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2 Linear Sigma Models

2.1 Classical Theory

Let us consider the Lagrangian L = /d4#<&<3> for a chiral superfield <2>. For a chiral

superfield A, the transformation

$ -> e
iA$ (2.1)

sends a chiral superfield to a chiral superfield, but the Lagrangian is not invariant under

this. Now, we introduce a real superfield V that transforms as

V -4 V 4- i(~A — A) (9 9)

Then, the modified Lagrangian

T e y $ (2.3)
/

is invariant under the transformation (2.1) and (2.2). A real scalar superfield V that

transforms as (2.2) is called a vector superfield. Gauge transformations can eliminate the

low components of V and make it into the form

v = o-T(vo-vi) + (o i)

+i0-0+(0~A_ + 0+A+) + itT{0-\- + 0+A+) + 0-6+6+e~D. (2.4)

Vp is a one-form field, a is a complex scalar, A± and A± form a Dirac fermion, and D is

a real scalar. This fix the gauge symmetry (2.1)-(2.2) up to the ordinary one A = a{x^),

and is called the Wess-Zumino gauge. WZ gauge is not invariant under the variation

S = e+<2_ — e_Q+ — €+Q__ + €_Q+. but one can bring V + 8V back into the WZ gauge

by some gauge transformation. In this way we find the supersymmetry transformation of

the component fields in the WZ gauge:

Sv± = ie±X± + ie±A±,

Sa = — ie+A_ — ie_A+5

SD = — €+<9_A+ — €_<9+A_ + e+9_A+ + e_<9+A_,
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6tl>- = ~ie+(DQ -

8F = -i

where DM<̂  and DfJLip± are the covariant derivative DM := 3^ + iv^. The superfield

E : = D + I L V (2.5)

is invariant under the gauge transformation V —> V + i(A — A), and is twisted chiral

D+E = £LE = 0. It is expressed in WZW gauge as

E = a + i0+A+ - #"A_ + 0+T[D - ivQ1] + • • •. (2.6)

Here vOi := 90t;i — ^i^o is the fieldstrength or the curvature of v^. The superfield S is

called the super-field-strength of V.

We will consider supersymmetric gauge theories with Lagrangian of the following type;

L = Id49 f l e y $ - ?^SE) + R e ("* ftfOx} , (2.7)

where e is a real parameter of mass dimension 1, and t is a dimensionless complex param-

eter. This is manifestly gauge invariant and supersymmetric. In component fields, the

three terms can be written as

/ •

(2.8)

(2.9)

Re(-t fd26Z] = -rD + 6v01. (2.10)

In the last expression we have used

t = r-i9. (2.11)

The parameter r is called the Fayet-Illiopoulos parameter and 6 is the Theta angle in

1 + 1 dimensions. After elimination of the auxiliary fields D and F, we find the following

expreesion for the total Lagrangian
2

L = - ^ ^ ; 2 2

) ^ o i (2-12)
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There is a potential for the scalar fields U = |a|2 |^|2 + y

It is straightforward to generalize this to the case of many charged chiral multiplets

# i , . . . , $N with various charges Q i , . . . , QN. The Lagrangian

L f4 (

is manifestly supersymmetric and invariant under gauge transformations $^ —>

V —>• V — i(A — A). One can also add an F-term

= fd4e (X^lie^ y$^^EE] +Re(-t fd2ezY (2.13)

= /'d2eW($i) + c.c, (2.14)

provided there is a gauge invariant superpotential W(X(^i^i) = W($t-). The component

expression for the total Lagrangian L + Lw is similar to (2.12) where the scalar potential

is now
dW 2

(2.15)

One can also consider further generalization to many 17(1) gauge groups or non-abelian

gauge groups. We will not consider such cases in this lecture.

Note that the system has two kinds of parameters; One is t which is a twisted chiral

parameter, and the others are the parameters of the superpotential W that are chiral

parameters. As stressed before, t and the superpotential parameters do not mix.

The Lagrangian is invariant under axial R-rotations if we assign the axial R-charge 2

to E. It is also invariant under vector R-rotations as long as W(<&i) is quasi-homogeneous.

Thus, in such a case the classical system has both U(1)A and U{l)y R-symmetries.

2.2 Renormalization and Axial Anomaly

The system is super-renormalizable with respect to the gauge coupling that has mass

dimension 1. However, Fl-parameter will be renormalized in many cases as we will see.

A related phenomenon is the axial anomaly.

Let us first consider our basic model — [/(I) gauge theory with a single charge 1

chiral superfield $. We look at the effective Lagrangian at a high but finite energy scale

/x, which is obtained by integrating out the modes of the fields with the frequencies in the

range /x < |A;| < Auv where Auv is the ultraviolet cut-off. Let us look at the terms in the

Lagrangian involving the D field. At the cut-off scale it is

±;D2 + D(\<f>\2-r(Auv)). (2.16)
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Integrating out the modes of 0, the term D|< |̂2 is corrected by D(|<^|2) where

Thus, the D dependent terms in the effective action at the scale JJL is given by

^ + D (V|2 + log ( ^ ) - r(Atfv)) • (2.18)

We have seen that the FI parameter runs as

r{n) = r{kvv) - log ( ^ ) . (2.19)

In other words, FI parameter is a function of the scale of the form r(/x) = log (/i/A). The

dimensionless parameter r of the classical theory is replaced by the scale parameter A in

the quantum theory. Dimensional transmutation is at work.

A related quantum effect is the anomaly of the axial R-symmetry. Recall that the

classical Lagrangian is invariant under the axial R-rotation with the axial R-charge of E

being 2 (but the charge of # being arbitrary). This symmetry is broken by anomaly since

there is a charged fermion. Counting the number of fermionic zero modes, we find that

the axial R-rotation changes the measure as

V^Vrj) —> e~2kiaVi)V^, (2.20)

in the background with quantized curvature (—1/2TT) / v^da^cLr2 = k. Since the Theta

term in the Euclidean action is i(9/2TT) fvi2dx1dx2 = —ik6 (the path-integral weight is

ezM), the rotation (2.20) amounts to the shift in Theta angle

9—^0-2a. (2.21)

Thus, the U(1)A R-symmetry of the classical system is broken to Z2 in the quantum

theory. Physics does not depend on the Theta angle 0 since a shift of 9 can be absorbed

by the axial rotation, or a field redefinition.

Thus, the dimensionless parameters r and 0 of the classical theory are not any more

a parameter of the quantum theory. They are replaced by the single scale parameter A.

