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1 Aspects of N = 2 Supersymmetry

1.1 (2,2) Supersymmetry in 1 + 1 Dimensions

Throughtout the course of the lecture, the worldsheet theories we will consider have

(2, 2) supersymmetry which is generated by four supercharges, Q+, Q+, Q_, Q_. They are

complex but related to each other by hermitian conjugation

Ql = Q±- (i.i)

Together with Hamiltonian i?, momemtum P and Lorentz generator M, they obey the

following (anti-)commutation relations:

Ql = Q2_ = Ql = Q2_ = 0, (1.2)

{Q±,Q±} = H±P, (1.3)

{Q+,Q_} = Z, {Q+,Q_} = Z*, (1.4)

{Q_,Q+} = Z, {Q^Q_} = Z\ (1.5)

Q±] = =FQ±, [iM, Q±] = T Q ± , (1.6)

Z and Z are central charges. By (1.1) and (1.3), the spectrum is positive semi-definite,

H > 0, and zero energy states are those annihilated by all the supercharges Q±,Q±, i.e.

supersymmetric ground states. There are also two R-charges, Fy (vector) and FA (axial):

[iFv,Q±] = ~iQ±, [iFv,Q±] = iQ±, (1-7)

[iFA,Q±] - TiQ±, [iFA,Q±] = ±iQ±. (1.8)

Whether Fy and/or FA are conserved depends on the system, although the fermion num-

bers el7rFv and el7rFA should always be conserved. This algebra may be considered as the

dimensional reduction of d — 4 J\f = 1 supersymmetry: FA and Z are the rotation and

momenta in the reduced directions while Fy descends from the AT — 1 R-charge.

The (2, 2) algebra has an interesting automorphism called the mirror automorphism:

Fv 4—> FA, (1.9)

Z+—>Z. (1.10)

Mirror symmetry is an equivalence of two theories where the (2,2) generators are ex-

changed in this way.



There are also parity automorphisms, in fact two of them — A-parity and B-parity.

A parity flips the space coordinate and therefore does P —» — P and M —> —M. A-parity

maps other generators as

Fy —> —Fy, Z —> Z*,

while B-parity does

-T^4 —r —-̂  ^4} ^ —' ^ '

Like R-symmetries, whether there is a parity symmetry depends on the system. The two

parities are exchanged under the mirror automorphism. Generators that are invariant

under an A-parity are H, FA, Z,

QA = Q+ + Q-> (1.13)

and Q\ = Q+ + Q_. They form a closed algebra that includes {QA,Q\} = 2H and

Q\ = Z. Generators invariant under a B-parity are if, Fy, Z,

QB = Q+ + Q_, (1.14)

and Q^B = Q+ + Q- . They also form a closed algebra.

Supsrsymmetric Ground States
Let us quantize the system on a circle with a periodic boundary condition which sets

Z = Z = 0. Now, the operators {Q,F) = (QA,FA) or (QB>FV) °bey the following

commutation relations

(1.15)

(1.16)

(1.17)

By the second and the third equation, the Hilbert space of states 7i can be regarded as

the Q-complex;

where 1-Lq is the subspace of R-charge F — q. As noted above, F is not necessarily

a conserved charge and the grading q may not be a Z-grading. However, the fermion

number el7rF is always conserved and thus there is at least a Z2 grading. By the equation

(1.15), Q-cohomology classes are in one to one correspondence with the supersymmetric

ground states;
* HHQ) - KerQ : W -> WiSVSY - H {Q) .- ImQ . nq_x ^ %q . (1.19)



Witten index is the same as the Q-index

]T( -1) 9 dim tf </(<?), (1.20)

and is independent of any supersymmetric deformation of the system.

