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Abstract

The weather is a chaotic system. Small errors in the initial conditions of a forecast grow rapidly, and affect predictability.
Furthermore, predictability is limited by model errors due to the approximate simulation of atmospheric processes of the state-
of-the-art numerical models.

These two sources of uncertainties limit the skill of single, deterministic forecasts in an unpredictable way, with days of high/
poor quality forecasts randomly followed by days of high/poor quality forecasts.

Two of the most recent advances in numerical weather prediction, the operational implementation of ensemble prediction
systems and the development of objective procedures to target adaptive observations are discussed.

Ensemble prediction is a feasible method to integrate a single, deterministic forecast with an estimate of the probability
distribution function of forecast states. In particular, ensemble can provide forecasters with an objective way to predict the skill
of single deterministic forecasts, or, in other words, to forecast the forecast skill. The European Centre for Medium-Range
Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), based on the notion that initial condition uncertainties are
the dominant source of forecast error, is described.

Adaptive observations targeted in sensitive regions can reduce the initial conditions' uncertainties, and thus decrease forecast
errors. More generally, singular vectors that identify unstable regions of the atmospheric flow can be used to identify optimal
ways to adapt the atmospheric observing system.
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APPENDIX B Projection operators

REFERENCES

1. INTRODUCTION

A dynamical system shows a chaotic behavior if most orbits exhibit sensitive dependence (Lorenz 1993). An orbit
is characterized by sensitive dependence if most other orbits that pass close to it at some point do not remain close
to it as time advances.

FC_0 lOOOhPa Z 1996-12-21 12h fc t+120

FT 24 1 OOChPaZ'996-12-21 I2nfc t+120

F-C_25 1000hPa Z 1996-12-21 12h ic t+120

Analysis 10OOhPa Z 1996-12-26 12h

• J

Figure 1. (a)-(c) Forecast for the geopotential height at 1000 hPa (this field illustrates the atmospheric state close
to the surface) given by three forecasts started from very similar initial conditions, and (d) verifying analysis.

Contour interval is 5 m, with only values smaller than 5 m shown.

The atmosphere exhibits this behavior. Fig. 1 shows three different weather forecasts, all started from very similar
initial conditions. The differences among the three initial conditions were smaller than estimated analysis errors,
and each of the three initial conditions could be considered as an equally probable estimate of the "true" initial state
of the atmosphere. After 5 days of numerical integration, the three forecasts evolved into very different atmospheric
situations. In particular, note the different positions of the cyclone forecast in the Eastern Atlantic approaching
United Kingdom (Fig. 1 (a)-(c)). The first forecast indicated two areas of weak cyclonic circulation west and south
of the British Isles; the second forecast positioned a more intense cyclone southwest of Cornwall, and the third fore-
cast kept the cyclone in the open seas. This latter turned out to be the most accurate when compared to the observed
atmospheric state (Fig. 1 (d). This is a typical example of orbits initially close together and then diverging during
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time evolution.

The atmosphere is an intricate dynamical system with many degrees of freedom. The state of the atmosphere is
described by the spatial distribution of wind, temperature, and other weather variables (e.g. specific humidity and
surface pressure). The mathematical differential equations describing the system time evolution include Newton's
laws of motion used in the form 'acceleration equals force divided by mass', and the laws of thermodynamics
which describe the behavior of temperature and the other weather variables. Thus, generally speaking, there is a
set of differential equations that describe the weather evolution, at least, in an approximate form.

Richardson (1922) can be considered the first to have shown that the weather could be predicted numerically. In
his work, he approximated the differential equations governing the atmospheric motions with a set of algebraic dif-
ference equations for the tendencies of various field variables at a finite number of grid points in space. By extrap-
olating the computed tendencies ahead in time, he could predict the field variables in the future. Unfortunately, his
results were very poor, both because of deficient initial data, and because of serious problems in his approach.

After World War II the interest in numerical weather prediction revived, partly because of an expansion of the me-
teorological observation network, but also because of the development of digital computers. Charney (1947,1948)
developed a model applying an essential filtering approximation of the Richardson's equations, based on the so-
called geostrophic and hydrostatic equations. In 1950, an electronic computer (ENIAC) was installed at Princeton
University, and Charney, Fj0rtoft and Von Neumann & Ritchmeyer (1950) made the first numerical prediction us-
ing the equivalent barotropic version of Charney's model. This model provided forecasts of the geopotential height
near 500 hPa, and could be used as an aid to provide explicit predictions of other variables as surface pressure and
temperature distributions. Charney's results led to the developments of more complex models of the atmospheric
circulation, the so-called global circulation models.

With the introduction of powerful computers in meteorology, the meteorological community invested more time
and efforts to develop more complex numerical models of the atmosphere. One of the most complex models used
routinely for operational weather prediction is the one implemented at the European Centre for Medium-Range
Weather Forecasts (ECMWF). At the time of writing (December 1999), its is based on a horizontal spectral trian-
gular truncation T319 with 60 vertical levels formulation (Simmons et al. 1989, Courtier et al. 1991, Simmons et
al. 1995). It includes a parameterization of many physical processes such as surface and boundary layer processes
(Viterbo & Beljaars 1995) radiation (Morcrette 1990), and moist processes (Tiedtke 1993, Jacob 1994).

The starting point, in mathematical terms the initial conditions, of any numerical integration is given by very com-
plex assimilation procedures that estimate the state of the atmosphere by considering all available observations.
The fact that a limited number of observations are available (limited compared to the degrees of freedom of the
system) and that part of the globe is characterized by a very poor coverage introduces uncertainties in the initial
conditions. The presence of uncertainties in the initial conditions is the first source of forecast errors.

A requirement for skilful predictions is that numerical models are able to accurately simulate the dominant atmos-
pheric phenomena. The fact that the description of some physical processes has only a certain degree of accuracy,
and the fact that numerical models simulate only processes with certain spatial and temporal, is the second source
of forecast errors. Computer resources contribute to limit the complexity and the resolution of numerical models
and assimilation, since, to be useful, numerical predictions must be produced in a reasonable amount of time.

These two sources of forecast errors cause weather forecasts to deteriorate with forecast time.

Initial conditions will always be known approximately, since each item of data is characterized by an error that de-
pends on the instrumental accuracy. In other words, small uncertainties related to the characteristics of the atmos-
pheric observing system will always characterize the initial conditions. As a consequence, even if the system
equations were well known, two initial states only slightly differing would depart one from the other very rapidly
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as time progresses (Lorenz 1965). Observational errors, usually in the smaller scales, amplify and through non-
linear interactions spread to longer scales, eventually affecting the skill of these latter ones (Somerville 1979).

The error growth of the 10-day forecast of the ECMWF model from 1 December 1980 to 31 May 1994 was ana-
lyzed in great detail by Simmons et al. (1995). It was concluded that 15 years of research had improved substan-
tially the accuracy over the first half of the forecast range (say up to forecast day 5), but that there had been little
error reduction in the late forecast range. While this applied on average, it was also pointed out that there had been
improvements in the skill of the good forecasts. In other words, good forecasts had higher skill in the nineties than
before. The problem was that it was difficult to assess a-priori whether a forecast would be skilful or unskillful us-
ing only a deterministic approach to weather prediction.

Linear regime I Non-linear regime

Figure 2. The deterministic approach to numerical weather prediction provides one single forecast (blue line) for
the "true" time evolution of the system (red line). The ensemble approach to numerical weather prediction tries to

estimate the probability density function of forecast states (magenta shapes). Ideally, the ensemble probability
density function estimate includes the true state of the system as a possible solution.

Generally speaking, a complete description of the weather prediction problem can be stated in terms of the time
evolution of an appropriate probability density function (PDF) in the atmosphere's phase space (Fig. 2 ). Although
this problem can be formulated exactly through the continuity equation for probability (Liouville equation, see e.g.
Ehrendorfer 1994), ensemble prediction based on a finite number of deterministic integrations appears to be the
only feasible method to predict the PDF beyond the range of linear error growth. Ensemble prediction provided a
way to overcome one of the problems highlighted by Simmons et al. (1995), since it can be used to estimate the
forecast skill of a deterministic forecast, or, in other words, to forecast the forecast skill.

Since December 1992, both the US National Center for Environmental Predictions (NCEP, previously NMC) and
ECMWF have integrated their deterministic high-resolution prediction with medium-range ensemble prediction
(Tracton & Kalnay 1993, Palmer et al. 1993). These developments followed the theoretical and experimental work
of, among others, Epstein (1969), Gleeson (1970), Fleming (1971a-b) and Leith (1974).

Both centres followed the same strategy of providing an ensemble of forecasts computed with the same model, one
started with unperturbed initial conditions referred to as the "control" forecast and the others with initial conditions
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defined adding small perturbations to the control initial condition. Generally speaking, the two ensemble systems
differ in the ensemble size, in the fact that at NCEP a combination of lagged forecasts is used, and in the definition
of the perturbed initial. The reader is referred to Toth & Kalnay (1993) for the description of the 'breeding' method
applied at NMC and to Buizza & Palmer (1995) for a thorough discussion of the singular vector approach followed
at ECMWE

A different methodology was developed few years later at the Atmospheric Environment Service (Canada), where
a system simulation approach was followed to generate an ensemble of initial perturbations (Houtekamer et al.
1996). A number of parallel data assimilation cycles is run randomly perturbing the observations, and using differ-
ent parameterisation schemes for some physical processes in each run. The ensemble of initial states generated by
the different data assimilation cycles defines the initial conditions of the Canadian ensemble system. Moreover,
forecasts started from such an ensemble of initial conditions are used to estimate forecast-error statistics (Evensen
1994, Houtekamer & Mitchell 1998).

Ensemble prediction, which can be considered one of the most recent advances in numerical weather prediction, is
the first topic discussed in this work. The development of objective procedures to target adaptive observations is
the second topic on which attention will be focused.

The idea of targeting adaptive observations is based on the fact that weather forecasting can be improved by adding
extra observations only in sensitive regions. These sensitive regions can be identified using tangent forward and
adjoint versions of numerical weather prediction models (Thorpe et al. 1998, Buizza & Montani 1999). Once the
sensitive regions have been localised, instruments can be sent to those locations to take the required observations
using pilot-less aircraft, or energy-intensive satellite instruments can be switched on to sample them with greater
accuracy.

After this Introduction, section 2 describes some early results by Lorenz, and illustrates the chaotic behavior of a
simple 3-dimension system. In section 3 the main steps of numerical weather prediction are delineated. The impact
of initial condition and model uncertainties on numerical integration is discussed in section 4. The ECMWF En-
semble Prediction System is described in section 5. Targeting adaptive observations using singular vectors is dis-
cussed in section 6. Some conclusions are reported in section 7. Some mathematical details are reported in two
Appendices.

2. THE LORENZ SYSTEM

One of the fathers of chaos theory is Edward Lorenz (1963, 1965). Results from the 3-dimentional Lorenz system

X = -

Y =-XY + rX-Y ^ )

Z = XY-bZ

illustrate the dispersion of finite time integrations from an ensemble of initial conditions (Fig. 3 ). The different
initial points can be considered as estimates of the "true" state of the system (which can be thought of as any point
inside ellipsoid), and the time evolution of each of them as possible forecasts. Subject to the initial "true" state of
the system, points close together at initial time diverge in time at different rates. Thus, depending on the point cho-
sen to describe the system time evolution, different forecasts are obtained.

The two wings of the Lorenz attractor can be considered as identifying two different weather regimes, for example
one warm and wet and the other cold and sunny. Suppose that the main purpose of the forecast is to predict whether
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the system is going through a regime transition. When the system is in a predictable initial state (Fig. 3 (a)), the
rate of forecast diverge is small, and all the points stay close together till the final time. Whatever the point chosen
to represent the initial state of the system, the forecast is characterised by a small error, and a correct indication of
a regime transition is given. The ensemble of points can be used to generate probabilistic forecasts of regime tran-
sitions. In this case, since all points end in the other wing of the attractor, there is a 100% probability of regime
transition.

