

the

abdus salam

international centre for theoretical physics

SMR 1406/2

WORKSHOP ON INDICATORS FOR SUSTAINABLE ENERGY DEVELOPMENT

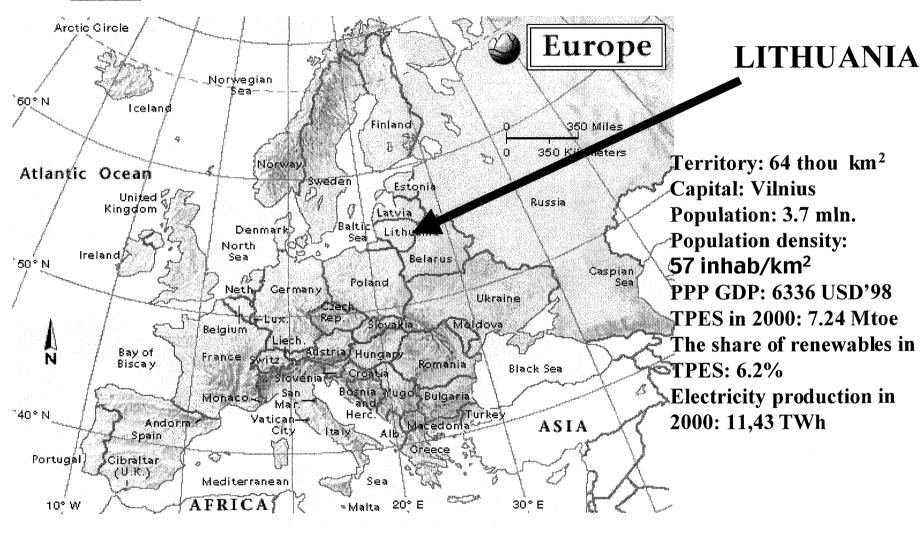
13 - 17 May 2002

Contract Contract Co

D. Streimikiene

I. Konstantinaviciute

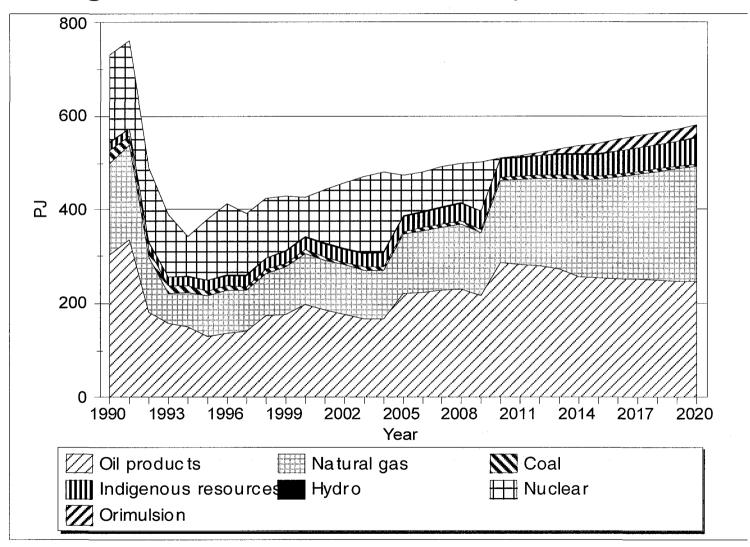
Lithuanian Energy Institute Kaunas, Lithuania


Research Co-ordination Meeting on Indicators of Sustainable Development (ISED) **ICPT** 13-17 May 2002 Trieste, Italy

Lithuanian experiences resulting from other indicator projects

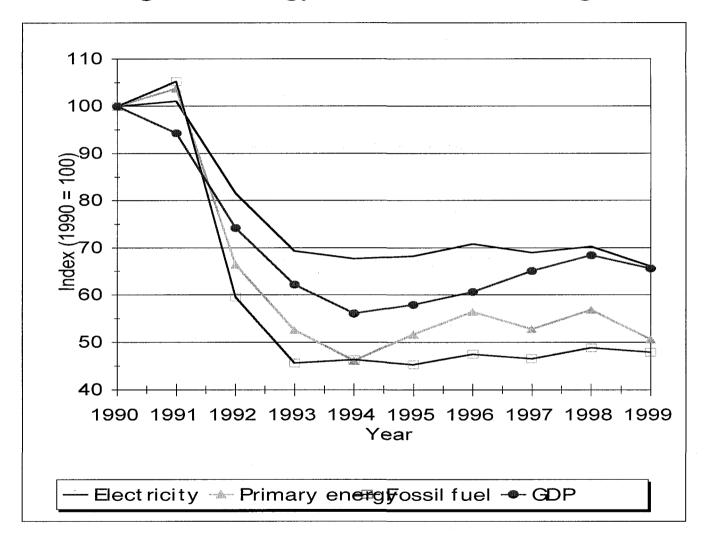
Dalia Streimikiene Inga Konstantinaviciute