One can repeat this argument in the case where there are N chiral superfields $t- of

charge Q{ (i = 1 , . . . , N). The term D\(j>\2 in (2.16) is now replaced by D J2?=i QM2,

and thus the renormalization group flow of the FI parameter is given by

> log (£). (2.22)
2 = 1
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The axial rotaion shifts the Theta angle as

N

(2-23)

Thus, if 61 := YliLi Q% ^ 0? dimensional transmutation is at work and the U(1)A symmetry

is anomalously broken to Z2bx. The FI and Theta parameters are replaced by the single

scalar parameter A. If 61 = 0, the FI parameter does not run as a function of the scale

and the full U(1)A symmetry is unbroken. The FI and Theta parameters r and 0 remain

as the parameters of the quantum theory.

The above argument applies independently of whether or not the superpotential term

f d29 W($i) is present. The interaction induced from this does not yield divergences that

renormalize the FI parameters, which is the content of the decoupling theorem presented

before. Furthermore, the superpotential W($i) itself is not renormalized as long as we

keep all the fields.

2.3 Non-Linear Sigma Models from Gauge Theories

We show that the linear sigma models realize non-linear sigma models on a certain

class of target spaces. In the first part, we discuss the cases without superpotential for

the chiral fields, in which case the target space is a toric manifold. In the second part, we

turn on superpotentials. This will give us the sigma model on a submanifold of a toric

manifold.

2.3.1 CP^" 1

Let us consider the U(l) gauge theory with N chiral superfields $ ! , . . . , $ # of charge

1, with no superpotential. We first look at classical supersymmetric vacua given by

configurations where the potential energy

> ( i > ) (2.24)
i=l

vanishes. If r is positive U = 0 is attained by a configuration which obeys a = 0 and

N

1=1
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The set of all supersymmertric vacua modulo U(l) gauge group action makes the vacuum

manifold. It is nothing but the complex projective space of dimension N — 1;

1=1 -'}/ U(l) • (2-26)

The modes of fa's tangent to this vacuum manifold are massless. The field a and the mode

of fa's transverse to $DJLi l^l2 = r have mass ey/2r as can be seen from the potential

in (2.24). The gauge field v^ acquires mass ey/2r by eating the Goldstone mode (Higgs

mechanism). For fermions, the modes of /i/ji± and %j)i± obeying

N N

/^ fa'lPi± = 05 /^ i/)i±fa = 0, (2.27)
t=i *=i

are massless. Other modes including the fermions in the vector multiplet have mass ey/2r.

The equations (2.27) mean that the vectors (^j±^ipj±) are tangent to Xlj=i l^jl2 = r a n d

are orthogonal to the gauge orbit. Namely, they are tangent vectors of the vacuum

manifold CP^""1 at fa. These together with the tangent modes of fa's constitute massless

supermultiplets. The massive bosonic and fermionic modes constitute a supermultiplet of

mass ey/Zr- This is the supersymmetric version of the Higgs mechanism.

In the limit

e -> oc, (2.28)

the massive modes decouples and the classical theory reduces to that of the massless

modes only. In this limit, the gauge kinetic term vanish and the vector multiplet becomes

non-dynamical; the equations of motion simply yield algebraic constraints. The equations

of motion for D and A± yield the constraints (2.25) and (2.27). The equations for v^ and

a give constraints on themselves;

(2.29)

KN oh. oh.

(2.30)
. 2

The action on the massless modes is that of the supersymmetric non-linear sigma model

on CP^""1. The metric of CP^"1 is read from the scalar kinetic term and is given by

ds2 = YliLi I^^I25 where Dfa is the covariant derivative of fa. Eqn (2.29) means that

D^j is orthogonal to the gauge orbit. Thus, the metric YliLi \Dfa\2 measures the length
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of a tangent vector of CP^ * by lifting it to a tangent vector of {J2iLi l&l2 = r } orthogonal

to the gauge orbit. This is equal to r times the normalized Fubini-Study metric gFS

ds2 = rgFS. (2.31)

Using (2.29), one can also show that the Theta term (0/2TT) J dv yields the B-field

B = 9UJFS, (2.32)

where CJFS is the Kahler form for the Fubini-Study metric. Finally, the background value

(2.30) for a yields the four-fermi term of the non-linear sigma model. Thus, the classical

theory reduces in the limit e -> oo to the supersymmetric non-linear sigma model on

CP^" 1 with the metric (2.31) and the S-field (2.32).

Let us examine the story at the quantum level. The main quantum effect is the

one-loop renormalization of the Fl-parameter: (2.22) or

r(fi) = r(//) + JVlog (4) = Nlogin/A). (2.33)

First thing to notice is that r is positive and large at high eneough energies. By this, we

can consider the theory at high energy JJL ^> A as the CP^" 1 sigma model plus transverse

modes, and the effect of the latter is suppressed by /i/e^/log(/i/A). Let us check this

with the RG flow of the NLSM. Since the metric of CP^" 1 is given by (2.31), the flow

of FI parameter (2.33) is the flow of the metric ^(/x) = gtj(fjf) + Nlog(-^)gff. Since the

Fubini-Study metric obey the Einstein equation RQ = Ngf^s, the flow is written as

rr (2.34)

This is nothing but the flow of the metric in NLSM (1.62).

Finally, let us make an important observation. The Kahler form u for the metric

(2.31) is proportional to the Fubini-Study form; u = rujFS. Noting also (2.32), we find

that the complexified Kahler class is given by

[u>]-i[B] = t[uFS]. (2.35)

In other words, t is nothing but the complexified Kahler class parameter. Thus, it is now

manifest that the complexified Kahler class is parametrized by a twisted chiral parameter.

We do not have to compute the topological correlation function to see this. This is a great

advantage of the linear sigma model.
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2.3.2 0(-l) 0 0(- l ) over CP1 (Resolved Conifold)

We next consider the U(l) gauge theory with four chiral superfields $ i , $25 $3, $4 with

charge 1,1, — 1, — 1. Since the sum of charges vanish, 1 + 1 —1 — 1 = 0, r is not renormalized

and axial R-symmetry is anomaly free. Thus, t = r — id is a genuin twisted chiral

parameter of the system. The scalar potential of the model is

V = £ M2W2 + j (W2 + \h\2 - \h\2 - |04|
2 - r)2 (2.36)

i=l

The interpretation of the system is different depending on whether r > 0, r = 0 or r < 0.

r ^> 0 The D-term constraint with r > 0 requires fa or <^ to be non-zero. The gauge

symmetry is Higgsed and a = 0 is forced. The vacuum manifold is the total space of the

vector bundle O(—1) © O(—l) over CP1; (fa, (j)2) span the base while $3 and fa give the

fibre coordinates. The model is interpreted as the sigma model on this vacuum manifold.