Chiral Ring

An operator O is called a chiral operator if [QB,O} = 0 and twisted chiral operator if

[QA,O} — 0. It represents a Q — QB/QA cohomology class of operators. One can

show from the supersymmetry algebra (with Z = Z = 0) that if O is a chiral operator,

[QB,O} = 0, then

[(H±P),O] = {QB,[Q±,O}]- (1-21)

Thus, the worlsheet translations do not change the Q^-cohomology classes. If O\ and O2

are two chiral operators, the product G\O*i is also a chiral operator. Same can be said on

twisted chiral operators. Thus, Q-C°homology classes of operators form a ring, called the

chiral ring for Q = QB and twisted chiral ring for Q = QA>

Twisting

The Euclidean theory obtained by Wick rotation still has a supersymmetry, with the same

algebra and same hermiticity, where the rotation generator is given by ME = iM. If a

vector R-charge Fy is conserved and integral, one can twist the theory by declaring that

ME + FV to be the new rotation generator. This is called the A-twist. The same procedure

for axial R-symmetry is called the B-twist. After A(B)-twist, QA (QB) becomes scalar and

thus there is a supersymmetry even when the worldsheet is curved. Correlation functions

with insertions of only twisted chiral (chiral) operators are independent of the choice

of worldsheet metric. For this reason the twisted model is sometimes called topological

A(B)-model. Sphere 3-point functions determine the structure constants of the twisted

chiral ring (chiral ring).

Field/State Correspondence

When a twisting is possible, there is a one to one correspondence with (twisted) chiral

ring elements and supersymmetric ground states. Suppose the system is B-twistable.

Consider a worlsheet of semi-infinite cigar geometry as in Fig. 1, and perform the B-

twisted path-integral in the interior of the cigar, with a chiral ring element fa inserted

at the tip. This leads to a wavefunction at the circle boundary. The flat cylinder region

is not affected by twisting, and thus the wavefunction can be regarded as a state of the

untwisted theory. Because of the twisting in the curved region, the fermions are periodic

along the circle — namely the state belongs to RR sector. In the limit of infinite length,

all the excited states are projected out and we are left with the zero energy state \i). This
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Figure 1: The semi-infinite cigar

is the supersymmetric ground state corresponding to fa.

1.1.1 (2,2) Superspace and Superfields

In constructing supersymmetric field theory, it is useful to use the superfield formalism.

Let us extend Minkowski space with one time and one space coordinates x°, x1 by including

four fermionic coordinates 0+ ,0~,0 , 0 (related by complex conjugations 6 = (#*)*).

Superfields are functions on this superspace. We introduce differential operators

Q± = -^ + ie±d± (1.22)

Q± = - ^ - i 9 ± d ± . (1.23)

where d± are differentiations by a;"1" := x° ± x1: d± = -^ = \ {^ ± ^ r ) . These

differential operators satisfy the following anti-commutation relations,

(1.24)

with all other anti-commutators vanishing. We define another set of differential operators

At =

D± = —=±+ie±d±, (1.26)

which anti-commute with Q± and Q±, i.e. {D±, Q±) = 0, etc. These obey the similar

anti-commutation relations {D±,D±} = 2id±.

A chiral superfield $ is a superfield which satisfies the following equations,

D ± $ = 0. (1.27)

It has the following form

, e±,e±) - <t>{y^ + eQipa(y») + r r F ( / ) , (1.28)



where y± — x± — i9±9 . A twisted chiral super field $ is a superfield which satisfy

D + J = L>_$ = 0. (1.29)

It has a similar expansion as (1.28) with 9~ and 9 exchanged. Holomorphic combinations

of (twsited) chiral superfields are also (twsietd) chiral superfields.

We now construct action functionals of supefields which are invariant under the trans-

formation S = e+Q_ — e_Q+ - e+Q_ + £_Q+. There are three kinds of them: D-term,

F-term and twisted F-terms. They are expressed as follows respectively

f d2xd46K{Ti) = f d2xd6+d6-d0~d6+ K(Fi), (1.30)

f d2xd29 W(^i) = / d2x d0~d9+ W($i) _±_ , (1.31)

2xd26W($l) = [d2xd9~d9+W($i) _+ ,. (1.32)
J 6 =6 =0

Here K(—) is an arbitrary differentiable function of arbitrary superfields T^ W($i) is

a holomorphic function of chiral superfields <£>;, and W($i) is a holomorphic function of

twisted chiral superfields $z. W (W) is called a superpotential (twisted superpotential).

