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ABSTRACT

M theory on a manifold of G^-holonomy is a natural framework for obtain-
ing vacua with four large spacetime dimensions and N = 1 supersymmetry.
In order to obtain, within this framework, the standard features of particle
physics, namely non-Abelian gauge groups and chiral fermions, we consider
G2-manifolds with certain kinds of singularities at which these features re-
side. The aim of these lectures is to describe in detail how the above picture
emerges. Along the way we will see how interesting aspects of strongly cou-
pled gauge theories, such as confinement, receive relatively simple explana-
tions within the context of M theory.

1 bacharya@physics.rutgers.edu

1. Introduction.

Supersymmetry is one of our best candidates for physics beyond the Stan-
dard Model. M theory goes further in the sense that it is supersymmetric,
contains gravity and is quantum mechanically consistent. Since the theory is
formulated on spacetimes with eleven dimensions, a natural question to ask
is are there vacua of M theory with four macroscopic spacetime dimensions
and a realistic particle physics spectrum? Since supersymmetry is intrinsic
to M theory, it is perhaps more natural to look for vacua with supersym-
metric particle physics in four dimensions. Since non-minimal or extended
supersymmetry in four dimensions cannot accommodate chiral fermions, to
answer this question we should really be studying M theory vacua with
N — 1 supersymmetry.

There are two (to date) natural looking ways to obtain four large space-
time dimensions with M = 1 supersymmetry from M theory. Both of these
require the seven extra dimensions to form a manifold X whose metric obeys
certain properties. The first consists of taking X to be a manifold whose
boundary dX is a Calabi-Yau threefold [1], The second possibility, which
will be the subject of these lectures is to take AT to be a manifold of G2-
holonomy2. We will explain what this means in section two.

If X is large compared to the Planck scale (the only scale in M theory)
and smooth, then at low energies a good approximation is provided by eleven
dimensional supergravity. Compactifkations of the latter have been studied
for several decades. See [2] for a review. Unfortunately, Witten proved that
none of these could give rise to chiral fermions [3]. However, this docs not
mean that G^-manifolds are useless for obtaining models of particle physics
from a fundamental theory. This is because we have learned in recent years
that additional light degrees of freedom can be "hidden" at singularities of
X. These are typically branes wrapped on submanifolds of X which have
shrunk at the singularity3. In M theory these are either the M2-branc or
the M5-brane. This can provide a novel picture of conventional field theory
dynamics and can even lead to new theories. The supergravity approximation
breaks down at such singularities and the analysis of [3] no longer applies.

Within the past couple of years there has been a tremendous amount of
progress in understanding M theory physics near singularities in manifolds
of G2-holonomy [4 — 10]. In particular we now understand at which kinds
of singularities in G2-manifolds the basic requisites of the standard model -

2We will often refer to X as a C?2-manifold.
3A more conventional example of light states at a singularity is provided by string

theory on an orbifold. Typically one finds extra light states confined to the singularity.
These arise in the so-called twisted sectors.



non-Abelian gauge groups and chiral ferrnions - are to be found. The purpose
of these lectures will be to explain how this picture was developed in detail.
Along the way we will how important properties of strongly coupled gauge
theories such as confinement can receive a semi-classical description in M
theory on <32-nianifoids.

At the beginning of each main section we will offer a section summary. In
section two we derive the basic properties of M theory when X is large and
smooth. We also derive some basic properties of G2-manifolds. Section three
explains how classical supersymmetric Yang-Mills theory can be obtained
from M theory on a singular <72-mamfold X. We describe these singularities
in detail. Section four describes how quantum properties of the Yang-Mills
theory, confinement and a mass gap, can be understood from M theory. The
reason that this can be done successfully is that M theory contains semi-
classical limits which are not present in the quantum gauge theory. Having
understood how non-Abelian gauge groups emerge, section five goes on to
describe how additional singularities of X give rise to chiral fermions.

2. Supersymmetry, (j?2-holonomy and Kaluza Klein spec-
trum.

In this section we will describe in detail why G2~holonomy manifolds nat-
urally emerge in the context of supersymmetric M theory compactification.
We will describe some of the basic properties of Cr3-mamfolds. We will then
discuss the Kaluza-Klein spectrum of M theory on a large and smooth G>r
manifold.

2.1 Supersymmetry and G2-holonomy.

At low energies M theory admits a description in terms of eleven dimen-
sional supergravity. This description is valid on smooth spacetimes whose
smallest length scale is much larger than the eleven dimensional Planck
length. The supergravity contains three fields, a metric #, a three-form po-
tential C and a gravitino \&. In addition to being generally covariant and
supersymmetric, theory has a gauge invariance under which

0\J = UA \i)

with A a 2-form, so the gauge invariant field is the derivative of C, G. The
action for the bosonic fields is of the form

(2)

(3)

The equations of motion for G and g are of the form,

d*G = GAG

and
RMN = ^Miv(C) (4)

where T is the energy-momentum tensor for the C field.
Since the theory is supersymmetric, it is natural to look for supersym-

metric vacua. In the classical theory these are just the conditions that the
supersymmetry variations of the three fields vanish. In a Lorentz invariant
background the expectation value of $ is zero, in which case the variations
of g and C vanish automatically. In order to find classically supersymmetric
field configurations we must find values of G and g for which the variation
of \& is zero:

1
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= 0 (5)



The simplest way to solve these equations is to take G — 0 in which
case we are looking for 11-manifolds with metric g which admit a covariantly
constant or parallel spinor:

VM7? = 0 (6)

We will re-write this equation in the more symbolic form,

V9r/ = 0 (7)

where by Va we mean the Levi-Cevita connection constructed from g. So-
lutions to these conditions can be classified via the hoionomy group of the
connection V^.

The hoionomy group of a connection acting on a field like t) or a vector
field can be understood in terms of parallel transport. One takes a closed
loop on the manifold and literally transports the field around it. In the case
of the Levi-Cevita connection, the field comes back to itself up to a rotation
in SO(n) in the case of Riemannian n-manifolds or 50(10,1) in the case of
M theory. The set of all such rotations based at some point on the manifold
generates a group, the hoionomy group of V9, Hol(g). If g is sufficiently
generic then Hol(g) = 50(10,1). However, if we take special choices of #,
then Hol(g) can be a proper subgroup of 50(10,1). For instance, if g is
such that parallel spinors (supersymmetries) can be found, then r\ is a field
which undergoes no parallel transport atall and therefore Hol(g) must be a
subgroup 50(10,1) for which there are spinors in the trivial representation.

We will concern ourselves with compactifications of M theory to four di-
mensions on a 7-manifold X. More precisely we will take the eleven manifold
to be a product XxlR3>1 with g a product metric of a metric g(X) and the
Minkowski metric on K3>1. With this'choice of 11-metric, we have explicitly
broken 50(10,1) to 5O(7)x5O(3,1). The second factor now plays the role
of the Lorentz group of the compactified theory. The conditions for super-
symmetry can be satisfied by taking g(X) to be such that it admits a spinor
9 obeying

Vg(X)Q = 0 (8)

and choosing
7] = 0 0 e

with € a basis of constant spinors in Minkowski space.
The condition

- 0

(9)

(10)

implies that Hol(g{X)) is G2 or a subgroup. This is because G2 is the
maximal proper subgroup of 50(7) under which the spinor representation

contains a singlet. Specifically, a spinor of 5O(7) can be regarded as a
fundamental of G2 and a singlet:

Therefore if X is a compact manifold of precisely G^-holononiy, the ef-
fective theory in four dimensions will be minimally M — 1 supersymmctric.
We get precisely Jsf = 1 and no more because there is only one singlet spinor
according to the above group theory.

2.2. Properties of &2-manifoIds.

From the parallel spinor 0 we can construct other covariantly constant
fields on X, More precisely, any p-form with components,

eTrith...ipe (12)

is obviously parallel with respect to Vg(x)- In fact, since the antisymmetric
representations of 50(7) , when decomposed as representations of G2i contain
singlets only when p is 0,3,4,7 the above p-forms are non-zero precisely for
these values. The 0-form is just a constant on X. The 7-form is the volume
form. Locally the three-form, which we will conventionally denote by </?,
can be regarded as a set of structure constants for the octoniori algebra.
This stems from the fact that G% is the automorphism group of the octoniori
algebra, where we regard the tangent space at a point on X as a copy of
ImO, the imaginary octonions. A specific representation of ip locally is

2-356 (13)

where the subscript refers to the fact that we are considering a local model.
The covariantly constant 4-form is the Hodge dual of y>, which in the local
model is given by

+ dxX3b7 ~ (14)

In addition to implying that there are other parallel fields on X, the
existence of a parallel spinor (or a ^-hoionomy metric) also has other im-
plications. One of these is that the metric of (72-holonomy, g(X)} is Ricci
flat. To see this, observe that the commutator of the covariant derivative is
the Riemann curvature. Acting on 0 this implies,

1
(15)



Now, contract again with a F-matrix to obtain,

(16)

The Bianchi identity for Rmnpq which asserts that the components totally
antisymmetric in [npq] are zero then implies that

= 0 (17)

which implies the Ricci tensor vanishes. This shows that <32-manifolds obey
the equations of motion of d = l l supergravity when the 4-form field strength
G and the gravitino is zero: these equations are simply the vacuum Einstein
equations.

A final implication - whose proof goes beyond the scope of these lecture
but which can be found in [11] - is that compact manifolds with Hol(g) =
G2 have a finite fundamental group. This implies that the first Betti number
vanishes.

2.3 Kaluza-Klein Reduction.

At low energies, the eleven-dimensional supergravity approximation is
valid when spacetime is smooth and large compared to the eleven dimensional
Planck length. So, when X is smooth and large enough, we can obtain an
effective four dimensional description by considering a Kaiuza- Klein analysis
of the fields on X. This analysis was first carried out in [12]

In compactification of eleven dimensional supergravity, massless scalars in
four dimensions can originate from either the metric or the (7-field. If g(X)
contains k parameters ie there is a A;-dimensional family of (72-holonomy
metrics on X, then there will be correspondingly k massless scalars in four
dimensions.

The scalars in four dimensions which originate from C arise via the
Kaluza-Klein ansatz,

C = E/w#(x)*/(y) 4-... (18)

where u' form a basis for the harmonic 3-forms on X. These are zero modes of
the Laplacian on X and are also closed. There are b3(X) linearly independent
such forms. The dots refer to further terms in the Kaluza-Klein ansatz
which will be prescribed later. The <t>i{y) are scalar fields in four dimensional
Minkowski space with coordinates y. With this ansatz, these scalars are
classically massless in four dimensions. To see this, note that,

G = (19)

and d • G is just
d • G = (20)

Since GAG vanishes identically, the equations of motion actually asert that
the scalar fields <j>i are all massless in four dimensions. Thus, the C-field
gives rise to 63(X) real massless scalars in four dimensions.

In fact it now follows from J\f = 1 supersymmetry in four dimensions
that the Kaluza-Klein analysis of g will yield an additional 63(X) scalars
in four dimensions. This is because the superpartners of C should come
from g as these fields are superpartners in eleven dimensions. We should
also add that (up to duality tranformations) all representations of the M
= 1 supersymmetry algebra which contain one massless real scalar actually
contain two scalars in total which combine into complex scalars. We will now
describe how these scalars arise explicitly.

