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1.2 CONCEPTS OF SOIL HYDROLOGY

All studies in soil hydrology eventually have a unique aim - a better
understanding and description of hydrological processes. The individual
elementary processes of infiltration, redistribution, drainage, evaporation and
evapotranspiration are first analyzed and subsequently considered in
combination during a particular sequence of events or season. Transport of
solutes is also considered as an integral part of those processes. All such
processes occur in soils and under actual meteorological situations. A proper
physical understanding of them requires several levels of approximative
studies.

As a first approximation we model the soil as a simple, homogeneous
porous body temporarily forgetting the existence of horizons within its profile
and the horizontal variation of its properties. In some instances a soil profile
consisting of two horizons is modeled simply by considering a layer of a
homogeneous soil overlain by a second having different hydraulic properties.
For studying the behavior of soil water including flow and transport of matter,
we use phenomenological (or macroscopic) descriptions. We describe what we
can "see" with our apparatuses and we denote the scale where the
phenomenological approach is applied as Darcian. Only when the physical
interpretation of some phenomena requires a detailed discussion at the
microscopic level will we temporarily abandon laws and equations based on a
macroscopic scale of observation.

The elementary hydrologic processes for simply modeled soils and for
trivial boundary conditions are described by analytical solutions of the basic
macroscopic equations. The advantage of analytical solutions is a full
understanding of the physical processes. Parallel to such mathematical analyses
are carefully conducted experiments performed on repacked soil columns or on
model porous materials under precise conditions in the laboratory.

The next level of approximation is the quantification of processes for real
soils, i. e. field soils. Although the scale remains Darcian, we speak of it as the
pedon scale. At this level the boundary conditions are usually less trivial than
those used in the first level, and if they are sufficiently complex, numerical
methods are applied to achieve particular solutions. These results, similar to an
accurately performed field experiment, are regularly verified by field
experimentation. The advantage of numerical simulation is the rapid
production of a large number of "computer experiments" which partially
substitute for tedious, time-consuming field experiments. Alternatively,
numerical procedures allow us to study specific features of a process which are
not accessible or readily observed by existing experimental techniques. We
properly interpret the data physically by applying the knowledge we gained at
the first approximation level.

From these pedon studies (often called "point scale" studies) we try to
extend the results to the larger scale of a field or catchment. This megascopic
scale, larger than Darcian, is usually denoted as catchment scale. See Fig. 1.1.
Considering the principles of soil mapping, it is advisable to differentiate
between two new categories within the catchment scale: (1) the pedotop scale
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Figure 1.2. Pedologic map delineating seven pedotops (designated A through G)
within a mapping unit associated with a 100-hafarm.
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ESTIMATED zT0 (cm-hr"1)

Figure 1.3. Measured quasi-steady state infiltration rates for the seven pedotops
illustrated in Fig. 2.2 versus those estimated from soil texture: a.
measured and estimated values vo at each location within the farm
without considering pedotops, and b. measured mean and estimated
mean values v0 within each pedotop.
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and (2) the mapping unit scale. Both categories belong to megascopic
observations in soil hydology but they differ in the structure of the soil mantle
and therefore in the nature of the variability of soil physical properties. Within
the pedotop scale, variability is strictly stochastic. Within the mapping unit
scale, variability is both stochastic and deterministic. We illustrate this behavior
of spatial variability in Fig. 1.2 which depicts seven pedotops located
deterministically within a mapping unit across the landscape of a farm. The
pedotops were mapped based on data from 293 bore holes taken approximately
at 60-m intervals across the entire 100-ha farm. Measured values of surface
water infiltration rates within each pedotop were found to be log-normally
distributed. Estimates of infiltration rates were derived using soil survey
interpretation methods (U. S. Dept. of Agr., 1951) based upon the texture of the
surface soil where each Infiltration rate was measured. If the seven pedotops are
ignored, there is no relation between measured and estimated values of
infiltration (Fig. 1.3a). On the other hand, if the infiltration rates are grouped
together by pedotop, their measured and estimated geometric mean values are
highly correlated with r2 = 0.936 (Fig. 1.3b).

At the pedotop scale, methods used at the Darcian scale need to be
modified with stochastic characteristics entering our equations and procedures.
The stochastic structure of these hydraulic properties of field soils is studied by
specific procedures. In some instances we obtain a set of deterministic pedon-
scale observations spatially distributed across the field or catchment to define a
newly formed stochastic or regionalized variable. In other instances, entirely
new approaches are developed applicable only to the pedotop scale. Experience
with the mapping unit scale remains sufficiently inadequate to preclude any
generalizations.

