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Effects on climate of greenhouse gases
concentrations

1. Introduction
2. The greenhouse effect
3. Observed climate change

4. Projected climate change



1. Introduction

e Observed and projected climate change are successively
examined at the global scale and over the Mediterranean
region.

e Presented illustrations are mainly coming from the IPCC
Working Group | reports and from the resulits of specific
research projects.

The IPCC was established by the World
Meteorological Organisation (WMO) and the
United Nations Environment Programme (UNEP)
in 1988 to provide an assessment of the
understanding on climate change due to natural
and anthropogenic forcing. The Working group |
addresses the scientific aspects of climate
change.

Research projects are aimed at identifying the main
climate processes and feedbacks playing a role in
climate change, at detecting climate change and
attributing it to human activities, at constructing
climate change scenarios.



2. The greenhouse effect

e Natural origin

Due to the absorption of infrared radiation by gases
such as water vapour, carbon dioxide, nitrous
oxide, methane, ozone.

Radiative forcing due to greenhouse gases implies
a warming of near 33°C of the equilibrium surface
temperature.

e Anthropogenic

Due to the human-induced increase of greenhouse
gases concentrations such as above mentioned
gases and Halocarbons.

Radiative forcing due to greenhouse exceeds
radiative forcing due to human-induced changes
of aerosols concentrations and due to natural
sources of climate variability (sun, volcanoes).

Anthropogenic greenhouse gases concentrations
increase may have a significant influence on
climate that need to be investigated.
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Figure 1.2: The Earth’s annual and global mean energy balance. Of the incoming solar radiation, 49% (168 Wm™?) is
absorbed by the surface. That heat is returned to the atmosphere as sensible heat, as evapotranspiration (latent heat)
and as thermal infrared radiation. Most of this radiation is absorbed by the atmosphere, which in turn emits radiation
both up and down. The radiation lost to space comes from cloud tops and atmospheric regions much colder than the

surface. This causes a greenhouse effect. Source: Kiehl and Trenberth, 1997.
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The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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Figure 3: Many external factors force climate change.

These radiative forcings arise from changes in the atmospheric composition, alteration of surface reflectance by land use, and variation in the output
of the sun. Except for solar variation, some form of human activity is linked to each. The rectangular bars represent estimates of the contributions of
these farcings — some of which yield warming, and some cooling. Forcing due to episodic volcanic events, which lead to a negative forcing lasting
only for a few years, is not shown. The indirect effect of aerosols shown is their effect on the size and number of cloud droplets. A second indirect
effect of aerosols on clouds, namely their effect on cloud lifetime, which would also lead to a negative forcing, is not shown. Effects of aviation on
greenhouse gases are included in the individual bars. The vertical line about the rectangular bars indicates a range of estimates, guided by the
spread in the published values of the forcings and physical understanding. Some of the forcings possess a much greater degree of certainty than
others. A vertical line without a rectangutar bar denotes a forcing for which no best estimate can be given owing to large uncertainties. The overall
{evel of scientific understanding for each forcing varies considerably, as noted. Some of the radiative forcing agenis are well mixed over the globe,
such as CQ,, thereby perturbing the global heat balance. Others represent perturbations with stronger regional signatures because of their spatiai
distribution, such as aerosols. For this and other reasons, a simple sum of the positive and negative bars cannot be expecied to yield the net effect
on the climate systemn. The simulations of this assessment report (for example, Figure 5) indicate that the estimated net effect of these perturbations
is 1o have warmed the global climate since 1750. [Based upon Chapter 6, Figure 6.6]
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Figure 1.1: Schematic view of the components of the global climate system (bold), their processes and interactions
(thin arrows) and some aspects that may change (bold arrows).
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—  Reconstruction (AD 1000-1980)

= RECONSHrUction (40 year smoothed)