We began with a 6?2-holonorny metric g(X) on X. g(X) obeys the vacuum
Einstein equations,

= 0 (21)

To obtain the spectrum of modes originating from g we look for fluctuations
in g(X) which also satisfy the vacuum Einstein equations. We take the
fluctuations in g(X) to depend on the four dimensional coordinates y in
Minkowski space. Writing the fluctuating metric as

9ij(x) + $9ij(xi y) (22)

and expanding to first order in the fluctuation yields the Lichnerowicz equa-
tion

&LS9XJ = -^Ithij - 2RijmJgmn + 2Rk
{iSgj)k = 0 (23)

Next we make a Kaluza-Klein ansatz for the fluctuations as

Sgtf = hij(x)p(y) (24)

Note that the term V2 is the square of the full d = l l covariant derivative. If
we separate this term into two:

Vj , = V2
U + V? (25)

then we see that the fluctuations are scalar fields in four dimensions with
squared masses given by the eigenvalues of the Lichnerowicz operator acting
on the h{j\

hijV^p[y) = ~-(&Lhij)p(y) = —Mkjp(y) (26)
Thus, zero modes of the Lichnerowicz operator give rise to massless scalar
fields in four dimensions. We will now show that we have precisely
such zero modes.
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On a 7-manifold of SO(7) holonomy, the hy - being symmetric 2-index
tensors - transform in the 27 dimensional representation. Under G2 this
representation remains irreducible. On the other hand, the 3-forms on a
G2-manifold) which are usually in the 35 of 50(7) decompose under G2 as

35 1-1-7 + 27

Thus, the hy can also be regarded as 3-forms on X, Explicitly,

(27)

(28)

The o/'s are 3-forms in the same representation as hy since <p is in the
trivial representation. The condition that h is a zero mode of AL is equivalent
to to being a zero mode of the Laplacian:

AL/i = 0 «-» Au = 0 (29)

This shows that there are precisely 63(X) additional massless scalar fields
coming from the fluctuations of the G^-holonomy metric on X.

As we mentioned above, these scalars combine with the <j>ys to give 63 (X)
massless scalars, $ ;(y), which are the lowest components of massless chiral
superfields in four dimensions. There is a very natural formula for the com-
plex scalars $l(y)> Introduce a basis aj for the third homology group of
X, Hs(X>R). This is a basis for the incontractible holes in X of dimension
three. We can choose the a/ so that

(30)

(31)

(32)

Since the fluctuating G2-structure is

ip' = <p + Sip = ip + T.lp
!{y)u)1{x)

we learn that

*'(») = iC/
a,

The fluctuations of the four dimensional Minkowski metric give us the
usual fluctuations of four dimensional gravity, which due to supersymmetry
implies that the four dimensional theory is locally supersymmetric.

In addition to the massless chiral multiplets, we also get massless vector
multiplets. The bosonic component of such a mulitplet is a massless abelian
gauge field which arises from the C-field through the Kaluza-Klein ansatz,

(33)

where the 0's are a basis for the harmonic 2-forms and the A's arc one-
forms in Minkowski space ie Abelian gauge fields. Again, the equations of
motion for C imply that the /4's are massless in four dimensions. This gives
b2(X) such gauge fields. As with the chiral multiplets above, the fermionic
superpartners of the gauge fields arise from the gravitino field. Note that
we could have also included an ansatz giving 2-fonns in four dimensions by
summing over harmonic 1-forms on X. However, since b\{X) = 0, this does
not produce any new massless fields in four dimensions.

We are now in a position to summarise the basic effective theory for the
massless fields. The low energy effective theory is an A/" = 1 supergrav-
ity theory coupled to b2(X) abelian vector multiplets and bs(X) massless,
neutral chiral multiplets. This theory is relatively interesting physically. In
particular, the gauge group is abelian and there are no light charged par-
ticles. We will thus have to work harder to obtain the basic requisites of
the standard model - non-Abelian gauge fields and chiral fennions - from
G2-compactifications. The basic point of these lectures is to emphasise that
these features emerge naturally from singularities in G2-manifolds.
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3. Super Yang-Mills from (^-manifolds: Classical

In this section we will describe how to obtain non-Abelian gauge groups
from singular G2-manifolds. We have known for some time now that non-
Abelian gauge groups emerge from M theory when space has a so-called
ADE-singularity. We learned this in the context of the duality between M
theory on K3 and the heterotic string on a flat three torus, T 3 [13]. So, our
basic strategy will be to embed ADE-singularities into ^-manifolds. After
reviewing the basic features of the duality between M theory on KZ and
heterotic string theory on T 3 , we describe ADE-singularities explicitly. We
then develop a picture of a C?2-manifold near an embedded ADE-singularity.
Based on this picture we analyse what kinds of four dimensional gauge the-
ories these singularities give rise to. We then go on to describe local models
for such singular G2-tnamfolds as finite quotients of smooth ones.

3.1 M theory - Heterotic Duality in Seven Dimensions

M theory compactified on a KZ manifold is widely believed to be equiv-
alent to the heterotic string theory compactified on a 3-torus T3 . As with
G2 compactification, both of these are compactifications to flat Minkowski
space. Up to diffeomorphisms, K3 is the only simply connected, compact 4-
manifold admitting metrics of 5£/(2)-holonorny. SU(2) is the analog in four
dimensions of G2 in seven dimensions. Interestingly enough in this case K3
is the only simply connected example, whereas there are many ^-manifolds.

There is a 58-dirnensional moduli space of 5£/(2)-holonomy metrics on
K3 manifolds of fixed volume. This space M{K3) is locally a coset space:

,19)
5O(3)x5O(19)

(34)

An 5(7(2) holonomy metric also admits two parallel spinors, which when
tensored with the 8 constant spinors of 7-dimensional Minkowski space give
16 global supercharges. This corresponds to minimal supersymrnetry in seven
dimensions (in the same way that G^-holonomy corresponds to minimal su-
persymmetry in four dimensions). If we work at a smooth point in M we
can use Kaluza-Klein analysis and we learn immediately that the effective
d=7 supergravity has 58 massless scalar fields which parametrise M. These
are the fluctuations of the metric on # 3 . Additionally, since H2(X3,R) =
R2 2 there are twenty-two linearly independent classes of harmonic 2-forms.
These may be used a la equation (32) to give a [/(I)22 gauge group in seven
dimensions. We now go on to describe how this spectrum is the same as that
of the heterotic string theory on T 3 , at generic points in M.

11

The heterotic string in ten dimensions has a low energy description in
terms of a supergravity theory whose massless bosonic fields are a metric, a
2-form B, a dilaton <j> and non-Abelian gauge fields of structure group 50(32)
or E$xE%. There are sixteen global supersymetrics. Compactificatiot, >•..-. a
flat T 3 preserves all supersyrnmetries which are all products of constant
spinors on both T 3 and Minkowski space. A flat metric on T 3 involves
six parameters so the metric gives rise to six massless scalars. and since
there are three independent harmonic two forms we obtain from B three
more. The condition for the gauge fields to be supersymmctric on T 3 is
that their field strengths vanish: these are so called flat connections. They
are parametrised by Wilson lines around the three independent circles in
T 3 . These are representations of the fundamental group of T 3 in the gauge
group. Most of the flat connections actually arise from Wilson loops which
are actually in the maximal torus of the gauge group, which in this case is
£/(l)16. Clearly, this gives a 48 dimensional moduli space giving 58 scalars
altogether. Narain showed that this moduli space is actually also locally the
same form as M [14].

From the point of view of the heterotic string on T 3 , the effective gauge
group in 7 dimensions (for generic metric and B-ficld) is the subgroup of
50(32) or E&xE& which commutes with the flat connection on T 3 . At generic
points in the moduli space of flat connections, this gauge group will bo U(l)ie.
This is because the generic flat connection defines three generic elements in
U(l)lB C G. We can think of these as diagonal 16 by 16 matrices with all
elements on the diagonal non-zero. Clearly, only the diagonal elements of G
will commute with these. So, at a generic point in moduli space the gauge
group is abelian.

Six more U(l) gauge fields arise as follows from the metric and B-field. T 3

has three harmonic one forms, so Kaluza-Klein reduction of B gives three
gauge fields. Additionally, since T 3 has a £/(l)3 group of isometrics, the
metric gives three more. In fact, the local action for supergravity theories in
seven dimensions are actually determined by the number of massless vectors.
So, in summary, we have shown that at generic points in M the low energy
supergravity theories arising from M theory on K3 or heterotic string on T 3

are the same.
At special points, some of the eigenvalues of the flat connections will

vanish. At these points the unbroken gauge group can get enhanced to a non-
Abelian group. This is none other than the Higgs mechanism: the Higgs fields
are just the Wilson lines. Additionally, because seven dimensional gauge
theories are infrared trivial (the gauge coupling has dimension a positive
power of length), the low energy quantum theory actually has a non-Abelian
gauge symmetry.

12



If M theory on K3 is actually equivalent to the heterotic string in seven
dimensions, it too should therefore exihibit non-Abelian symmetry enhance-
ment at special points in the moduli space. These points are precisely the
points in moduli space where the K3 develops orbifold singularities. We will
not provide a detailed proof of this statement, but will instead look at the K3
moduli space in a neighbourhood of this singularity, where all the interesting
behaviour of the theory is occuring. So, the first question is what do these
orbifold singularities look like?

3.1.1 ADE-singularities.

An orbifold singularity in a Riemannian 4-manifold can locally be de-
scribed as lR4/r, where F is a finite subgroup of 50(4). For generic enough
F, the only singular point of this orbifold is the origin. These are the points
in 1R4 left invariant under F, A very crucial point is that on the heterotic
side, supersymmetry is completely unbroken all over the moduli space, so
our orbifold singularities in KZ should also preserve supersymmetry. This
means that F is a finite subgroup of SU(2) C 50(4). The particular SU(2)
can easily be identified as follows. Choose some set of complex coordinates
so that C2 s IR4. Then, a point in C2 is labelled by a 2-component vector.
The SU(2) in question acts on this vector in the standard way:

(35)

The finite subgroups of SU(2) have a classification which may be de-
scribed in terms of the simply laced semi-simple Lie algebras: An, Dk, E6, E7

and E8. There are two infinite series corresponding to SU{n+ 1) = An and
S0(2k) = Dk and three exceptional subgroups corresponding to the three
exceptional Lie groups of i£-type. The subgroups, which we will denote by
F*n, (TOM ITE, can be described explicitly.

FA _x is isomorphic to Zn - the cyclic group of order n - and is generated
by

0
0

(36)

T®u is isomorphic to Dj,_2 - the binary dihedral group of order Ak — 8 -
and has two generators a and /? given by

(37)

13

ftt is isomorphic to T - the binary tetrahcdral group of order 24 - and
has two generators given by

0
0

1
(38)

FE/ is isomorphic to 0 - the binary octohedral group of order 48 - and
has three generators. Two of these are the generators of T and the third is

0
(39)

Finally, f t e is isomorphic to 0 - the icosahedral group of order 120 - and
has two generators given by

(40)

Since all the physics of interest is happening near the orbifold singularities
of K3, we can replace the K§ by C 2 /F A DC and study the physics of M
theory on ^ / F ^ D E X I R 6 ' 1 near its singular set which is just Ox(Re>1. Since
the KZ went from smooth to singular as we varied its moduli we expect that
the singular orbifolds C 2 /F*DE are singular limits of non-compact smooth
4-manifolds XADE. Because of supersymmetry, these should have SU(2)-
holonomy. This is indeed the case. The metrics of 5£/(2)-holonomy on
the XADB are known as ALE-spaces, since they asymptote to the locally
Euclidean metric on C2/FADE- Their existence was proven by Kronheimcr
[15] - who constructed a gauge theory whose Higgs branch is precisely the
C2/FADE with its 5i7(2)~holonomy (or hyper-Kahler) metric.

A physical description of this gauge theory arises in string theory. Con-
sider Type IIA or IIB string theory on C 2 /FADEXR S | 1 . Take a flat Dp-brane
(with p < 5) whose world-volume directions span (RP|1 C (R5fl ie the D-branc
is sitting at a point on the orbifold. Then the world-volume gauge theory,
which was first derived in [16]., is given by the Kronheimer gauge theory.
This theory has eight supersymmetries which implies that its Higgs branch
is a hyper-Kahler manifold. For one D-brane this theory has a gauge group
which is a product of unitary groups of ranks given by the Dynkin indices (or
dual Kac labels) of affine Dynkin diagram of the corresponding ADE-group.
So, for the An-case the gauge group is U(l)n+l. The matter content is also
given by the affine Dynking diagram - each link between a pair of nodes rep-
resents a hyper-multiplet transforming in the bi-fundamental representation

14



of the two unitary groups. This is an example of a quiver gauge theory - a
gauge theory determined by a quiver diagram.