This manifold is a non-compact CY? which is consistent with the fact that r does not run.

t is again interpreted as the complexified Kahler parameter.

r = 0 A configuration with fa = 0 is allowed. There the gauged symmetry is unbroken

and there is a new flat direction spanned by a, the "Coulomb branch". The standard

branch is the zero base size limit of (9(—1) ® O(—1) and has a singularity, the vanished

CP1. It is attatched to the "Coulomb brach'5 at that singularity.

r <C 0 The system is similar to the case r ^> 0 but the role of (^1,^2) and (^3,^4) is

switched.

In all these cases, x = ^1^3, y = <̂ 2̂ 45 z = < î̂ 45 w = ^2^3 &re gauge invariant variables

and they are related by

xy = zw.

This is the equation difiening the conifold singularity. In the cases r ^> 0 and r <C 0, the

singularity is actually resolved. The resolution at r > 0 is different from that at r C 0:

In the former, (0i, (j>2) becomes the base CP1 but in the latter, (< 3̂, <̂ 4) becomes the base

CP1. The two are related by "flop" — blown-down and blow-up.

We find that the parameter space is separated into two regions by the singularity at

r = 0. At this level of analysis, we find that the regions related by "flop" are separated.

We will see that a more careful analysis of gauge dynamic modifies this picture.
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2.3.3 O(-d) over CP^"1 or CN/Zd Orbifold

We next consider U(l) gauge theory with N + 1 fields $1, ..., <3>JV? P of charge 1,..., 1, — d,
without superpotential term. The scalar potential of the model is

f f
*=i

The structure of the vacuum manifold depends on whether r > 0 , r = 0 o r r < 0 :
r > 0 The D-term constaint requires some fc ^ 0, which breaks the U(l) gauge symmetry
and giving mass to the gauge multiplet. In particular a = 0. The vacuum manifold is the
total space of the line bundle O(—d) over CP^"1 where (0i,..., </>N) span the base CP^""1

and p is the fibre coordinate. The zise of CP^"1 is r.
r = 0 (f>i = p = 0 is alloed. If ^ = p = 05 the gauge symmetry is not broken and there
is a flat direction parameterized by a; let us call it a "Coulomb branch". There is also
the standard "Higgs branch" where the gauge symmetrty is broken by fc or p. It is the
zero base size limit of O(—d). The total vacuum manifold is a union of the two branches
attatched at one-point.
r < 0 The D-term constraint requires p ^ 0, breaking U(l) gauge symmetry into Zrf.
The gauge multiplet is again massive and a = 0 is enforced. The vacuum manifold has
the Zd orbifold singularity at <̂  = 0. The metric is exactly the flat orbifold CN/Zd in
the limit r —> — oo.

We recall that the FI parameter is renormalized as

r(/i) = r(//) + (JV - d) logOu/V). (2.38)

Thus, the quantum theory depends crucially on whether d < iV, d = N or d > N. We
discuss these cases separately.

• d<N.
r > 0 at high energies and thus we can interpret the model as the NLSM on the total space
of O(—d) over CP^"1. The FI-Theta parameter t is identified there as the complexfied
Kahler class.

• d = N.
In this case r does not run and the axial R-symmetry is anomaly free, t = r — i9 is thus
a genuin parameter of the theory. The theory is interpreted as the sigma model on the
vacuum manifold for the respective value of r. The theory is singular if r = 0 because
a new branch, the "Coulomb" branch, develops. We find that the parameter space is
separated into two regions by the singularity at r = 0. We will see that this will be
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modified when further quantum effect is taken into account.

• d> N.

r < 0 at high energies and the model is interpreted as the sigma model on a space with

Zrf orbifold singularity. In fact since r —> — oo in the continuum limit, the model is

understood as some relevant perturbation of the CN/Zd orbifold CFT.

In all these cases, a careful analysis is required to understand what happens in the

infra-red limit. This will be done shortly.

2.3.4 Hypersurfaces and Complete Intersections

So far, we have been considering gauge theories without F-terms. We can actually obtain

non-linear sigma models on a certain class of submanifolds of toric manifolds by turning

on a certain type of superpotential. We focus on the basic example of hypersurfaces of

C P ^ 1 , ^ j c k captures the essential point.

Hypersurfaces in CP^"1

Let us consider a degree d polynomial of 0 1 ? . . . , <f>jq\

ah-.-id(f)ii' -<l>id- (2.39)

We assume that G(<fo) is generic in the sense that

G=^r = '" = ^r = ° i m P l i e s & = --- = ^ r = 0. (2.40)
O(pi O(pN

Then, the complex hypersurface M of CP^""1 defined by

) = 0 (2.41)

is a smooth complex manifold of complex dimension N — 2. The Kahler form of

restricts to a Kahler form on M. It is known that the second cohomology group is one-

dimensional and is generated by the restriction of the class [H] := c\(O(l)) which is

represented by a positive-definite Kahler form (up to normalization). The first Chern

class of M is equal to

c1(M) = (N-d)[H]\M. (2.42)

So, M is Ricci positive for d < iV, Calabi-Yau for d = N, and Ricci negative for d > N.

The non-linear sigma model on M is asymptotically free, scale invariant, and infra-red

free, respectively.
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Linear Sigma Model for the Hypersurface
Now, let us again consider a 17(1) gauge theory with N+1 chiral multiplets <3>i, • •

of charge ! , • • • , ! , — d. This time, we include the gauge invariant superpotential

The scalar potential of the model is

, P

(2.43)

N N

U = Id2

2=1

N

(2.44)
*=i

Let us analyze the spectrum of the classical theory. The structure of the classical super-

symmetric vacuum manifold U = 0 is different for r > 0 and r < 0, and we will treat

these two cases (along with the case r = 0) separately.

r > 0 U = 0 requires some fa ^ 0 and therefore a = 0. If p 7̂  0, U = 0 further requires

G = d\G = • • • <9JVG = 0 which implies by the condition (2.40) that all fa = 0. However,

this contradicts with <j>i ^ 0 for some i. Thus p must be zero. We thus find that U = 0 is

attained by a = p = 0 and

E = r, . . . , 0 AT) = 0. (2.45)

