5,6,7]. Indeed,

we see from (2.26) that their A — J = —p+ is indeed what we compute at weak

coupling, as we expect from the BPS argument.

In order to understand non-supergravity modes in the bulk it is clear that

what we need to understand the Yang Mills description of the states obtained

by the action of the string oscillators which have n ^ 0. Let us consider first

one of the string oscillators which creates a bosonic mode along one of the
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four directions that came from the S5, let's say ajj8. We already understood

that the action of aj 8 corresponds to insertions of an operator (f>4 on all possible

positions along the "string of Z's". By a "string of Zs" we just mean a sequence

of Z fields one next to the other such as we have in (4.1). We propose that

a^8 corresponds to the insertion of the same field (j)4 but now with a position

dependent phase

(4.4)

In fact the state (4.4) vanishes by cyclicity of the trace. This corresponds to

the fact that we have the constraint that the total momentum along the string

should vanish (2.27), so that we cannot insert only one a^1 oscillator. So we

should insert more than one oscillator so that the total momentum is zero. For

example we can consider the string state obtained by acting with the a^n
 8 and

at_ni which has zero total momentum along the string. We propose that this

state should be identified with

1 u i
(4.5)

where we used the cyclicity of the trace to simplify the expression. The general

rule is pretty clear, for each oscillator mode along the string we associate one of

the A — J = 1 fields of the Yang-Mills theory and we sum over the insertion of

this field at all possible positions with a phase proportional to the momentum.

States whose total momentum is not zero along the string lead to operators

that are automatically zero by cyclicity of the trace. In this way we enforce the

Lo — Lo = 0 constraint (2.27) on the string spectrum.

In summary, each string oscillator corresponds to the insertion of a A — J =

1 field, summing over all positions with an n dependent phase, according to the

rule

for j = (4.6)

In order to show that this identification makes sense we want to compute

the conformal dimension, or more precisely A — J, of these operators at large 't

Hooft coupling and show that it matches (2.26). First note that if we set ^ j - ~ 0

in (3.5) we find that all modes, independently of n have the same energy, namely

one. This is what we find at weak ?t Hooft coupling where all operators of the

form (4.5) have the same energy, independently of n. Expanding the string

theory result (3.5) we find that the first correction is of the form

(4.7)
J2

This looks like a first order correction in the 't Hooft coupling and we can

wonder if we can reproduce it by a a simple perturbative computation.

In order to compute the corrections it is useful to view the Af = 4 theory as

an M = 1 theory. As an M = 1 theory we have a Yang Mills theory plus three

chiral multiplets in the adjoint representation. We denote these multiplets as

W\ where i = 1,2,3. We will often set Z = W3 and W = Wl. The theory

also has a superpotential

W~gYMTr(WiWiWk)eijk (4.8)

The potential for the Yang Mills theory is the sum of two terms, V =

Vp + Vo, one coming from F terms and the other from D-terms. The one

coming from F terms arises from the superpotential and has the form

(4.9)

On the other hand the one coming from D terms has the form

vD
(4.10)
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w w
Fig. 1: Diagrams that come from F terms. The two diagrams have
a relative minus sign. The F terms propagator is a delta function so
that we could replace the three point vertex by a four point vertex
coming from (4.9). If there are no phases in the operator these
contributions vanish.

We will concentrate in computing the contribution to the conformal dimen-

sion of an operator which contains a W insertion along the string of Zs. There

are various types of diagrams. There are diagrams that come from D terms, as

well as from photons or self energy corrections. There are also diagrams that

come from F terms. The diagrams that come from F terms can exchange the

W with the Z. The F term contributions cancel in the case that there are no

phases, see fig. 1. This means that all other diagrams should also cancel, since

in the case that there are no phases we have a BPS object which recieves no

corrections. All other one loop diagrams that do not come from F terms do

not exchange the position of W, this means that they vanish also in the case

that there are phases since they will be insensitive to the presence of phases.

In the presence of phases the only diagrams that will not cancel are then the

diagrams that come from the F terms. These are the only diagrams that give

a momentum, n, dependent contribution.

In the free theory, once a W operator is inserted at one position along the

string it will stay there, states with Ws at different positions are orthogonal to

each other in the planar limit (up to the cyclicity of the trace). We can think

of the string of Zs in (4.1) as defining a lattice, when we insert an operator W

at different positions along the string of Zs we are exciting an oscillator b\ at

the site I on the lattice, I = 1, • • • J. The interaction term (4.9) can take an

excitation from one site in the lattice to the neighboring site. So we see that the
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effects of (4.9) will be sensitive to the momentum n. In fact one can precisely

reproduce (4.7) from (4.9) including the precise numerical coefficient. Below

we give some more details on the computation.

We will write the square of the Yang-Mills coupling in terms of what in

AdS is the string coupling that transforms as g —» 1/g under S-duality. The

trace is just the usual trace of an iV x iV matrix.

We define Z = 4=(05 4- icjP) and similarly for W. Then the propagator is

normalized as
. . Oirn 1

zr, (4-ii)

In (4.9) there is an interaction term of the form the form ~- / d4xTr([Z1 W][Z1 W])M

where W is one of the (complex) transverse scalars, let's say W = Wl. The

contribution from the F terms shown in (4.9)give

(4.12)< O(x)O*(0) >= JL U + N(4ng)(-2 + 2cos ^)I(x

where AT is a normalization factor and I(x) is the integral

We extracted the log divergent piece of the integral since it is the one that

reflects the change in the conformal dimension of the operator.