We will make this explicit in the simplest case of ETAl. fAi is isomorphic
to Z2 and is in fact the center of SU(2). Its generator acts on C2 as

(41)

We can parametrise C2/fl"Al algebraically in terms of the l~At invariant
coordinates on C2. These are w2, v2 and uv. Defining x = u2 — v2, y =
iu2 + iv2 and z = 2uv. gives a map from C2/fAx to C3. Clearly however,

= 0 (42)

which means that C2/(TAl is the hypersurface in C3 defined by this equation.
The orbifold can be deformed by adding a small constant to the right

hand side,
a-2 + y2 + 22 = r2 (43)

If we take a;, y and z to all be real and r to be real then it is clear that the
deformed 4-manifold contains a 2-sphere of radius r. This 2-sphere contracts
to zero size as r goes to zero. The total space of the deformed 4-manifold
is in fact the co-tangent bundle of the 2-sphere, T*S2. To see this write the
real parts of the £, y and z as X{ and their imaginary parts as p,-. Then, since
r is real, the Xi are coordinates on the sphere which obey the relation

•OH = 0 (44)

This means that the p^s parametrise tangential directions. The radius r
sphere in the center is then the zero section of the tangent bundle. Since the
manifold is actually complex it is natural to think of this as the co-tangent
bundle of the Riemann sphere, T*CP*. In the context of Euclidean quantum
gravity, Eguchi and Hanson constructed a metric of ,9£/(2)-holonomy o n this
space, asymptotic to the locally flat metric on C2/rAl.

3.1.2 M theory Physics at The Singularity.

This metric, whose precise form we will not require actually has three
parameters which control the size and shape of the two-sphere which desin-
gularises the orbifold. From a distance it looks as though there is an orbifold
singularity, but as one looks more closely one sees that the singularity has
been smoothened out by a two-sphere. The 2-sphere is dual to a compactly
supported harmonic 2-form, a. Thus, Kaluza-Klein reducing the C-field us-
ing a gives a U(\) gauge field in seven dimensions. A vector multiplet in

15

seven dimensions contains precisely one gauge field and three scalars and the
latter are the parameters of the Sa. So, when T^CP1 is smooth the inassless
spectrum is an abelian vector multiplet.

From the duality with the heterotic string we expect to sec an enhance-
ment in the gauge symmetry when we vary the scalars to zero ic when the
sphere shrinks to zero size. In order for this to occur, W^-bosons must be-
come massless at the singularity. These are electrically charged under the
U(l) gauge field which originated from C. From the eleven dimensional point
of view the object which is charged under C is the A/2-brane. If the M2-
brane wraps around the two-spherey it appears as a particle from the seven
dimensional point of view. This particle is electrically charged under the
[/(I) and has a mass which is classically given by the volume of the sphere.
Since, the M2-brane has tension its dynamics will push it to wrap the small-
est volume two-sphere in the space,. This least mass configuration is in fact
invariant under half of the supersymmetries 4 - a fact which means that it
lives in a short representation of the supersymmetry algebra. This in turn
means that its classical mass is in fact uncorrccted quantum mechanically.
The M2-brane wrapped around this cycle with the opposing orientation has
the opposing U(l) charge to the previous one.

Thus, when the two-sphere shrinks to zero size we find two oppositely
charged BPS multiplets become massless. These have precisely the right
quantum numbers to enhance the gauge symmetry from U(l) to Ai = SU(2).
Super Yang-Mills theory in seven dimensions depends only on its gauge
group. In this case we are asserting that in the absence of gravity, the low
energy physics of M theory on C 2 / ^ , xR6*1 is described by super Yang-Mills
theory on OxlR8'1 with gauge group Ai.

The obvious generalisation also applies: in the absence of gravity, the low
energy physics of M theory on C2/rA0ExlRe'1 is described by super Yang-
Mills theory on OxRe'1 with ADE gauge group. To see this, note that the
smoothing out of the orbifold singularity in C2/rAot contains rank(ADE) two-
spheres which intersect according to^the Cartan matrix of the ADE group. At
smooth points in the moduli space the gauge group is thus (/(l)'ank(ADE). The
corresponding wrapped membranes give rise to massive BPS multiplets with
precisely the masses and quantum numbers required to enhance the gauge
symmetry to the full ADE-group at the origin of the moduli space.

4This is because the least volume two-sphere is an example of a calibrated or super-
symmetric cycle.
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3.2 ADE-singularities in G^-manifolds.

We have thus far restricted our attention to the ADE singularities in
K3xRe>1. However, the ADE singularity is a much more local concept. We
can consider more complicated spacetimes X10'1 with ADE singularities along
more general seven-dimensional spacetimes, y6>1. Then, if X has a modulus
which allows us to scale up the volume of F , the large volume limit is a semi-
classical limit in which X approaches the previous maximally symmetric
situation discussed above. Thus, for large enough volumes we can assert
that the description of the classical physics of M theory near Y is in terms
of seven dimensional super Yang-Mills theory on Y - again with gauge group
determined by which ADE singularity lives along Y.

In the context of G^-compactification on XxR3>1, we want Y to be of
the form WxiR3'1, with W the locus of ADE singularities inside X. Near
WxR3'1, XxR3 '1 looks like tf/ftozXlVxR3'1. In order to study the gauge
theory dynamics without gravity, we can again focus on the physics near the
singularity itself. So, we want to focus on seven-dimensional super Yang-Mills
theory on

3.2.1 M theory Spectrum Near The Singularity

In flat space the super Yang-Mills theory has a global symmetry group
which is 50(3) x50(6,1). The second factor is the Lorentz group, the first is
the R-symmetry. The theory has gauge fields transforming as (1,7), scalars
in the (3,1) and fermions in the (2, 8) of the universal cover. All fields
transform in the adjoint representation of the gauge group. Moreover the
sixteen supersyinmetries also transform as (2,8).

On VKxIR3'1 - with an arbitrary W. the symmetry group gets broken to
5O(3)x5O(3)'x5O(3,1). Since 50(3) ' is the structure group of the tangent
bundle on W, covariance requires that the theory is coupled to a background
50(3) ' gauge field - the spin connection on W. Similarly, though perhaps
less intuitively, 50(3) acts on the normal bundle to W inside X, hence there
is a background 50(3) gauge field also.

The supersymmetries transform as (2,2,2) -f (2,2,2). For large enough
W and at energy scales below the inverse size of W, we can describe the
physics in terms of a four dimensional gauge theory. But this theory as
we have described it is not supersymmetfte as this requires that we have
covariantly constant spinors on W. Because W is curved, there are none.
However, we actually want to consider the case in which W is embedded
inside a (72-manifold X. In other words we require that our local model -

- admits a G2-holonomy metric. When W is curved this metric
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cannot be the product of the locally flat metric on C2/TADE and a metric
on W. Instead the metric is warped and is more like the metric on a fiber
bundle in which the metric on C2 varies as we move around in W. Since the
space has GVholonomy we should expect the four dimensional gauge theory
to be supersymmetric. We will now demonstrate that this is indeed the case
by examining the G2-structure more closely. In order to do this however, we
need to examine the SU(2) structure on C 2 / f as well.

4-dimensional spaces of 517(2)-holonomy are actually examples of hyper-
Kahler manifolds. They admit three parallel 2-formso;,. These arc analogous
to the parallel forms on G2-manifolds. These three forms transform locally
under 50(3) which locally rotates the complex structures. On C2 these forms
can be given explicitly as

-f iu)2 = du A dv

^3 - Tidu f\du + dv Adv
2

(45)

(46)

rAQE is defined so that it preserves all three of these forms. The 5O(3)
which rotates these three forms is identified with the 5O(3) factor in our
seven dimensional gauge theory picture. This is because the moduli space
of 5[/(2)-holonomy metrics is the moduli space of the gauge theory and this
has an action of 50(3) .

In a locally flat frame we can write down a formula for the G2-structurc

= -Ui A ejStj -f ei A e2 A e3 (47)

where c,- are a flat frame on W. Note that this formula is manifestly invariant
under the 50(3) which rotates the W{ provided that it also acts on the e* in
the same way.

The key point is that when the 5O(3) of the gauge theory acts, in order
for the G2-structure to be well defined , the e^s must transform in precisely
the same way as the CJ,. But 5O(3)' acts on the e$, because it is the struc-
ture group of the tangent bundle to W. Therefore, if C 2 / (T A DEXW, admits a
G2-holonomy metric, we must identify 50(3) with 5O(3)'. In other words,
the connection on the tangent bundle is identified with the connection on
the normal 5O(3)' bundle. This breaks the symmetries to the diagonal sub-
group of the two 5O(3)'s and implies that the effective four dimensional field
theory is classically supersymmetric. Identifying the two groups breaks the
symmetry group down to 5O(3)"x5O(3,1) under which the supercharges
transform as (1,2) -f (3,2) + cc. We now have supersymmetries since the
(1,2) and its conjugate can be taken to be constants on W.
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An important point which we will not actually prove here, but will require
in the sequel is that the locus of ADE-singularities - namely the copy of W
at the center of C2 /f is actually a supersymmetric cycle (also known as a
calibrated cycle). This follows essentially from the fact that fAo£ fixes W and
therefore the <p restricts to be the volume form on W. This is the condition
for W to be supersymmetric.

Supposing we could find a G2-manifold of this type, what exactly is the
four dimensional supersymmetric gauge theory it corresponds to? This we
can answer also by Kaluza-Klein analysis [4, 5], since W will be assumed
to be smooth and large*. Under SO(3)"xSO(3,1), the seven dimensional
gauge fields transform as (3,1) -f (1,4), the three scalars give (3,1) and the
fcrmions give (1,2) 4- (3,2) -h cc. Thus the fields which are scalars under
the four dimensional Lorentz group are two copies of the 3 of S0(3)". These
may be interpreted as two one forms on W. These will be massless if they
are zero modes of the Laplacian on W (wrt its induced metric from the Gi-
manifold). There will be precisely bi(W) of these ie one for every harmonic
one form. Their superpartners are clearly the (3,2) -f cc fermions, which will
be massless by supersymmetry. This is precisely the field content of b\{W)
chiral supermultiplets of the supersymmetry algebra in four dimensions.

The (1,4) field is massless if it is constant on W and this gives one
gauge field in four dimensions. The requisite superpartners are the remaining
fermions which transform as (1,2) -f cc.

All of these fields transform in the adjoint representation of the seven
dimensional gauge group. Thus the final answer for the massless fields is that
they are described by Af = 1 super Yang-Mills theory with 6i(W) massless
adjoint chiral supermultiplets. The case with pure "superglue" ie b\(W) = 0
is a particularly interesting gauge theory at the quantum level: in the infrared
the theory is believed to confine colour, undergo chiral symmetry breaking
and have a mass gap. We will actually exhibit some of these very interesting
properties semi-classically in M theory ! Much of the sequel will be devoted
to explaining this. But before we can do that we must first describe concrete
examples of Ga-manifolds with the properties we desire.

One idea is to simply look for smooth G2-manifolds which are topologically
C2xW but admit an action of SU(2) which leaves W invariant but acts of
C2 in the natural way. Then we simply pick a T^DE C SU(2) and form the
quotient space C2/ITAOEXW.

Luckily, such non-compact (32-nianifolds were constructed some time ago
[17) !! Moreover, in these examples, W = S3, the simplest possible compact
3-manifold with b{(W) = 0. Perfect.
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3.2.2. Examples of (^-manifolds with ADE-singularities.

The G2-h°l°nomy metrics on C 2 x5 3 were constructed in [17). These
metrics are smooth and complete and depend on one parameter a. There is
a radial coordinate r and the metric shows that there is a finite size S3 (of
size a) in the center which grows as we move out along the r direction. They
asymptote at infinity in a radial coordinate r to a conical form

ds2 = dr -f r2c/E2 (48)

where dE2 is an Einstein metric on 5 3 x 5 3 . Taking r large is equivalent to
taking a to zero, so the finite volume S3 shrinks to zero size. This Einstein
metric dE2 is not the standard product metric on the product of two spheres,
although it is the homogeneous metric on G/H with G = SU(2)3 and / / =
SU{2). H acts on G as the 'diagonal' subgroup of the three S[/(2)'s. G/H
is obviously isomorphic as a manifold to S2xSz since 5 3 is isornorphic to
SU(2). This description of the conical GVmetric obviously has an asymptotic
5T/(2)3xE3 group of isometries with E3 the group of permutations of the
three SU(2) factors.