Invariance under 5 can be shown essentially by using the Stokes theorem f d2xd±F =

f d9^G = 0, provided we use the (twisted) chirality ~D±W = 0, ~D+W = DJW = 0.

Given such an invariant Lagrangian one can find corresponding Noether charges, which

become operators Q±,Q± in the quantum theory such that 5O = i[6, O] where 6 =

e+Q- — 6-Q+ — e+Q_ + 6_Q+. The algebra of Q±, Q± implies that the charges Q±, Q±

obey the (2,2) supersymmetry algebra. The lowest component <f> of a chiral superfield

$ obeys [Q±:(j)] = 0 and in particular is a chiral operator. The lowest component of a

twisted chiral superfield is likewise a twisted chiral operator.

R-symmetries are realized on the superspace as the phase rotations of the fermionic

coordinates. Suppose the action S(Gi) is invariant under the following transformations

CMT(^ ^ ± 0 \ i ^ p}aQv,iCt (^ a~iaf)± &lCLft \ (1 ^ ^

u, e ^ ^ , e±z^^ ). (1.34)

Then, the cooresponding Noether charges Fy and FA are the vector and axial R-charges.

1.1.2 Deceoupling of Parameters

An extremely strong property is the decoupling of the chiral and twisted chiral param-

eters. Suppose we have a (2, 2) supersymmetric theory and integrate out heavy fields
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or high frequency modes to obtain a low energy effective theory. Then, parameters of

superpotential at high energy theory cannot enter into twisted chiral superpotential of

low energy theory. This can be shown by using the idea of promoting parameters to

fields. As we have seen, for (2,2) supersymmetry (twisted) superpotential has to be a

holomorphic function of (twisted) chiral superfields. Thus a parameter of superpotential

must be promoted to a chiral superfields, but that cannot enter into the twisted superpo-

tential at lower energy. Likewise, parameters of twisted superpotential cannot enter into

the superpotential of low energy theory. Using this fact, one can derive various kinds of

supersymmetric non-renormalization theorems.

Alternative way to see this "decoupling" is to look at the correlation functions of topo-

logical models: A(B)-model correlation functions depend only on twisted chiral (chiral)

parameters and depend on them holomorphically. This is because all the supersymmetric

deformations except by twisted chiral (chiral) parameters are by Q^(<2j5)-exact opera-

tors. For example, consider deformation by a chiral parameter. It is given by an F-term

/ d#~d#+ SW. Using the lowest component Sw of SW, this can be written as

where we have used [Q+,5w] = 0, {Q+,Q+} = H + P and stokes theorem. Since it is

Q^-exact, it annihilates the correlation function of Q^-closed operators.

1.2 Non-Linear Sigma Models and Landau-Ginzburg Models

We introduce supersymmetric non-linear sigma models on Kahler manifolds and Landau-

Ginzburg models. We write down the classical action and supercharges, and compute the

Witten index. We also study anomaly of some fermion number symmetry, the space of

supersymmetric ground states, and renormalization group flow.

1.2.1 The Models

Non-linear Sigma Model

Consider a function K((j)\~^) of n complex variables </>1,...,0n such that the matrix

gi-3 := didjK{(j)1^) is positive definite. This matrix can be regarded as a Kahler metric

ds2 = g^dz^I^ on C n = {(z 1 , . . . , zn)}, which defines the Levi-Civita connection Tl
jk =

kj on the tangent bundle TCn. Under this assumption, we consider the Lagrangian



density

Ckin = Jd49K(¥,W), (1.35)

for n chiral superfields 3?1,..., $ n . In terms of component fields <f>1, ipl
±, F% of <I>\ £&„ can

be expressed as

Chin = - & 1 ^ 0 ^ ? + ^ - ( A ) + W i + i < ^

up to total derivatives in x**. In the above expression, Rrjki is the Riemannian curvature

of the metric g^ and D^ is defined by

D^i := a^i + a^rj^. (1.37)
We note here that the expression (1.36) is covariant except the last term which can

be eliminated by the equation of motion. Also, the action is invariant under the "Kahler

transformation" K(&,W) -* K($\ W)+f($i)+f(W). This is manifest in the component

expression (1.36) but can also be understood by the fact that f d49f($) is a total derivative

if /($*) is holomorphic. Thus, we can apply this construction for each coordinate patch

of a Kahler manifold M (possibly with more complicated topology than Cn), and the glue

the patches together by the invariance of the action under coordinate change and Kahler

transformation. This will lead us to define an action for a map of the worldsheet to any