The vacuum manifold is the set of (0$) obeying these equations, divided by the U(l)

gauge group action. This is nothing but the hypersurface M. The modes of fa tangent

to the manifold M are massless. Other modes are massive. Some have mass of order e^/r

as in the case without superpotential, but some others have mass determined by G or its

coefficients a^...^ in (2.39). If we send e and a^...^ to infinity by an overall scaling, all the

massive modes decouple and the classical theory reduces to the non-linear sigma model

on the hypersurface M3 with the complexified Kahler class given by [UJ] — i[B] = £[U;FS]|M-

r < 0 U = 0 requires p ^ 0 and thus a = 0. Under the condition (2.40), [7 = 0 then

requires all fa = 0. p is thus constrained in \p\2 = | r | /d Up to the gauge transformation

the vacuum manifold is a point. A choice of vacuum value of p, say (p) = \ / | r | /d ,

breaks the U(l) gauge symmetry into Z<j. The vector multiplet fields together with the

P-multiplet fields have a mass r\/d by the super-Higgs mechanism. The fields $^ are

all massless as long as the degree d of the polynomial G($») is larger than two, d > 2. If

we take the limit e -» 00, the classical theory reduces to the theory of $j5s only. It is the
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Landau-Ginzburg theory with the superpotential

...,QN), (2.46)

where (p) is the vacuum value of p (say (p) = y/\r\/d). We should keep in mind that there

is a residual Z^ gauge symmetry, and it acts non-trivially on $^ (as charge 1 fields). Thus,

the low energy theory is not the ordinary Landau-Ginzburg model but its Z^-orbifold, or

"Landau-Ginzburg orbifold".

r = 0 U = 0 requires Ylf=i \H2 = d\p\- If P ^ 0, some fa ^ 0. However, U = 0

with p / 0 requires G = d\G = • • • = d^G = 0 which means by the condition (2.40)

fa = • • • = (j)N = 0, a contradiction. Thus p must be zero and fa = 0. Then a is free.

The vacuum manifold is the complex a-plane. S multiplet fields are always massless. At

a ^z 0 other modes are massive, but they become massless at a = 0.

In the quantum theory, we must take into account the renormalization of the FI

parameter r. It depends on whether b\ = N — d is positive, zero, or negative. We separate

the discussion into these three cases.

• d<N.

In this case, the theory is parameterized by the dynamically generated scale A which

determines the RG flow of the FI parameter

r(/i) = (JV-d)log(/i/A). (2.47)

At the scale much larger than A, the FI parameter is positive and very large: r » l .

Thus, the first case of the above argument applies. In particular, by taking the limit

where e/A -» oo and a^.^/A —>• oo, the theory reduces to the non-linear sigma model

on the hypersurface M. Since

Cl(M) = (N - d)[H}\M (2.48)

is positive, the sigma model is asymptotically free. The logarithmic running of the Kahler

parameter of the non-linear sigma model is proportional to (2.48) and matches precisely

with the logarithmic running (2.47) of the FI parameter.

• d = N.

In this case, the FI parameter does not run and the theory is parametrized by t = r —19.

In particular, we can choose the value of r as we wish. We separate the discussion into

three cases.

For r > 0, the theory reduces in the limit e^Jr -» oo and a^...^ —> oo to the non-linear

sigma model on the hypersurface M. Since M is a Calabi-Yau manifold C\(M) = 0, the
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Kahler class of the sigma model does not run, which agrees with the fact that r does not

run, either. The complexified Kahler class is identified as t at large r.

For r < 0 , the theory reduces in the limit ey^\r\ -» oc to the LG orbifold.

For r = 0, the a branch develops. It is a non-compact flat direction and the theory must

exhibit some kind of singularity when approached from r > 0 or r <C 0. The behavior of

the theory near r = 0 is modified by several quantum effects and the Theta angle 9 plays

an important role. This will be discussed later in this section.

• d>N.

In this case, the FI parameter at the cut-off scale is large and negative. Thus, the theory

at high energies does not describe the non-linear sigma model on the hypersurface M but

looks closer to the LG orbifold. The LG orbifold itself is a superconformal field theory

and must preserve the axial R-symmetry. On the other hand, the gauge theory preserves

only the discrete subgroup Zi2(d-N) a nd contains a running coupling (the FI parameter).

Thus, it would be appropriate to identify the model as the LG orbifold perturbed by a

relevant operator that breaks the U(l) axial R-symmetry to Z2(d-iv)-

2.4 Low Energy Dynamics

In the previous discussion, we have identified the gauge theories as NLSMs (or orb-

ifold/LG models) by looking at energies which are smaller than the coupling e^Jr but

are considered as high energies from the point of view of the NLSMs. We now attempt

to describe the physics of the LSMs at much lower energies in order to learn about the

low energy dynamics of the NLSMs models. In the case where the theory undergoes the

dimensional transmutation we will look at energies \i smaller than the dynamical scale A.

2.4.1 The Behaviour at Large E

It turns out that it is useful in many ways to look at the behavior of the theory where the

lowest component a of the super-field-strength E is taken to be large and slowly varying.

The a dependent terms in the kinetic term of the charged matter field $ are

-\a\2\(j)\2 - ^ _ t x ^ + - ^+a^. (2.49)

We see that a plays the role of the mass for the field $. Taking a large means making $

heavy. We are thus considering gauge theory with heavy charged matter fields.
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1 + 1 Dimensional Gauge Thoery with Heavy Charged Particles

To be specific, let us consider a U(l) gauge theory with several charged chiral superfields

$i. At large a the charged matter fields are heavy and the massless degrees of freedom are

only the £ multiplet itself. The theory is that of a 17(1) gauge theory in 1 + 1 dimensions

with heavy charged fields.

Let us compute the vacuum energy of the system. Since $i5s are heavy, they are frozen

at the zero expectation value and one can set <3>i = 0 classically. Then, the potential energy

is given by

Ur = jr2. (2.50)

The contributions to the vacuum energy from a and X± cancell against each other because

of the supersymmetry. There is actually a contribution to the energy density from the

gauge field v^. The terms in the action that depend on the gauge field are

Let us quantize the system by compactifying the spacial direction on 5 1 so that xl is a

periodic coordinate of period 2TT, xl = xl + 2TT. By using gauge transformations v^ —>
vfi ~ d^j one can set

vo = O, vi = a(t), (2.52)

where a(t) depends only on t = x°. The gauge transformation 7 = mx1 preserves this

form. This is an allowed gauge transformation provided m is an integer since e n = etmx

is single valued if m G Z. Thus there is a gauge equivalence relation

a{t) = a(t) + m, m e Z. (2.53)

In terms of this variable, the action is given by

5= f dt(~a2 + 0a) . (2.54)