The conical metric is obviously incomplete, since the base of the cone goes
to zero size at r = 0. The complete Gi metrics can be thus regarded as com-
pletions of the cones obtained by smoothing out the singularity at its apex.
Topologically the conical manifold,vis R + xS 3 x,S 3 , which gets smoothened
out to R4xS3 . Concretely this amounts to choosing an SU(2) factor in G
and 'filling it in' to form IR4. We remind the reader that R4 - 0 is the same
as R + x 5 3 and filling in the origin gives back (R4.

Clearly there are three natural ways to to carry out this procedure since
G consists of three copies of SU{2). Obviously each of these gives the same
topological manifold but it is very important for what follows that we realise
that there are actually three G2 manifolds that we can make this way. The
point is that the classical moduli space of G2-holonoiny metrics consists of
three real lines which intersect at one point - the conical singularity. Moving
off of the conical manifold in the three different directions amounts to choos-
ing an S3 in G and filling it in. Along these three directions three different
£3 's develop a finite volume. Another way to say more or less the same thing
in a perhaps more physical way is that there are three smooth G^-rnanifolds
with the prescribed behaviour at infinity: the metric on G/H.

We can give a simple algebraic description of the phenomenon of collaps-
ing one sphere and growing another with the following model taken from [6).
Consider the hypersurface in R4 x R4 cut out by the following equation

(49)
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where the x's and y* s are linear coordinates on the two lR4's. For o positive,
we have a radius a S3 at the origin in the second R4. This manifold is
clearly topologically 53x(R4. For a negative, its again the same manifold
topologically, but the roles of x and y have been interchanged. Therefore as
a passes from positive to negative an S3 shrinks to zero volume, the manifold
becomes singular at 0 and another 5 3 grows and the space remains smooth.
This is obviously a much cruder description of the space as a function of a,
since as we have seen above there are actually three directions in the moduli
space and not two, but it has the advantage that it makes the basic picture
transparent.

3.2.3 M theory Physics on X = R4xS3

We saw earlier that the moduli of the G2-metric get complexified in M
theory by the addition of the C-field. This is necessary for supersymmetry.
We observed that on a compact G2~manifold the low energy four dimensional
theory contains one massless scalar for every parameter in the G2-metric. The
situation on a non-compact manifold X can in general be quite different, since
the metric fluctuations need not be localised on X. The more delocatised
these fields are, the more difficult it is to excite them. Indeed to obtain
a four dimensional action we have to integrate over X, and this integral
will diverge if the fluctuations are not L2-normalisable. If this is indeed the
case then we should not regard the corresponding four dimensional fields as
fluctuating: rather they are background parameters, coupling constants and
we should study the four dimensional physics as a function of them. We refer
the reader to [7] for the simple calculation which shows this explicitly.

In the case at hand, by examining the first order fluctation in the G2-
metric one can readily see that a should indeed be treated as a coupling
constant. It follows from supersymmetry that its complex partner should
also. Our formula (32) can now be applied to write this complex coupling
constant as

r = I <p + iC = Vol(Sd) + i j C (50)

where we integrate over the minimal volume three sphere in the center of X.
This sphere generates the third hoinology. Note that there is no prime here,
since the field is not flucutating.

So, we arrive at the conclusion that M theory on our G2-manifold A", is
actually a one complex dimensional family of theories parameterised by r.
There are three semi-classical regimes corresponding-to the three regions in
which the spheres are large, X is smooth and thus supergravity is valid. The
four dimensional spectrum is massive in each of these semi-classical regimes
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since b2 (X) is zero and the zero mode of the Lichnerowicz operator does
not fluctuate. The physics in each of these three regions is clearly the same
since the metrics are the 'same'. What about the physics on the bulk of the
r-plane?

Our intuition asserts that there is only one further interesting point, r
= 0 where the manifold develops a conical singularity. In minimally super-
symmetric field theories in four dimensions which do have massless complex
scalars which parameterise a moduli space M, singularities in the physics
typically only occur at subloci in M which are also complex manifolds. In
our case, we dont have a moduli space, but rather a parameter space, but we
can think of r as a background superfield.

In any case at r = 0, we have zero size S3's and instanton effects can
become important here, since the action of an M2-brane instanton is r . These
effects could generate a non-zero quantum value of the C-field period and
remove this potential singularity in which case we would be in the situation
that there are no physical phase transitions as a function of T\ Of course,
physical quantities will depend on ry but the qualitative nature of the physics
will remain the same for any value of r .

This was first suggested in [6] and proven rigorously in [7].
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4. Super Yang-Mills from ^-manifolds: Quantum.

We now move on to study the interplay between quantum super Yang-
Mills theory and M theory on G-2-nianifolds, The results of this section are
based upon [5, 6, 7, 8). We will be studying the physics of M theory on
the G2-manifolds with ADE-singularities whose construction we described at
the end of section 3.2.1. We begin by reviewing the basic properties of super
Yang-Mills theory. We then go on to describe how these features are reflected
in M theory. We first show how membrane instantons can be seen to generate
the superpotential of the theory. Second we go on to exhibit confinement and
a mass gap semi-classically in M theory.

The C?2-manifolds that actually interest us are obtained as quotients of
(R4xS3 by FADE- We saw previously that for large volume and low energies,
four dimensional super Yang-Mills theory is a good description of the M
theory physics. We will thus begin this section with a review of the basic
properties of the gauge theory.

4.1 Super Yang-Mills Theory.

For completeness and in order to compare easily with M theory results
obtained later we briefly give a review of M = 1 pure super Yang-Mills theory.
We begin with gauge group SU(n). JSf = 1 SU(n) super Yang-Mills theory in
four dimensions is an extensively studied quantum field theory. The classical
Lagrangian for the theory is

92

Q

' 3 2 ^ ^
(51)

F is the gauge field strength and A is the gaugino field.
It is widely believed that this theory exhibits dynamics very similar to

those of ordinary QCD: confinement, chiral symmetry breaking, a mass gap.
There are n supersymmetric vacua. Supersymmetry constrains the dynamics
of the theory so strongly, that the values of the low energy effective super-
potential in the n vacua is known. These are of the form

(52)

here r is the complex coupling constant,

and \x the mass scale. Shifting 6 by 2?r gives n different values for W.
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In particular, the form of this potential suggests that it is generated
by dynamics associated with "fractional instantons", ie instantonic objects
in the theory whose quantum numbers are formally of instanton number
~. Such states are also closely related to the spontaneously broken chiral
symmetry of the theory. Let us briefly also review some of these issues here.

Under the U(l) R-symmetry of the theory, the gauginos transform as

X - » e*QA (54)

This is a symmetry of the classical action but not of the quantum theory (as
can easily be seen by considering the transformation of the fermion determi-
nant in the path integral). However, if the above transformation is combined
with a shift in the theta angle of the form

In
(55)

then this cancels the change in the path integral measure. This shift sym-
metry is a bona fide symmetry of the physics if a = |^, so that even in the
quantum theory a Zgn symmetry remains. Associated with this symmetry is
the presence of a non-zero value for the following correlation function,

which is clearly invariant under the Z2 n symmetry. This correlation function
is generated in the 1-instanton sector and the fact that 2n gauginos enter is
due to the fact that an instanton of charge 1 generates 2n chiral fermion zero
modes.

Cluster decomposition implies that the above correlation function decom-
poses into ln constituents' and therefore there exists a non-zero value for the
gaugino condensate:

(AA)/O (57)

Such a non-zero expectation value is only invariant under a Z2 subgroup
of Z2n implying that the discrete chiral symmetry has been spontaneously
broken. Consequently this implies the existence of n vacua in the theory.

In fact, it can be shown that

t3e2™'n (58)

In view of the above facts it is certainly tempting to propose that 'frac-
tional instantons* generate the non-zero gaugino condensate directly. But
this is difficult to see directly in super Yang-Mills on 1R3'1. We will return to
this point later.
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More generally, if we replace the SU(n) gauge group by some other gauge
group // , then the above statements are also correct but with n replaced
everywhere with C2{H) the dual Coxeter number of H. For A-D-E gauge
groups c2(H) = SJ'l/aj, where r is the rank of the gauge group and the Oj are
the Dynkin indices of the affine Dynkin diagram associated to H. For Ani

all the ^ — 1; for Dn groups the four 'outer' nodes have index 1 whilst the
rest have a< = 2. £ 6 has indices (1,1,1,2,2,2,3), E7 has (1,1,2,2,2,3,3,4)
whilst Es has indices (1,2,2,3,3,4,4,5,6).

4.2. Theta angle and Coupling Constant in M theory.

The physics of M theory supported near the singularities of C2/fx!Re'1 is
described by super Yang-Mills theory on R8'1. The gauge coupling constant
of the theory is given by

P" ~ h (59)

where lp is the eleven dimensional Planck length. In seven dimensions, one
analog of the theta angle in four dimensions is actually a three-form 0. The
reason for this is the seven dimensional interaction

Lf (60)

(with F the Yang-Mills field strength). In M theory 9 is given by C, the
three-form potential for the theory.

If we now take M theory on our G?
2-manifold R4/fxW we have essentially

compactified the seven dimensional theory on W and the four dimensional
gauge coupling constant is roughly given by

ni ^ /3 (61)

where V\y is the volume of W. The four dimensional theta angle can be
identified as

0 = f C (62)

The above equation is correct because under a global gauge transformation
of C which shifts the above period by 2ir times an integer - a transformation
which is a symmetry of M theory - 0 changes by 2?r times an integer. Such
shifts in the theta angle are also global symmetries of the field theory.

Thus the complex gauge coupling constant of the effective four dimen-
sional theory may be identified as the r parameter of M theory

Jw l
(63)
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This is of course entirely natural, since r is the only parameter in M
theory on this space!

4.3. Superpotential in M theory.

There is a very elegant way to calculate the superpotential of super Yang-
Mills theory on IR3>1 by first compactifying it on a circle to three dimensions
[18]. The three dimensional theory has a perturbative expansion since the
Wilson lines on the circle behave as Higgs fields whose vev's break the gauge
symmetry to the maximal torus. The theory has a perturbative expansion
in the Higss vevs, which can be used to compute the superpotential of the
compactified theory. One then takes the four dimensional limit. In order to
compute the field theory superpotential we will niimick this idea in M theory
[4]. Compactifying the theory on a small circle is equivalent to studying
pertubative Type IIA string theory on our G2-manifold.

4.3.1. Type IIA theory on X = R 4 / r A D t x 5 3 .

Consisder Type IIA string theory compactified to three dimensions on a
seven manifold X with holonomy G2. If X is smooth we can determine the
massless spectrum of the effective supergravity theory in three dimensions as
follows. Compactification on X preserves four of the 32 supcrsymmctries in
ten dimensions, so the supergravity theory has three dimensional Af = 2 lo-
cal supersymmetry. The relevant bosonic fields of the ten dimensional super-
gravity theory are the metric, B-field, dilaton plus the Ramond-Ramond onc-
and three-forms. These we will denote by g^B^^A^A^ respectively. Upon
Kaluza-Klein reduction the metric gives rise to a three-metric and b$(X)
massless scalars. The latter parametrise the moduli space of G^-holonotny
metrics on X. B gives rise to b2(X) periodic scalars (fi. <f> gives a three
dimensional dilaton. Ai reduces to a massless vector, while A$ gives b2(X)
vectors and 63(X) massless scalars. In three dimensions a vector is dual to
a periodic scalar, so at a point in moduli space where the vectors arc free
we can dualise them. The dual of the vector field originating from A\ is the
period of the RR 7-form on X, whereas the duals of the vector fields coming
from Az are given by the periods of the RR 5-form A$ over a basis of 5-cycles
which span the fifth homology group of X. Denote these by scalars by crt.
All in all, in the dualised theory we have in addition to the supcrgravity
multiplet, b2{X) + b3(X) scalar multiplets. Notice that b2(X) of the scalar
multiplets contain two real scalar fields, both of which are periodic.