Lithuanian energy institute

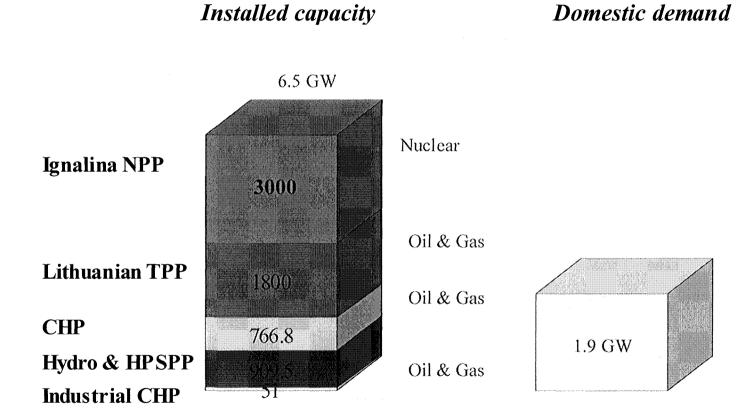


Trieste, 13-17 May 2002

LITHUANIAN ENERGY INSTITUTE http://www.fei.lt


Primary energy supply for basic scenario: both units of the Ignalina NPP are decommissioned by 2010

Trieste, 13-17 May 2002



Changes of energy demand and GDP growth

Lithuanian power system in 2000

Trieste, 13-17 May 2002

Projects on environmental indicators

"1st Baltic State of the environment report based on environmental indicators". Baltic Environmental Forum, 1998.

"2nd Baltic State of the environment report based on environmental indicators". Baltic Environmental Forum, 2000.

"Economic transition: environment transition. A case study of the Baltic States based on headline indicators". Baltic Environmental Forum, The Regional Environmental Center for Central and East Europe, 2001.

The first phase of the project "Indicators for Sustainable Energy Development" Data collecting for the set of 41 ISED.

Methodological approach of Baltic State **Environment reports**

- •OECD has been prominent in developing a common framework and common indicators for its Member countries. Several countries and international organisations have extended the P-S-R framework developed by OECD: in particular, the European Environment Agency uses a fivepart framework, incorporating: driving forces, pressures, state, impacts and responses.
- •The European Commission, EUROSTAT, and the European Environment Agency have developed the set of environmental headline indicators which clearly and simply illustrate the key environmental trends and provide an indication of the state of EU member states environment.
- •The current set of 10 headline indicators have been categorised by the environmental problem they measure, such as climate change and air quality, in line with the priorities highlighted by the 6th EAP.

UITHUANIAN ENERGY INSTITUTE http://www.lei.lt

- •The Baltic State of the Environment reports also employs this framework and aims to practice harmonized methodologies and help Baltic States to fulfill requirements of the European Environment Agency's reports.
- •The 1st Baltic State of the Environment report published in 1998 reflects priority environmental problems and environmental policy aftermath of Soviet occupation, such as water and waste management, biodiversity and resource management.
- •The 2st Baltic State of the Environment report published in 2000 reflects several international environmental problems such as climate change, nuclear risks and ozone-depleting substances.
- •Environmental indicators related to energy sector were included under the rubric of Climate change. Such indicators as final energy consumption by sectors, share of fossil fuel in energy supply, CO, emissions generated by combustion of fossil fuels for energy production, energy productivity, excise tax on fuel, CO₂ tax etc. were presented in the study.

LITHUANIAN ENERGY INSTITUTE http://www.lei.lfr

The Baltic Environmental Indicators Set has been kept in accordance with environmental problems and divided into 13 groups:

Climate Change;

Urban Air Quality;

Eutropohication;

Waste;

Hazardous Substances;

Oil Spills;

Radiation and Nuclear Risks;

Landscape;

Biodiversity;

Forest resources;

Peat Resources;

Water Resources;

Fish Resources.