Figure 3. Lorenz attractor with superimposed finite-time ensemble integration.

By contrast, when the system is in a less predictable state (Fig. 3 (b)), the points stay close together only for a short
time period, and then start diverging. While it is still possible to predict with a good degree of accuracy the future
forecast state of the system for a short time period, it is difficult to predict whether the system will go through a
regime transition in the long forecast range. Fig. 3 (c) shows an even worse scenario, with points diverging even
after a short time period, and ending in very distant part of the system attractor. In probabilistic terms, one could
have only predicted that there is a 50% chance of the system undergoing a regime transition. Moreover, the ensem-
ble of points indicates that there is a greater uncertainty in predicting the region of the system attractor where the
system will be at final time in the third case (Fig. 3 (c)).

The comparison of the points' divergence during the three cases indicates how ensemble prediction systems can be
used to "forecast the forecast skill". In the case of the Lorenz system, a small divergence is associated to a predict-
able case, and confidence can be attached to any of the single deterministic forecasts given by the single points. By
contrast, a large diverge indicate low predictability.
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ECMWF ensemble forecast - Air temperature
Date: 26/06/1995 London Lat: 51.5 Long: 0
« » * * * Control " • • • " Analysis Ensemble

4 5 6
Forecast day

ECMWF ensemble forecast - Air temperature
Date: 26/06/1994 London Lat: 51.5 Long: 0

* - Control • • • • • • • Analysis Ensemble

4 5 6
Forecast day

Figure 4. ECMWF forecasts for air temperature in London started from (a) 26 June 1995 and (b) 26 June 1994.

Similar sensitivity to the initial state is shown in weather prediction. Fig. 4 shows the forecasts for air temperature
in London given by 33 different forecasts started from very similar initial conditions for two different dates, the
26th of June of 1995 and the 26th of June 1994. There is a clear different degree of divergence during the two cases.
All forecasts stay close together up to forecast day 10 for the first case (Fig. 4 (a)), while they all diverge already
at forecast day 3 in the second case (Fig. 4 (b)). The level of spread among the different forecasts can be used as a
measure of the predictability of the two atmospheric states.

3. NUMERICAL WEATHER PREDICTION

Numerical weather prediction is realised by integrating primitive-equation models. The equations are solved by re-
placing time-derivatives by finite differences, and spatially either by finite difference schemes or spectral methods.
The state of the atmosphere is described at a series of grid-points by a set of state variables such as temperature,
velocity, humidity and pressure.

At the time of writing (December 1999) the ECMWF high-resolution deterministic model has a spectral triangular
truncation TL319, which is equivalent to a grid-point spacing of about 60 km at mid-latitudes (Fig. 5 ) and 60 ver-
tical levels (Fig. 6 ).
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Figure 5. Grid-points over Europe of the ECMWF model.

0.1 i

500
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Figure 6. Vertical levels of the ECMWF model.
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Figure 7. Type and number of observations used to estimate the atmosphere initial conditions in a typical day.

Data Coverage (o_suite) - TEMP 1200 UTC 970217 Total number of obs = 558

1S0cW 120"W 90cW

Figure 8. Map of radiosonde locations.

Meteorological observations made all over the world (Fig. 7 ) are used to compute the best estimate of the system
initial conditions. Some of these observations, such as the ones from weather balloons or radiosondes, are taken at
specific times at fixed locations (Fig. 8). Other data, such as the ones from aircrafts, ships or satellites, are not fixed
in space. Generally speaking, there is a great variability in the density of the observation network. Data over oce-
anic regions, in particular, are characterised by very coarse resolution.

Observations cannot be used directly to start model integration, but must be modified in a dynamically consistent
way to obtain a suitable data set. This process is usually referred to as data assimilation. At the time of writing (De-
cember 1999), ECMWF uses a 4-dimensional data assimilation scheme to estimate the actual state of the atmos-
phere (Courtier et al. 1994).

In the ECMWF model, dynamical quantities as pressure and velocity gradients are evaluated in spectral space,
while computations involving processes such as radiation, moisture conversion, turbulence, are calculated in grid-
point space. This combination preserves the local nature of physical processes, and retains the superior accuracy
of the spectral method for dynamical computation.

The physical processes associated with radiative transfer, turbulent mixing, moist processes, are active at scales
smaller than the horizontal grid size. The approximation of unresolved processes in terms of model-resolved vari-
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ables is referred to as parameterisation (Fig. 9 ). The parameterisation of physical processes is probably one of the
most difficult and controversial area of weather modelling (Holton 1992).

SUBGRIO-SCALE
OR0GRAPHJC DRAG

O3CH

Figure 9. Schematic diagram of the different physical processes represented in the ECMWF model.

4. SOURCES OF FORECAST ERROR

It has been already mentioned that uncertainties in the initial conditions and in the model are both sources of fore-
cast error. Some indications of the relative importance of the two sources can be deduced from the works of Down-
ton & Bell (1988) and Richardson (1998), who compared forecasts given by the UKMO (United Kingdom
Meteorological Office) and the ECMWF forecasting systems. In these studies, substantial forecast differences be-
tween the ECMWF and the UKMO operational forecasts could mostly be traced to differences between the two
operational analyses, rather than between the two forecast models. On the other hand, recent results from Harrison
et al. (1999) indicate that the impact of model uncertainties on forecast error cannot be ignored.

These results suggest that an ensemble system should certainly simulate the presence of uncertainties in the initial
conditions, since this is the dominant effect, but it should also simulate model uncertainties.

The first version of the ECMWF Ensemble Prediction System (hereafter EPS, Palmer et al. 1993, Molteni et al.
1996) implemented operationally in December 1992 included only a simulation of initial uncertainties. A similar
"perfect model" strategy was followed at the US National Centers for Environmental Prediction (NCEP, Tracton
& Kalnay 1993).

Houtekamer et al. (1996) first included model uncertainties in the ensemble prediction system developed at the At-
mospheric Environment Service in Canada. Following a system simulation approach to ensemble prediction, they
developed a procedure where each ensemble member differs both in the initial conditions, and in sub-grid scale
parameters. In this approach, each ensemble member is integrated using different parameterizations of horizontal
diffusion, convection, radiation, gravity wave drag, and with different orography.
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There are certainly good grounds for believing that there is a significant source of random error associated with the
parameterized physical processes. For example, consider a grid point over the tropical warm pool area during a
period of organized deep convection. By definition, the actual contributions to the tendencies due to parameterized
physical processes are often associated with organized mesoscale convective systems whose spatial extent may be
comparable with the model resolution. In such a case, the notion of a quasi-equilibrium ensemble of sub-grid-scale
processes, upon which all current parameterizations schemes are based, cannot be a fully-appropriate concept for
representing the actual parameterized heating (Palmer 1997). For example, even if the parameterized heating fields
agree on average (i.e. over many time steps) at the chosen grid point, there must inevitably be some standard devi-
ation in the time-step by time-step difference between observed and modeled heating.

Since October 1998, a simple stochastic scheme for simulating random model errors due to parameterized physical
processes has been used in the ECMWF EPS (Buizza et al. 1999). The scheme is based on the notion that the sort
of random error in parameterized forcing are coherent between the different parameterization modules, and have
certain coherence on the space and time scales associated, for example, with organized convection schemes. More-
over, the scheme assumes that the larger the parameterized tendencies, the larger the random error component will
be. The notion of coherence between modules allows the stochastic perturbation to be based on the total tendency
from all parameterized processes, rather than on the parameterized tendencies from each of the individual modules.
In this respect the ECMWF scheme differs conceptually from that of Houtekamer et al. (1996). More details about
the scheme are reported in the following section.

5. THE ECMWF ENSEMBLE PREDICTION SYSTEM

Routine real-time execution of the ECMWF EPS started in December 1992 with a 31-member T63L19 configura-
tion (spectral triangular truncation T63 and 19 vertical levels, Palmer et al. 1993, Molteni et al. 1996). A major
upgrade to a 51-member TL159L31 system (spectral triangular truncation T159 with linear grid) took place in 1996
(Buizza et al. 1998). A scheme to simulate model uncertainties due to random model error in the parameterized
physical processes was introduced in 1998.

5.1 The original EPS configuration

Schematically, each ensemble member ej was defined by the time integration

ej(t) = J [A(ej9t) + P{ej,t)]dt (2)
t=o

of the model equations

-^ = A(ej,t) + P(ej,t) (3)

starting from perturbed initial conditions

e,.(* = 0) = eo(* = O) + 8e,(* = O) (4)

where A and P identify the contribution to the full equation tendency of the non-parameterized and parameterized
physical processes, and where eo(t = 0) is the operational analysis at t = 0.

The initial perturbations 8ej(t = 0) were generated using the singular vectors of the linear version of the ECMWF,
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computed to maximize the total energy norm over a 48-hour time interval (Buizza & Palmer 1995), and scaled to
have an amplitude comparable to analysis error estimates.

The singular vectors of the tangent forward propagator sample the phase space directions of maximum growth dur-
ing a 48-hour time interval. Small errors in the initial conditions along these directions would amplify most rapidly,
and affect the forecast accuracy. The reader is referred to Appendix A for a more complete mathematical definition
of the singular vectors.

Fig. 10 illustrates the typical structure of the leading singular vector used to generate the ensemble of initial per-
turbations for 17 January 1997. Total energy singular vectors are usually located in the lower troposphere at initial
time, with total energy peaking at between around 700 hPa (i.e. around 3000 m), in regions of strong barotropic
and baroclinic energy conversion (Buizza & Palmer 1995). During their growth, they show an upscale energy trans-
fer and upward energy propagation. Results have indicated a very good agreement between the regions where sin-
gular vectors are located and other measures of baroclinic instability such as the Eady index introduced by Hoskins
& Valdes (1990). This is shown in Fig. 11 for the case of 17 January 1997. The reader is referred to Hoskins et al.
(1999) for recent investigations on singular vector growth mechanisms.

SV_1 (T)/Z SOOhPa 1997-01 -18 12h SV. 1 <T)/Z 500hPa 1997-01 -20 12h

Figure 10. Most unstable singular vector growing between 17 and 19 January 1997 at initial (left panels) and final
(right panels) times. The top panels show the singular vector temperature component (shaded blue/green for

negative and shaded yellow/red for positive values) and the atmospheric state (geopotential height) at 500 hPa (i.e.
approximately at 5000 m). Bottom panels are as top panels but for 700 hPa (i.e. approximately at 3000 m).

Contour interval is 8 dam for geopotential height, and 0.2 degrees for temperature at initial time and 1.0 degree at
final time.
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Eady Index 1997-01-18/20

EPS SOOhPa Z 1997-01 -18 12h fc t+24

Figure 11. Eady index (top panel) and location of the leading singular vectors identified by the root-mean-square
amplitude of the EPS perturbations at forecast day 1 (bottom panel) for the case of 17 January 1997. Contour

interval is 1 day-1 for the Eady index, and 1 m for the EPS perturbation amplitude.

Until 26 March 1998, the EPS initial perturbations were computed to sample instabilities growing in the forecast
range, and no account was taken of perturbations that had grown during the data assimilation cycle leading up to
the generation of the initial conditions (Molteni et al. 1996).

A way to overcome this problem is to use singular vectors growing in the past, and evolved to the current time.

The 50 perturbed initial conditions were generated by adding and subtracting 25 perturbations defined using 25
singular vectors selected from computed singular vectors so that they do not overlap in space. The selection criteria
were that the leading 4 singular vectors are always selected, and that subsequent singular vectors are selected only
if less than 50% of their total energy cover a geographical region where already 4 singular vectors are located.

Once the 25 singular vectors were selected, an orthogonal rotation in phase-space and a final re-scaling were per-
formed to construct the ensemble perturbations. The purpose of the phase-space rotation is to generate perturba-
tions with the same globally averaged energy as the singular vectors, but smaller local maxima and a more uniform
spatial distribution. Moreover, unlike the singular vectors, the rotated singular vectors are characterized by similar
amplification rates (at least up to 48 hours). Thus, the rotated singular vectors diverge, on average, equally from
the control forecast. The rotation is defined to minimize the local ratio between the perturbation amplitude and the
amplitude of the analysis error estimate given by the ECMWF data assimilation procedure. The re-scaling allowed
perturbations to have local maxima up to a = */(X6 larger than the local maxima of the analysis error estimate.