Now we come to studying the Type IIA theory on X — R4/TMXXS3.
Recall that X = RV^ADEX'S'3 is defined as an orbifold of the standard spin
bundle of S3. To determine the massless spectrum of IIA string theory on X

26



we can use standard orbifold techniques. However, the answer can be phrased
in a simple way. X is topologically fR4/rADEx53. This manifold can be
desingularised to give a smooth seven manifold MrADC which is topologically
XrADLxS3, where JVrADt is homeomorphic to an ALE space. The string
theoretic cohornology groups of X are isomorphic to the usual cohomology
groups of MrAOE, The reason for this is simple: X is a global orbifold of
S(iS3). The string theoretic cohomology groups count massless string states
in the orbifold CFT. The massless string states in the twisted sectors are
localised near the fixed points'of the action of FADE on the spin bundle. Near
the fixed points we can work on the tangent space of S(S3) near a fixed point
and the action of (FADE there is just its natural action on (R4x(R3.

Note that blowing up X to give Mr*DE cannot give a metric with G2-
holonomy which is continuosiy connected to the singular G2-holonomy metric
on X, since this would require that the addition to homology in passing from
X to MrADC receives contributions from four-cycles. This is necessary since
these are dual to elements of HZ(M) which generate metric deformations
preserving the G^-structure. This argument does not rule out the possibility
that MrADC admits 'disconnected' G^-holonomy metrics, but is consistent
with the fact that pure super Yang-Mills theory in four dimensions does not
have a Coulomb branch.

The important points to note are that the twisted sectors contain massiess
states consisting of r scalars and r vectors where r is the rank of the corre-
sponding ADE group associated to f. The r scalars can intuitively thought
of as the periods of the B field through r two cycles. In fact, for a generic
point in the moduli space of the orbifold conformal field theory the spectrum
contains massive particles charged under the r twisted vectors. These can
be interpreted as wrapped D2-branes whose quantum numbers are precisely
those of W-bosons associated with the breaking of an ADE gauge group to
U(l)r. This confirms our interpretation of the origin of this model from M
theory: the values of the r B-field scalars can be interpreted as the expec-
tation values of Wilson lines around the eleventh dimension associated with
this symmetry breaking. At weak string coupling and large S3 volume these
states are very massive and the extreme low energy effective dynamics of the
twisted sector states is described by M=2 U(l)r super Yang-Mills in three
dimensions. Clearly however, the underlying conformal field theory is not
valid when the W-bosons become massless. The appropriate description is
then the pure super Yang-Mills theory on R 2 f lx5 ! which corresponds to a
sector of M theory on XxS 1 . In this section however, our strategy will be to
work at a generic point in the CFT moduli space which corresponds to being
far out along the Coulomb branch of the gauge theory. We will attempt to
calculate the superpotential there and then continue the. result to four di-
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mensions. This exactly mimics the strategy of [18] in field theory. Note that
we are implicitly ignoring gravity here. More precisely, we are assuming that
in the absence of gravitational interactions with the twisted sector, the low
energy physics of the twisted sectors of the CFT is described by the Coulomb
branch of the gauge theory. This is natural since the twisted sector states
are localised at the singularities of JxR2>1 whereas the gravity propagates in
bulk.

In this approximation, we can dualise the photons to obtain a theory of
r chiral rnultiplets, each of whose bosonic components (<p and a) is periodic.
But remembering that this theory arose from a non-Abelian one we learn
that the moduli space of classical vacua is

(64)

where A^ is the complexified weight lattice of the ADE group and Wu is
the Weyl group.

We can now ask about quantum effects. In particular is there a non-trivial
superpotential for these chiral rnultiplets? In a theory with four supercharges
BPS instantons with only two chiral fermion zero modes can generate a su-
perpotential. Are there instantons in Type IIA theory on J ? BPS instantons
come from branes wrapping supersymmetric cycles and Type IIA theory on
a G2-holonomy space can have instantons corresponding to D6-branes wrap-
ping the space itself or D2-brane instantons which wrap supersymmetric
3-cycles. For smooth GVholonomy manifolds these were studied in [19]. In
the case at hand the D6-branes would generate a superpotential for the dual
of the graviphoton multiplet which lives in the gravity multiplet but since we
wish to ignore gravitational physics./or the moment, we will ignore these. In
any case, since X is non-compact, these configurations have infinite action.
The D2-branes on the other hand are much more interesting. They can wrap
the supersymmetric S3 over which the singularities of X arc fibered. We
can describe the dynamics of a wrapped D2-brane as follows. At large vol-
ume, where the sphere becomes flatter and flatter the world-volume action
is just the so called 'quiver gauge theory' described in [16]. Here we should
describe this theory not just on S3 but on a supersymmctric S3 embedded
in a space with a non-trivial Cr2-holonomy structure. The upshot is that the
world-volume theory is in fact a cohomological field theory [20] so we can
trust it for any volume as long as the ambient space has G^-holonomy. This
is because the supersymmetries on the world-volume are actually scalars on
S3 and so must square to zero.

Note that, since we are ignoring gravity, we are implicitly ignoring higher
derivative corrections which could potentially also affect this claim. Another
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crucial point is that the Sd which sits at the origin in !R4 in the covering space
of X is the supersymmetric cycle, and the spheres away from the origin are
not supersymmetric, so that the BPS wrapped D2-brane is constrained to live
on the singularities of X. In the quiver gauge theory, the origin is precisely
the locus in moduli space at which the single D2-brane can fractionate (ac-
cording to the quiver diagram) and this occurs by giving expectation values
to the scalar fields which parametrise the Coulomb branch which corresponds
to the position of our D2-brane in the dimensions normal to X.

What contribution to the superpotential do the fractional D2-branes
make? To answer this we need to identify the configurations which pos-
sess only two fermionic zero modes. We will not give a precise string theory
argument for this, but using the correspondence between this string theory
and field theory will identify exactly which D-brane instantons we think are
responsible for generating the superpotential. This may sound like a strong
assumption, but as we hope will become clear, the fact that the fractional
D2-branes are wrapped D4-branes is actually anticipated by the field the-
ory! This makes this assumption, in our opinion, somewhat weaker and adds
credence to the overall picture being presented here.

In [21], it was shown that the fractionally charged D2-branes are actually
D4-brancs which wrap the Vanishing' 2-cycles at the origin in R4/l. More
precisely, each individual fractional D2-brane, which originates from a single
D2-brane possesses D4-brane charge, but the total configuration, since it
began life as a single D2-brane has zero D4-brane charge. The possible
contributions to the superpotential are constrained by supersymmetry and
must be given by a holomorphic function of the r chiral superfields and
also of the holomorphic gauge coupling constant r which corresponds to the
complexified volume of the S3 in eleven dimensional M theory. We have
identified above the bosonic components of the chiral superfields above, r is
given by

r = I ip + iC (65)

where tp is the G^-structure defining 3-form on X. The period of the M
theory 3-form through S3 plays the role of the theta angle.

The world-volume action of a D4-brane contains the couplings

L = B A A3 + Ab

Holomorphy dictates that there is also a term

so that the combined terms are written as

B A r + Ab

(66)

(67)

(68)
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Since the fourbranes wrap the Vanishing cycles' and the S3 we sec that
the contribution of the D4-brane corresponding to the A:-th fractional D2
takes the form

S = -flk.x (69)

where we have defined

z = np -f a (70)

and the P^ are charge vectors. The r complex fields z are the natural holo-
morphic functions upon which the superpotential will depend.

The wrapped D4-branes are the magnetic duals of the massive D2-brancs
which we identified above as massive W-bosons. As such they are magnetic
monopoies for the original ADE gauge symmetry. Their charges are therefore
given by an element of the co-root lattice of the Lie algebra and thus each of
the r + 1 /3's is a rank r vector in this space. Choosing a basis for this space
corresponds to choosing a basis for the massless states in the twisted sector
Hilbert space which intuitively we can think of as a basis for the cohomology
groups Poincare dual to the Vanishing' 2-cycles. A natural basis is provided
by the simple co-roots of the Lie algebra of ADE, which we denote by a j for
k = 1, ...,r. This choice is natural, since these, from the field theory point of
view are the fundamental monopole charges.

At this point it is useful to mention that the r wrapped D4-brancs whose
magnetic charges are given by the simple co-roots of the Lie algebra cor-
respond in field theory to monopoies with charges a j and each of these is
known to possess precisely the right number of zero modes to contribute to
the superpotential. Since we have argued that in a limit of the Type IIA
theory on X, the dynamics at low energies is governed by the field theory
studied in [18] it is natural to expect that these wrapped fourbranes also
contribute to the superpotential. Another striking feature of the field the-
ory is that these monopoies also possess a fractional instanton number - the
second Chern number of the gauge field on (R2'*xSl. These are precisely in
correspondence with the fractional D2-brane charges. Thus, in this sense,
the field theory anticipates that fractional branes are wrapped branes.

In the field theory on R 2 > i x5 l it is also important to realise that there is
precisely one additional BPS state which contributes to the superpotential.
The key point is that this state, unlike the previously discussed monopoies
have dependence on the periodic direction in spacetime. This state is asso-
ciated with the affine node of the Dynkin diagram. Its monopole charge is
given by

and it also carries one unit of instanton number.
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The action for this state is

- 27TIT (72)

Together, these r 4- 1 BPS states can be regarded as fundamental in the
sense that all tiie other finite action BPS configurations can be thought of
as bound states of them.

Thus, in the correspondence with string theory it is also natural in the
same sense as alluded to above that a state with these corresponding quan-
tum numbers also contributes to the superpotentiaL It may be regarded as
a bound state of anti-D4-branes with a charge one D2-brane. In the case of
SU{JI) this is extremely natural, since the total D4/D2-brane charge of the r
+1 states is zero/one, and this is precisely the charge of the D2-brane config-
uration on S3 whose world-volume action is the quiver gauge theory for the
affine Dynkin diagram for SU(n). In other words, the entire superpotentiai
is generated by a single D2-brane which has fractionated.

In summary, we have seen that the correspondence between the Type
IIA string theory on X and the super Yang-Mills theory on R2)1x£ l is quite
striking. Within the context of this correspondence we considered a smooth
point in the moduli space of the perturbative Type IIA CFT, where the
spectrum matches that of the Yang-Mills theory along its Coulomb branch.
On the string theory side we concluded that the possible instanton contri-
butions to the superpotentiai are from wrapped D2-branes. Their world vol-
ume theory is essentially topological, from which we concluded that they can
fractionate. As is well known, the fractional D2-branes are really wrapped
fourbranes. In the correspondence with field theory, the wrapped fourbranes
are magnetic monopoles, whereas the D2-branes are instantons. Thus if,
these branes generate a superpotentiai they correspond, in field theory to
monopole-instantons. This is exactly how the field theory potential is known
to be generated. We thus expect that the same occurs in the string theory
on X.

Finally, the superpotentiai generated by these instantons is of am* ne-Toda
type and is known to possess C2(ADE) minima corresponding to the vacua of
the ADE super Yang-Mills theory on IR3>1. The value of the superpotentiai in
each of these vacua is of the form e c* . As such it formally looks as though
it was generated by fractional instantons, and in this context fractional M2-
brane instantons. This result holds in the four dimensional M theory limit
because of holomorphy.

Let us demonstrate the vacuum structure in the simple case when the
gauge group is SU(2). Then there is only one scalar field, z. There are two
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fractional D2-brane instantons whose actions are

S\ = -z and St = z - 2itir

Both of these contribute to the superpotentiai as

W = e~Sl + e-5a

Defining z = iriY we have

The critical points of W are

W =

Y ~ ±e

(73)

(74)

(75)

(76)

This result about the superpotentiai suggests strongly that there is a limit
of M theory near an ADE singularity in a ̂ -manifold which is precisely super
Yang-Mills theory. We will now go on to explore other limits of this M theory
background.