Northern Hemisphere anomaly (°C)
relative to 1961-1890

2
3
4
5 Figure 5: Millennial Northern Hemisphere (NH) temperature reconstruction (blue) and instrumental data (red) from
6 AD 1000-1999. Smoother version of NH series (black), and two standard error limits (gray shaded) are shown.
7 {Based on Figure 2.20.]
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Variations of the Earth's surface temperature for the past 140 years
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Figure 2: Combined annual land-surface air and sea surface temperature anomalies (°C) 1861 to 1999, relative to
1961 to 1990. Two standard error uncertainties are shown as bars on the annual number. [Based on Figure 2.7¢.]
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Note: This will be updated in early 2001.
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4 Figure 4: (a) Times series of seasonal temperature anomalies of the troposphere based on balloons and satellites in
5 addition to the surface. (b) Time series of seasonal temperature anomalies of the lower stratosphere from balloons and
6 satellites. [Based on Figure 2.12.]
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Temperature indicators
£ *little or no'change since 1979 :
» *0.0- O.1°Ciiin¢rease,since 1979 - satellites ‘an
. *D210 0.4°Cincrease since ~ 1960
NEARSURFACE = - 1987 10% below 1973-86 mean
* 1990s warmest decade of the millenium
_-and 1988 warmest year foratleastthe NJH. oo 0 /27 N e e e
** marine air temperature: 0:4 10 0.7°C
increase since late 19th Century
late 19thcentury. =
_ ? global ocean:(to 300m depth)
** Yirtually certain {(probabiiity > 99%)
. ** Yery likely {probability » 90% but < 99%)
Likelinood * Likely (probability > 65% but < 90%)
? Medium likelihood (probability > 33% but < 66%)

3

4

5

6

7 Figure 7a: Schematic of observed variations of the temperature indicators. [Based on Figure 2.39a.]
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Hydrological and storm related indicators
LOWER STRATOSPHERE % 20% water vapour increase since 1980 (above 18'km)
TROPOSP, HERE . ‘ 3'7, [ uppertropsphere: *no significant global trends since 1980;
' Water vapour ~ 15% increase in tropics (10°N-10°S)
~ X\ tropsphere: * many regions'with increases since about 1960
*2% increase in total cloud ambunt'
>« Over land during the 20th century.
v;)NEAR SUHFACE
“ 7 Nosystemic large-scale
S o change in tornadoes, thunder-days, hail = | S
- ' g : . \\\\\\ | * 2 No consistent 20th century
in TN ; AN change in extratropical
2-3% decrease in subtropics 7\ 20th Century N storm frquency / intensity
bbbb land surface rainfall
** Virtually certain (probability » 99%)
iroag ** Very likely {probability > 20% but < 99%)
Likelihood * Likely {probability > 66% but < 90%)
? Medium likelihood (probabiiity > 33% but < 66%;)
4
5

6  Figure 7b: Schematic of observed variations of the hydrological and storm-related indicators. {Based on Figure 2.39b.]
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Annual Mean Temperature
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3
4  TFigure 27: The cascade of uncertainties in projections to be considered in developing climate and related scenarios
5 for climate change impact, adaptation, and mitigation assessment. [Based on Figare 13.2.]
6
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indicators of the human influence on the atmosphere
during the indusirial Era

{a) Global atmospheric concentrations of three well mixed
greenhouse gases
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Figure 2: Long records of past changes in
atmospheric composition provide the context for
the influence of anthropogenic emissions.

{a) shows changes in the atmospheric
concentrations of carbon dioxide (CO,), methane
(CH,), and nitrous oxide (N,O) over the past 1000
years. The ice core and fim data for several sites in
Antarctica and Greenland (shown by different
symbols) are supplemented with the data from direct
atmospheric samples over the past few decades
(shown by the ling for CO, and incorporated in the
curve representing the global average of CH,). The
estimated positive radiative forcing of the climaie
system from these gases is indicated on the right-
hand scale. Since these gases have atmospheric
lifetimes of a decade or more, they are well mixed,
and thelr concentrations reflect emissions from
sources throughout the globe. All three records show
effects of the large and increasing growth in
anthropogenic emissions during the Indusirial Era.

(b) illustrates the influence of industrial emissions on
atmospheric sulphate concentrations, which produce
negative radiative forcing. Shown is the time history
of the concentrations of sulphate, not in the
atmosphere but in ice cores in Greenland (shown by
lines; from which the episodic effects of volcanic
eruptions have been removed). Such data indicate
the local deposition of sulphate aerosols at the site,
reflecting sulphur dioxide (S0,) emissions at
mid-latitudes in the Northern Hemisphers. This
record, albeit more regional than that of the
globally-mixed greenhouse gases, demonstrates the
large growth in anthropogenic SO, emissions during
the Industrial Era. The pluses denote the relevant
regional estimated SO, emissions (right-hand scale).

[Based upen (a) Chapter 3, Figure 3.2b (CO,);
Chapter 4, Figure 4.1a and b (CH,) and Chapter 4,
Figure 4.2 (N,O) and (b} Chapter 5, Figure 5.4a}



Simulated annual global mean surface temperatures
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Figure 4: Simulating the Earth's temperature variations, and comparing the results to measured changes, can provide insight into the
underlying causes of the major changes.