Kahler manifold:

</> : E - > M. (1.38)

The fermions are the spinors with values in the pulled-back tangent bundle </>*TM

tl)± G T(E, <£TM (1 '0) ® S±), (1.39)

V?± 6 T(E, cj)*TM^l) ® S±). (1.40)

The derivative (1.37) is the covariant derivative with respect to the Levi-Civita connection

pulled back to the worldsheet E by the map <j>. This system is called the sniper symmetric

non-linear sigma model on a Kahler manifold (M,g).

If there is a non-trivial cohomology class B G H2(M, R), one can modify the theory

by putting the phase factor

exp (i IV#) (1.41)

in the path-integral. This is invariant under a continuous deformation of the map </>. In

particular, it is invariant under the supersymmetry variation and this modification does

not break the supersymmetry. Also, the form of the supercurrent and the supercharges

remains the same as above.
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Landau-Ginzburg Model

Let W((j)1,..., (j)n) be a holomorphic function. Then, one can consider the F-term

Cw = fd29W(¥) + c.c.

= FldiW - didj^l + TfyW - dTdJWtfJ?+. (1.42)

As the total Lagrangian we take the sum

£= I tf6K($\W) + ( fd26W(<$>1) + ex. "j . (1.43)

After eliminating the auxiliary fields F, F, we obtain the following expression for the total
Lagrangian

ty Wpj7+ (1.44)

We see that the addition of the term Cw has led to the potential term

U((/>) = gVdiWdjW, (1.45)

plus the fermion mass (or Yaukawa coupling) term —W"((f))ifj+ip-. The model is called
the J\f = 2 supersymmetric Landau-Ginzburg model on {M,g) with superpotential W.

Supercharges

Let us write down the expression for the supercharges. Since non-linear sigma model
(NLSM) is the W = 0 case of Landau-Ginzbut (LG) model, it is enough to present the
result for the latter. The supersymmetry variation of the component fields are

Sft = e+ipl - e _ ^ , 5cj) = -1^_ + e_^+,
5il>% = 2z6_d+0i + e+F\ 8% = -2ie_d+? + e+F, (1.46)
(tyl = ^ie+d-cj)1 + e-F\ 5$_ = 2ie+d.^ + c . F ,

where Fl can be replaced by the solution Fl = T^ip^t — g^dfiV (F1 is its complex
conjugate). Following the Noether procedure, we find the consereved currents (?± and
G± - supercurrents

G°± = gi-3(d0 ± d^^Pi T %d,W,

Gl
± = T9rj(do ± dx)^i - %d;W,

Gl
± = =Ffti?±(^) ± 5i)^' ± ^ ^ W

The supercharges are given by Q± = J d ^ G j . and Q± = / dx1G±.



1.2.2 Witten Index

Let us compute the Witten index / = Tr^RR(—l)Fe~ /?iJ, regarded as the torus path-

integral with periodic boundary condition in both directions. Using the deformation

invariance we can take the zero size limit of the torus. Then, it reduces to the integral of

only constant modes.

Let us first consider NLSM on a compact Kahler manifold (M, g). The space of bosonic

constant modes is nothing but M itself. Fermionic constant modes span the sum of two

copies of tangent bundles (one from ('0_,^>+) another from (/0+,/0_)). For a constant

mode the Lagrangian (1.36) reduces to

C = R^^kJ^+' (1-48)

By the substitution i/jl_ —> dz\ ̂  —» dz1, ^\ —> ij)\ and ^_ -» g^'&j, it can be regarded

as RJ
ik^

lfipjdzk A dzl = R^ip^j where R^ is the curvature 2-form of the bundle T^^M.