The transition amplitude from a state Ŵ  at time ti to a state \&/ at time tf is given by

the path-integral

= f dafdai*}(af) fvaeiS^i(ai)
a(tf)=af

= t dafdaCH){af) ei0af f Va e*# ̂ hHt e-*f l<^(aO
a(tf)=af
a(ti)=ai

(2.55)
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This shows that the Hamiltonian acts on the phase-rotated wavefunctions \£(a) = e~idai$(a)

as y (—i^) • Namely, it acts on the ordinary wavefunctions as

* (o ) . (2.56)

We recall that a is a periodic variable (2.53). Thus, single-valued wavefunctions \£(a) are

expressed as linear combinations of the Fourier modes e2irma with n € Z. Those Fourier

modes are actually the energy eigenfunctions. Thus, the spectrum is

e2

En = -(27rn~9)2. (2.57)

The ground state energy is therefore given by

e2 -
Ey&c = —9 (2.58)

where 92 is defined by

92 := minn€Z{(0 - 27rn)2}. (2.59)

This total energy Eya>c can be considered also as the vacuum energy density since ~ f dxl =

1 in the present set-up. What is the value of the field strength at the ground state? To

see this, we note that the conjugate momentum for a is given by pa = | | = -^ + 9. *

From this we see that

i/oi = ~e29 + e2pa. (2.60)

Namely, the field strength VQI = a is equal to —e29 up to integer multiples of 2?re2. In

particular, the magnitude of the vacuum value of vOi is

NiLc = e2\9\. (2.61)

The vacuum value of voi is thus discontinuous as a function of 9. There is an intuitive

understanding of this discontinuity, due to Coleman, which applies when the theory is

formulated on R2. We assume that the mass M of the charged particle is much larger

than the gauge coupling, M ^> e, so that the charged particles can be treated semi-

classically. If we put a charged particle of charge Q at xl = 0, it generates a field strength

voi which obeys

d1vQl =27rQe28(x1). (2.62)

Namely, it generates a gap of vOi by 2nQe2. Now suppose 9 is positive but smaller than

7T. Then there is a unique ground state with the field strength VQI = — e29 and the energy
1In fact a naive canonical quantization also leads to the result (2.56); H = paa — L = \{pa — #)2-
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density U = \92. One cannot have a single charged particle since that would make
vOi (+oc) to be different from t>oi(—oo) but v$\ is required to take the (unique) vacuum
value at both spacial infinity. However, one can have particles of total charge zero. For
instance, let us consider the situation where we have one with charge 1 at xl = —L/2
and one with charge ~1 at a;1 = L/2. Outside the interval —L/2 < xl < L/2 the field
strength takes the vacuum value — e29 while it takes the value — e29 + 2?re2 inside that
interval. The energy of that configuration compared to the one for the vacuum state with
vOi = — e20 is

( 2 p ^ . (2.63)

As long as 9 < TT, this is positive and is proportional to the separation L. To descrese
the energy, the separation L is reduced to zero. Namely, there is an attractive force
between the particles of opposite charge. Charged particles cannot exist in isolation; they
are confined. Now let us increase 9 so that 9 > TT. Then AE is negative. It is now
energetically favorable for the separation L to be larger. There is a replusive force now.
Eventually, the two particles are infinitely separated and disappear to the negative and
positive infinities in xl. What is left is the field strength with the value v$\ = — e2# + 27re2.
The absolute value is nothing but e2\9\ for 9 in the range TT < 9 < 3TT. Even if we started
without the particles of opposite charges, they can be created and go away to infinity.
Creating a pair costs an energy 2M, but the negative enregy AE for large L is enough
to cancel it. Effectively, the field strength is reduced by 27re2. This is the intuitive
explanation of the discontinuity. A similar thing happens when 9 goes beyond 3?r, 5TT, . . .
or when 9 decreases in the negative direction and goes below —TT, — 3TT, 2

The total energy density is thus the sum of (2.50) and (2.58)

( 2 - 6 4 )

We notice that this expression is almost the same as the potential energy of the Landau-
Ginzburg model obtained by setting <f>i to zero and considering E as the ordinary twisted
chiral superfield having the twisted superpotential

= - i £ . (2.65)
2 Here we are assuming that there is a matter field of charge 1, or the greatest common divisor of the

charges Qi is 1. If the g.c.d. of Q^s is q > 1, the critical value of 9 is qir (times an odd integer) and the
definition of §2 is replaced by

§2 := minn€Z{(0 + 2?rgn)2}.

Thus, in such a case the physics is periodic in 9 with period 2?rg.
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That E is not really an ordinary twisted chiral superfield but the super-field-strength (the

imaginary part of the auxiliary field is the curvature t;oi) h a s o n ly a minor effect; the shift

in 6 by 2?r times an integer.

This story, however, can be further modified by quantum effects. In the above discus-

sion we have considered $j to be totally frozen. But of course we must take into account

the quantum fluctuation of $i's. What it does is to modify the FI-Theta parameter as a

function of a. Let us now analyze this.

Effective Action for E

Let us first consider the basic example of the U(l) gauge theory with a single chiral

superfield $ of charge 1, without F-term (which is not allowed in this case). Let us take

a to be slowly varying and large compared to the energy scale /i where we look at the

effective theory. The $ multiplet has a mass of order a » \i and therefore it is appropriate

to describe the effective theory in terms of the low frequency modes of E only. Thus, the

effective action at energy /i is obtained by integrating out the entire modes of # and the

modes of E with the frequencies in the range \x < \k\ < Auv- By supersymmetry, the

terms with at most two derivatives and not more than four fermions are constrained to

be of the form

I i ^J ^ (2.66)

We try to compute these terms in two steps: integrate out $ first, then the high

frequency modes of E. Since the action 5(E, $) is quadratic in $, the first step can be

carried out exactly by the one-loop computation

= [<Dq>eis&,*)m (2.67)

As we will see, the effective superpotential W^i?(E) will not be further corrected by the

second step (a non-renormalization theorem). Thus, the focus will be on obtaining Weff

by the first step.