A way to take into account perturbations growing during the data assimilation period was to generate the EPS initial
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perturbation using two sets of singular vectors. In mathematical terms, since 26 March 1998 (Barkmeijer et al.
1999a) the day d initial perturbations have been generated using both the singular vectors growing in the forecast
range between day d and day d + 2 at initial time, and the singular vectors that had grown in the past between
day d - 2 and day d at final time

25

5e .(t = 0) = ^ [a, jVj' + (t = 0) + Pj ,v^ ~2' (£=48h)] (5)
i = 1

where vt'
 +2(t = 0) is the i-th singular vector growing between day d and d+2 at time t=0. The coefficients aij

and bi,j set the initial amplitude of the ensemble perturbations, and are defined by comparing the singular vectors
with estimates of analysis errors (Molteni et al, 1996). Since 26 March 1998, the selection criteria has been kept
as before, but a new scaling factor a = J05 has been used.

The initial perturbations are specified in terms of the spectral coefficients of the 3-dimensional vorticity, divergence
and temperature fields (no perturbations are defined for the specific humidity since the singular vector computation
is performed with a dry linear forward/adjoint model), and of the 2-dimensional surface pressure field. They are
added and subtracted to the control initial conditions to define perturbed initial conditions. Then, 50+1 (control)
10-day TL159L31 non-linear integrations are performed.

With the current ECMWF computer facilities, each day the whole EPS (10-day integration, 51 members at
TL159L40 with T42L40 singular vectors computed for the Northern and the Southern Hemispheres) takes approx-
imately 150 hours of total computing time (about 10% of this time is used to compute the initial perturbations). By
contrast, the high resolution TL319L60 deterministic forecast (10-day integration) takes about 40 hours, and the
data assimilation procedure used to generate the unperturbed initial conditions takes about 120 hours (4 cycles per
day, once every 6 hours).

5.2 The new EPS configuration

In October 1998, a scheme to simulate random model errors due to parameterized physical processed was intro-
duced (Buizza et al. 1999). This scheme can be considered as a simple first attempt to simulated random model
errors due to parametrized physical processes. It is based on the notion that random errors due to parametrized
physical processes are coherent between the different parametrization modules and have a certain coherence on the
space and time scales represented by the model. The scheme assumes that the larger the parametrized tendencies,
the larger the random error component.

In the new EPS, each ensemble member e^ can be seen as the time integration

t

ej(t) = J [A(ep t) + P/(ej, t)] dt (6)

of the perturbed model equations

- ^ = A{ej,t) + P/(ej,t) (7)

starting from the perturbed initial conditions defined in Eq. (1), where A and Pf identify the contribution to the
full equation tendency of the non-parameterized and parameterized physical processes. For each grid point
x = (X, <|>, a) (identified by its latitude, longitude and vertical hybrid coordinate), the perturbed parameterized
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tendency (of each state vector component) is defined as

(8)

where P is the unperturbed diabatic tendency, and (*--)z)y? indicates that the same random number rj has been
used for all grid points inside a Dx D degree box and over T time steps.

The notion of space-time coherence assumes that organized systems have some intrinsic space and time-scales that
may span more than one model time step and more than one model grid point. Making the stochastic uncertainty
proportional to the tendency is based on the concept that organization (away from the notion of a quasi-equilibrium
ensemble of sub-grid processes) is likely to be stronger, the stronger is the parameterized contribution. A certain
space-time correlation is introduced in order to have tendency perturbations with the same spatial and time scales
as observed organization.

No spatial scale
30°W 20°W 10°W 0° 10°E 20°E 30°E

30°W 20°W 10°W 0° 10°E 20°E 30°E

5x5 cleg spatial scale
30°W 20°W 10°W 0° 10°E 20°E 30°E

30°W 20°W 10DW 0° 10°E 20°E 30°E

BLUE crosses: minimum DTp values
GREEN diamonds: DTp values around 1.00
RED full squares: maximum DTp values

Figure 12. Random numbers used to perturb the tendencies due to parameterised physical processes. The top
panel shows the case of no spatial scale, in other words when different random numbers are used at each grid-

point. The bottom panel shows the case when the same random number was used for grid-points inside 5-degree
boxes. Blue crosses identify grid-points with random numbers -0.5 < r| < -0.3 , green diamonds points with

-0.1 < r\ < 0.1, and red squares points with 0.3 < T] < 0.5 .

Fig. 12 shows a map of the random numbers used in a configuration tested when developing the so-called stochas-
tic physics scheme. Fig. 12 (a) shows the matrix of random numbers rj when each grid-point was assigned an in-
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dependent value, while Fig. 12 (b) shows the matrix when the same random number was used inside 5 degree
boxes. Results indicated that even perturbations without any spatial structure (i.e. with random numbers as in Fig.
12 (a)) had a major impact on 10-day model integrations (Buizza etal. 1999).

After an extensive experimentation, it was decided to implement in the operational EPS the stochastic physics
scheme with random numbers sampled uniformly in the interval [-0.5, 0.5], a 10 degrees box size (D = 10), and
a 6 hours time interval (T = 6).

6. TARGETED OBSERVATIONS

Consider a meteorological system evolving between time t0 and t, localised at final time t inside a geographical
area Ê  (hereafter verification area). Suppose that extra observations could be taken inside a geographical area Eo

at initial time t0 (hereafter target area), with the purpose of improving the time t forecast inside Z.

Singular vectors with maximum energy at final time inside a verification area can be used to identify the target area
where extra observation should be taken, at initial time, to reduce the forecast error inside the verification area itself
(Buizza & Montani 1999). The reader is referred to Appendices A and B for a more complete description of the
mathematical formulation.

Other strategies can be used to target adaptive observations. Langland & Rohaly (1996), following the work of Ra-
bier et al. (1996) on sensitivity vectors, proposed to use the lower tropospheric vorticity of the forecast state as cost
function, and to target the region where the sensitivity field is maximum. A similar technique, but based on the use
of a quasi-inverse linear model, was proposed by Pu et al. (1997, 1998). Bishop & Toth (1998) introduced the En-
semble Transform technique, in which linear combinations of ensemble perturbations are used to estimate the pre-
diction error variance associated with different possible deployments of observational resources. Finally, following
Hoskins et al. (1985) and Appenzeller et al. (1996), a more subjective strategy based on the use of potential vorti-
city to analyse atmospheric was also developed.

All these techniques were applied to target observations for the first time during FASTEX, the Fronts and Atlantic
Storm Track Experiment (Joly et al 1996, Thorpe & Shapiro 1995, Snyder 1996).

The focus of the FASTEX campaign was the extra-tropical cyIonic storms that form over the western and mid At-
lantic Ocean, and take about 2 days to develop and move towards Europe. Forecast failures are often associated
with these very active atmospheric phenomena.

Fig. 13 shows the tracks of one of the storms observed during FASTEX, IOP 17 (IOP stands for Intensive Obser-
vation Period), and the location of various aircrafts that made additional observations between 17 and 19 February
1997 (Montani et al. 1999). Singular vectors, computed to have maximum total energy inside a verification region
centred on the British Isles, were used to identify the most sensitive regions where observations were made. The
comparison of the central pressure of two forecasts, one started from initial conditions computed with and one
without the extra observations, with the observed value (Fig. 14 ) indicates that additional, targeted observations
can improve the forecast accuracy. Fig. 15 shows the average impact of the targeted observations on the forecast
error. Results indicated up to 20% forecast error reduction.
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FASTEX IOP17 LOW41 15Z 17/02/97-15Z 19/02/97

30°N

60°W

Figure 13. Map summarising the extra observations taken during the FASTEX experiment for IOP 17. The black
track identifies the location of the cyclone minimum pressure, the coloured tracks the aircraft missions, and the

red symbols additional radio-soundings (from Montani et al. 1999).

Timeseries of meansealevel pressure
Initial time: 18Z, 17 February 1997

o o analysis
- w control forecast

perturbed forecast

12 18 24 30
forecast time (hrs)

36 42

Figure 14. 6-hourly time series of the cyclone central pressure forecast without (blue dash line) and with (red
dotted line) extra observations, and observed (black solid line), for IOP 17 (from Montani et al. 1999).
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°0 10 20 30 40 50 60
With Dropsondes (rms error in metres)

Figure 15. Scatter plot of the mean forecast errors with (x-axis) and without (y-axis) the extra observations, for
the 500 and 1000 hPa geopotential height fields over Europe and North Atlantic at forecast day 2, 2.5 and 3 (from

Montani et al. 1999).

Following the FASTEX campaign, other experiments were performed (e.g. NORPEX, the North Pacific Experi-
ment, CALJET, the California Land-falling Jets experiments). All results confirmed that taking extra observations
in sensitive regions could reduce forecast errors.

Robotic aerosondes capable of long-range monitoring could be used operationally in a very near future to fill chron-
ic gaps in the global upper-air sounding network (Holland et al. 1992), and take extra observations in objectively
identified regions. This follows years of intensive research at the Bureau of Meteorology of Melbourne, Australia,
that culminated with the first-ever unmanned aircraft crossing of the Atlantic Ocean in August 1998 (http://
www.aerosonde.com/opshist.htm).

7. SUMMARY AND FUTURE DEVELOPMENTS

Two of the most important advances in numerical weather prediction of the last 10 years, the operational imple-
mentation of ensemble prediction systems and the development of objective techniques to target adaptive observa-
tions, have been discussed.

Ensemble systems provide a possible way to estimate the probability distribution function of forecast states. They
have been developed following the notion that uncertainties in the initial conditions and in the model formulation
are the main sources of forecast errors. Results have demonstrated that a probabilistic approach to weather predic-
tion can provide more information than a deterministic approach based on a single, deterministic forecast.

Ensemble prediction systems are particularly useful, if not necessary, to provide early warnings of extreme weather
events. For example, ensemble systems can be used to predict probabilities of intense precipitation events (Fig. 16
). Global ensemble systems can be used to provide boundary and initial conditions for higher-resolution, limited
area ensemble prediction systems (Molteni et al. 1999, Marsigli et al. 1999).
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CONFC: 1994-11-01 12hfc»+12O 24H OBSERVED PRECIP 1994-11-05/06

Figure 16. High-resolution TL319L31 forecasts for the flood in Piemonte, Italy, 5-6 November 1994. (a)
Precipitation forecast, accumulated between t+96 h and t+120 h, predicted by the control forecast, (b) Observed

precipitation field, (c) Ensemble probability forecast of more than 20 mra/d of precipitation, (d) Ensemble
probability forecast of more than 40 mm/d of precipitation. Contour isolines 2, 20, 40 and 100 mm/d for

precipitation, and every 20% for probabilities.

At ECMWF, work is in progress in many different areas to further improve the current ensemble prediction system.

Linearized versions of the most important physical processes have been developed (Mahfouf 1999), and investiga-
tion into the behaviour of the linear models in the computation of tropical singular vectors has started. The tropical
target area has been chosen because the current EPS lacks perturbations of the initial condition in this area, where
moist processes are of key importance. Results (Barkmeijer et al. 1999b, Puri et aL 1999) indicate that the inclusion
of tropical singular vectors is essential in cases of hurricane prediction. Results indicate that tropical singular vec-
tors are needed to generate a realistic spread among the ensemble of hurricane tracks.

The operational initial perturbations of the ECMWF EPS are constructed using singular vectors with maximum
total energy growth. Total energy singular vectors have no knowledge of analysis error statistics. Generally speak-
ing, it would be desirable to use information about analysis error characteristics in the singular vector computation.
One way of improving upon this is to use in the singular vector computation statistics generated by the data assim-
ilation system. Work is in progress to use the Hessian of the cost function of the 3-dimensional (or 4-dimensional)
variational assimilation system (3D/4D-Var) to define singular vectors (Barkmeijer et al. 1998). These so-called
Hessian singular vectors are constrained at initial time by analysis error statistics but still produce fast perturbation
growth during the first few days of the forecast.