Energy related environmental indicators from indicators set of Baltic State of Environment Report

Driving force	Pressure	State/impacts	Response
	1. Clim	nate change	
Final energy	CO ₂ emissions	Date of ice-breaking	Excise tax on fuel
consumption by sectors			
Share of fossil fuel in		Mean annual temperature	CO ₂ emission tax
energy supply			
Energy productivity			
		Air Quality	
Traffic intensity	Total NOx emissions and	SO ₂ , NO ₂ , tropospheric	
	share of mobile source in it	O_3 concentrations in	
		capital cities	
Car fleet age structure			
		Oil Sp ills	
Cargo turnover of crude	Annual amount of recorder	Share of oiled birds from	Implementation of national oil
oil and oil products.	pilled oil.	the number of dead birds.	spill contingency plants.
Number of ship calls in			Pollution fine for illegal
the ports.			discharges.
			Captain fine for illegal
			discharges.
			Aerial surveillance.
		nd Nuclear Risks	
Share of nuclear energy	Facilities with nuclear risks.	Cs137 level in soil.	Number of on-line monitoring
in electricity generation.			stations.
	Registered facilities using radiation sources.		Supervision capacity.

Climate Change indicators from Baltic State of the Environment Report

Driving force indicators:

- the total primary energy necessary to generate one unit of GDP can be used as an overall driving force indicator reflecting the energy productivity of the national economy;
- final energy consumption by economic sectors indicates the contribution of each economic sector;
- The share of different fuels in the primary energy supply shows how large the share of fuel types is which generate GHG.

Pressure indicators: CO₂ emissions generated by the combustion of fossil fuels for energy production. Comparing this indicator to the number of inhabitants and the economic output (gross domestic product), the indicators of GHG intensity depending on economy and lifestyle are obtained.

Impact indicators: the date of ice-breaking in spring and mean annual temperature reflect the possible effects of increasing CO ₂ concentrations in atmosphere.

Response indicator: the coverage and the size of energy or carbon dioxide taxes.

Trieste, 13-17 May 2002

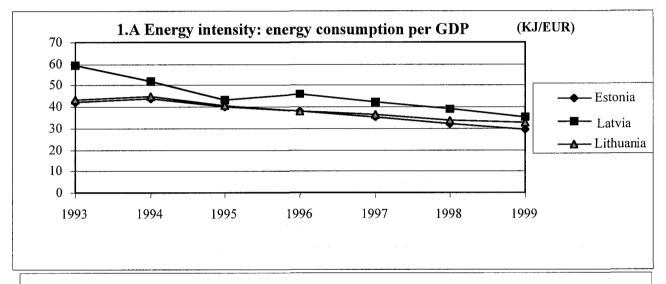
- •"Economic transition: environment transition. A case study of the Baltic States based on headline indicators" carried out in 2001 comparing with BEF' "Second Baltic State of the Environment Report" which provides much greater detail on environmental conditions and trends in the three Baltic states seeks to use a small number of indicators to highlight key linkages between economic changes and the environment in the three Baltic States – Estonia, Latvia and Lithuania.
- •Headline indicators presented in the study synthesise complex data, in order to communicate vital information about the environment to officials, politicians, and the public.
- •The criteria constrained the choice of indicators for this study was identified the same as defined by OECD: policy relevance, analytical soundness and measurability.
- •A few indicators relevant to ISED were proposed in the study: energy intensity of economy, conversion losses, CO2 emissions from fuel combustion. Trieste, 13-17 May 2002

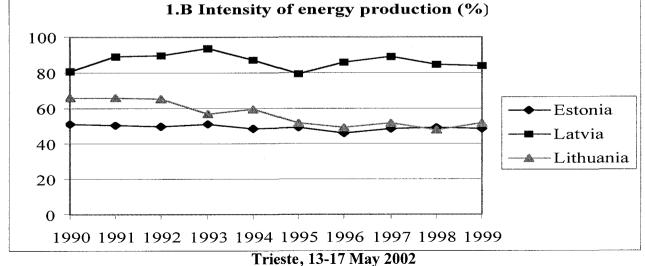
LITHUANIAN ENERGY INSTITUTE https://www.ilentin

A case study of the Baltic States based on headline indicators

- •This study focus on economy/environment linkages using environmental intensity of economics indicators and follows a different approach than other headline indicator sets. Initial EU headline indicators focus on environmental issues, such as climate change and surface water quality, and relate current levels to policy targets. The targets are specified by EU environmental directives;
- •The sectoral approach is vital for policy integration indeed, both OECD and EU are working on sectoral indicators. Sectoral indicators will likely be added to the EU headline indicator set;
- •Intensity indicators are used, for example, in OECD's Environmental performance reviews of its member countries. Intensity is especially important for transition countries, whose economies used great amounts of natural resources and created high levels of pollution under inefficient centrally planned production;
- •Specific targets are usually not relevant for intensity indicators. At the same time, overall policy goals are clear: the three Baltic States need to pursue economic growth while protecting their environments – this means that economic sectors need to reduce their environmental intensities.