Since E = a + 6+6 (D — ivoi) + • • *, the dependence of the effective action on D and

t;oi is as follows. From the D-term we obtain

/ •

d4e(-Keff(Z,£)) = d&KtffiarflD - ivQl\
2 + • • •. (2.68)

From the twisted F-terms we have
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= DRe [ ^ ^ ( a ) ] + v01 Im [^W^(a)] + • • •. (2.69)

Thus, in order to determine Weg it is enough to look at the D and t>oi linear terms in the
effective action. The Kahler potential can be determined by the D quadratic term. To
simplify the computation one can set X± = X± = 0 without losing any information. In
this case the ^-dependent part of the (Euclidean) classical action is

Dzip+ + ^_cnp+ + ^ + a ^ _ . (2.70)

We are going to evaluate

The dependence of AL^ on the phase of a = | a | e n is easy to obtain. At the classical
level, this phase can be absorbed by the phase rotation of the fermions

%l)± -> e^ / fy i , ? ± -> e±il/2^±. (2.72)

However, this is the axial rotation which is anomalous. The effect is thus the shift in the
Theta angle noted before. In other words the effective action for a is related to that for

kl by
A41J((T) = ALg^M) - i1vl2 = ALg^M) - i*ig{a)vl2. (2.73)

Now, ALE (\(T\) is given by

det
\ 2iD, -\o\ /

(2.74)detf-D.LL + M2- /})

The square of the Dirac operator is

9, +lal2 0
2iDz -\a\ I \ 0

- D ^ + \o?-Vn _ - _ h ( 2 7 5 )

where we have used the relation DjDz = ^(DjDz + DzDj) + \\DZ, Dz) = ^D^D^ + \ivzz.
Thus, we obtain

j ^ J AL%\\a\)d2x = logdeti-D^

2 - v12) - - \ogdet{-D^D^ + \a\2 + vl2).

(2.76)
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There is no vu linear term in this but there is a D-linear term. It is given by

1 f ( —D \

^Tr J D-linear \ ~ " ^ / i ^ + W\ )

Namely, we have

D—linear
N<Auv

Similarly we can read the D quadratic term from (2.76) as

d2k 2TT

tic l JP-quadratic l „, / W K** + W)* W 1 + ^

To summarize, we have

A L g } ( a ) = - l o g ( * ? l ) D - i a i g ( a ) v 1 3 - -J—AD2 - vf2) + ••-, (2.80)

where + • • • are the terms which are not linear nor quadratic in (D, v12), and we have

neglected the powers of |CJ|/AUV which vanish in the continuum limit. Noting the relation

of the Euclidean and Minkowski Lagrangians LE = —L\xo=_ix2 we see that

= log (*pf) - iarg(a) = log ( ^ ) , (2.81)

= ^ l j . (2.82)

Thus we find

= log ( ^ ) - *„ = log (^) - «(/,), (2.83)

In (2.83), the dependence on the ultra-violet cut-off Auv has cancelled against the one

from the bare coupling to- Similarly, it is independent of the choice of the scale /i; the

log(/i) dependence is cancelled by the log(/i) dependence of t(fj,) induced by the RG flow.

In terms of A := / i e "*^ = Ael°, the complexified RG invariant scale parameter, (2.83)

can be written as

daW$(a) = log(A/a). (2.85)

This effective superpotential captures the axial anomaly of the system; The axial rotation

E -> e2i/3E shifts the Theta angle as 6 ->• 6 - 2/3 (or W^(Y,) has the correct axial charge

2 if we let the axial R-rotation shift the Theta angle as 9 —> 9 + 2/5).
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We have yet to integrate out the high frequency modes of the £ multiplet fields.

This will definitely affect the Kahler potential. However, it cannot affect the twisted

superpotential. The correction should involve the gauge coupling constant e but that

parameter cannot enter into Weg. To elaborate this point, we first note that the standard

requirements (symmetry, holomorphy, asymptotic condition) constrain the form of the

superpotential. Here we use the axial R-symmetry with a —>• e2t/3a, A -> e2l/3A and the

condition that Wejj(T) approaches (2.85) at a/A —> oo. The constrained form is such

that
oo

d«Weff(a) = \og(A/a) + £ an(A/a)n. (2.86)
n=l

The correction terms take the form of non-perturbative corrections. However, in the

present computation, we are simply integrating out the high frequency modes of £ in a

theory without a charged field, and there is no room for non-perturbative effects. Thus,

we conclude that all an = 0. This establishes that (2.85) remains the same at lower

energies.

We thus see that the effective superpotential is given by

Weff(X) = -E (log 0 ) - l ) . (2.87)

We consider its first derivative as the effective FI-Theta parameter that varies as a function

of a;

teff(a) := -dJWeff{a) = log(o/A). (2.88)

Using (2.64) we find that the energy density is given by

e \ (2.89)

where ( l / 2e^ ) = d^d^K^^ and the hat in ieg stands for the shift by 2nn that is explained

above. This shift resolves the apparent problem of the superpotential (2.87) not being

single valued.

It is straightforward to generalize the above result to more general cases. If there are

N chiral superfields of charge 1, the effective action is simply obtained by multiplying

AL(a) by N. Thus, the effective superpotential is

(log ( ^ ) - l ) + tOz)] = -NX (= - E [iV (log ( ^ ) - l ) + tOz)] = -NX (log ( ^ ) - l ) , (2.90)

where A := / x e " * ^ ^ is the complexified RG invariant dynamical scale. For the most

general case where the gauge group is U(l)k = ]j[a=i ^"(l)a w ^ ^ e chiral matter fields
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of charge Qia. The effective superpotential is

N

a = l

(2.91)

This is derived exactly using one-loop computation in the case where there is no superpo-

tential term for $i's. However, even if there is such an F-term, by the decoupling theorem

of F-terms and twisted F-terms, the result (2.91) will not be affected.

2.4.2 The C P ^ 1 Model

Now let us study the low energy behavior of the CP^™1 model. As we have seen, this

is realized by the U(l) gauge theory with N chiral superfields of charge 1. The axial

R-symmetry U(1)A is anomalously broken to Z2N and the theory dynamically generates

the scale parameter A. We look at the effective theory at energy /i <C A. The region

in the field space where a is slowly varying compared to l//i and much larger than /i

is described by the theory of the £ multiplet determined above. Namely, the effective

twisted superpotential is given by (2.90) with the effective FI-Theta parameter

teff(a) := -daWeff(c) = Nlog(a/A). (2.92)

The supersymmetric ground states are found by looking for the value of a which satisfy

If = {e2
efc/2)\ieff{a)\2 = 0. Namely, we look for solutions to teff(a) € 2?riZ or equivalently

e ^ ( a ) = 1. (2.93)

This is solved by
a = A - e

2mn/N, n = 0 , . . . , N - 1. (2.94)

Since the scale JJL is taken to be much smaller than A, these vacua are in the region where

the analysis is valid. Thus, we find N supersymmetric vacua in this region. The Z2JV

axial R-symmetry cyclically permutes these N vacua. Namely, a choice of a vacuum

spontaneously breaks the axial R-symmetry to Z2;

Z2iV ~> Z2. (2.95)

From this analysis alone, however, we cannot exclude the possibility of other vacua

in the region with small a. To describe the physics in such a region, we need to use a

completely different set of variables. If we use the full variables <3>j?s &nd E, we need to

find a minimum where the potential U in (2.24) vanishes. However, if \i <C A, r(n) is large
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and negative and U = 0 can not be attained by any configuration. This is one indication
that there is other vacuum state. Also, the above number, JV, saturates the number of
supersymmetric vacua

dimiJ*(CPiV~1) = iV (2.96)

found from the direct analysis of non-linear sigma model. This also indicates that there
is no other vacuum. However, to find out the decisive answer we need more information.
That will be provided when we will prove the mirror symmetry of the CP^"1 model and
the LG model of affine Toda superpotential. The determination of the supersymmetric
vacua of the latter model is straightforward and it tells us that the above N vacua are
indeed the whole set.