Work is in progress to investigate whether a so-called consensus analysis, defined as the average of analyses pro-
duced by different weather centres, is a better estimate of the atmospheric initial state than the ECMWF analysis
(Richardson, 1999, personal communication). The operational EPS configuration has been run from the consensus
analysis, average of the ECMWF, UKMO (UK Meteorological Office), Meteo-France, NCEP (National Centers
for Environmental Prediction, Washington) and DWD (Deutscher WetterDienst, Offenbach) analyses. The same
perturbations as used in the operational EPS have been added to the consensus analysis to create the 50 perturbed
initial conditions. Preliminary results show that the skill of the control forecast is improved if the consensus anal-
ysis is used instead of the ECMWF analysis as the unperturbed initial condition. Results also indicate that the dif-
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ference between the spread in the two systems is rather small, while the ensemble-mean forecast of the system
started from the consensus analysis is more skilful.

Experimentation has started to verify whether a resolution increase from Tl 159 to T1255, and from 31 to 60 vertical
levels would improve the EPS performance. Preliminary studies of the impact of an increase in horizontal resolu-
tion indicate that precipitation prediction improves substantially as resolution increases.

Finally, an ensemble approach to data assimilation is under test. Following Houtekamer et al. (1996), but with the
ECMWF approach to represent model uncertainties, work has started at ECMWF to generate an ensemble of initial
perturbations using the ECMWF 3D/4D-Var data assimilation. The purpose of this work is to investigate whether
a better estimate of the "true" state of the atmosphere can be computed using this probabilistic approach.

8. CONCLUSION

The weather is a chaotic system, and numerical weather prediction is a very difficult task.

This work has demonstrated that the application of linear algebra (i.e. the use of singular vectors computed by solv-
ing an eigenvalue problem defined by the tangent forward and adjoint versions of the model) to meteorology can
help in designing new ways to numerical weather prediction (Buizza 1997).

The same technique can be applied to any dynamical system, in particular to very complex systems with a large
dimension. The basic idea is that there are only few, important directions of the phase-space of any system along
which the most important processes occur. A successful prediction of the system time evolution should sample
these directions, and describe the system evolution along them.

9. ACKNOWLEDGEMENTS

The ECMWF Ensemble Prediction System is the result of the work of many ECMWF staff members and consult-
ants. It is based on the Integrated Forecasting System/Arpege software, developed in collaboration by ECMWF and
Meteo-France. The work of many ECMWF and Meteo-France staff and consultants is acknowledged. I am grateful
to Robert Hine for all his editorial help.

APPENDIX A SINGULAR VECTOR DEFINITION

Farrell (1982), studying the growth of perturbations in baroclinic flows, showed that, although the long time as-
ymptotic behavior is dominated by discrete exponentially growing normal modes when they exist, physically real-
istic perturbations could present, for some finite time intervals, amplification rates greater than the most unstable
normal mode amplification rate. Subsequently, Farrell (1988, 1989) showed that perturbations with the fastest
growth over a finite time interval could be identified solving the eigenvalue problem of the product of the tangent
forward and adjoint model propagators. His results supported earlier conclusions by Lorenz (1965) that perturba-
tion growth in realistic models is related to the eigenvalues of the operator product.

Kontarev (1980) and Hall and Cacuci (1983) first used the adjoint of a dynamical model for sensitivity studies.
Later on, Le Dimet & Talagrand (1986) proposed an algorithm, based on an appropriate use of an adjoint dynamical
equation, for solving constraint minimization problems in the context of analysis and assimilation of meteorolog-
ical observations. More recently, Lacarra & Talagrand (1988) applied the adjoint technique to determine optimal
perturbations using a simple numerical model. Following Urban (1985) they used a Lanczos algorithm (Strang,
1986) in order to solve the related eigenvalue problem. For a bibliography in chronological order of published
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works in meteorology dealing with adjoints up to the end of 1992, the reader is referred to Courtier et al. (1993).

After Farrell and Lorenz, calculations of perturbations growing over finite-time intervals were performed, for ex-
ample, by Borges & Hartmann (1992) using a barotropic model, and by Molteni & Palmer (1993) using a barotrop-
ic and a 3-level quasi-geostrophic model at spectral triangular truncation T21. Buizza (1992) and Buizza et al.
(1993) first identified singular vectors in a primitive equation model with a large number of degrees of freedom.

Let % be the state vector of a generic autonomous system, whose evolution equations can be formally written as

| f (9)

Denote by %(t) an integration of Eq. (9) from t0 to t, which generates a trajectory from an initial point %0 to
Xx = %(t). The time evolution of a small perturbation x around the time evolving trajectory %(t) can be descibed,
in a first approximation, by the linearized model equations

where At =

Tt

is the tangent operator computed at the trajectory point %{t).
dx

Let L{t, t0) be the integral forward propagator of the dynamical equations linearized about a non-linear trajectory

X(t)

x(t) = L(t,to)x(to) (11)

that maps a perturbation x at initial time t0 to the optimization time t. The tangent forward operator L maps the
tangent space n o , the linear vector space of perturbations at %0, to FIj, the linear vector space at %x.

Consider two perturbations x and y , e.g. at %0 , a positive definite Hermitian matrix E, and define the inner prod-

uct ( . . . ; . . . ) E a s

(x;y)E = (x;Ey) (12)

on the tangent space n o in this case, where (...;...) identifies the canonical Euclidean scalar product,

N

(x;y) = £ xiyi (13)
i= 1

Let ||.. .||^ be the norm associated with the inner product (...;. . .)E

\\xfE = (x;x)E = {x;xE) (14)

Let L be the adjoint of L with respect to the inner product (...;...)E ,

(L*Ex;y)E = (x;Ly)E (15)

The adjoint of L with respect to the inner product defined by E can be written in terms of the adjoint L defined
with respect to the canonical Euclidean scalar product,
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LE = E~XLE (16)

From Eqs. (11) and (16) it follows that the squared norm of a perturbation x at time t is given by

\\x(t)fE = (x(to);L*ELx(to))E (17)

Equation (17) shows that the problem of finding the phase space directions x for which | |X(OII|/ | |^(^O)| |E
 ls

maximum can be reduced to the search of the eigenvectors v?(£0)

L*ELvt(t0) = 0-v^o) (18)

with the largest eigenvalues (Jj .

The square roots of the eigenvalues, at, are called the singular values and the eigenvectors Vj(£0) the (right) sin-
gular vectors of L with respect to the inner product E (see, e.g., Noble & Daniel, 1977). The singular vectors with
largest singular values identify the directions characterized by maximum growth. The time interval t -10 is called
optimization time interval.

* w
Unlike L itself, the operator L L is normal. Hence, its eigenvectors v^(£0) can be chosen to form a complete
orthonormal basis in the JVth -dimensional tangent space of the perturbations at %0. Moreover, the eigenvalues
are real, a] > 0.

At optimization time t, the singular vectors evolve to

V;(*) = L(t, *o)v^o) (19)

which in turn satisfy the eigenvector equation

LL*EVi(t) = ci^v^o) (20)

From Eqs. (17) and (20) it follows that

Pi(tfE = v] (21)

Since any perturbation x(t) /||^(^o)|U c a n ^e w r ^ t e n a s a l in e a r combination of the singular vectors v^, it follows
that

= C l ( 2 2 )

Thus, maximum growth as measured by the norm ||.. .||^ is associated with the dominant singular vector Vj .

Given the tangent forward propagator L, it is evident from Eq. (18) that singular vectors' characteristics depend
strongly on the inner product definition and to the specification of the optimization time interval.

The problem can be generalized by selecting a different inner product at initial and optimization time. Consider
two inner products defined by the (positive definite Hermitian) matrices I£o and E, and re-state the problem as
finding the phase space directions x for which
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l«(*)b = <Lx(tQ);ELx(t0))
I*(*o)||s (x(to);Eox(to))

is maximum. Applying the transformation y = El
Q , the right hand side ofEq. (18) can be transformed into

(LE-W2y{t0);ELE-l/2y(t0)) = {y(to);E-l/2L*ELE-W2y(to))

(y(toy,y(t0)) (y(to);y(to))
 ( '

Since

E-0
W2L*ELE'0

1/2 = (E-I/2LE-O
W2)\E-U2LE-O

W2) (25)

the phase space directions which maximize the ratio in Eq. (24) are the singular vectors of the operator
E~ LEQ with respect to the canonical Euclidean inner product. With this definition, the dependence of the
singular vectors' characteristics on the inner products is made explicit.

At ECMWF, due to the very large dimension of the system, the eigenvalue problem that defines the singular vectors
is solved by applying a Lanczos code (Glub & Van Loan 1983).

APPENDIX B PROJECTION OPERATORS

The set of differential equations that defines the system evolution can be solved numerically with different meth-
ods. For example, they can be solved with spectral methods, by expanding a state vector onto a suitable basis of
functions, or with finite-difference methods in which the derivatives in the differential equation of motions are re-
placed by finite difference approximations at a discrete set of grid points in space. The ECMWF primitive equation
model solves the system evolution equations partly in spectral space, and partly in grid point space.

Denote by xg the grid point representation of the state vector x, by S the spectral-to-grid point transformation

operator, xg = Sx, and by Gxg the multiplication of the vector xg, defined in grid-point space, by the function

g(s):

(26)

where s defines the coordinate of a grid point, and Z is a geographical region.

Define the function w(n) in spectral space as

(n) = l\/neQ
(27)

where n identifies a wave number and O is a sub-space of the spectral space.

Consider a vector x . The application of the local projection operator T defined as

T = S~lGS (28)
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to the vector x sets the vector x to zero for all grid points outside the geographical region E. Similarly, the appli-
cation of the spectral projection operator W to the vector x sets to zero its spectral components with wave number
outside Q.

The projection operators T and W can be used either at initial or at final time, or at both times. As an example,
these operators can be used to formulate the following problem: find the perturbations with (i) the fastest growth
during the time interval t -10, (ii) unitary Eo -norm and wave components belonging to O0 at initial time, (iii)
maximum E -norm inside the geographical region S and wave components belonging to Qx at optimization time.
This problem can be solved by the computation of the singular values of the operator

K = E~l/2TSxLS0E~0
l/2 (29)
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Abstract

The predictability of weather and climate forecasts is determined by the
projection of uncertainties in both initial conditions and model formulation,
onto flow-dependent instabilities of the chaotic climate attractor. Since it is
essential to be able to estimate the impact of such uncertainties on forecast
accuracy, no weather or climate prediction can be considered complete with-
out a forecast of the associated flow-dependent predictability. The problem
of predicting uncertainty can be posed in terms of the Liouville equation
for the growth of initial uncertainty, or a form of Fokker-Planck equation
if model uncertainties are also taken into account. However, in practice,
the problem is approached using ensembles of integrations of comprehensive
weather and climate prediction models, with explicit perturbations to both
initial conditions and model formulation; the resulting ensemble of forecasts
can be interpreted as a probabilistic prediction.

Many of the difficulties in forecasting predictability arise from the large
dimensionality of the climate system, and special techniques to generate en-
semble perturbations have been developed. Special emphasis is placed on the
use of singular-vector methods to determine the linearly unstable component
of the initial probability density function. Methods to sample uncertainties
in model formulation are also described. Practical ensemble prediction sys-
tems are described, and examples of resulting probabilistic weather forecast
products shown. Methods to evaluate the skill of these probabilistic forecasts
are outlined. By using ensemble forecasts as input to a simple decision-model
analysis, it is shown that that probability forecasts of weather have greater
potential economic value than corresponding single deterministic forecasts
with uncertain accuracy.