4.4. M theory Physics on ADE-singular G^-manifolds.

We saw previously that before taking the quotient by F, that the M theory
physics on R4xS3> with its (^-metric was smoothly varying as a function of
r. In fact the same is true in the case with ADE-singularities. One hint
for this was that we explicitly saw just now that the superpotentiai is non-
zero in the various vacua and this implies that the C-fieid is non-zero. This
suggestion was concretely proven in [7\.

Before orbifolding by F we saw there were three semiclassical limits of M
theory in the space parameterised by r. These were described by M theory
on three large and smooth G2-manifolds X*, all three of which were of the
form R4x53 . There are also three semiclassical ie large volume ^-manifolds
when we orbifold by F. These are simply the quotients by F of the Xit One
of these is the G2-manifold IR4/FADEXS3- The other two are both of the form
S3 /FADEXK4 . TO see this, note that the three 53>s in the three 6r2-inanifolds
Xi of the form R4xS3 correspond to the three S3 factors in G = 5 3 x 5 3 x S 3 .
FADE is a subgroup of one of these 53>s . If F^DE acts on the (R4 factor of X\
in the standard way, then it must act on S3 in X^ - since X-j> can be thought
of as the same manifold but with the two 53>s at infinity exchanged. Then,
because of the permutation symmetry it also acts on the £3 in X3.

In the simple, crude, algebraic description in section 3.2.2, let X\ be the
manifold with a negative. Then define F^DE to act on the (R4 parametrised by
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Xi. Then a-j = 0 is an S3 of fixed points parametrised by #». Thus Xi/f^ot is
isomorphic to our ^-manifold with ADE-singularities. Consider now what
happens when a is taken positive. This is our manifold X2. Then, because
Xi = 0 is not a point on X2i there is no fixed point and FADE acts freely on
the S3 surrounding the origin in the x-space. Thus, X2/ti~t<oE is isomorphic
to S3/TM)£X(R4 , as isX3 .

On Xi/FADE in the large volume limit, we have a semi-classical description
of the four dimensional physics in terms of perturbative super Yang-Mills
theory. But, at extremely low energies, this theory becomes strongly coupled,
and is believed to confine and get a mass gap. So, apart from calculate the
superpotentiai in each vacuum, as we did in section 4.3 we cant actually
calculate the spectrum here.

What about the physics in the other two serniclassical limits, namely large
X2|3/ITAJ)£?? These ^-manifolds are completely smooth. So supergravity is
a good approximation to the M theory physics. What do we learn about the
M theory physics in this approximation?

4.5. Confinement from £?2-nianifolds.

If it is true that the qualitative physics of M theory on X^/l^t and
^3/FADE is the same as that of M theory on Xi/f^oty then some of the
properties of super Yang-Mills theory at low energies ought to be visible.
The gauge theory is believed to confine ADE-charge at low energies. If a
gauge theory confines in four dimensions, electrically charged confining flux
tubes (confining strings) should be present. If the classical fields of the gauge
theory contain only fields in the adjoint representation of the gauge group G,
then these strings are charged with respect to the center of (7, Z(G). Can
we see these strings in M theory on A^/TAOE? AS we described in [8], the
answer is a resounding yes.

The natural candidates for such strings are M2-branes which wrap around
1-cycles in ^/(TAOE or M5-branes which wrap 4-cycles in A^/ITADE- Since
X2/TM>£ is homeotnorphic to S3/ITAD£X(R4 which is contractible to S^/ITADE,
the homology groups of AV^ADE are the same as those of the three-manifold
SV^AOE- Thus, our space has no four cycles to speak of, so the confining
strings can only come from M2-branes wrapping one-cycles in S3/!TADE- The
string charges are classified by the first homology group Hi(Sz/f^ti 2). For
any manifold, the first homology group is isomorphic to the abelianisation
of its fundamental group, Hi. The abelianisation is obtained by setting all
commutators in II1 to be trivial ie

(77)
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The fundamental group of S3/1TADE is F*v£< Hence, in order to calculate
the charges of our candidate confining strings we to compute the abclianisa-
tions of all of the finite subgroups of SU(2).

fAt% t = Zn. The gauge group is locally SU(n). Since Zn is abclian, its
commutator subgroup is trivial and hence the charges of our strings take
values in Zn. Since this is isomorphic to the center of SU(n) this is the
expected answer for a confining SU(n) theory.

For T = DD|C_2, the binary dihedral group of order Ak — 8, the local gauge
group of the Yang-Mills theory is SO(2k). The binary dihedral group is
generated by two elements a and p (see section 3.1.1) which obey the relations

a 2 - / ? * - 2 (78)

afi = P"la (79)

a4 = p 2 k ' A = 1 (80)

To compute the abelianisation of D|<_2, we simply take these relations
and impose that the commutators are trivial. From the second relation this
implies that

P^P~l (81)

which in turn implies that

a2 = 1 fo = 2p

and
«2 = , for k = 2p + 1

(82)

(83)

Thus, for k = 2p we learn that the abelianisation of D^_2 is isomorphic to
Z2xZ2 i whereas for k ='2p-f 1 it is isomorphic to 24. These groups arc
respectively the centers of Spin(ip) and Spin(4p + 2). This is the expected
answer for the confining strings in SO(2k) super Yang-Mills which can be
coupled to spinorial charges.

To compute the abelianisations of the binary tetrahedral (denoted T),
octahedral (0) and icosahedral (8) groups which correspond respectively to
E6, E7 and 2?8 super Yang-Mills theory, we utilise the fact that the or-
der of F/[F, F) - with F a finite group - is the number of inequivalent one
dimensional representations of G. The representation theory of the finite
subgroups of 51/(2) is described through the Mckay correspondence by the
representation theory of the corresponding Lie algebras. In particular the
dimensions of the irreducible representations of T, 0 and 8 are given by the
coroot integers (or dual Kac labels) of the affine Lie algebrae associated to
j£6, E7 or Es respectively. From this we learn that the respective orders of

34



¥/[T, T], 0/[0,0] and Q/[B, 0] are three, two and one. Moreover, one can easily
check that T/[T,T] and O/[O,O] are Z3 and Z2 respectively, by examining
their group relations. Thus we learn that T/[T,T], O/[O,O] and D/[fl,0] are,
respectively isomorphic to the centers Z(E%)> Z(Ej) and Z(E%) in perfect
agreement with the expectation that the super Yang-Mills theory confines.
Note that the Ee-theory does not confine, since the strings are uncharged.

This result is also natural from the following point of view. In the singu-
lar Xi/r^DE (where the actual gauge theory dynamics is) the gauge bosons
correspond to M2-branes wrapped around zero-size cycles. When we vary r
away from the actual gauge theory limit until we reach M theory on a large
and smooth X2/rADi the confining strings are also wrapped M2-branes. In
the gauge theory we expect the confining strings to be "built" from the ex-
citations of the gauge fields themselves. In M theory, the central role played
by the gauge fields is actually played by the M2-brane.

4.6. Mass Gap from G2-rr\ar)\fo\d$.

We can also see the mass gap expected of the gauge theory, by study-
ing the spectrum of M theory on the smooth G2-manifolds ^/ITADIE and
X^/f^z- We already noted previously that the four dimensional spectrum
of M theory on the X{ was massive. For precisely the same reasons the
spectrum of M theory on A^/ITADE is also massive.
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5. Chiral Fermions from G^-manifolds.

Thus far, we have seen that the simplest possible singularities of a G>±-
manifold, namely ADE orbifold singularities produce a convincing picture of
how non-Abelian gauge groups emerge. However, for the purpose of obtain-
ing a realistic model of particle physics this is not enough. To this end, a
basic requisite is the presence of chiral fermions charged under these gauge
symmetries. Chiral fermions are important in nature since they arc masslcss
as long as the gauge symmetries they are charged under arc unbroken. This
enables us to understand the lightness of the electron in terms of the Higgs
vev.

What sort of singularity in a <72-manifold X might we expect to give rise
to a chiral fermion in M theory? If the singularity is "bigger than a point"
then we dont expect chiral fermions. This is because if the codimension of
the singularity is less than seven, the local structure of the singularity can ac-
tually be regarded as a singularity in a Calabi-Yau threefold or K3 and these
singularities give rise to a spectrum of particles which form representations of
M > 1 supersymmetry. Such spectra arc CVT self-conjugate. For instance,
real codimension four singularities in G2-manifoids are the ADE-singularitics
we discuused above and the corresponding four dimensional spectra were
not chiral. Similarly, if the singularity is codimension six ic is along a one-
dimensional curve £ in X, Then everywhere near E, the tangent spaces
of X naturally split into tangent and normal directions to X. Hence, the
holonomy of X near £ actually reduces to SU(S) acting normally to E.

So we want to consider point like singularities of X. The simplest such
singularities are conical, for which the metric looks locally like

ds2 = dr2 + r2g(Y) (84)

for some six-dimensional metric g(Y) on a 6-rnanifold Y. This has a singu-
larity at r = 0. We will argue that for many different choices of Y that chiral
fermions are part of the M theory spectrum.

5.1 Hints from Anomaly-Inflow.

The basic strategy of this subsection will be to assume there is a G2-
manifold with a conical singularity of the above type and consider the vari-
ation of bulk terms in the M theory effective action under various gauge
symmetries. These will be shown to be non-zero if Y obeys certain con-
ditions. If the theory is to be consistent, these anomalous variations must
be cancelled and this suggests the presence of chiral fermions in the spec-
trum. This is based upon [22] who showed that when X is compact all these
variations add up to zero!
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The gauge symmetries we will consider are the ones we have focussed on
in these lectures: the U(l) gauge symmetries from Kaluza-Klein reducing the
C-field and the ADE symmetries from the ADE-singularities.

We begin with the former case. We take M theory on XxR1*1 with X a
cone on Y so that X — (RxY. The Kaluza-Klein ansatz for C which gives
gauge fields in four dimensions is

C* — T"1 Sa(T^ A A. (il\ /QK\

where the /3Js are harmonic 2-forms on X. With this ansatz, consider the
eleven dimensional Chern-Simons interaction

'-CAGAG (86)

(87)

S"f I
Under a gauge transformation of C under which

C —> C + dt '

S changes by something of the form5

6S~ [ d(eA GAG) (88)

We can regard X as a manifold with boundary dX = Y and hence

SS> L eA GAG

If we now make the Kaluza-Klein ansatz for the 2-form t

€ =r

and use our ansatz for C, we find

SS f @p A F A P6

JY
epdAa A dA6

(89)

(90)

(91)

Thus if the integrals over Y (which are topological) are non-zero we obtain
a non-zero four dimensional interaction characteristic of an anomaly in an
abelian gauge theory. Thus, if the theory is to be consistent, it is natural to
expect a spectrum of chiral fermions at the conical singularity which exactly
cancels SS.

5We will not be too careful about factors in this section.
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We now turn to non-Abelian gauge anomalies. We have seen that ADE
gauge symmetries in M theory on a C?2-rnanifold X are supported along a
three-manifold W in X. If additional conical singularities of X arc to support
chirai fermions charges under the ADE-gauge group, then these singularities
should surely also be points Pi on W. So let us assume that near such a point,
the metric on X assumes the conical form. In four dimensional ADE gauge
theories the triangle anomaly is only non-trivial for An-gauge groups. So, we
restrict ourselves to this case. In this situation, there is a seven dimensional
interaction of the form

KAQb(A)

where A is the SU(n) gauge field and

FAF

(92)

(93)

K is a two-form which is the field strength of a V(\) gauge field which is
part of the normal bundle to W. K measures how the An-singularity twists
around W. The U(l) gauge group is the subgroup of SU(2) which commutes
with FA..

Under a gauge transformation,

A + DAX

and

SS~ [ (KAdtrXFAF)

(94)

(95)

so if K is closed, SS = 0. This will be the case if the An-singularity is no
worse at the conical singularity P than at any other point on W. If however,
the An-singularity actually increases rank at P , then

dK = 2itqSP (9G)

and we have locally a Dirac monopole of charge q at P. The charge is an
integer because of obvious quantisation conditions. In this situation we have
that

6S~ [ d{K A trXF A F) = -q [ trXF A F (97)

which is precisely the triangle anomaly in an SU(n) gauge theory. Thus, if we
have this sort of situation in which the ADE-singularity along W degernates
further at P we also expect chiral fermions to be present.
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We now go on to utilise the M theory heterotic duality of subsection (3.1)
to construct explicitly conically singular manifolds at which we know the
existence of chiral fermions.