In conclusion we find that for large J and N the first correction to the

correlator is

O(x)O*(0) >=
I

log(|x|A) (4.14)

which implies that the contribution of the operator W inserted in the "string

of Zs" with momentum n gives a contribution to the anomalous dimension

(A - J)n = 1 +
27rgNn2

J2 (4.15)

which agrees precisely with the first order term computed from (4.7).
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There are similar computations we could do for insertions of D{Z, W or

the fermions Xj=i/2- ^n t n e c a s e °f ^ne fermions the important interaction term

will be a Yukawa coupling of the form xTz[Zx] + xFz[Z, x]- We have not done

these computations explicitly since the 16 supersymmetries preserved by the

state (4.1) relate them to the computation we did above for the insertion of a

W operator.

Encouraged by the success of this comparison we want to reproduce the

full square root7 in (3.5). At first sight this seems a daunting computation since

it involves an infinite number of corrections.

In order to reproduce the full square root we essentially need to iterate

these diagrams. We can define creation operators b\ which create a </>% operator

at the position I along the string of Zs and annihilation operators hi operator

that remove a <j>% from position I or gives zero if there is no (j)% at position I.

Then we see that we can write an effective Hamiltonian of the form

H = (4.16)

An important feature of this Hamiltonian is that it includes terms with

two creation or two anhillation operators. These come from the same vertices

that we show in fig. 1 but with W and W lines both in the past or both in the

future. Again we focus on the terms which depend on phases which are of this

form.

The operators bi do not strictly obey usual harmonic oscillator commuta-

tion rules, but if we form the operators

1=1

then the bn oscillators obey the standard commutation relations up to terms

of order 1/J which we neglect in the large J limit. For this reason the large J

limit of (4.16) will give the same as the continuum hamiltonian

Jo
(4.18)

Square roots of the 't Hooft coupling are ubiquitous in the AdS computations.

In this formulation we see that € = (gN) l^2 plays the role of a short

distance cutoff on the worldsheet.

In summary, the "string of Zs" becomes the physical string and each Z

carries one unit of J which is one unit of —p_. Locality along the worldsheet

of the string comes from the fact that planar diagrams allow only contractions

of neighboring operators. So the Yang Mills theory gives a string bit model

(see [24]) where each bit is a Z operator. Each bit carries one unit of J which

through (4.18) is one unit of —p_.

The reader might, correctly, be thinking that all this seems too good to be

true. In fact, we have neglected many other diagrams and many other operators

which, at weak 't Hooft coupling also have small A — J. In particular, we

considered operators which arise by inserting the fields with A — J = 1 but

we did not consider the possibility of inserting fields corresponding to A - J =

2,3,. . . , such as Z, dk(jf', dyd^Z, etc.. The diagrams of the type we considered

above would give rise to other 1+1 dimensional fields for each of these modes.

These are present at weak 't Hooft coupling but they should not be present at

strong coupling, since we do not see them in the string spectrum. We believe

that what happens is that these fields get a large mass in the N —• oo limit. In

other words, the operators get a large conformal dimension. One can compute

the first correction to the energy (the conformal weight) of the of the state that

results from inserting Z with some "momentum" n. In contrast to our previous

computation for A — J = 1 fields we find that besides an effective kinetic term

as in (4.7) there is an n independent contribution that goes as gN with no

extra powers of 1/J2 [1]. This is an indication that these excitations become

very massive in the large gN limit. In addition, we can compute the decay

amplitude of Z into a pair of <f> insertions. This is also very large, of order gN.

Though we have not done a similar computation for other fields with A —

J > 1, we believe that the same will be true for the other fields. In general we

expect to find many terms in the effective Lagrangian with coefficients that are

of order gN with no inverse powers of J to suppress them. In other words, the

lagrangian of Yang-Mills on S3 acting on a state which contains a large number

of Zs gives a lagrangian on a discretized spatial circle with an infinite number
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of KK modes. The coefficients of this effective lagrangian are factors of gNy so

all fields will generically get very large masses.

The only fields that will not get a large mass are those whose mass is

protected for some reason. The fields with A — J = 1 correspond to Goldstone

bosons and fermions of the symmetries broken by the state (4.1). Note that

despite the fact that they morally are Goldstone bosons and fermions, their

mass is non-zero, due to the fact that the symmetries that are broken do not

commute with p+, the light cone Hamiltonian. The point is that their masses

are determined, and hence protected, by the (super)symmetry algebra.

Having described how the single string Hilbert space arises it is natural to

ask whether we can incorporate properly the string interactions. Clearly string

interactions come when we include non-planar diagrams [2].

Some of the arguments used in this section look very reminiscent of the

DLCQ description of matrix strings [25] [26]. It would be interesting to see if one

can establish a connection between them. Notice that the DLCQ description of

ten dimensional IIB theory is in terms of the M2 brane field theory. Since here

we are extracting also a light cone description of IIB string theory we expect

that there should be a direct connection.

It would also be nice to see if using any of these ideas we can get a better

handle on other large N Yang Mills theories, particularly non-supersymmetric

ones. The mechanism by which strings appear in this paper is somewhat remi-

niscent of [27].
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