1 Introduction

Most meteorologists would rate the development of the global weather and
climate prediction model as amongst the most important scientific develop-
ments in our field over the last 50 years. Using such models we can make
forecast of daily weather out to 10 days, forecasts of El Nino and its global
impact on timescales of seasons, and make projections of anthropogenic cli-
mate change decades ahead.

Historically, such predictions have tended to be made in a deterministic
mode ('a blocking anticyclone will develop five days from now'); however,
although the limited the predictability of weather forecasts had been clearly
stated over 40 years ago (Thompson, 1957), forecast error bars were rarely
stated. This point was made forcibly some years later by Tennekes et al
(1991), and from around that time, a serious attempt has been made to
express numerical weather forecasts in probabilistic terms using ensemble
prediction techniques (eg Palmer et al , 1993; Toth and Kalnay, 1993). In
the decade of the 1990s, ensemble prediction has become an established tool
in numerical weather prediction; probability forecasting is here to stay.

This paper deals with probabilistic weather prediction from its theoretical
basis, through an outline of practical methodologies, to an analysis of valida-
tion techniques including estimates of potential economic value. In section
2, we consider how to forecast uncertainty, assuming a perfect deterministic
forecast model. The evolution equation for the probability density function
(pdf) of the climate state vector is the Liouville equation; an example of its
solution is given for illustration. However, application to the real climate
system is severely hampered by two fundamental problems. The first is di-
rectly associated with the dimensionality of the climate equations; current
numerical weather prediction models comprise O(107) individual scalar vari-
ables. The second problem (not unrelated to the first) is that, in practice,
the initial pdf is not itself well known.

To amplify on this last remark, a description of contemporary data as-
similation schemes is described in section 3. Such schemes are based on
minimising a cost function which combines these observations with a back-
ground estimate of the initial state provided by a short-range model forecast
from an earlier set of initial conditions. In principle, given Gaussian error
statistics, the Hessian or second derivative of the cost function determines
the initial pdf. However, in practice, there are significant shortcomings in
our ability to estimate this pdf.
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The number of degrees of freedom in comprehensive climate and weather
prediction models is not determined by any scientific constraint (there is no
obvious 'gap' in the energy spectrum of atmospheric motions), but rather
by the degree of complexity than can be accommodated using current com-
puter technology. As such, there are inevitably processes occurring in the
atmosphere and oceans which are only partially resolved and cannot be
accurately described by a parametrised closure approximation. Section 4
describes two recent attempts to represent the pdf associated with this un-
certainty in the computational representation of the equations of motion of
climate: the multi-model ensemble, and stochastic parametrisation.

Section 5 describes the basis behind attempts to make probability fore-
casts from ensembles of model integrations. If the ensemble of forecast phase-
space trajectories evolve though a relatively stable part of the climate attrac-
tor, then resulting probability forecasts will be relatively sharp. Conversely,
if the ensemble passes through a particularly unstable part of the attractor,
then the corresponding forecast probability may be little different from a
long-term climatological frequency. Examples of practical probability fore-
cast products are given.

The question of how to validate probability forecasts is discussed in sec-
tion 6. One particular techniques are described based on a root mean square
distance between the probability forecast of a dichotomous event and the
corresponding verification. This measure allows one to formulate the notion
of reliability of probability forecasts.

A fundamental question when assessing probability forecasts is whether
a useful level of skill has been attained. To discuss this quantitatively, a
simple cost/loss decision model is applied in section 7. It is shown, that
the (potential) economic value of probability weather forecasts for a variety
of users, is higher than the corresponding value from single deterministic
forecasts.

Concluding remarks are made in section 8.

2 A theoretical approach to probability fore-
casting

The evolution equations in a climate or weather prediction model are conven-
tionally treated as deterministic. These (N dimensional) equations, based on



spatially-truncated momentum, energy, mass and composition conservation
equations will be written schematically as

X = F[X] (1)

where X describes an instantaneous state of the climate sytem in TV-dimensional
phase space. Equation 1 is fundamentally nonlinear and deterministic in the
sense that, given an initial state Xa, the equation determines a unique fore-
cast state Xf.

The meteorological and oceanic observing network is sparse over many
parts of the world, and the observations themselves are obviously subject
to measurement error. The resulting uncertainty in the initial state can
be represented by the pdf p(X,ta); given a volume V of phase space, then
Jv p(X, ta)dV is the probability that the true initial state Xtrue at time ta lies
in V. If V is bounded by an isopleth of p (ie co-moving in phase space), then,
from the determinism of equation 1, the probability that Xtrue lies in V is time
invariant. Hence, (similar to the mass continuity equation in physical space),
the evolution of p is given by the Liouville conservation equation (introduced
in a meteorological context by Gleeson, 1966, and Epstein, 1969)

where X is given by equation 1. In the second term of this equation, there
is an implied summation over all the components of X .

Fig 1 illustrates schematically the evolution of an isopleth of p(X, t). For
simplicity we assume the initial pdf is isotropic (eg by applying a suitable
coordinate transformation). In the early part of the forecast, the isopleth
evolves in a way consistent with linearised dynamics; the N-ball at initial
time has evolved to an N-ellipsoid at forecast time t\. For weather scales of
0(106) km, this linear phase lasts for about 1-2 days into the forecast. Be-
yond this time, the isopleth starts to deform nonlinearly. The third schematic
shows the isopleth at a forecast range in which errors are growing nonlinearly.
Predictability is finally lost when the forecast pdf p(X, t) has evolved irre-
versibly to the invariant distribution pinv of the attractor. This is shown
schematically in Fig 1 using the Lorenz (1963) attractor.

The growth of the pdf through the forecast range is a function of the
initial state. This can be seen by considering a small perturbation 5x to the
initial state Xa. From equation 1, the evolution equation for 5x is given by
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Figure 1: Schematic evolution of an isopleth of the probability density func-
tion (pdf) of initial and forecast error in N-dimensional phase space, (a) At
initial time, (b) during the linearised stage of evolution. A (singular) vector
pointing along the major axis of the pdf ellipsoid is shown in (b), and its
pre-image at initial time is shown in (a), (c) The evolution of the isopleth
during the nonlinear phase is shown in (c); there is still predictability, though
the pdf is no longer Gaussian, (d) Total loss of predictability, occurring when
the forecast pdf is indistinguishable from the attractor's invariant pdf.

5x = JSx

where the Jacobian is defined as

J = dF/dX

(3)

(4)

Since F[X] is at least quadratic in X, then J is at least linearly dependent on
X. This dependency is illustrated in Fig 2 showing the growth of an initial
isopleth of an idealised pdf at three different positions on the Lorenz (1963)
attractor. In the first position, there is little growth, and hence large local
predictability. In the second position there is some growth as the pdf evolves
towards the lower middle half of the attractor. In the third position, initial
growth is large, and the resulting predictability is correspondingly small.

The Liouville equation can be formally solved to give the value of p at a
given point X in phase space at forecast time t (Ehrendorfer, 1994a, Palmer,
2000). Specifically

p(X, t) = p(X\ ta) / det M(t, ta) (5)



o
0,

Figure 2: Phase-space evolution of an ensemble of initial points on the Lorenz
(1963) attractor, for three different sets of intial conditions. Predictability is
a function of inital state.



where

M(t,ta) =exp f J(tf)dt' (6)

is the so-called forward tangent propagator, mapping a perturbation Sx(ta),
along the nonlinear trajectory from X' to X', to

6x(t) = M(t,ta)6(ta) (7)

and X' in this equation corresponds to that initial point, which, under the
action of equation 1 evolves to the given point X at time t.

A simple example which illustrates this solution to the Liouville equation
is given in Fig 3, for a 1 dimensional Riccati equation (Ehrendorfer, 1994a)

c (8)

where b2 > Aacr based on an initial Gaussian pdf. The pdf evolves away
from the unstable equilibrium point at X — — 1 and therefore reflects the
dynamical properties of equation 8. Within the integration period, this pdf
has evolved to the nonlinear phase.

The forward tangent propagator plays an important role in meteorological
data assimilation systems; see section 3 below. However, even though the
forward tangent propagator may exist as a piece of computer code, this does
not mean that the Liouville equation can be readily solved for the weather
prediction problem. For example, the determinant of the forward tangent
propagator is determined by the product of all its singular values. For a
comprehensive weather prediction model, a determination of the full set of
O(107) singular values is currently impossible. Secondly, the inversion of 1
to find an initial state X', given a forecast state X, is itself problematic.
Thirdly, a particular type of weather at a particular location is not related
1-1 with a state X of the climate system. For example, to estimate the
probability of it raining in London two days from now, we would have to
apply equation 5 and the inversion to find X', to each state Xrain on the
climate attractor, for which it is raining in London.

An alternative to using the solution form 5 is to integrate the partial
differential equation 2 by randomly sampling the initial pdf, and integrating
each sampled point using 1; the Monte-Carlo solution. However, the problem
of dimensionality continues to be a significant issue. If phase-space is N
dimensional, then, even in the linear phase, O(N2) integrations will be needed
to determine the forecast error covariance matrix. In the nonlinear phase,
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many more integrations are needed to determine the pdf, as it begins to wrap
itself around the attractor. Ehrendorfer (1994b) has shown that even for a
3-dimensional dynamical system, a Monte-Carlo sampling of O(102) points
can be insufficient to determine the pdf within the nonlinear range.

Yet another method of solution of the Liouville equation is possible, writ-
ing equation 2 in terms of an infinite hierarchy of equations for the moments
of p, and applying some closure to this set of moments (Epstein, 1969). This
method is certainly useful for evolving the pdf within the linearised phase,
and indeed forms the basis of the so-called Kalman filter approaches to data
assimilation (see section 3 below). Ehrendorfer (1994b) has shown that in
the nonlinear phase, substantial errors in estimating the first and second
moments of p can arise from neglecting third and higher order moments.

In conclusion, whilst a formal analytic solution can be found to the prob-
lem of predicting the forecast pdf, there are practical problems associated
with the dimension of the underlying dynamical system.

3 The probability density function of initial
error

In order to discuss how the pdf of initial error can be estimated in weather
and climate prediction, it is necessary to outline the method by which ob-
servations are used to determine the initial conditions for a deterministic
weather or climate forecast.

In meteorology and oceanography, data assimilation is a means of ob-
taining a forecast initial state which in some well-defined sense optimally
combines the available observations for a particular time with an indepen-
dent background state (Daley, 1991). This background state is usually a
short-range forecast (eg 6 hour) from an estimate of the initial state valid at
an earlier time, and this carries forward information from observations from
earlier times. A very simple example of the basic notion can be illustrated
by considering two different independent estimates, s0 and s&, of a scalar
s. Suppose that the errors associated with these two estimates are random,
unbiased and normally distributed, with standard deviations ao and cr& re-
spectively. Then the maximum-likelihood estimate of s is the state sa which
minimises the cost function



The least-squares solution

nr?