Proposed Baltic "Headline" Indicators from the Baltic States case study


Economic sectors	
Energy	Energy efficiency of economy(GDP per unit of energy used) energy
Manufacturing	losses Intensity (output vs. SO ₂ , NO _x emissions, BOD discharges, water use)
Transport	Transport development (public transport; number of motor vehicles)
Forestry	Productivity (felling vs. sector output) and intensity (felling vs.
Agriculture	increment) Intensity (output vs. sown area and fertiliser use)
Health-related issues	
Air pollution/quality	National SO ₂ , NO _x emissions; SO ₂ , NO _x concentrations in the capital cities National SO ₂ , NO _x emissions per GDP
Drinking water	[to be determined]
Global issues	
Climate change	CO ₂ emissions per GDP



INTHUANIAN ENERGY INSTITUTE

Headline indicators for Energy sector:

- 1A Energy intensity of economy is defined as the final energy consumed to generate a unit of GDP
- 1B Intensity of energy production is defined as final energy consumption compared to total primary energy supply

Headline indicators for Climate change: CO₂ emission intensity

Share of renewables in primary energy supply

Table.1: CO₂ emission intensity in 1997 (GDP at current prices)

	Estonia	Latvia	Lithuania	Sweden	Poland
CO ₂ per GDP (kg/euro)	5.04	2.39	2.18	0.20	1.55
CO ₂ per TPES (kg/MJ)	89.12	65.35	50.26	24.33	56.78

Table.2: Share of renewable resources in primary energy supply, (% of TPES)

Country	1990	1995	1996	1997
Estonia	1.9	9	9.8	10.5
Latvia	13.5	25.0	30.8	32.0
Lithuania	1.5	3.1	3.3	6.2
Denmark	6.3	7.3	6.8	8.0
Sweden	24.6	25.6	22.7	26.7

LITHUANIAN ENERGY INSTITUTE https://www.lei.lj

The first phase of the project "Indicators for Sustainable Energy Development"

During the first stage of this project 41 ISED indicators were collected using available data from Lithuanian statistics for year 1995;

The list of 41 ISED indicators (among them 23 core indicators) include:

Economic Dimension of sustainable development:

Economic activity levels, energy production, supply and consumption

Energy pricing, taxation and subsidies;

End-se energy intensities, energysupply efficiency, energy security

Social dimension of sustainable development:

Energy disparities, energy afforability and accessibility.

Environmental dimension of sustainable development:

Climate change; air, water pollution and waste;

Energy resource depletion, land use, deforestation;

Accident risk.

Project invoked the useful tested methodological framework of i ndicators:

Driving force – State – Response

LITHUANIAN ENERGY INSTITUTE http://www.lei.lf

ISED Economic Dimension Indicators

Indicator	Measurability & analytical soundness	Policy relevance
Indirect (population, GDP per capita, end use	Consistent and comparable data is not available for	Not clear link to
energy prices with and without tax/subsidy, shares	prices, subsidies and taxes.	sustainable development
of sectors in GDP, distance traveled per capita,		
freight transport activity, floor area per capita, etc		
(1-8)		
Indirect within energy sector(energy intensity	There are no official statistical datafor final energy	Consistent basis is needed
of sectors, final energy intensity of selected	intensity of selected energy intensive productsand	for international
energy intensive products, energy mix, energy	for example fossil fuel efficiency for electricity	comparison. Does not
supply efficiency, status of deployment of	generation can be calculated only assuming fuel	reflect energy quality,
pollution abatement technology (PAT)) (9-13)	consumption for heat generation at CHP, there are no	useful to track performance
	flue gas desulphurisation and other PAT	over time
Direct (energy per unit of GDP, expenditures on	There are no official statistical data onexpenditures	Expenditures should be
energy sector) (14-15)	in energy sector for environmental control,	normal.ized according to
	hydrocarbon exploration, RD&D, net energy	GDP for internationl
	import expenses	comparison
State (energy consumption per capita, indigenous	There are uncertainties when allocating nuclear fuel	Cost of lower energy
energy production, net energy import dependence	to domestic or imported fuels	dependence should be
(16-18)		measured