Analogous to these briefly introduced concepts of soil hydrology, we
proceed further into the content of the book.
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SCALES OF STUDIES IN SOIL HYDROLOGY:

1. Pore scale: Navier-Stokes eq. Fractals, fractal fragmentation, percolation.
Gradual transition to Darcian scale.

2. Darcian scale
2.1. Surrogate soil scale: Artificial porous materials, laboratory columns

filled by repacked soil. Darcy-Buckingham eq., Richards eq.
2.2.Pedon scale. Darcy-Buckingham eq., Richards eq.

3. Pedotop scale: Geostatistics. Scaling applied to physical soil properties.
Scaling applied to boundary conditions of elementary soil hydrologic processes.
Probability density function (PDF) of estimates of soil hydraulic characteristics, see next
table. Semivariance on ,,pedotop" scale..

4. Mapping unit scale, SH, Fig 1.2. and 1.3., p. 14. Combined approaches,
in Fig. next page. (Rogowski, Wolf, 1994).

5. Watershed scale.
6. Regional scale.

For scales > pedotop scale see Figs. 7.2 - 7.4. (Rogowski, Wolf, 1994)
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PEDOGENETIC SCALES

Hoosbeek, M.R. and R.B. Bryant, 1992. Towards the quantitative modelling of
pedogenesis. Geoderma, 55:183-210

Scale Unit

7+4
7+3
7+2
7+1
i
i- 1
7 - 2
7 - 3
7 - 4

Region
Interacting catchment
Catena or catchment

Field (polypedon)
Pedon

Profile horizon
Peds, aggregates

Mixtures
Molecular
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POSTSCRIPT
For our readers who have the intention of getting engaged in modeling

hydrological events related to soils, we felt obliged to write this postscript. In the
nine chapters of the text, we divided the complex reality of soil hydrology into
sections which we considered more lucid for individually dealing with each of
the main problems. We simplified reality and distinctly described formulations
that can be and are currently used in models. The strict physical interpretation
of various phenomena as they were discussed in this text are not only beneficial
in modeling hydrological events but without their conceptual understanding
the modeling of long term hydrological processes would degenerate into more
or less sophisticated computer games.

All of our descriptions of the phenomena in nature are more or less
approximate, and if their outputs have a quantitative character, the term
models is appropriate. Soil hydrologic models can be defined as systems which
describe the reality of hydrologic processes (to a certain degree of approximation)
in soils for long periods of time such as those associated with a vegetative
season, a hydrologic year or a climatic era. In such cases the spatial scale usually
must be greater than that of the pedon and the time scale is extended far beyond
the time of one isolated elementary hydrologic process. When compared with
the processes and events discussed in the previous chapters, the systems are
extended or extrapolated in both space and time. If soil hydrologic models are
defined in such a way, our text does not cover all of the essential features of
modeling soil hydrology. An instructive, comprehensive text on modeling
would inevitably include details on numerical procedures, the theory of
systems analysis and formulations applicable to spatial scales greater than that
of the pedon. For such content, our book would have increased in volume and
themes far beyond our goal to offer basic information on soil hydrology. Hence,
this postscript.

We are offering here just some introductory notes for a general
orientation in the subject. The notes are accompanied by examples selected from
the literature. In the discussion we demonstrate how the complexity of the
nature in a watershed modifies the processes described earlier in isolated forms.

MODELS OF SOIL HYDROLOGY

We distinguish between physical, analog and mathematical models. A physical
model is that of a porous medium, e. g. a Hele-Shaw model or a column of glass
beads or soil studied in the laboratory. These models frequently have a smaller
scale than reality. Analog models are based on the similarity of the flow of water
in soil to other transport phenomenon, e. g. the flow of electricity through a
conductor. Although somewhat common in groundwater studies, these models
presently are rarely applied in soil hydrology. Mathematical models, the subject
matter of this chapter, commonly require computer methods for investigating a
specific problem.