~ sb] (10)2 ^ 2

is easily found. The error associated with sa is normally distributed with
variance given by

d> J/ds2 = of + of = a"2 (11)

The data assimilation technique used in weather prediction (eg at ECMWF)
is a multi-dimensional generalisation of this technique (Courtier et al, 1994,
1998). The analysed state Xa of the atmospheric state vector is found by
minimising the (incremental) cost function

J(X) = \{X- Xb)
TB-\X - Xb) + \{HX- Y)TO-\HX - Y) (12)

where X& is the background state, B and O are covariance matrices for the
pdfs of background error and observation error respectively, H is the so-called
observation operator, and Y denotes the vector of available observations. For
example, if Y includes a radiance measurement taken by an infrared radiome-
ter onboard a satellite orbiting the earth then HX includes an estimate of
the infrared radiance that would be emitted by a model atmosphere as rep-
resented by the state vector X. Similarly, if Y includes a surface pressure
measurement taken at some point p on the earth's surface, then HX includes
the surface pressure at p given X. Since X is finite dimensional, the opera-
tor H inevitably involves an interpolation to p. Similar to equation 11, the
Hessian of J is given by (Fisher and Courtier, 1995)

VV J = B'1 + HT0~lH = A'1 (13)

We refer to A as the analysis error covariance matrix.
In the current ECMWF operational data assimilation system, the back-

ground error covariance matrix B is estimated using climatological forecast
error statistics from past cases (Parrish and Derber, 1992); in particular, B
is not dependent on the present state of the atmospheric circulation. This
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is believed to introduce considerable imprecision in the estimate of the ini-
tial pdf as given by 13. This estimate can be improved; within the linearised
regime (cf Fig 1), the forecast error covariance matrix F implied by equations
5 and 7 can be written

F(t) = M(t, ta)A(ta)M
T(ta, t) (14)

where M is the tangent propagator along the trajectory between the initial
state Xa and the forecast state X at time t. Since the time between con-
secutive analyses (typically 6 hours) is broadly within this linearised regime,
then a flow-dependent estimate of the background error covariance matrix at
time ta can be obtained by propagating the analysis error covariance matrix
from the earlier analysis time £a_i, ie

= M(ta,ta-l)A(ta-1)M
T(ta-Uta) (15)

The propagator M, and its transpose MT are essential components of 4-
dimensional data assimilation (Courtier et al, 1994) where observations are
assimilated over a time window. Using M, an increment 5x can be evaluated
at the same time that an observation is taken. Given the dimension of
comprehensive weather prediction models, M is not known in matrix form,
and is represented in operator form (cf equation 7). Similarly the transpose
MT is also represented in operator form M* (see equation 18 below) and is
known as the adjoint (tangent) propagator.

However, equation 15 is computationally intractable for numerical weather
prediction, requiring O(1014) individual linearised integrations of M for a
complete specification of the propagated matrix MAMT. Three possible so-
lutions have been proposed. The first is essentially a Monte-Carlo solution,
whereby a random sampling of A is evolved using M (Evensen, 1994; Anders-
son and Fisher, 1999). The second proposal involves solving the propagation
equation 15 with an intermediate complexity model (Ehrendorfer, 1999). The
final proposal (the so-called reduced-rank Kalman filter; Fisher, 1998) is to
propagate A explicitly only in the appropriate unstable subspace defined by
the dominant flow-dependent local instabilities of the attractor. Broadly,
speaking, the proposal is to have the best possible knowledge of the initial
pdf in that part of phase space from which forecast errors are most likely to
grow. At present these three different proposals are being evaluated.

Since the notion of local flow-dependent instability features strongly in
later sections of this paper, it is worth outlining some more detail on how
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these instabilities can be estimated. First consider a Euclidean inner product
< ..,.. > so that for any perturbations 5x, 5y,

< 5x, 5y >= ^2 ^xi^Ui (16)

In terms of < ..,.. > the adjoint tangent propagator M* is defined by

= M*(ta,t)6y(t) (17)

where
< 5y, M6x >=< M*5y, 5x > (18)

for an arbitrary pair of perturbations 5x(ta), Sy(t).
The analysis error covariance matrix A defines a secondary inner product

( . . , . . )=<- , A-1.. > (19)

Here A~l is the covariant form of an analysis error covariance metric, g^-i
(Palmer et al, 1998). Hence the perturbation Sx(t) which has maximum
Euclidean amplitude at t and unit g^-i norm at initial time ta is given by

<6x(t),6x(t)> <5x{ta),M*M5x{ta)>
max ——,—N * i r ,—:— = max —-—-—A 1 p ,— (20)

x(ta)?Q < 5x(ta),A-l6x(ta) > x(ta)?o < 5x(ta),A-l8x(ta) >

This is equivalent to finding the dominant eigenvector of the generalised
eigenvector equation

M*MSx(ta) = \A-l5x(ta) (21)

Formally, by taking the square root of A, equation 21 can be transformed
to a singular vector equation which can be solved using a Lanczos algorithm
(Strang, 1986; Buizza and Palmer, 1995). More generally, equation 21 is
solved using a generalised Davidson algorithm (Barkmeijer et al, 1998). We
refer to the solutions Sx(ta) in equation 21 as 5^-1-singular vectors of M.

The set of dominant g^-i singular vectors of M (with largest singular
values Oi — \[\i) defines an unstable subspace in the tangent space at ta.
It comprises the set of most rapidly-growing directions defined locally on
phase space, relative to a basic-state trajectory between ta and i, subject
to the constraint that the initial perturbations are normalised with respect
to the initial pdf. At forecast time t, these singular vectors have evolved
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into the major axes of the forecast error ellipsoid, or, equivalently, into the
eigenvectors of the forecast error covariance matrix. The first two parts of Fig
1 show schematically a dominant g^-i singular vector at initial and forecast
time.

4 The probability density function of model
error

So far, we have assumed the 'classical' chaotic paradigm, that loss of pre-
dictability occurs only because of inevitable uncertainty in initial conditions.
However, there are also inevitable uncertainties in our ability to represent
computationally the governing equations of climate. These uncertainties can
contribute both to random and systematic error in model performance. In
practice, as discussed below, it is not easy to separate the predictability
problem into a component associated with initial error and a component
associated with model error.

As mentioned, weather and climate models have a resolution of O(100km)
in the horizontal. This immediately raises the problem of closure - how to
represent the effect of partially resolved or unresolved processes onto the
resolved state vector X. The effects of topography and clouds are examples.
In weather and climate prediction models, equation 1 is generally expressed
as

P[X;a(X)} (22)

where P[X\ OL{X)\ stands for some parametrised representation of unresolved
processes, and G[X] represents terms in the equations of motion associated
directly with resolved scales. Conceptually, a parametrisation is usually
based on the notion of a statistical ensemble of sub-grid scale processes within
a grid box, in some secular equilibrium with the grid-box mean flow. This
allows equation 22 to be written

aiXj)] (23)

where Xj and Gj represent the projection of X and G into the subspace
associated with a single grid box Xj in physical space. Borrowing ideas from
statistical mechanics, a familiar parametrisation might involve the diffusive
approximation, where a would be a diffusion coefficient which might depend
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on the Richardson number of the large-scale flow. However, whilst diffusive
closures do in fact play a role for example in representing the effects of the
turbulent planetary boundary in the lower kilometer of the atmosphere, they
are certainly insufficient, and, in some circumstances, may be fundamentally
flawed. To see this, it is enough to concentrate on one relevant process -
atmospheric convection.

Often, such instability is released through overturning circulations whose
horizontal scales are small compared with the smallest resolved scale of a
global weather or climate model. However, at the large-scale end of the
spectrum of convectively-driven circulations is the organised mesoscale con-
vective complex (Moncrieff, 1992), with horizontal scales of perhaps 100km.
They can be simulated explicitly in regional models with O(lkm) resolution,
but such resolution is not practicable for global weather and climate models.

The form of parametrisation given in equation 23 is appropriate for de-
scribing cumulus and simple cumulonimbus. For example, in a contemporary
convective parametrisation (eg Betts and Miller, 1986) if the resolved-scale
vertical temperature gradient at Xj is convectively unstable, then over some
prescribed timescale (given by a) P will operate to relax Xj back to stability.
On the other hand, the existence of organised mesoscale convective complexes
poses a problem for parametrisations of this form. In particular, the basic as-
sumption of a quasi-equilibrium of sub-gridscale convectively-forced motions
(with the implication that the kinetic energy released by overturning circu-
lations is dissipated on sub-grid scales, rather than injected into the large
scale) cannot be fully justified.

One means of addressing the erroneous assumption of deterministic lo-
cality in equation 23 would be to add to equation 23 a stochastic energy
source term S(Xj\a). Recognising this, Buizza et al (1999) have proposed
the simple stochastic form

Xj = Gj[X]+0P[Xj]a(Xj)] (24)

where ft is a stochastic variable representing a random variable drawn from
a uniform pdf between 0.5 and 1.5. Stochastic representation of sub-grid
processes is a technique already utilised in turbulent flow simulations (Mason
and Thompson, 1992).

An example of the impact of the random effect of the stochastic parametriza-
tion represented by equation 24 is given in Fig 4 which shows sea-level pres-
sure over part of Australia and the west Pacific from four 2-day integrations of
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Figure 4: Four 2-day integrations of the ECMWF model from identical
starting conditions but different realisations of the stochastic parametrisa-
tion scheme represented by equation 24 with parameter settings as given in
Buizza et al (1999). The field shown is sea-level pressure over parts of Aus-
tralia and the west Pacific. The depressions in the pressure field represent
potential tropical cyclones.

the ECMWF model. The integrations have identical starting conditions, but
different realisations of the pdf represented by /?. The figure shows two trop-
ical cyclones. The intensity of the cyclones can be seen to be very sensitive
to the realisation of the stochastic parametrisation. In Fig 4a) the western
cyclone is intense; in Fig 4b) the eastern cyclone is intense; in Fig 4c) they
are both intense; in Fig 4d) neither are intense. This rather extreme example
clearly shows the difficulty in predicting tropical cyclone development, and
its sensitivity to model parametrisation.

The purpose of the discussion above is to point out that although current
parametrisations have been enormously successful in representing subgrid
processes, there are inevitable uncertainties in the representation of such
processes. In section 2 we represented the evolution of the initial pdf given
the deterministic equation 1 in terms of a Liouville equation. In the ide-
alised case where model uncertainties are represented by an additive Gaus-
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sian white noise with zero mean and variance T , then equation 2 becomes a
Fokker-Planck equation (eg Hasselmann, 1976; Moss and McClintock, 1989).
However, in practice, a realistic state-dependent stochastic forcing (eg in
equation 24) would be too complex for this simple representation to be di-
rectly relevant.

For ensemble forecasting (discussed in section 5), there are two other
commonly-used techniques for representing model uncertainty. The first tech-
nique is the multi-model ensemble (Harrison et al, 1999; Palmer et al, 1999).
In the second technique, the values a of the parameters used in the determin-
istic equation 22 of one particular model, are perturbed in some stochastic
manner (cf Houtekamer et al, 1996).

On the other hand, these latter techniques should be seen as conceptually
distinct from the type of stochastic physics scheme described schematically
in equation 24. In multi-model ensembles, and ensembles with stochastic
a, the model perturbations account for the fact that the expected value of
the pdf of sub-grid processes is not itself well known. (Hence, for example,
there are many different atmospheric convection parametrisation schemes in
use around the world; the Betts-Miller scheme desribed above is but one of
these. The existence of this ensemble of convection schemes is an indication
that the expectation value of the pdf of the effects of sub-grid convection is
not known with complete confidence!) By contrast, the stochastic physics
scheme described in equation 24 is an attempt to account for the fact that
in circumstances of convective organisation, the pdf of sub-grid processes is
not especially sharp around the mean. This would argue for the combined
use of multi-model ensembles and stochastic physics parametrisation.

5 Probability forecasting by ensemble pre-
diction

In the discussion above, the problem of forecasting uncertainty in weather and
climate prediction has been formulated in terms of a Liouville, or, including
model uncertainty, a form of Fokker-Planck equation. In practice these equa-
tions are solved using ensemble techniques ie from multiple integrations of the
governing equations from perturbed initial conditions, using either multiple
models, or stochastic parametrizations, to represent model uncertainty. In-
sofar as the perturbed initial conditions constitute a random sampling of the
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initial pdf, this could be described as a Monte-Carlo approach. However, the
methodologies discussed below for estimating the initial perturbations do not
necessarily constitute such a random sampling, for reasons to be discussed.
As such, the more general term 'ensemble prediction' is used.

On timescales of 1 day or so, the extratropical weather forecast problem
could be described conceptually as the prediction of the development of in-
dividual baroclinic disturbances, and their associated weather (fronts, cloud,
rainfall etc). On the other hand, the atmospheric circulations exhibit a de-
gree of organisation on timescales of 10 days or so. More precisely there is
evidence of 'circulation regimes' characterised by persistence on timescales
much longer than an individual weather system, but with transitions between
regimes characterised by the faster timescale eg of the dominant baroclinic
instability (eg Kimoto and Ghil, 1993).