ISED Social Dimension Indicators

Indicator	Measurability & analytical soundness	Policy relevance
Indirect (income inequality) (19)	Consistent basis is needed for the international	Too general and not related
	comparison	with energy use directly
Indirect within energy sector(Ratio of daily	Consistent basis is needed for the international	Target values for policy
disposable income/private consumption per capita	comparison but national statistics provides different	makes are necessary
of 20 poorest households to the prices of	data, for example for private consumption to the prices	
electricity and major households fuels (20)	of electricity, fuels, flat rent etc.	
Direct (Fraction of disposable income/private	There are no consistent official statistical data on	Target values for policy
consumption per capita spent on fuel and	percentage of income spent for energy by average and	makes are necessary
electricity by average and group of poorest	poor population	
population) (21)		
State (Fraction of households heavily dependent	There are no official statistical data about fraction of	Also inadequate electricity
on non commercial energy and without electricity)	population heavily dependent on non-commercial	supply should be evaluated
(22)	energy or w/o electricity	and type of non
		commercial energy

LITHUANIAN ENERGY INSTITUTE http://www.lei.lr

ISED Environmental Dimension Indicators

Indicator	Measurability	Policy relevance
Direct: SO2, NOx, PM, CO, VOC emissions, GHG emissions	There are no data on CO and	Most important are GHG and PM, so
(23, 26)	ozone concentrations in urban	intensity of pollution for these pollutants is
State: Ambient concentration of SO2, NOx, PM, CO, ozone,	areas and land area with	important
land area where acidification exceeds critical loads CL (24-25)	exceeded CL	
Direct: Discharges of waste water, radionuclides, oil into	There was no data a bout	Relevance for energy is more micro and
coastal area (28)	discharges of radionuclides, oil	indicators should focus on that level
	into coastal area	
Direct Generation of solid waste, radioactive waste (29, 31)	There was no general statistical	Impact is micro because important is the
State: Accumulated quantity of solid wastes to be managed,	data about wast e in 1995	suitability of disposal site
accumulated solid waste awaiting disposal (30, 32)		
Direct: Land area taken up by energy facilities, fraction of	There are no information about	Main issue is related with resettlement of
technically exploitable capability of hydropower (33, 35)	total land area taken by energy	population because of HPP construction
	facilities	
State: Fatalities due to accidents with breakdown of fuel	There was no consistent data	Should be normalized per GWh for
chains (34),	about fatalities in 1995	international comparison
Direct: Proven recoverable fossil fuel reserves, proven	There was no information about	Proven reserves depends on exploration
uranium reserves (36, .38)	proven oil reserves in Lithuania	activity, the share of renewable energy
State: Life time of proven fossil fuel reserves, lifetime of		should be included
proven uranium reserves (37, 39)		
Direc t: Intensity of use of forest resources as fuel wood (40)	There was no information about	The role of energy in deforestation vary by
State: Rate of deforestation (41)	deforestation because of cutting	region so role of energy should be more
	forest for fuelwood	clarified

Conclusions and findings

- There are problems with data consistency especially for social dimension indicators in different countries. These indicators are the most difficult to obtain and compare because of different social support systems available in the countries;
- No response actions for social dimension indicators are defined;
- Social response indicators needs targeted values for policy makers (for example percentage of income spent on energy by poor);
- More clear definitions for some indicators are needed (for example non commercial energy);
- Some indicators should be applicable for the micro level (for example discharges of pollution into the water or suitability of waste disposal site);
- Measures of cost effectiveness to evaluate responses that reduce indicators are necessary (for example how much did the reduction in emissions cost per unit of change)

TITHUANIAN ENERGY INSTITUTE

Further work & expectations

- The objective of the project is to apply ISED in the preparation of the third Lithuanian national energy strategy for the establishment of quantified sustainable energy sector development targets and analysis of their implementation results and evaluation of the success of the previous strategies.
- The third National energy strategy to be prepared in the next year can significantly benefit from the application of ISED.
- Appropriate ISED selected for the Lithuanian sustainable energy strategy development would address priority concerns or strategic priorities with defined headline targets and relevant Response Actions that correspond to indicators selected.
- The Response actions on Targeted Indicator would define the possible policy measures and actions to be implemented seeking to achieve progress upon headline targets.
- The most important for Sustainable energy strategy development is to define targeted values for the selected most relevant indicators from ISED list.