A climate model can be used to simulate the temperature changes that occur both from natural and anthropogenic causes. The simulations
represented by the band in (a) were done with only natural forcings: solar variation and voleanic activity. Those encompassed by the band in (b) were
done with anthropogenic forcings: greenhouse gases and an estimate of sulphate aerosols, and those encompassed by the band in (¢} were done with
both natural and anthropogenic forcings included. From (b), it can be seen that inclusion of anthropogenic forcings provides a plausible explanation
for a substantial part of the observed temperature changes over the past century, but the best match with observations is obtained in (¢) when both
natural and anthropogenic factors are included. These results show that the forcings included are sufficient to explain the observed changes, but do
not exclude the possiblility that other forcings may also have contributed. The bands of model results presented here are for four runs from the same
model. Similar results to those in (b) are obtained with other models with anthropogenic forcing. [Based upon Chapter 12, Figure 12.7]
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6  Report on Emissions Scenarios.]
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Figure 17: Atmospheric concentrations of CO,, CH, and N,O resulting from the six SRES scenarios and from the
1592a scenario computed with current methodology. [Based on Figures 3.12 and 3.14a-1 and 2.}
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3 Figure 18: Simple model results: estimated historical anthropogenic radiative forcing up to 2000 followed by
4 radiative forcing for the six illustrative SRES scenarios. The shading shows the envelope of forcing that encompasses
5 the full set of thirty-five SRES scenarios. The method of calculation closely follows that explained in the chapters.
6 The values are based on the radiative forcing for a doubling of CO, from seven AOGCMs. The 1S92a, 1892¢, and
7 1892¢ forcing is also shown following the same method of calculation. [Based on Figure 9.13a.]
8
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3
4 Figure 21: Simple model results: (a) global mean temperature projections for the six illustrative SRES scenarios
5 using a simple climate model tuned to seven ACGCMs. Also for comparison, following the same method, results are
6 shown for I592a. The darker shading represents the envelope of the full set of thirty-five SRES scenarios using the
7 average of the model results (mean climate sensitivity is 2.8°C). The lighter shading is the envelope based on all seven
8 model projections (with climate sensitivity in the range 1.7 to 4.2°C). The bars show, for each of the six illustrative
9 SRES scenarios, the range of simple model results in 2100 for the seven AOGCM model tunings. (b) Same as (a) but
10 results include estimated historical anthropogenic forcing. [Based on Figures 9.14 and 9.13b.]
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Figure 23: Global-average sea-level rise 1990-2100 for the SRES scenarios. Thermal expansion and land ice changes
were calculated using a simple climate model calibrated separately for each of seven AOGCMs, and contributions
from changes in permafrost, the effect of sediment deposition and the long-term adjustment of the ice-sheets to past
climate change were added. Each of the six lines appearing in the key is the average of AOGCMs for one of the six
illustrative scenarios. The region in dark shading shows the range of the average of AGGCMs for all 35 SRES

9 scenarios. The region in light shading shows the range of all AOGCMs for all 35 scenarios. The region delimited by
10 the outermost lines shows the range of all AOGCMSs and scenarios including uncertainty in land-ice changes,

11 permafrost changes and sediment deposition. {Based on Figure 11.12.]
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4 Figure 24: Projcied CO, emissions permitting stabilization of atmospheric CO, concentrations at different final
5 values. Panel (a) shows the assumed trajectories of CO, concentration (WRE scenarios) and panels (b) and (c) show
6 the implied CO, emissions, as projected with two fast carbon cycle models, Bern-CC and ISAM. The model ranges
7 for ISAM were obtained by tuning the model to approximate the range of responses to CO, and climate from model
8 intercomparisons. This approach yields a lower bound on uncertainties in the carbon cycle response. The model
9 ranges for Bern-CC were obtained by combining different bounding assumptions about the behaviour of the CG,
10 fertilization effect, the response of heterotrophic respiration to temperature and the turnover time of the ocean, thus
11 approaching an upper bound on uncertainties in the carbon cycle response. For each model, the upper and lower
12 bounds are indicated by the top and bottom of the shaded area. Alternatively, the lower bound (where hidden) is
13 indicated by a hatched line. [Based on Figure 11.12.]
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4
5 Figure 25: Simple model results: Projected global mean temperature changes when the concentration of CO, is
6 stabilised following the WRE profiles (see chapter 9.3.3). For comparison, results based on the S profiles in the SAR
7 are also shown in blue (51000 not available). The results are the average produced by a simple climate model tuned to
8  seven AOGCMs. The baseline scenario is scenario A1B, this is specified only to 2100. After 2100, the emissions of