5.2 Chiral Fermions via Duality With The Heterotic String.

In section three we utilised duality with the heterotic string on T 3 to
loam about enhanced gauge symmetry in M theory. We applied this to G%-
manifolds quite successfully. In this section we will take a similar approach.
The following is based upon [10].

We start by considering duality with the heterotic string. The heterotic
string compactified on a Calabi-Yau three-fold Z can readily give chiral
fermions. On the other hand, most Calabi-Yau manifolds participate in mir-
ror symmetry. For Z to participate in mirror symmetry means, according to
Strorninger, Yau and Zaslow its moduli space, it is a T 3 flbration (with singu-
larities and monodromies) over a base W. Then, taking the T3 ' s to be small
and using on each fiber the equivalence of the heterotic string on T 3 with M
theory on # 3 , it follows that the heterotic string on Z is dual to M theory on
a seven-manifold X that is K3-fibered over W (again with singularities and
monodromies). X depends on the gauge bundle on Z. Since the heterotic
string on Z is supersymmetric, M-theory on X is likewise supersymmetric,
and hence X is a manifold of G<i holonomy.

The heterotic string on Z will typically have a four dimensional spectrum
of chiral fermions. Since there are many 2Ts that could be used in this
construction (with many possible classes of gauge bundles) it follows that
there are many manifolds of G2 holonomy with suitable singularities to give
nonabelian gauge symmetry with chiral fermions. The same conclusion can
be reached using duality with Type IIA, as many six-dimensional Type IIA
orientifolds that give chiral fermions are dual to M theory on a G2 manifold
[23]

Let us try to use this construction to determine what kind of singularity
X must have. (The reasoning and the result are very similar to that given
in [24] for engineering matter from Type II singularities. In [24] the Dirac
equation is derived directly rather than being motivated - as we will - by
using duality with the heterotic string.) Suppose that the heterotic string on
Z has an unbroken gauge symmetry G, which we will suppose to be simply-
laced (in other words, an A, D, or E group) and at level one. This means
that each KZ fiber of X will have a singularity of type G. As one moves
around in X one will get a family of G-singularities parameterized by W.
If W is smooth and the normal space to W is a smoothly varying family of
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(^-singularities, the low energy theory will be G gauge theory on W x SR3'1

without chiral multiplets. This was the situation studied in sections three
and four. So chiral fermions will have to come from singularities of W or
points where W passes through a worse-than-orbifold singularity of X.

We can use the duality with the heterotic string to determine what kind
of singularities are required. The argument will probably be easier to follow if
we begin with a specific example, so we will consider the case of the Ee x E8

heterotic string with G = SU(5) a subgroup of one of the E^s. Such a
model can very easily get chiral 5's and 10's of 577(5); we want to sec how
this comes about, in the region of moduli space in which Z is T3-fibercd over
W with small fibers, and then we will translate this description to M theory
on X.

Let us consider, for example, the 5's. The commutant of 5£/(5) in Ea
is a second copy of 5f/(5), which we will denote as SU(5)'. Since SU(b)
is unbroken, the structure group of the gauge bundle E on Z reduces from
Ee to SU(§y. Massless fermions in the heterotic string transform in the
adjoint representation of Ee. The"part of the adjoint representation of Ee
that transforms as 5 under 517(5) transforms as 10 under 57/(5)'. So to get
massless chiral 5's of 5(7(5), we must look at the Dirac equation V on Z
with values in the 10 of 5£/(5)'; the zero modes of that Dirac equation will
give us the massless 5's of the unbroken SU(b).

We denote the generic radius of the T 3 fibers as a, and we suppose that
a is much less than the characteristic radius of W. This is the regime of
validity of the argument for duality with M theory on X (and the analysis of
mirror symmetry syz). For small a, we can solve the Dirac equation on Z by
first solving it along the fiber, and then along the base. In other words, we
write V = X>r-f Av , where VT is the Dirac operator along the fiber and Vw

is the Dirac operator along the base. The eigenvalue of T>r gives an effective
"mass" term in the Dirac equation on W. For generic fibers of Z -> W, as
we explain momentarily, the eigenvalues of VT are all nonzero and of order
I /a . This is much too large to be canceled by the behavior of T>w. So zero
modes of V are localized near points in W above which VT has a zero mode.

When restricted to a T 3 fiber, the SU(5)' bundle E can be described as
a flat bundle with monodromies around the three directions in T 3 . In other
words, as in section three, we have three Wilson lines on each fiber. For
generic Wilson lines, every vector in the 10 of 5f/(5)' undergoes non-trivial
"twists" in going around some (or all) of the three directions in T 3 . When
this is the case, the minimum eigenvalue of V? is of order I / a . This is simply
because for a generic flat gauge field on the T3-fibcr there will be no zero
mode.

A zero mode of VT above some point P €W arises precisely if for some
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vector in the 10, the rnonodromies in the fiber are all trivial.
This means that the monodromies lie in the subgroup of 5(7(5)' that

leaves fixed that vector. If we represent the 10 by an antisymmetric 5 x 5
matrix Bl\ i,j = 1 , . . . , 5, then the rnonodrorny-invariant vector corresponds
to an antisymmetric matrix B that has some nonzero matrix element, say
BV1\ the subgroup of SU(b)' that leaves B invariant is clearly then a subgroup
of SU(2) x 5(7(3) (where in these coordinates, SU(2) acts on i, j = 1,2 and
5(7(3) on i,j = 3,4,5). Let us consider the case (which we will soon show
to be generic) that B12 is the only nonzero matrix element of B. If so, the
subgroup of 51/(5)' that leaves B fixed is precisely 5(7(2) x SU(3). There is
actually a distinguished basis in this problem - the one that diagonalizes the
monodromies near P - and it is in this basis that B has only one nonzero
matrix element.

The commutant of SU(2) x 5C/(3) in E8 is 5£/(6). So over the point P ,
the monodromies commute not just with 5(7(5) but with 5(7(6). Everything
of interest will happen inside this SU(6). The reason for this is that the
monodromies at P give large masses to all E% modes except those in the
adjoint of SU (6). So we will formulate the rest of the discussion as if the
heterotic string gauge group were just 5(7(6), rather than E%. Away from
P, the monodromies break 5(7(6) to 5(/(5) x (7(1) (the global structure
is actually (7(5)). Restricting the discussion from Es to 5t/(6) will mean
treating the vacuum gauge bundle as a U(l) bundle (the (7(1) being the
second factor in SU(b) x U{1) C 5f/(6)) rather than an 5t/(5)' bundle.

The fact that, over P , the heterotic string has unbroken 517(6) means
that, in the M theory description, the fiber over P has an 5(7(6) singularity.
Likewise, the fact that away from P, the heterotic string has only 5(7(5) x
(7(1) unbroken means that the generic fiber, in the M theory description,
must contain an 5(7(5) singularity only, rather than an 5C7(6) singularity.
As for the unbroken £/(l), in the M theory description it must be carried
by the C-field. Indeed, over generic points on W there is a non-zero size 5 2

which shrinks to zero size at P in order that the gauge symmetry at that
point increases. Kaluza-KIein reducing C along this 5 2 gives a (7(1).

If we move away from the point P in the base, the vector B in the
10 of SU(b)' is no longer invariant under the rnonodromies. Under parallel
transport around the three directions in T 3 , it is transformed by phases e2*ie*,
j = 1,2,3. Thus, the three Qj must all vanish to make B invariant. As W is
three-dimensional, we should expect generically that the point P above which
the rnonodromies are trivial is isolated. (Now we can see why it is natural
to consider the case that, in the basis given by the monodromies near P,
only one matrix element of B is nonzero. Otherwise, the monodromies could
act separately on the different matrix elements, and it would be necessary
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to adjust more than three parameters to make B invariant. This would be a
less generic situation.) We will only consider the (presumably generic) case
that P is disjoint from the singularities of the fibration Z -4 W. Thus, the
T 3 fiber over P is smooth (as we have implicitly assumed in introducing the
monodromies on T3) .

In [10] we explicitly solved the Dirac equation in a local model for this
situation. We found that the net number of chiral zero modes was one. We
will not have time to describe the details of the solution here.

In summary, before we translate into the M theory language, the chiral
fermions in the heterotic string theory on Z are localised at points on W
over which the Wilson lines in the T3-fibcrs are trivial. In M theory this
translates into the statement that the chiral fermions are localised at points
in W over which the ADE-singularity "worsens". This is also consistent with
what we found in the previous section.

5.2.2 M theory Description.

So we have found a local structure in the heterotic string that gives a net
chirality - the number of massless left-handed 5's minus right-handed 5's
of one. Let us see in more detail what it corresponds to in terms of M-thcory
on a manifold of G2 holonomy.

Here it may help to review the case considered in [24] where the goal was
geometric engineering of charged matter on a Calabi-Yau threefold in Type
IIA. What was considered there was a Calabi-Yau three-fold Rt fibcrcd by
#3 ' s with a base W\ such that over a distinguished point P 6 W there is
a singularity of type O, and over the generic point in W this singularity is
replaced by one of type G - the rank of G being one greater than that of G.
In our example, G = SU(6) and G = 5(7(5). In the application to Type IIA,
although R also has a Kahler metric, the focus is on the complex structure.
For G = 5f/(6), G = 5£/(5), let us describe the complex structure of R near
the singularities. The 5(7(6) singularity is described by an equation xy = z6

- cf section three. Its "unfolding" depends on five complex parameters and
can be written zy = ze -f PI(JJ), where P4(z) is a quartic polynomial in z.
If - as in the present problem - we want to deform the 5(7(6) singularity
while maintaining an 5C/(5) singularity, then we must pick P4 so that the
polynomial z6 + P4 has a fifth order root. This determines the deformation
to be

xy = (z 4- 5c)(* - e)5, (98)

where we interpret e as a complex parameter on the base W. Thus, the
above equation gives the complex structure of the total space R.
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What is described above is the partial unfolding of the SU(6) singular-
ity, keeping an 5(7(5) singularity. In our G2 problem, we need a similar
construction, but we must view the SU(S) singularity as a hyper-Kahler
manifold, not just a complex manifold. In unfolding the 577(6) singularity
as a hyper-Kahler manifold, each complex parameter in P4 is accompanied
by a real parameter that controls the area of an exceptional divisor in the
resolution/deformation of the singularity. The parameters are thus not five
complex parameters but five triplets of real parameters. (There is an 50(3)
symmetry that rotates each triplet. This is the 50(3) rotating the three
kahler forms in section three.)

To get a G2-manifold, we must combine the complex parameter seen
in with a corresponding real parameter. Altogether, this will give a three-
parameter family of deformations of the SU(6) singularity (understood as a
hyper-Kahler manifold) to a hyper-Kahler manifold with an 5f/(5) singular-
ity. The parameter space of this deformation is what we have called W, and
the total space is a seven-manifold that is our desired singular <72-manifold
Ar, with a singularity that produces the chiral fermions that we analyzed
above in the heterotic string language.

To find the hyper-Kahler unfolding of the 5(7(6) singularity that preserves
an 5f/(5) singularity is not difficult, using Kronheimer's description of the
general unfolding via a hyper-Kahler quotient [15] At this stage, we might
as well generalize to SU(N), so we consider a hyper-Kahler unfolding of the
SU(N 4- 1) singularity to give an SU(N) singularity. The unfolding of the
SU(N + l) singularity is obtained by taking a system of N-hl hypermultiplets
$ 0 , $ ! , . . . $ t f with an action of K = U{l)N. Under the ilh U{\) for i =
1 , . . . , JV, $i has charge 1, $$_i has charge —1, and the others are neutral.
This configuration of hypermultiplets and gauge fields is known as the quiver
diagram of SU(N + l) and appears in studying D-branes near the SU(N +1)
singularity We let IH denote IR4, so the hypermultiplets parameterize IHAr+l,
the product of N + 1 copies of IR4. The hyper-Kahler quotient of WN+l by
K is obtained by setting the D-field (or components of the hyper-Kahler
moment map) to zero and dividing by K. It is denoted HN+1//Jir, and is
isomorphic to the SU(N +1) singularity R 4 / Z N 4 1. Its unfolding is described
by setting the D-fields equal to arbitrary constants, not necessarily zero. In
all, there are 3iV parameters m this unfolding - three times the dimension
of K - since for each [/(I), D has three components, rotated by an 50(3)
group of /^-symmetries.