Mathematical models in soil hydrology can be classified either according
to the principles of the methods applied or according to the subjects modeled.
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Further consideration reveals that the nature of either method tends to be
empirical, deterministic or stochastic. Inasmuch as the different kinds of models
are frequently merged into larger model structures, sharp boundaries between
them do not exist. A broadly used classification of mathematical models in soil
hydrology originally proposed for leaching models by Addiscot and Wagenet
(1985) is:

I. Deterministic models
A. Mechanistic (usually based on rate parameters)

1. Analytical
2. Numerical

B. Functional (usually based on capacity parameters)
1. Partially analytical
2. Soil layers and other simple approaches

n. Stochastic models
A. Mechanistic
B. Non-mechanistic

Models of agro-ecosystems have been classified into the following groups
(Rohdenburg, 1989):

I. Empirical/mathematical
n. Deterministic-analytical

According to Rohdenburg, the stochastic nature of agro-ecosystems is not
explicitly included in the formulation of their processes but enters implicitly
through the spatial variance structure of the deterministic formulation.

The unique character of each of the two classifications above stems from
different conceptualizations. The first starts with a Darcian-scale soil column
and subsequent broadening of the model brings new and stochastic features into
the model. Accepted at the outset that ecosystem processes are phenomena in
spatially heterogeneous media, the stochastic characteristics in the second
classification stem just from the initial descriptive part of the system.

If mathematical models are placed into only three categories (empirical,
deterministic and stochastic), we must remind ourselves that all three have
deterministic origins. Additionally, only the deterministic models adhere
strictly to a mathematically rigorous, unique formulation of each of the process
rates.

From a pragmatic point of view, we distinguish between research-
oriented and practice-oriented models. Here we consider not only a requirement
for scientific accuracy, but the entire structure of the model and its aim.
Recognizing these requirements, we avoid useless questions (e. g. "How do you
imagine that we obtain the required population of soil parameters?" and "Do
you expect us to make Swiss cheese of our watershed to obtain enough
samples?"). And we also avoid arguments from an opposite group (e. g. "This
kind of simplification does not comply with our scientific background").
Recently, Reiniger et al. (1990) found that simpler models (compared with more
sophisticated models) were either adequate or even more appropriate for
describing the transport of nitrates in agricultural soils. Their results should not
suggest that simple models be given higher priority automatically. Our recent
uncertainty in the quantification of some detailed processes and the uncertainty
in estimating some physical characteristics including their statistical character
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provide even a greater challenge to develop comprehensive models having
either a research-oriented or practice-oriented utility.

Reading the literature on models published during the last decade we are
reminded of the "rule of 90 percents". Ninety percent of the models presented
in papers are not developed sufficiently for others to use them. Of the
remaining 10%, 90% of the models are used by only their creators. And of the
remaining 10% which are used by others, 90% of the models are never verified.
A similar rule also applies to all scientific publications. Although the "rule of 90
percents" is perhaps sad or cynical, it offends neither innovative modelers nor
productive scientists.

Empirical Models

We neglect "completely black box" models which represent the roughest form
of empiricism. Inasmuch as they are generally not transferable or applicable on a
broader scale either in practice or for research, we do not recommend or discuss
them here.

The simplest empirical models are eventually based on the empirical
concepts of field capacity and wilting point. The balance of inputs (precipitation
or irrigation) and outputs (evapotranspiration) is computed at regular time
intervals. Field capacity 9FC is considered the maximum water stored within the
soil profile during the time interval. If rainfall or irrigation exceeds the
disposable unfilled water storage capacity, the excess water drains from the
profile. The disposable water storage DWS is calculated from

where Z is the soil depth at the lower boundary of the balanced profile. This
empirical model is sometimes denoted as the capacitance model (Addiscot and
Wagenet, 1985).

Rainfall or irrigation is assumed to either fully or partly infiltrate into the
surface. The first assumption is generally fulfilled by small, flat areas. For the
second assumption, the ratio of infiltration to runoff is either verified with the
calibration of the model or is obtained analytically or semi-analytically (section
6.2.3). With evapotranspiration commonly formulated by Penman's or
Penman-Monteith's equations, the soil water regime for a season is obtained.
The reduction of potential to actual evapotranspiration is achieved with the
principles formulated in (6.153a) through (6.153d). Or, alternatively, the balance
of soil water storage is used to determine the actual evapotranspiration. The soil
profile is usually subdivided into layers or "compartments". If cumulative
infiltration exceeds the DWS of the top layer, the excess is considered as filling
the next lower layer. This system of soil water reservoirs occurring in a layered
series was first assumed to fill instantaneously without retardation. Later, more
realistic rates of soil water movement were formulated using the hydraulic
conductivity of each soil layer or "compartment". For example, with each
successive compartment first being filled to saturation, the infiltrating water
moves through each of water-saturated series of compartments at rate Ks until
the cumulative infiltration is accommodated. At that time redistribution of soil
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water from 6s to Ope occurs at a "redistribution rate q = K(0FC)- Various other
more complicated modifications exist. Such refinements have the features of
deterministic modeling. Even in its simplest form, this model is being
successfully used in irrigated agriculture.