There is evidence of similar behaviour in tropical atmospheric circula-
tions. Consider, for example, the Asian monsoon. Individual monsoon 'de-
pressions', associated with an instability of the monsoon jet stream, develop
on timescales similar to (or faster than) extratropical instabilities, and thus
characterise the short-range forecast problem. On the other hand, the so-
called active and break phases of the monsoon (which characterise the in-
traseasonal fluctuations of the monsoon) appear to have distinct regime dy-
namics with typical residence timescales on the order of 10-20 days (Webster
et al, 1998).

Hence on the timescale of 10 days, it is important to be able to estimate
uncertainty in predictions of persistence or change in regime type. In the last
few years, ensemble forecasting on this 10-day timescale has become an estab-
lished part of operational global weather prediction (Palmer et al, 1993, Toth
and Kalnay, 1993, Houtekamer et al, 1996, Molteni et al, 1996). Different
strategies have been proposed for determing the ensemble of starting condi-
tions. Conceptually, the strategies can be delineated according to whether
the initial perturbations merely sample observation error, or whether (given
the dimension of phase space and the uncertainty in our knowledge of the ini-
tial pdf) the initial perturbations are constrained to lie on some dynamically
unstable subspace. In the latter case, this dynamical subspace is defined in
different ways. Within the meteorological community, there has been a very
lively debate on the merits and deficiencies of the different strategies.

A recent analysis of the problem has been performed by Anderson (1997)
using the Lorenz (1963) model. First, points are sampled at regular intervals
on the attractor. A pdf O of 'observation error' is then assumed. A sampled
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point on the attractor is perturbed with a realisation of O; this is the 'anal-
ysed state'. A 2-member ensemble is then generated by perturbing about
the analysed state with perturbations ±p, where p is again drawn from O.
The integration from the state on the attractor is taken as 'truth'. Based
on standard measures of skill (see section 6 below), this ensemble is more
skilful than any other 2-member ensemble, eg based on singular-vector per-
turbations of the analysed state. Similar results have been found by Hamill
et al (1999) based on an intermediate quasi-geostrophic model. This study
concludes that it is enough in generating an ensemble of initial conditions
to randomly perturb the observations Y (see section 3) consistent with the
observation error covariance matrix O.

On the other hand, this type of experiment is rather idealised. On the
basis of the discussion in section 3, a sampling of the initial pdf obtained from
equation 12 by perturbing observations, is likely to be a gross underestimate
of (for example) the second moment of the initial pdf. Unfortunately, as
discussed, there are so many unquantified uncertainties in the actual details
of the data assimilation procedure, it is not at all straightforward to quantify
this underestimation.

The strategies that use dynamically-constrained perturbations, in some
sense bypass the quantification of these uncertainties, and focus on pertur-
bations that are necessarily growing, and hence are likely to contribute to
significant forecast error. Two types of dynamically-constrained perturba-
tion have been proposed: the first based on 'bred vectors' (Toth and Kalnay,
1997) and the singular vectors (Buizza and Palmer, 1995) discussed above.

A study of differences between ensembles initalised using bred vectors and
singular vectors has recently by Trevisan et al (1999) using the intermedi-
ate nonlinear quasi-geostrophic model of Reinhold and Pierrehumbert (1982)
described above. A preliminary study of the predictability properties of the
model was made by performing relatively large Monte Carlo simulations to
each of 2,500 initial states (on the model attractor). Much smaller ensem-
ble integrations were then constructed using the two types of dynamically
constrained perturbation. The study focussed on cases of regime transition.
It was found that in general, the bred-vector ensemble provided an aver-
age error distribution more similar to the Monte Carlo distribution, whilst
the singular-vector ensemble provided a more reliable estimate of an upper
bound on error growth. For example, a prediction of a low probability of
transition of weather regime was found to be much more reliable using the
singular vector perturbations than using the bred-vector perturbations in
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these dynamically-constrained ensembles.
This is of some relevance for user confidence in probability forecasts. As

discussed in more detail in section 7, consider a user who could potentially
suffer a catastrophic loss L if an event E occurs (in this case a circulation
regime change bringing severe weather of some type). The user can take
protective action at cost C, which might itself be substantial, but can be
presumed to be less than L. Based on the ensemble forecast, one can estimate
a probability p that E will occur. If p is sufficiently low, then the user
should be able to assume that protective action is not necessary. On these
occasions of very low p, the incurrence of a loss L would be seen as a failure
of the forecast system, and user confidence in the system would be seriously
compromised. Of course, an a posteriori constant offset could be added to the
forecast probability, so that very small probabilities would never be issued.
But in this case, the ensemble would be no realistic value to the user as a
decision tool, since the issued probabilities would always be sufficiently high
that protective action would always be taken.

The implication of this analysis is that it is important, arguably paramount,
to be sure that the user can be confident in a forecast where the ensemble
spread is small. For this reason, it is important in an operational environ-
ment to ensure that the initial perturbations are not conservative in the sense
of not spanning phase space directions where the pdf is underestimated (due
to unquantified errors in the data analysis procedures), and where forecast
error growth could be large because of dynamical instability. For these rea-
sons, the ECMWF ensemble system is based in part on initial perturbations
using rapidly growing singular vectors (with approximations to the g^-i met-
ric). Examples of the beneficial impact of singular vector perturbations over
other types of perturbation are given in Mureau et al (1993) and Gelaro et
al (1998).

At the time of writing, the ECMWF Ensemble Prediction System (EPS)
comprises 51 forecasts of the ECMWF forecast model (see Buizza et al, 1998:
Buizza et al, 1999). As above, the control forecast is run from the opera-
tional ECMWF analysis. The 50 perturbed initial conditions are made by
adding and subtracting linear combinations of the dominant 25 singular vec-
tor perturbations to the operational analysis. In addition, the 50 perturbed
forecasts are also run with the stochastic parametrisation defined in equation
24.The EPS is run every day and basic meteorological products are dissem-
inated to all the national meteorological services of the ECMWF Member
States. These products often take the form of probability forecasts for dif-
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850 hPa Temperarture Anomaly greater than 4 K 850 hPa Temperarture Anomaly greater than 8 K

Figure 5: An example of an operational forecast product from the 50-member
ECMWF ensemble prediction system. Probability that a) 850hPa temper-
ature is at least 4C above normal, b) 8C above normal, based on a 6-day
forecast.

ferent events E, based on the fraction of ensemble members for which E is
forecasts. For example, Fig 5 shows day 6 probability forecasts over Europe
for the events EI

>8,£I
>4 defined as: difference of lower tropospheric temper-

ature from a long-term climatology is > 8C, > 4C, respectively.
Based on the EPS, many of the European national meteorological ser-

vices are providing their customers detailed probability forecasts of possible
weather parameters for site-specific locations. For example, based on the
EPS, the United Kingdom Meteorological Office provides forecast pdfs of
surface temperature and rainfall for various specific locations in the UK.
Joint probability distributions are also estimated (eg the probability of pre-
cipitation with surface temperature near or below freezing).

As discussed above (cf Fig 2), a feature of nonlinear dynamical sytems
is the dependence of error growth on initial state. Fig 6 illustrates this,
based on two 10-day EPS integrations from starting dates exactly one year
apart, the meteorological forecast variable being surface temperature over
London. The unperturbed control forecast and verification are also shown.
In the first example, the growth of the initial perturbations is relatively
modest, and the associated forecast temperature pdf is relatively sharp. In

19



the second example, the initial perturbations grow rapidly and the associated
forecast temperature pdf is broad. Notice in the second example that the
control integration is already very unskilful 3 days into the forecast. The large
ensemble spread provides an a priori warning to the user that decisions made
from single deterministic forecasts during this period could be extremely
misleading.

Although forecasters have traditionally viewed weather prediction as de-
terministic, a culture change towards probabilistic forecasting is in progress.
On the other hand, it is still necessary to demonstrate to users of weather
forecasts that reliable probability forecasts provide greater value than imper-
fect deterministic forecasts. Such a demonstration will be given in section 7
below.

6 Verifying probability forecasts

As discussed, the output from an ensemble forecast can be used to construct
a probabilistic prediction. In this section, we discuss a basic measures of
skill for assessing a probability forecast: the Brier Score. This measure is
based on the skill of probabilistic forecasts of a binary event E, as discussed
in section 5 above. For example E could be: temperatures will fall below OC
in three days time; average rainfall for the next three months will be at least
one standard deviation below normal; seasonal-mean rainfall will be below
average and temperature above average, and so on.

Consider an event E which, for a particular ensemble forecast, occurs
a fraction p of times within the ensemble. If E actually occurred then let
v = 1, otherwise v = 0. Repeat this over a sample of N different ensemble
forecasts, so that pi is the probability of E in the ith ensemble forecast
and Vi = 1 or vi = 0, depending on whether E occurred or not in the zth
verification (i = 1,2...TV).

The Brier score (Wilks, 1995) is defined by

1 N
b = ITr E f o ~ ^ ) 2 , 0 < Pi < 1, Vie{0,1} (25)

From its definition 0 < b < 1, equalling zero only in the ideal limit of a
perfect deterministic forecast. For a large enough sample, the Brier score
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ECMWF ensemble forecast -Air temperature
Date: 26/06/1995 London Lat: 51.5 Long: 0

• • • • • • Control • • • • Analysis Ensemble

30-

1 2 3 4 5 6 7
Forecast day

ECMWF ensemble forecast -Air temperature
Date: 26/06/1994 London Lat: 51.5 Long: 0

• • • • • • Control • • • • Analysis Ensemble

10

34-

30-

4 5 6
Forecast day

Figure 6: Time series of ensemble forecast integrations for surface temper-
ature over London from starting conditions exactly 1 year apart. The un-
perturbed control forecast (heavy solid) and the verifying analysis (heavy
dashed) are also shown. Top: a relatively predictable period. Bottom: an
unpredictable period. (In these examples, the ensembles comprised 32 per-
turbed forecasts and the model did not include the stochastic representation
as described in equation 24.)
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can be written as

b= [ [p - l]2o{p)pens(p)dp + f p2[l - o(p)]Pens(p)dp (26)
Jo Jo

where pens (p) dp is the relative frequency that E was forecast with probability
between p and p + dp, and o{p) gives the proportion of such cases when E
actually occurred. To see the relationship between (25) and (26) note that
JQ[P - l]2o(p)pens(p)dp is the Brier score for ensembles where E actually
occurred, and J^\p — 0]2(l — o(p))pens(p)dp is the Brier score for ensembles
where E did not occur.

Simple algebra on (26) gives Murphy's (1973) decomposition

b = brei — bres + bunc (27)

of the Brier score, where

Kel = I [V - O(p)}2Pens(p)dp (28)

./o

is the reliability component,

Wes = [ [O ~ O(p)f pens(p)dp (29)

is the resolution component

bunc = O[l - O] (30)

is the uncertainty component, and

o= / o(p)pens(p)dp (31)

is the (sample) climatological frequency of E.
A reliability diagram (Wilks, 1995) is one in which o(p) is plotted against

p for some finite binning of width 5p. In a perfectly reliable system o(p) = p
and the graph is a straight line oriented at 45° to the axes, and brei = 0.
Reliability measures the mean square distance of the graph of o(p) to the
diagonal line.

Resolution measures the mean square distance of the graph of o(p) to
the sample climate horizontal line. A system with relatively high bres is one
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where the dispersion of o(p) about o is as large as possible. Conversely,
a forecast system has no resolution when, for all forecast probabilities, the
event verifies a fraction o(p) = o times.

The term bunc on the right-hand side of (27)ranges from 0 to 0.25. If E
was either so common, or so rare, that it either always occurred or never
occurred within the sample of years studied, then bunc = 0; conversely if E
occurred 50% of the time within the sample, then bunc — .25. Uncertainty
is a function of the climatological frequency of J51, and is not dependent on
the forecasting system itself. It can be shown that the resolution of a perfect
deterministic system is equal to the uncertainty.