The Dynamics at Large N

We have seen that a has a non-zero expectation values at these N vacua. This shows that
the matter fields $^, which include massless modes (the Goldstone modes for SU(N)/ZN ^
U(N — 1)/ZJV) classically, acquire a mass

m* ~ A, (2.97)

at the quantum level. Since there are no Goldstone bosons, the Global symmetry SU(N)/7iN

cannot be broken.

Let us try to analyze the gauge dynamics of these massive charged fields. For this
we need to know also the gauge kinetic terms, not only the superpotential terms. From
(2.84) we see that the effective gauge coupling constant at the one-loop level is given by

1 =i + A- (2-98)

As we noted above, this is further corrected by E-integrals and we do not know the actual
form of the effective gauge coupling constant. However, there is a limit in which one can
actually use (2.98) to analyze the dynamics. It is the large N limit. Since there are N
matter fields of the same charge, the matter integral simply yields N times AL^(E).
Thus, any correction to (2.98) is suppressed by powers of 1/JV. Also, the gauge coupling
near the vacua is of order A/y/N and can be made as small as one wishes, no matter
how large is the bare gauge coupling e (this is particularly useful for our purpose; the
e —» oo limit). In particular, in this limit, the mass of the charged matter fields is very
large compared to the gauge coupling constant,

m # / e e # ~ \ / i V > 1. (2.99)
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Thus, we can treat the charged matter fields semi-classically.

Suppose the $ t or $$ particles are located at x1 = x 1 , . . . ,x£. Then, the equation of

motion for the gauge field is given by

el5(xl-xl), (2100)

where 6eff is the effective Theta angle

6eff = lm(teff(a)) = Naig(a/A), (2.101)

and Cj = ±1 is the charge of the particle at xl = x\. Thus, Voi/e2
eff + 9eff has a gap of ±2TT

at the location of the particles. At any of the N vacua we have VQI = e2
eg\9eg\2 = 0, which

means 9eg = 2ixn for some n G Z. Thus, in order to have a finite energy configuration,

we need

) atz^ioo, (2.102)
9eff > 27rn J ^ ;

where n± are some integers. For an arbitrary distribution of particles, we can find a

solution to (2.100) obeying this condition. In particluar, a $i particle (or a <3>̂  particle)

can exist by itself. In the presence of a $f particle, the vacuum at left infinity a;1 —> — oc

is not the same as the vacuum at the right infinity xl —> +oo. This is because

eeff -0 eff (2.103)

where we have used vQi —> 0 at xl —> ±00. If the left infinity is at a = A, then the right

infinity is at a = Ae27r%/N. A configuration connecting different vacua is called a soliton.

We have shown that $^ is a soliton. We will see later that this soliton preserves a part of

the supersymmetry and its mass can be computed exactly.

If one $i particle and one $j particle are located at xl = —L/2 and x1 = L/2 respec-

tively, eqn.(2.100) can be solved by a configuration as shown in Fig.2. The configuration

is at the vacuum in the region —L/2 < x1 < L/2 and the total energy does not grow

linearly as a function of the separation L. Thus, there is no long range force between

them. Namely, charged particles are not confined in this theory. This is essentially the

effect of the coupling

Naxg(a/A)vOi. (2.104)

This coupling screens the long range interaction between the charged particles.

Thus, the $^ particle exists as a particle state in the quantum Hilbert space. From the

classical story, we expect that these states consitute the fundamental representaion of the
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2n(n+l)

2%n '
: -j, -y

L/l

Figure 2: The configuration of 9eg = N axg(a/A) for a pair of particles, charge 1 at

x1 = —L/2 and charge — 1 at xl = L/2.

group SU(N). Note that SU(N) is not quite the same as the classical global symmetry

group SU(N)/ZN. The symmetry group of the quantum theory is not SU{N)/Z^ but its

universal covering group. Such a phenomenon is common in quantum field theories (known

as charge fractionalization). In the present case this happens because there appeared a

state transforming nontrivially under the "overlap" ZN of SU(N) and the gauge group,

[/(I). Whether such a thing happens or not depends on the gauge dynamics. If the $i

particles were confined (as in the case without arg(a)-v/x coupling), there would not be

a state charged under U(l) gauge group, and therefore all the states would be neutral

under ZN = SU(N) D U(l). In that case, the global symmetry group would remain as

SU(N)/ZN.

2.5 The "Phases95

Let us consider a U(l) gauge theory with several chiral superfields

charges Q i , . . . , QM that sum to zero:

M

, $ M with

(2.105)
t = i

In this case, the axial R-symmetry U(1)A is an exact symmetry of the quantum theory,

and the FI parameter does not run along the RG flow. We have in mind two classes of

theories: one is the linear sigma model for compact Calabi-Yau hypersurfaces in CP^" 1

or weighted projective spaces; the other is the theory without F-terms, which yields the

non-linear sigma model on non-compact Calabi-Yau manifolds.

Since the FI parameter does not run, one can choose r to be whatever value one wants.

As we have seen in the previous discussion, the theory at r 3> 0 and the theory at r <C 0
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have completely different interpretations, and also at r = 0 the theory becomes singular

due to a development of a new branch of vacuum manifold where a is unconstrained.

Thus, it appears that the parameter space is completely separated by a singular point

r = 0 into two regions with different physics.

This picture is considerably modified when the Theta angle 6 is taken into account.