The simplest form without flow rates has an advantage over numerical
deterministic models. A numerical solution of partial differential equations
with a sink term requires small time steps in order to converge. Unfortunately,
routine meteorological data do not provide adequate time-dependent
information. Therefore, simple water budget models have real value for
practical use and are easily used owing to their simple structure. Because water
budget models were in initiated early when computers were not available, they
have been comprehensively developed with personal computers during the last
two decades (e. g. Baier et al, 1979; Petrovifc, 1984; Chopart and Vaudin, 1990).

A different subclass of empirical models are those using correlation
analysis between the input and the searched output. For example, adequate soil
water storage is merely estimated by correlating meteorological characteristics
during periods decisive for optimal crop yields. Such empirical relations are
associated with soil mapping units without analyzing the physical processes of
water within the soil profile.

Deterministic Models

Deterministic models are based on the assumption that a quantitative physical
predictability of processes is attainable when events defined on a boundary or
within the profile are considered. The outcome (e. g. the flux to the water table
or surface runoff) is thus determined by events occurring earlier than those
predicted. For example, if we consider the soil water regime [0(z, t) or 6(x, y, z, t)]
as an outcome, its prediction is realized through a solution of the Richards'
equation with a sink term. Here the upper boundary condition at z = 0 is defined
from meteorological conditions and the lower boundary at z = Z is defined
approximately to match field reality. Three different types of conditions can be
found at z = Z. (i) The Dirichlet condition with soil water pressure head
prescribed at the soil surface and connected to the ground water level, (ii) The
Neuman condition as a defined flux at the soil surface usually associated with a
unit total potential head gradient when the ground water level is absent or is
well below depth Z. (iii) The Cauchy condition as a combination of flux and soil
water head relations when the fluxes in the unsaturated soil influence and are
influenced by regional groundwater flow.

In a sense, the analytical and approximate solutions of elementary soil
hydrological processes (Chapter 6) belong to the simplest class of deterministic
models and are classified in the subclass as analytical models. We have already
pointed out that analytical models are no doubt instructive for understanding
processes but they are restrictive regarding direct application to field situations
even for distinct and well-defined 1-dimensional elementary hydrologic
processes. Soil profile characteristics as well as 0,- are neither constant with depth
nor easily defined analytically.
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We describe as Pedon Hydrological Models (PHM) those models which
are restricted to the scale of a pedon and related to a time scale larger than just
one meteorological event. See publications of field tests for soil water regimes
during one or more vegetative seasons (e. g. Renger et al, 1970; Vachaud, 1979).
In the vast majority of PHM, the method of finite differences is applied to the
solution of Richards1 equation with the sink term (Feddes et al., 1978). The
model SWATRE (Belmans et al., 1983) is an example of a commonly used PHM.

A numerical PHM applied for large time periods (e. g. a cultivated season
or a hydrological year) is troubled with problems related to time discretization.
In order to achieve stability and convergence of the numerical scheme, small
time steps are required. But this requirement is generally not compatible with
routinely available meteorological input data. Feddes et al. (1978) and Belmans
et al. (1983) tackled the problem in their early finite difference models. And
authors of more recent Galerkin models face the problem by posing different
time discretizations in finite difference schemes of time. Some PHMs having no
universal or generic character are problem oriented. For example, the Dutch
simulation model LAMOS (Bouma et al., 1980) predicts the change of soil water
regimes and the occurrence of soil water deficits owing to a lowering of the
ground water level.

When the study area is substantially greater than that of a pedon, we
must deal with soil heterogeneity. If we assume hypothetically that the
heterogeneity is only of a deterministic nature, we could use the finite element
method. In such a case, with each node point of the grid theoretically being
associated with unique and different values of soil hydraulic parameters, the
known heterogeneity is projected into the numerical grid. In practice, this
advantage is hardly usable inasmuch as sufficiently detailed data are seldom
available to represent the soil spatial heterogeneity. And even when they are
available, the scale of the computational grid generally does not correspond
with that of the measured soil heterogeneity. Moreover, some soil parameters
typically vary by orders of magnitude within distances smaller than the spacing
of neighboring grid nodes selected to model a simple hydrologic catchment.
This difference in scales lead to the concept of equivalent soils - a concept
sometimes not explicitly stated.