When assessing the skill of a forecast system, it is often desirable to
compare it with the skill of a forecast where the climatological probability
o is always predicted (so pens(p) — 8(p — o)). The Brier score of such a
climatological forecast is bcu — bunc (using the sample climate), since, for
such a climatological forecast bre\ — bres = 0. In terms of this, the Brier skill
score, £?, of a given forecast system is defined by

B = l-£-. (32)

B < 0 for a forecast no better than climatology, and B = 1 for a perfect
deterministic forecast.

Skill-score definitions can similarly be given for reliability and resolution,
ie

Bret = 1 - brei/bcu (33)

BreS = Kes/bdi (34)

For a perfect deterministic forecast system, Brei — Bres = 1. Hence, from
equations 27 and 32

B = Bres + Brel ~ 1 (35)

Fig 7 shows two examples of reliability diagrams for the ECMWF EPS
taken over all day-6 forecasts from December 1998- February 1999 over Eu-
rope (cf Fig 5). The events are E>^ E>%:- lower tropospheric temperature
being at least 4C, 8C greater than normal. The Brier score, Brier skill score,
and Murphy decomposition are shown on the figure.

The reliability skill score Brei is extremely high for both events. How-
ever, the reliability diagrams indicate some overconfidence in the forecasts.
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Figure 7: Reliability diagram and related Brier score skill score and Murphy
decomposition for the events: a) 850hPa temperature is at least 4K above
normal and b) at least 8K above normal, based on 6-day forecasts over Europe
from the 50-member ECMWF ensemble prediction system from December
1998-February 1999. Also shown is the pdf pens{p) for the event in question.

For example, on those occasions where E>± was forecast with a probability
between 80% and 90% of occasions, the event only verified about 72% of the
time. However, it should be remembered that the integrand in equation 28
is weighted by the pdf pens(p)i shown next to each in each reliability dia-
gram. In both cases, forecasts where p > 0.4 are relatively rare and hence
contribute little to Brei.

To see why probability forecasts of Ey^ have higher Brier skill scores than
probability forecasts of J5>8, consider equation 35. From Fig 7, whilst Brei
is the same for both events, Bres is larger for E>± than for E>s. This can
be seen by comparing the histograms of pens(p) in Fig 7 which are more
highly peaked for E>$ than for E>\\ there is less dispersion of the probability
forecasts of the more extreme event about the climatological frequency of
the event, than the equivalent probability forecasts of the more moderate
event. This is hardly surprising; the more extreme event E>s is relatively
rare (its climatological frequency is ^ 0.04) and most of the time is forecast
with probabilities which almost always lie in the first probability category
(0 < Sp < 0.1). In order to increase the Brier score of this relatively extreme
event, one would need to increase the ensemble size so that finer probability
categories can be reliably defined. (For example, suppose an extreme event
has a climatological probability of occurrence of prare. Let us suppose that
we want to be able to forecast probabilities of this event which can discrimi-
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nate between probability categories with a band width comparable with this
climatological frequency, then the ensemble size Sens should be>> 1/jWe-)
With finer probability categories, the resolution component of the Brier score
can be expected to increase. Providing reliability is not compromised, this
will lead to higher overall skill scores.

However, this raises a fundamental dilemma in ensemble forecasting given
current computer resources. It would be meaningless to increase ensemble
size by degrading the model (eg in terms of 'physical' resolution) making it
cheaper to run, if by doing so it could no longer simulate extreme weather
events. Optimising computer resources so that on the one hand, ensemble
sizes are sufficiently large to give reliable probability forecasts of extreme
but rare events, and on the other hand that the basic model has sufficient
complexity to be able to simulate such events, is a very difficult balance to
define

7 The economic value of probability forecasts

Although B provides an objective measure of skill for ensemble forecasts,
they do not determine measures of usefulness for seasonal forecasts. In an
attempt to define this notion objectively, we consider here a simple decision
model (Murphy, 1977; Katz and Murphy, 1997) whose inputs are probabilistic
forecast information and whose output is potential economic value.

Consider a potential forecast user who can take some specific precau-
tionary action depending on the likelihood that E will occur. Let us take
some simple examples relevant to seasonal forecasting. If the coming winter
is mild (E:- seasonal-mean temperature above normal), then overwintering
crops may be destroyed by aphid growth. A farmer can take precautionary
action by spraying. If the growing season is particularly dry (E:- seasonal-
mean rainfall at least one standard deviation below normal), then crops may
be destroyed by drought. A farmer can take precautionary action by plant-
ing drought-resistant crops. In both cases taking precautionary action incurs
a cost C irrespective of whether or not E occurs (cost of spraying, or cost
associated with reduced yield and possibly with more expensive seed). How-
ever, if E occurs and no precautionary action has been taken, then a loss L
is incurred (crop failure).

This simple 'cost-loss' analysis is also applicable to much shorter range
forecast problems (Richardson, 1999). For example, if the weather event
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was the occurrence of freezing conditions leading to ice on roads, and the
precautionary action was to salt the roads, then C would correspond to the
cost of salting, and L would be associated with the increase in road accidents,
traffic delays etc.

In general, the expense associated with each combination of action/inaction
and occurrence/non-occurrence of E is given in the decision-model contin-
gency matrix

Take Action No
Yes

Occurs
No
0
C

Yes
L
C

It is presumed that the decision maker wishes wishes to maximise profits,
or at least minimise overall expenses.

If only the climatological frequency o of E is known, there are two basic
options: either always or never take precautionary action. Always taking
action incurs a cost C on each occasion, whilst never taking action incurs
a loss L only on the proportion o of occasions when E occurs, giving an
expense oL.

If forecast data used in section 6 above were used by a hypothetical deci-
sion maker, would his/her expenses would be reduced beyond what could be
achieved using o alone? Consider first a deterministic forecast system with
characteristics described by the forecast-model contingency matrix

Occurs
No Yes

Forecast No a (5
Yes 7 8

The user's expected mean expense M per unit loss is

- (7 + S)C , N

-n—i- (36)
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This can be written in terms of the hit-rate H and the false-alarm F defined
as

H =

F = 7/(0 + 7). (37)

so that

M = Fy(l-d)-Hd(l-y) + o (38)

For a perfect deterministic forecast H = 1, F = 0, hence

Mper = < £ (39)

To calculate the mean expense per unit loss knowing only o, suppose
first the decision maker always protects, then M = C/L. Conversely, if the
decision maker never protects then M — o. Hence if the decision maker knows
only o, M can be minimised by either always or never taking precautionary
action, depending on whether C/L < o, or C/L > o respectively. The mean
expense per unit loss associated with a knowledge of climatology only is
therefore

^ ,o ) . (40)

The value V of forecast information is defined as a measure of the reduc-
tion in M over Mc^, normalised by the maximum possible reduction associ-
ated with a perfect deterministic forecast, ie

V = ^ ^ — — (41)
Afdi - Mper

For a forecast system which is no better than climate, V — 0; for a perfect
deterministic forecast system V = 1.

An ensemble forecast gives hit and false-alarm rates H = H(pt), F =
F(p t), as a function of probability thresholds p t. Hence F is defined for each
pu ie y = y(p t). Using (38), (39) and (40)

min(^,o) — F(pt) %(1 — o) + H(pt)o(l — ~) — o
, — . — .

For given C/L and event E1, the optimal value is

= nmxV(pt). (43)
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Fig 8 shows examples of optimal value as a function of user cost/loss
ratio for the ECMWF day 6 ensemble weather prediction system and the
event E>± (as in Fig 7). The solid curve is the optimal value for the ensem-
ble system, the dashed curve shows value for a single deterministic forecast
(the unperturbed 'control' integration in the ensemble). Peak value tends to
occur for C/L ~ o; for such users, it makes little difference to the climatolog-
ical expense Mcu whether they always protect, or never protect. The figure
also illustrates the fact that the ensemble forecast has greater 'value' than a
single deterministic forecast. For some cost/loss ratios (eg C/L > 0.6 ), the
deterministic forecast has no value, whereas the ensemble forecast does have
value. The reason for this can be understood in terms of the fact that for a
probabilistic forecast, different users (with different C/L) would take precau-
tionary action for different forecast probability thresholds. A user who would
suffer a catastrophic loss (C/L « 1) if E occurred, would take precaution-
ary action even when a small probability of E was forecast. A user for whom
precautionary action was expensive in comparison with any loss (C/L ~ 1)
would take precautionary action only when a relatively large probability of
E was forecast. The result demonstrates the value of a reliable probability
forecast.

8 Concluding remarks

Our climate is a complex nonlinear dynamical system, with spatial variability
on scales ranging from individual clouds to global circulations in the atmo-
sphere and oceans, and temporal variability ranging from hours to millenia.
Weather and climate scientists interact with society through the latter's de-
mands for accurate and detailed environmental forecasts: of weather, of El
Nino and its impact on global rainfall patterns, and of man's effect on cli-
mate. The complexity of our climate system implies that quantitative predic-
tions can only be made with comprehensive numerical models which encode
the relevant laws of dynamics, thermodynamics and chemistry for a multi-
constituent multi-phase fluid. Typically such models comprise some millions
of scalar equations, describing the interaction of circulations on scales rang-
ing from tens of kilometres to tens of thousands of kilometres; from the ocean
depth to the upper stratosphere. These equations can only be solved on the
world's largest supercomputers.

However, a fundamental question that needs to be addressed, both by
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Figure 8: Potential economic value of the ECMWF ensemble prediction sys-
tem as a function of user cost/loss ratio of day 6 weather forecasts over
Europe (for the period December 1998 -February 1999) for the event £l

<_4:-
850hPa temperature at least 4C below normal. Solid: value of the ECMWF
ensemble prediction system. Dashed: value of a single deterministic forecast
(the unperturbed 'control' forecast of the EPS system). From Richardson
(1999).
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producers and users of such forecasts, is the extent to which weather and
climate are predictable; after all, much of chaos theory developed from an
attempt to demonstrate the limited predictability of atmospheric variations.
In the past, the topic of predictability has been a somewhat theoretical one,
somewhat removed from the practicalities of prediction. A famous climatol-
ogist remarked some years ago: 'Predictability is to prediction as romance is
to sex!'. However, the remark is perhaps not so apposite today; the science of
predictability of weather and climate in now an integral part of the practical
prediction problem - the two cannot be separated. The predictability prob-
lem can be formulated eg through a Liouville equation; however, in practice,
estimates of predictability are made from multiple (ensemble) forecasts of
comprehensive weather and climate prediction models. The individual mem-
bers of the ensemble differ by small perturbations to quantities that are not
well known. The predictability of weather is largely determined by uncer-
tainty in a forecast's starting conditions, though the effects of uncertainty in
representing computationally the equations that govern climate (for exam-
ple, how to represent the effects of convective instabilities in a model that
cannot resolve individual clouds) are not negligible.

Chaos theory implies that all such environmental forecasts must be ex-
pressed probabilistically; the laws of physics dictate that society cannot ex-
pect arbitrarily accurate weather and climate forecasts. These probability
forecasts quantify uncertainty in weather and climate prediction. The duty
of the meteorologist is to strive to estimate reliable probabilities; not to
disseminate predictions to society with a precision that cannot be justified
scientifically. Examples were shown that, in practice, the economic value of a
reliable probability forecast (produced from an ensemble prediction system)
exceeds the value of a single deterministic forecast with uncertain accuracy.

However, ensemble forecasting poses a fundamental dilemma given cur-
rent computing resources. To be able to simulate extreme events requires
models with considerable complexity and resolution. On the other hand,
estimating reliably changes to the probability distributions of extreme and
hence relatively rare events, requires large ensembles. One thing is certain;
the more the need to provide reliable forecasts of uncertainty in our pre-
dictions of weather and climate, the more the demand for computer power
exceeds availability, notwithstanding the unrelenting advance in computer
technology. Indeed the need for quantitative predictions of uncertainty in
weather and climate science is a relevant consideration in the design of future
generations of supercomputers; ensemble prediction is a perfect application
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for parallel computing! There can be little doubt that the benefits to society
of reliable regional probability forecasts of extreme weather events, seasonal
variability and anthropogenic climate change justify such technological de-
velopments.
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