Then the index is given by

^ ^ ^ / ( ] (1.49)/ = f f fd^d^e*^^^ = / det (—R] = X(M)
JMfJ[ JM \ 2 7 r /

The index is the Euler number of M.

Let us next consider the LG model. We assume that the potential U = \dW\2 grows

at infinity in the non-compact space M so that the index is well-defined. We also assume

that all the critical points are non-degenerate — they are isolated and that the Hessian

is of maximal rank. The classical action reduces on the constant modes to

C = RC3kpl)\.^1J$+ - g^diWdjW - D^W^i - DTdjW^Jj^. (1.50)

It may appear difficult to perform this integration. However, we note that this 0-

dimensional system also has a supersymmetry: simply eliminate d^cf)1 in (1.46). Then,

the integral localizes on the fixed point of the supersymmetry variation and the exact

answer can be obtained by the quadratic approximation around each fixed point. The

fixed points are at the critical point of W. Thus, the index is given by

pt

In the firts expression, the nemerator and denominator are from the fermionic and bosonic

integrals respectively, both in the quadratic approximation.
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1.2.3 R-Symmetry

Recall that (2,2) algebra has vector and axial R-charges. In NLSM and LG model, we

examine the condition for conservation of R-charges.

Classical Level

We start with examining the invariance of the classical Lagrangian under a vector (1.33)

and an axial (1.34) R-rotations. The D-term is always invariant (for qv — qA — 0) since

d40 is invariant under phase rotation of 9±. Thus, the NLSM Lagrangian, which consists

only of / dA0 K, is invariant under both vector and axial R-rotations. LG model has F-

term J d20W(®). The measure d29 is neutral under axial R-rotation, and thus there is an

axial R-symmetry at the classical level. On the other hand, under the vector R-rotation

the measure has charge —2. Thus, Lagrangian is invariant only if it is possible to transform

the fields <3>* in such a way that W($l) is rotated by charge 2. This transformation should

be holomorphic and preserve the Kahler metric. Thus, the LG model has classical vector

R-symmetry if there is a one-parameter family of holomorphic automorphisms fp:X—>X

such that fpg = g and

f*W = e2i/3W. (1.52)

Such a superpotential is called quasi-homogeneous.

Anomaly

Exact symmetry of the quantum theory must preserve the path-integral measure VX e~s^x

not just the classical action S[X]. Since R-symmetry acts on the fermions tp± as phase

rotation, we should examine the fermion measure V^. We choose as the worldsheet

the compact Euclidean torus £ = T2, and fix a bosonic background, namely fix a map

(j): E -> M. The fermion kinetic term is

- 2 i ^ i D ^ L + 2igrft?+Dzil)%, (1.53)

where z is a complex coordinate of the worldsheet, and D^ is the covariant derivative on
fi) (1.37). Atiyah-Singer index theorem says

IndexDj = -lndexDz = [ Cl(0*TM(1 'o)) = / ^cx(M), (1.54)

where C\(M) is the first Chern class of M (represented by the Ricci form c\(M) =

) . It shows the following miss-match in the number of fermion zero modes

+ JE (1.55)

If k := / <f>*ci(M) > 0, there are generically k zero modes for ^_ and ip+ but none for ip_

and ij)+. The path-integral measure is invariant under the vector R-rotation which rotates
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^_ and ^ + oppositely. However, under the axial rotation ij)± —» eT2/3/0±, the measure is

rotated as

j)\^ —> e~2ikPi)ty. (1.56)

Equivalently, the axial R-rotation shifts the B-field class as

Thus, the axial R-symmetry is anomalous if c\(M) ^ 0. It is anomaly free only if

ci(M) = 0, i.e. only if M is Calabi-Yau. However, even for non-Calabi-Yau, not all the

axial rotations are anomalous. For example, if f <f>*ci(M) is always an integer multiple

of p G Z, then Z2p subgroup of U(1)A is anomaly free. In particular, the Z2 subgroup is

always unbroken, as required.

Summary

In NLSM on M, there is always U(l)v R-symmetry but U(1)A is broekn to its discrete

subgroup 7*2P with p := gcd J <j>*c\(M). For LG model, U(l)v is unbroken iff W is quasi-

homogeneous, while 17(1),4 is not broken by superpotential. Typical cases are presented

in the table.