9 gases other than CO, are assumed to remain constant at their A1B 2100 values. The projections are labelled according
10 to the level of CO, stabilisation. The broken lines after 2100 indicate increased uncertainty in the simple climate
11 model results beyond 2100. The black dots indicate the time of CO, stabilisation. The stabilisation year for the
12 WRE1000 profile is 2375. [Based on Figure 9.16.]
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3 Figare 19: The annual mean change of the temperature {colour shading) and its range (isolines) [Unit: °C] for the
4 SRES scenario A2 (upper panel) and the SRES scenario B2 (lower panel). Both SRES-scenarios show the period
5 2071-2100 relative to the period 1961-1990 and where performed by OAGCMs. [Based on Figures 9.10d-1 and
6  9.10e-1.]
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Figure 20: Analysis of inter-model consistency in regional relative warming (warming relative to each model’s
global-average warming). Regions are classified as showing either agreement on warming in excess of 40% above the
global average (‘Much greater than average warming’), agreement on warming greater than the global average
(‘Greater than average warming’), agreement on warming less than the global average (‘Less than average warming’),
or disagreement amongst models on the magnitude of regional relative warming (‘Inconsistent magnitude of
warming’). There is also a category for agreement on cooling (which never occurs). A consistent result from at least
10 seven of the nine models is deemed necessary for agreement. The global annual average warming of the models used
11 span 1.2 to 4.5°C for A2 and 0.9 to 3.4°C for B2, and therefore a regional 40% amplification represents warming

12 ranges of 1.7 t0 6.3°C for A2 and 1.3 t0 4.7°C for B2. [Based on Chapter 10, Box 1, Figure 1.]
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2
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4 Figure 22: Analysis of inter-model consistency in regional precipitation change. Regions are classified as showing

5 either agreement on increase with an average change of greater than 20% (‘Large increase’), agreement on increase

6 with an average change between 5 and 20% (‘Increase’), agreement on a change between ~5 and +5% or agreement

7 with an average change between -5 and 5% (‘No change’), agreement on decrease with an average change between

8 -5 and -20% (‘Decrease’), agreement on decrease with an average change of less than -20% (‘Large decrease’), or

9 disagreement (‘Inconsistent sign’). A consistent result from at least seven of the nine models is deemed necessary for
10 agreement. [Based on Chapter 10, Box 1, Figure 2.]
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2C02—-C02 Precipitations DJF (mm/day
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2C02—-C02 Temperature JJA (deq.C)
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nasin induced

Temperature

&
1]

P

Winter

Summer

+2.0°C /1 +2.4°C

+2.5°C /1 +2.9°C

+2.3°C/ +2.7°C

+2.3°C 1/ +2.7°C

Precipitation

Winter

Summer

8% 1 +20%

-19% / 1%

A%/ +13%

-28% [ -14%
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Changes over the Mediterranean basin induced
by CO2 increasing at 1%lyear rate

Mean for 2070-2100 minus mean for 1961-1990

Temperature Without sulfate With sulfate
aerosols aerosols
Winter +3.9°C / +5.3°C +3.1°C/ +4.9°C
Summer +4.0°C / +6.9°C +3.3°C / +5.5°C
Precipitation Without sulphate With sulphate
aerosols aerosols
Winter -10% / +16% 7% | +15%
Summer -37% | +6% -33% 1 -3%
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4. Projected climate change

Over the Mediterranean area

e The simulated warming due to the doubling of CO2, is of
the order of 2.4°C over the Mediterranean basin
whatever the experiment and the model resolution.
The simulated precipitation are rather stable or slightly
decrease. This is consistent with recent observations.

e The simulated warming is greater in summer and on the
Western part of the Mediterranean basin: this is
consistent with the observations of 1981-1990
compared to 1951-1980.

e The simulated precipitation tends to increase in winter
and to decrease in summer: consistent with
observations but only for the last decade.

e Neither the hydrological control, nor the radiative control
dominates the temperature anomalies. However, an
analysis of the ensemble of the LSPCR simulations
over Southern Europe (European research project),
suggests that the seasonal dependence of the
warming could be due to the seasonal dependence of
the hydrological control .
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4. Projected climate change

Over the Mediterranean area

e In addition to the uncertainties of emission and basis
socio-economic scenarios, the uncertainty of the
simulated climate change at the regional scale comes
from the uncertainty of the representation of physical
processes and climatic feedbacks by the models
acting at the global and regional scale (clouds,
aerosols, ...), the uncertainty due to the character
partly chaotic of climate.
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