The actual parameter of the theory (in addition to the real and chiral parameterts that

enter into D-terms and F-terms) is t = r — iO and the parameter space is a complex torus

or a cylinder. It may appear that the parameter space is still separated into two regions

by the circle at r = 0. However, it turns out not to be the case when we think about the

origin of the singularity at r = 0. The singularity is expected when there is a new branch

of vacua where new massless degrees of freedom appears. In the classical analysis at r = 0,

that is identified as the £ multiplet since there is a non-compact flat direction where a is

free. However, at large a, as we have analysed the actual energy density receives also a

contribution from the electric field or Theta angle as in (2.64). Taking into account the

more refined quantum correction, the energy density at large a is

«2 , ^2 2

(2.106)

where
~ M

teff = -daWeff(a) = t + J2QilogQi. (2.107)
i=l

Here we have used the formula (2.91) for Weff, where the £//z dependence disappears

because of (2.105). Thus, the energy at large a vanishes at r = — YliLi Qi^°sQi a n d °>t

a single value of 9 which is 0 or n (mod 2?r) depending on QiS. Thus, except at a single

point in the cylinder, there is no flat direction of a. This means that the singularity is

expected only at the single point. This yields a significant change to our picture; The two

regions, r ^> 0 and r <C 0, are not any more separated by a singularity, but are smoothly

connected along a path avoiding the singular point. These two regions can be considered

as a sort of analytic continuation of each other.

This change of picture has several applications, including correspondence between

Calabi-Yau sigma models and Landau-Ginzburg orbifolds as well as analytic continuation

to different topology. We now describe them here.

Topology Change

Let us revisit the (7(1) gauge theory with chiral superfields $ i , . . . , <3>4 of charge 1 , 1 , - 1 , - 1

without superpotential. We recall that the theory at r ^> 0 and theory at r <C 0 both
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yields sigma model on resolved conifold but the two are related by "Flop". In the semi-

classical analysis, we found that the two regions are separated by a singularity at r = 0.

Now we know that the genuin singularity is at t = 0 of complex codimension 1, and the

two regions r ^> 0 and r <C 0 are no longer separated. The present case is a special case

where the two resolutions are isomorphic. However, if this is embedded as a part of some

larger geometry, "flop" usualy changes the global topology. In such a case, what we have

seen shows that the sigma model on topologically distinct manifolds can be smoothly

connected.

Calabi- Yau/Orbifold Correspondence

Let us reconsider the U(l) gauge theory with chiral superfields $ l 3 . . . , $N, P of charge

1 , . . . , 1, -JV, without superpotential. We have learned that the theory at r » 0 describes

the sigma model on the total space of O(—N) over CP^""1, which is a non-compact Calabi-

Yau manifold. On the other hand, the theory at r —> —oo is the free C^/Zjv orbifold

theory. Thus, the sigma-model on the total space of O(—N) over CP^""1 and the one on

the orbifold CN/Zj^ are in the same moduli space of theories.

Calabi- Yau/Landau-Ginzburg Correspondence

Let us turn on the superpotential W = PG($i) to the model considered right above. As

we have seen, the theory at r >> 0 is identified as the non-linear sigma model on the

Calabi-Yau hypersurface G = 0 of CP^"1 , whereas the theory at r —» — oo is identified

as the LG orbifold with group ZN and the superpotential W = (p)G($i , . . . , $N)> Thus,

the Calabi-Yau sigma model and the LG orbifold are smoothly connected to each other.

In other words, the LG orbifold and the Calabi-Yau sigma model are in the same moduli

space of theories. The two are interpretations of different regions of the moduli space.

2.5.1 Landau-Ginzburg Orbifold as an IR fixed Point

As another example, let us consider a hypersurface of CP^"1 of degree d less than JV, so

that the sigma model is asymptotically free. As we have seen, the linear sigma model for

this is the U(l) gauge theory with chiral superfields $ i , . . . , $JV, P of charge 1 , . . . , 1, — d

and the superpotential W = PG($i) where G($i) is the degree d polynomial defining the

hypersurface. The axial R-symmetry U(1)A is anomalously broken to Z2(jv-d) and the

theory dynamically generates the scale parameter A.
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The effective theory for large and slowly varying E is the theory of a U(l) gauge

multiplet with the effective FI-Theta parameter given by

teff(a) = (N~d) log(a/A) - dlog(-d). (2.108)

The supersymmetric vacua are found by solving elte:ff^ — 1 or

aN~d = (-d)dAN~d, (2.109)

and we find (N — d) of them in the admissible region. These are massive, and a choice of

vacuum spontaneously breaks the axial R-symmetry as Z2(jv-d) ^ Z2.

Now let us ask whether these (N — d) are the whole set of vacua. There is an obvious

reason to doubt it; the direct analysis of non-linear sigma model shows that the number

of vacua is equal to the dimension of the cohomology group H*(M), which is larger than

(N — d). How can we find the rest? They must be in the region where the large a analysis

does not apply. Let us examine the potential (2.44) in terms of the full set of variables once

again, now at low energies. At /x <C A the FI parameter is negative, and the analysis of

supersymmetric vacua U = 0 is completely different from that at high energies. It is more

like in the d = N case with r < 0 and we find a single supersymmetric vacuum at a = 0,

(j>i = 0 and \p\ = \/\r\/d where the axial R-symmetry group Z2(jv-d) is not spontaneously

broken. Thus, we find at least one extra supersymmetric vacuum besides those found

at a rsj A. The theory around this vacuum is described by the LG orbifold of the fields

$ ! , . . . , $iv with the group Zd and the superpotential W ~ G ( $ i , . . . , $#) . For d > 2 this

LG orbifold is expected to flow to a non-trivial superconformal field theory where the axial

Z2(jv-d) discrete R-symmetry enhances to the full U(l) symmetry (or actually further to

affine symmetry). One can actually analyze the spectrum of the supersymmetric vacua of

this LG orbifold, and that in fact shows that the number of vacua is dim H*(M) ~(N — d),

and the total number saturates the one derived from the direct analysis. Thus, we expect

that this extra (degenerate) vacuum really exists in the quantum theory and is the only

one that was missed by the large a analysis. Of course, to be decisive we need more

information. Again, we will see that mirror symmetry (which we will give an argument

for) shows that this is in fact correct.

2.5.2 A Flow from Landau-Ginzburg Orbifold

As a final example, let us consider the case d > N of the U(l) gauge theory considered

right above. As we have seen, the FI parameter at the cut-off scale is negative and the

theory at high energy describes the LG orbifold perturbed by an operator that breaks the

U(l) axial R-symmetry to Z2(d-N)-
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The large a analysis shows that there are (d — N) vacua determined by (2.109), each of

which breaks 7i2{d-N) to Z2. We may also find supersymmetric vacua near a = 0. In fact,

the FI parameter becomes positive at low energies and we find the degree d hypersurface

M in CP^" 1 as the vacuum manifold at a = 0. The non-linear sigma model on M is IR

free and we expect this to be one of the IR fixed point of the theory.
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