CY sigma model

sigma model on M

with ci(M) ^ 0

LG model on CY

with generic W

LG model on CY

with quasi-homogeneous W

U(l)v

o

o

X

o

U(1)A

O

X

O

O

Notice the symmetry of the table: it is invariant under left-right/top-bottom exchange.

This is actually not a coincidence — some NLSMs and some LG models are exchanged

under mirror symmetry that exchanges U(l)y and U(1)A> mapping quantum effect of one

to the classical property of the other, or vice versa. In particular, we note that the mirror

of NLSM on M with c\(M) ^ 0 cannot have U(l)v symmetry and therefore cannot be a

NLSM again; if it exists it should have some U{\)v breaking F-term.
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1.2.4 Supersymmetric Ground States

The space of supersymmetric ground states of NLSM on M is isomorphic to the cohomol-

ogy group of M which is inturn the same as the space of harmonic forms on M;

(1.58)

Here Hp>q(M) is the space of harmonic {p,q) forms, or (p, #)-th Dolbeault cohomology

group. If M is Calabi-Yau, the vector and axial R-charges of the ground states are

«" = - * + «' on H*«(M). (1.59)
QA = P + q - n

If M is not Calabi-Yau, the axial R-symmetry is anomalous, and only the expression for

qv makes sense. In any case, Witten index is given by / = ^««(~~l)~p+q dim Hp'q(M) =

E ^ - l ^ t f ^ M ) = X(M), reproducing the formula (1.49). If two Calabi-Yau manifolds

M and M are mirror to each other, the ground states in Hp>q(M) are mapped to the

ground states in Hn~p>q(M) so that the vector and axial R-charges are exchanged. In

particular, there is a relation between M and M in the Hodge numbers hPiQ = dimHp'q:

h™{M) = hn-™(M). (1.60)

The supersymmetric ground states of LG model are in one to one correspondence with

the critical points of the superpotential W, if all the critical points are non-degenerate. If

M is a non-compact Calabi-Yau, the axial R-charges are conserved and they are all zero

qA = 0 on the ground states. (1-61)

The reason is that the ground state wavefunctions in the dimensionally reduced model

(supersymmetric quantum mechanics) is given by middle-dimensional forms. This also

reproduces the index formula / = #(crit. pts. of W).

If a NLSM on M is mirror to a LG model, then the vector R-charge of the NLSM

ground states has to be zero. Namely, Hp>q(M) = 0 if p ^ q (the Hodge diamond of M is

diagonal).

1.2.5 Renormalization Group Flow

The non-linear sigma model is scale invariant at the classical level. However, the metric

is renormalized with the beta function given by

R + t
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where Ricci tensor term is the one-loop effect and H are from higher loops and are

convention dependent. If Ricci tensor is positive definite, at higher energies the metric

is larger and the sigma model coupling is weaker. Thus NLSM is asymptotically free for

Ricci positive manifolds. For a Calabi-Yau manifold (RJJ = 0), the sigma model is scale

invariant at the one-loop level.

This applies also to supersymmetric NLSM on a Kahler manifold M. The H terms

are modified but still convention dependent. However, there is a nicer story: The complex

structure of M is not renormalized, and the Kahler class is renormalized only at the one-

loop level The latter means that the cohomology class of the Kahler form CJ = ^g^dz1 Adz^

flows exactly as

^ M = Cl(M). (1.63)

If M is Calabi-Yau, the Kahler class is invariant under RG flow. In fact, it is believed

that a CY sigma model flows in the infra-red limit to a non-trivial superconformal field

theory which is determined uniquely by the complex structure, Kahler class and the class

of B-field.

The Landau-Ginzburg superpotential is invariant under renormalization group flow,

except for the overall scaling. This is the non-renormalization theorem of superpotentials,

which is one of the strongest properties of (2, 2) theories or any dimensional reduction

of 4d M — 1 theoories. This was first shown by Grisaru-Seigel-Rocek using superfield

perturbation theory and a simpler and sometimes stronger argument using holomorphy

was found by Seiberg.