We want a partial unfolding keeping an SU(N) singularity. To describe
this, we keep 3(JV — 1) of the parameters equal to zero and let only the
remaining three vary; these three will be simply the values of D for one of
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the £/(l)'s. To carry out this procedure, we first write K = K1 x U(\)'
(where (7(1)' denotes a chosen U(l) factor of K = U{\)N). Then we take the
hyper-Kahler quotient of (H^^1 by K' to get a hyper-Kahler eight-manifold
X = ¥\N*l//K'> after which we take the ordinary quotient, not the hyper-
Kahler quotient, by U(\)' to get a seven-manifold X = X/U(l)' that should
admit a metric of G^-holonomy. X has a natural map to W — IR3 given by
the value of the D-field of U(l)' - which was not set to zero - and this map
gives the fibration of X by hyper-Kahler manifolds.

In the present example, we can .easily make this explicit. We take U(l)'
to be the "last" 1/(1) in K = 1/(1)", so U(l)' only acts on $N-X and <kN. K'
is therefore the product of the first N - 1 ^( l j ' s ; it acts trivially on $/v, and
acts on $Q, . . . } $ N - I according to the standard quiver diagram of SU(N). So
the hyper-Kahler quotient fH"+l//Jff is just {HN//K')xW, where WfjK' is
the SU(N) singularity, isomorphic to IH/ZN, and H' is parameterized by $ # .
So finally, X will be ((H/ZN x H')/£/(l)'. To make this completely explicit,
we just need to identify the group actions on IH and (H'. If we parameterize
(H and H' respectively by pairs of complex variables (a, b) and (o;,//) then
the ZN action on IH, such that the quotient H / Z N is the SU(N) singularity,
is given by

(99)

while the U{\)' action that commutes with this (and preserves the hyper-
Kahler structure) is

)

The U{\)' action on H' is similarly

(100)

(101)

In all, if we set A = e{^N
} VJX = a*, w2 = b\ w3 = a, wA = 6, then the quotient

(IH/ZN x (H')/[7(l) can be described with four complex variables wi , . . . ,wt
modulo the equivalence

This quotient is a cone on a weighted projective space WCPJ>w t r In fact,
if we impose the above equivalence relation for all nonzero complex A, we
would get the weighted projectivc space itself; by imposing this relation only
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for |A| = 1, we get a cone on the weighted projective space. Note, that the
conical metric of <72-holonomy on this space does not use usual Kahler metric
on weighted projective space.

WCPj N 1 1 has a family of Aw-i-singularities at points (tui,w2,0,0). This
is easily seen by setting A to e2*^'. This set of points is a copy of CP1 = S2.
Our proposed <72-manifold is a cone bver weighted projective space, so it has
a family of A|si_i-singularities which are a cone over this S2. This is of course
a copy of IR3. Away from the origin in IR3 the only singularities are these
orbifold singularities. At the origin however, the whole manifold develops a
conical singularity. There, the 2-sphere, which is incontractible in the bulk of
the manifold, shrinks to zero size. This is in keeping with the anomaly inflow
arguments of the previous section. There we learned that an ADE-singularity
which worsens over a point in W is a good candidate for the appearance of
chiral ferrnions. Here, via duality with the heterotic string, we find that the
conical singularity in this example supports one chiral fermion in the N of
the SU(N) gauge symmetry coming from the AN_I-singularity. In fact, the
[7(1) gauge symmetry from the C-field in this example, combines with the
SU(N) to give a gauge group which is globally U(N) and the fermion is in
the fundamental representation.

Some extensions of this can be worked out in a similar fashion. Consider
the case that away from P , the monodromies break SU(N + 1) to SU(p) x
SU(q) x £/(l), where p + q — N +1. Analysis of the Dirac equation along the
above lines shows that such a model will give chiral fermions transforming
as (p,q) under SU(p) x SU(q) (and charged under the £7(1)). To describe
a dual in M theory on a manifold of G2 holonomy, we let K = K' x £/(l)',
where now Kf = K\ x K2, K\ being the product of the first p — 1 f/(l)'s in
K and K2 the product of the last q - 1, while U{1)' is the pth U[\). Now
we must define X = hN+{ //K1, and the manifold admitting a metric of G2

holonomy should be X/U{1)'.
We can compute X easily, since K\ acts only on $ i , . . . , $p and K2 only

on $p-fi,..., $/v-fi- The hyper-Kahler quotients by K\ and K2 thus simply
construct the SU(p) and SU(q) singularities, and hence X — H/Zp x IH/Zq.
X has planes of Zp and Zq singularities, which will persist in X = X/{/(l) ' ,
which will also have a more severe singularity at the origin. So the model
describes a theory with SU(p) x SU(q) gauge theory and chiral fermions
supported at the origin. U(l)' acts on H/Zp and H/Zq as the familiar global
symmetry that preserves the hyper-Kahler structure of the SU(p) and SU(q)
singularities. Representing those singularities by pairs (a, 6) and (a',67) mod-
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ulo the usual action of Zp and Zq, U(l)' acts by

Now if p and q are relatively prime, we set A = e*^/p9, and we find that
the £/(!)' action on the complex coordinates w\,...tW4 (which arc defined
in terms of a, 6, a', b' by the same formulas as before) is

If p and q are relatively prime, then the U(l)f action, upon taking A to be
a pth or qth root of 1, generates the Z pxZ q orbifolding that is part of the
original definition of X. Hence in forming the quotient X/U{\)\ we need
only to act on the w's by the equivalence relation. The quotient is therefore
a cone on a weighted projective space WCP p p q q . If p and q arc not relatively
prime, we let (p>q) = r(n,m) where r is the greatest common divisor and n
and m are relatively prime. Then we let A — oxp(irip/pq), so the equivalence
relation above is replaced with

(wu W2,w3iw4) -> (Xnwu Xnw2)X
mwZ}X

mw4)

To reproduce X/U(\) we must now also divide by Z r , acting by

(105)

3,^4), (106)

where Cr = 1. So X is a cone on WCPj^^/Zr.

5.3 Other Gauge Groups and Matter Representations.

We now explain how to generalise the above construction to obtain singu-
larities with more general gauge groups and chiral fermion representations.
Suppose that we want to get chiral fermions in the representation R of a
simply-laced group G. This can be achieved for certain representations. We
find a simply-laced group G of rank one more than the rank of G, such that
G contains G x U{\) and the Lie algebra of G decomposes as g 0 o 0 r ® f,
where g and o are the Lie algebras of G and t/(l) , r transforms as R under G
and of charge 1 under U(\), and r transforms as the complex conjugate. Such
a G exists only for special i?'s, and these are the R's that we will generate
from G2 singularities.

Given G, we proceed as above on the heterotic string side. We consider a
family of T3 's , parameterized by W, with monodromy that at a special point
P € W leaves unbroken 6 , and at a generic point breaks G to G x U(l).
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We moreover assume that near P , the monodromies have the same sort of
generic behavior assumed above. Then the same computation as above will
show that the heterotic string has, in this situation, a single muitiplet of
fermion zero modes (the actual chirality depends on the solving the Dirac
equation) in the representation /?, with U(l) charge 1.

Dualizing this to an M theory description, over P we want a G singularity,
while over a generic point in W} we should have a G singularity. Thus,
we want to consider the unfolding of the G singularity (as a hyper-Kahler
manifold) that preserves a G singularity. To do this is quite simple. We start
with the Dynkin diagram of G. The vertices are labeled with integers n$, the
Dynkin indices. In Kronheimer's construction, the G singularity is obtained
as the hyper-Kahler quotient of H* (for some A;) by the action of a group
K = Y\. U(rii). Its unfolding is obtained by allowing the 23-fields of the U(l)
factors (the centers of the Ufa)) to vary.

The G Dynkin diagram is obtained from that of G by omitting one node,
corresponding to one of the Ufa) groups; we write the center of this group
as U{\)'. Then we write K (locally) as K = K1 x [/(I)', where K' is defined
by replacing the relevant Ufa) by SUfa). We get a hyper-Kahler eight-
manifold as the hyper-Kahler quotient X = H * / / ^ . and then we get a
seven-manifold X by taking the ordinary quotient X = X/U(l)'. This maps
to W = IR3 by taking the value of the U(l)' D-field, which was not set to
zero. The fiber over the origin is obtained by setting this 5-field to zero
after all, and gives the original G singularity, while the generic fiber has a
singularity of type G.

One can readily work out examples of pairs <3, G. We will just consider
the cases most relevant for grand unification. For G = SU(N), to get chirai
fields in the antisymmetric tensor representation, G should be S0(2N). For
G = 50(10), to get chirai fields in the 16, G should be E6. For G =
S0[2k)t to get chirai fields in the 2k, G should be S0{2k + 2). (Note
in this case that 2k is a real representation. However, the monodromies
in the above construction break S0(2k -f 2) to S0{2k) x [/(I), and the
massless 2k's obtained from the construction are charged under the (/(I);
under S0(2k) x U(l) the representation is complex.) For 2k = 10, this
example might be used in constructing 50(10) GUT's. For G = E6i to get
27*8, G should be E7. A useful way to describe the topology of X in these
examples is not clear.

In this construction, we emphasized, on the heterotic string side, the
most generic special monodromies that give enhanced gauge symmetry, which
corresponds on the M theory side to omitting from the hyper-Kahler quotient
a rather special U(l) that is related to a single node of the Dynkin diagram.
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We could also consider more general heterotic string monodromies; this would
correspond in M theory to omitting a more general linear combination of the

6. Outlook.

Having gathered all the necessary ingredients we can now briefly describe
how one goes about building a model of particle physics from M theory on a
Gi~manifold, X. First it is natural that X admits a map to a three manifold
W. The generic fibers of the map are all if3-surfaces which have an ADE-
singularity of some fixed type. A4> = 5C/(5) is a promising possibility for
particle physics. This plays the role of the GUT gauge group.

At a finite number of points on X which are also on W) there arc con-
ical singularities of the kind discussed in section five. These support chirai
fermions in various representations of the ADE-gauge group. For instance,
in the case of 5[/(5) we would like to obtain three 5's and three 10's. The
singularities of X should be of the required type.

We then take W to non-simply connected (eg W might be 53 /Zn) . Wilson
lines (or flat connections) of the 517(5) gauge fields can then be used to break
51/(5) to SU(Z)xSU{2)xU(l) - the gauge group of the standard model.

An analysis of some of the basic properties of such models (assuming
suitable X exists) was carried out in [25]. It was found that one of the
basic physical tests of such a model - namely the stability of the proton -
was not problematic. This is because the various families of chirai fermions
originate from different points on X so it is natural for them to be charged
under different discrete symmetries^ These symmetries prevent the existence
of operators which would otherwise mediate the decay of the proton too
quickly. . .>.,.. .,»<-, t., ^

In another direction - namely cosmology - a recent study of string and M
theory compactifications with J\f = 1 has argued (with some assumptions)
that G2-compactifications could give measurable predictions for forthcoming
experiments to measure fluctuations in the cosmic microwave background
[26]. Moreover, these authors also claimed that the other classes of com-
pactifications with supersymmetry gave no foreseeable predictions for these
experiments at all. If correct, these issues deserve a much more detailed ex-
ploration, since then G^-compactifcations are apparently the only context
in which we have any testable predictions coming from string theory or M
theory6.

6Models in the context of 'Braneworlds' and 'large extra dimensions' also offer an
alternative scenario which we are not assessing here.
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