Finite element methods are often preferred for the solution of 2- and 3-
dimensional soil hydrological problems. In many instances, 2-dimensional
models suffice. For example, infiltration coupled with runoff and overland flow
on a watershed is typically taken as a 2-dimensional problem over the (x, y)-
plane. And the Galerkin finite element method with basic linear functions
might be used to obtain the solution of the flow equations subject to imposed
initial and boundary conditions. This method, now commonly used, is
presented in detail in the literature (e. g. Neuman, 1975; Pinder and Grey, 1977).
Because of the heterogeneous nature of field soils, the majority of problems
described by a deterministic model requires stochastic entries which are next
presented.
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Stochastic Models

When the study area is substantially larger than that of a pedon, stochastic
properties play an important role inasmuch as the pedons do not appear
repetitiously across the landscape even if they belong to the area pedotop at the
lowest level of soil taxonomy. Hence, we deal with a polypedon or with the
pedotop hydrological model (PPHM).

A watershed or a large region usually consists of more than one pedotop
and with lower level taxonomic units grouped into higher level units, we speak
of pedochors or pedocomplexes. The gradation of pedotops within the
watershed is defined as the land surface catena. And, within a pedocomplex or a
catena we find predictable deterministic heterogeneity. When the boundaries of
the pedotops are crossed, these deterministic soil hydraulic characteristics
manifest different values.

The first approach to model unsaturated flow in spatially variable soils
was to discretize the field or watershed into a series of 1-dimensional, non-
interacting soil columns. This approach is frequently used to describe water
regimes of specific regions (e. g. levels of water deficit within regions mapped by
soil surveys. Stein et al. (1991) distinguish two procedures. In the first one,
simulations are carried out for all points where soil parameters are available. By
means of a statistical interpolation method the model output is predicted for the
entire area. They describe the procedure as CI, "Calculate first and interpolate
later". The method together with earlier similar procedures is given by Stein et
al. (1991).

In the second procedure the variables needed for the model are
pedologically and functionally clustered. The methods of clustering range from
the traditional representative soil profiles found by detailed soil survey to the
application of scaling methods. The simulation model is applied to the
reference profile indicative of the pedological or functional cluster. This method
is denoted by Stein et al. as IC, "Interpolate first and calculate later". Details can
be found in publications of Wosten et al. (1985) and Wosten (1990). If scaling is
applied with stochastic evaluation, the "accuracy" of the model output can be
assessed.

PPHM consisting of vertical soil columns has been applied in theoretical
studies of soil heterogeneity. Because the columns were assumed to be
randomly located in the area but uniform in depth, we should speak of areal
variation instead of spatial variation. In order to simplify the modeling
procedure, it is frequently assumed that Ks is the random variable over the area
while parameters of h(6) and Kr(6) remain constant or are simply shifted with a
scale factor (Russo and Bresler, 1981; Binley et al., 1989; Aboujaoude, 1991). This
kind of modeling for a simply defined heterogeneous block yields new results. If
the concept of an equivalent soil representing the heterogeneous block is
accepted, the PPHM of infiltration with Neuman's boundary condition for a flat
terrain manifests a concave soil water content profile 6*R(z) rather than the
convex deterministic profile 0R(Z) (Bresler, 1987).

For a sloping terrain, the model of vertical, mutually non-interconnected
columns is hardly acceptable. It becomes somewhat more acceptable by
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considering the assumption of "runon". This term describes the redistribution
of excess water on the sloping surface from locations of shorter ponding times
(small values of Ks) to those downhill locations having larger ponding times
(large values of K$ ) (Smith and Hebbert, 1979). In addition to this surface
interconnection, the interconnection on the basis of continuous saturated flow
is sometimes considered. For example, the interconnection exists in the
unsaturated zone component of the physically based distributed catchment
model SHE (Systeme Hydrologique Europ£en, Abbott et al., 1986).

These types of models used for studying the applicability of an "effective
soil" (or "effective soil parameters") in soil hydrology are based on the
hypothesis that large scale soil heterogeneity can be successfully lumped into
parameters descriptive of an "effective soil". Presently, the heterogeneity of
unsaturated soils has only been studied through variations of K$. Studies have
shown that the concept of "effective soil" is restrictive and not generally
applicable to all boundary conditions and soils. And, when infiltration and
runoff are considered, the concept is applicable only for mildly heterogeneous
soils (Aboujaoude, 1991).