1.2.6 Complexified Kahler Class and Complex Structure

Complex structure of M is parametrized by chiral parameters. This is obvious since the

complex coordinates themselves are represented by chiral superfields, and the information

of complex structure resides in the transition function at the overlap of patches. In the

LG model, the parameters of the superpotential are of course chiral.

To see what are the twisted chiral parameters of the system, let us look at the A-model

correlation functions which depend only on twisted chiral parameters, holomorphically.

They receive contributions of holomorphic maps <f> for which e~5 is given by

e x p f - [ (f)*u + i I (J)*

Thus, the correlators depend only on the complex combination

M - i[B] (1.64)
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of the cohomology classes, and the depencence is holomorphic. This shows that the

complexified Kahler class yields twisted chiral parameters.

Thus, complex structure and the parameters in the LG superpotential are chiral, while

the complexified Kahler class (1.64) is twisted chiral. We will see that the linear sigma

model makes this result more transparent for a certain class of target spaces.

Since Mirror Symmetry exchanges chiral and twisted chiral, the complexified Kahler

class of the one manifold is mapped to the complex structure of the mirror, and vice versa.

This is consistent with the relation hhl(M) = hn"^l{M).

1.3 D-Branes and Orientifolds

One can study D-branes and orientifolds from the worldsheet point of view. They

are respectively boundary conditions on the worldsheet boundary and quotient by parity

symmetries of the worldsheet. We will consider those preserving a half of the (2,2)

supercharges. The relevant halves are QA = Q+ + Q- and Q\ or QB = Q+ + Q_ and

Q#. A D-brane/orientifold preserving them will be called A-brane/A-orientifold or B-

brane/B-orientifold. In the case of Calabi-Yau sigma models, we are also interested in

D-branes/orientifolds that preserve some space-time supercharges.

1.3.1 A-branes and B-branes

Let us consider a D-brane wrapped on a submanifold 7 of M. The open string boundary

condition associated with this D-brane is

1 and (?/>_ + ifi+y are tangent to 7, ( .

d\(\)1 and (?/>_ — -0+)7 are normal to 7.

Here we are using the real coordinates of M. The condition on the fermions is required

from M = 1 supersymmetry. We examine the condition for extended supersymmetry.

QA and Q\ generate the variation 6 with e+ — e_, which does 8A<J>1 = e+^!_ — e+
/0!h =

€i(^L — ^+) + ^2(^L + ^+)j where e\ and 62 are the real and imaginary parts of e+. In

the real coordinates this reads as

SA(j)i = _ i € l jiK^_ _ ^+)K + it2^_ + ^ + ) / ? (L 6 6)

where J is the complex structure of the Kahler manifold. This should be tangent to 7.

Using the J\f = 1 condition (1.65), we find that J applied to normal vectors to 7 are
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tangent to 7. If we assume that 7 is middle dimensional, this also means that J maps

tangent vectors to normal vectors as well. Then, for two tangent vectors v\ and v2 to 7, we

find u(v\i v2) = g{Jvi,v2) = 0. Namely, 7 is a Lagrangian submanifold of the symplectic

manifold (M, u). A more careful analysis shows that the assumption was not necessary

as long as B is zero and the gauge field on the brane is flat, and QA is a symmetry if and

only if 7 is Lagrangian. If there is a superpotential W (the case of LG model) there is an

additional condition that Im(W) has to be locally constant.

QB and Q^B generate the variation 5 with e_ = — c+. The bosonic fields (j)1 transforms

as SB(/>1 = £+(i/j- + /0+)? o r in the real coordinates

<W J = -ieiJ1^- + ^ ) K + ie2{il>- + </>+)7. (1.67)

Combining with the condition from J\f = 1 supersymmetry we find that J applied to

tangent vectors to 7 are tangent to 7. Namely, 7 must be a complex submanifold of

(M,J). In fact this is sufficient for B-type sypersymmetry. One can also have gauge

field A on the brane: QB invariance requires the curvature FA to be a (1, l)-form. A

superpotential W has to be locally constant on B-branes.

If the model has space-time interpretation (e.g. Calabi-Yau sigma model), it is more

interesting to consider D-branes preserving a part of space-time supersymmetry. This

imposes an additional constraint. For A-branes, space-time supersymmetry requires the

Lagrangian submanifold 7 to be special Lagrangian, fl|7 = e2<9vol(7) for a constant phase

eld wher Q, is the top holomorphic form of M. (There is a further condition of criticality

of the space-time superpotential which is generated by dies instantons.) For B-branes,

it requires the gauge field to obey Hermitian-Yang-Mills equation, which depends on the

choice of Kahler structure.

1.3.2 A-orientifolds and B-orientifolds

Orientifolds are associed with parity symmetries of the worldsheet theory. As we have

seen there are two kinds of parity in (2,2) theories. A-parity exchanges Q+ and Q_

whereas B-parity exchanges Q+ and Q_. The supercurrent are given in (1.47) and the

supercharges takes the form

Q± = f drr1 [{do ± dx)H>± T i%W] ,
(d0 ±dl)<t>± iifaW']

We consider the parity symmetry of the form rQ where Q is the map x1 —> — x1, ^ + «-»• ^_,

and r is some isometry of M. Exchange of Q+ and Q_ requires that r maps holomorphic
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coordinates to anti-holomorphic coordinates. Since r is an isometry this is equivalent

to the condition that r flips the sign of the Kahler form, T*UJ = —u. If there is a

superpotential Wy r : W -» W is also required. Exchange of Q + and Q_ occurs if r pre-

serves the holomorphic structure of M. Also it should flip the sign of the superpotemtial,

r . w -> -W.

1.4 Summary

We have studied some aspects of (2, 2) supersymmetric field theories. One thing we

have noticed is that a (2,2) theory contains two sectors — let us call them A-sector and

B-sector — which are decoupled from each other in a certain sense. Each of them has its

own "holomorphy" and this enables us to controle many things. The two "holomorphies"

never mix. See the table below. Introduction of A-brane/A-orientifold or B-brane/B-

orientifold keeps one holomorphy and looses the other.

Mirror Symmetry is an equivalence of two theories under which the two sectors are

exchanged. It is usually the case that B-sector is easiler to handle compared to A-sector.

This is because the "size of a manifold" resides in the A-sector, and B-sector quantities

can be computed by going to the large size limit where the sigma model is weakly coupled.

Thus, if we know a mirror pair, by combining the knowledge on B-sector of the two we

can learn about both sectors of both theories.

This practical aspect is of vital importance in studying Calabi-Yau compactification

of superstring theories, with and without D-branes/orientifolds. Note that Type II string

theory on Calabi-Yau 3-folds yields M = 2 theories in 3 + 1 dimensions, while addition

of branes and taking orientifold projection break Af = 2 supersymmetry, in some cases

keeping N = 1 supersymmetry.

Note that A-sector is of interest from the point of view of symplectic geometry while

B-sector is of interest from complex analysis or algebraic geometry. Thus one may say that

Mirror Symmetry is a "symmetry" between symplectic geometry and algebraic geometry.

Regarding the long and different histories of these two fields in mathematics, this is quite

an interesting and fascinating suggestion. If we pick up one aspect which is well-known

in one side, it hits the other side with a complete surprise!
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A

QA = Q+ + Q-

twisted chiral

[QA,O] = 0

twisted superpotential term

Jd2ew
A-twist

ME -* ME + Fv

complexified Kahler class

M - i[B]
A-model:

GW-invariants

(counting holomorphic curves)

A-brane :

Lagrangian submanifold of (M, uo)

with flat connection

Im(VF) = const

A-orientifold:

involution u —> —u

W ->W

B

QB = Q+ + Q-

chiral

[QB,O} = 0

superpotential term

Jd29W
B-twist

ME -> ME + FA

complex structure

J

B-model:

Variations of Hodge Structure

(period integrals)

B-brane :

complex submanifold of (M, J)

with holomorphic connection

W = const

B-orientifold:

holomorphic involution

W-+-W

Exercise: Continue the table.
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