Vauclin and Vachaud (1990) found that the "effective soil" concept is
acceptable for small rainfall intensities on a simple, uniform slope. On such a
soil, increased soil variability is accompanied by increased runoff. However, for
large rainfall intensities, the concept completely collapsed. Binley et al. (1989)
found similar results studying runoff on rapidly and slowly permeable soils.
Moreover, the results from using the "effective soil" concept disagree with
those from the PPHM when the distribution of Ks in the watershed follows the
rules of geomorphological formation, the existence of soil catenas and the
genesis of secondary crust formation (Smith et al., 1990; Aboujaoude, 1991).

In spite of its restrictions, the simplified model of an "effective soil" with
its vertical columns accompanied with the runon concept brought new views of
elementary runoff hydrology. For example, considering the sloping surface of a
heterogeneous soil, the ponding time concept as derived for the pedon-scale
elementary hydrological process is no longer a constant characteristic value for a
given rainfall intensity. The value of the ponding time can decrease by an order
of magnitude when the coefficient of variation of Ks increases from 0 to 0.8 on a
short uniform slope (Smith et al., 1990).

Contemporary model studies still deal with uniform slopes even though
each concavity or convexity of the surface together with vertical heterogeneity
produces a convergence or divergence of flow paths (Zaslavsky, 1970; Zaslavsky
and Sinai, 1981). Because the transition to 2- and 3-dimensional modeling is
sorely needed, we present a brief review of initial, incomplete results.

The model of vertical columns of random characteristics of soil
properties is a special case of Monte Carlo simulation. In order to allow non-
vertical flow of water, the mutual "isolation" of the columns must be removed.
Unfortunately, smoothing the local mosaic or variation of unsaturated soil
properties does not achieve the large scale behavior of a watershed.
Nevertheless, Mantoglou and Gelhar (1987) have demonstrated that local
variability of soil properties has important large scale effects on hysteresis and
anisotropy.
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For runoff characteristics, the 3-dimensional Monte Carlo study of Binley
et al. (1989) of a heterogeneous inclined soil surface (150 x 150 m) has shown that
peak runoff volumes increase with heterogeneity and with the spatial
dependence of soil parameters. Sharma et al. (1987) gave a simple explanation of
subsurface lateral flow that occurred in their 3-dimensional study. They
concluded that hill slopes with a random distribution of hydraulic
characteristics provide greater opportunity for soil units with different water
capacities to interact than those hill slopes with spatially correlated
distributions. Their results improved our understanding of subsurface lateral
flow because they ignored models of 1-dimensional vertical columns.

MODELS OF SOLUTE TRANSPORT

The most frequently used models of solute transport in soils are Richards'
equation (5.64) for unsaturated water flow and the convection-diffusion
equation (9.42) for solute transport. The equations are solved numerically where
the Galerkin linear finite element scheme is appropriate. In order to keep the
model realistic, a multicomponent system accounts for other flow processes. In
addition to water flow, heat transport is often included in the model inasmuch
as the temperature influences thermodynamic constants and reaction rates
significantly. Moreover, the concentration of CO2 in soil air fluctuates between
0.035 and 20% in extreme circumstances. The solubility of many mineral salts
strongly depends upon CO2 concentration. Changes in CO2 concentration are
accompanied by changes of O2 concentration in the soil air. Both concentrations
influence pH and there is a direct link between both pH and redox potential
with dissolution constants and rates. Hence, multicomponent transport models
are preferred nowadays just to get closer to field reality.

The majority of recent procedures has involved two simultaneous
equations. One for equilibrium chemical processes such as precipitation,
dissolution and cation exchange and a second for transport. At each numerical
time step, the transport equation is interfaced with the equilibrium chemical
equation. However, iteration between the two equations is neglected. Yeh and
Tripathi (1991) have shown that this simplification can cause serious numerical
errors. Another limiting factor is the consideration of equilibrium reactions
only. Suarez (1985) demonstrated that the chemical system is frequently
controlled by kinetic reactions. Hence, both equilibrium and kinetic reactions
are nowadays directly incorporated into multicomponent systems of transport
(Simdnek and Suarez, 1993).
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POST-POSTSCRIPT
Models of soil hydrology should be related to the reality of a field or watershed
by at least two links. The first is a proper characterization of the physical
parameters of the domain including appropriate processes and boundary
conditions. The second link is related to the scale of the model. One part of this
link is statistical evaluation while the other part is the degree of approximation
allowed in the model. It follows that a modeler should work in or at least
supervise the experimental activity in the field. And, vice versa, effective field
experimentation requires the theoretical knowledge of the modeler. Hence,
without properly taken field data all our effort is futile.


