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ABSTRACT

Soil lo&& equation* have been developed to unde/utand the QJio&ion
pn.oceAA and to predict &ield boil loAAeA. The equation moAt widely uAed today
fan. hoil IOAA pKedX.oXA.on faom Aheet-inteKtull-nlll eKOAion it> the, Univetual SOAJL

Equation (USLE). It compute* the boil lot* faK a given Aite <u> the product
fa majOM kacXote, each given a numerical value. Thet>e ^actosu cute the Kain-

iaJUL eh.0A4.vity (R), the £>oil enodibUJjty (K), the hlope length &actoK [L), the
blope AteepneAA ^aatoK (S) and the dh.0h4.0n control pnaQJu.ee (P ) .

1. INTRODUCTION

Soil erosion has been described as the removal of inorganic as well as
organic soil surface material by wind and water. Grazing, land clearing, plant
harvesting without proper soil management rapidly deplete and exhaust the soil
of organic matter and nutrients. This process is important everywhere, although
most dramatic in arid and semi-arid regions where marginal lands are rapidly
converted into deserts.

Water erosion takes place under the action of water as rainfall and
runoff by detaching and transporting soil particles. The most important causes
of water erosion are therefore the characteristics of rainfall, soil and land.

Most of the knowledge of soil erosion mechanisms and rates originates
in the work of the U.S. Soil Conservation Service with the development of the
Universal Soil Loss Equation (USLE), an estimation of erosion as the product
of a series of terms for rainfall, slope gradient, slope length, soil, and
cropping factors.

This equation is now a widely used model for predicting sheet and rill
erosion (Wischmeier and Smith, 1978). It has the form:

A = R x K x L x S x C x P

with the soil loss (A), the rainfall erosivity (R), the soil erodibility (K), the
croppmg-management factor (C), the erosion control practice factor (P), and the
topographic factors: the slope length factor (L) and slope steepness factor (S).

The factors of the USLE were developed using a standard plot which is
22.13 m long on a 9% slope. The plot was tilled up and down slope and was in
continuous fallow for at least two years. The standard plot is a result of the
historical development of the USLE when early basic data were obtained from
0.01 acre plots (40.5 m^). For a 6 ft width (1.83 m), this gave a plot length of
22.13 m (72.6 ft).
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2. THE RAINFALL EROSIVITY FACTOR R

Rainfall erosivity is defined as the potential ability of rain to
cause erosion or the agressivity of rainfall to induce erosion. In the USLE, the
factor R is defined as a rainfall and runoff factor and the product of two rain-
storm characteristics: kinetic energy and the maximum 30 minute intensity.

t

In quantifying rainfall erosivity the size, distribution and terminal
velocity of individual raindrops need to be characterized. Many studies have been
made of raindrop size (Laws and Parsons, 1943; Mihara, 1952; Hudson, 1964). It
was found that the upper limit of the size appears to be about 5-6 mm in diameter.
Studies, such as those of Best (1950) and Hudson (1963) showed the size distri-
bution of the raindrops depending on the rainintensity, with an increasing drop
size with increasing intensity for low intensities.But at very high intensities
(higher than 100 mm/hr) a reversal of the trend is observed (Hudson, 1963). Carter
et al. (1974) on the other hand showed that at intensities over 250 mm/hr the
greatest proportion of raindrops is larger than 4 mm in diameter. Probably, at
intensities higher than 200, mm per hour, coallescence of smaller drops again take
place (Evans, 1980).

Laws (1941) measured the velocity of waterdrops falling from different
heights. These measurements, using high speed photography, resulted in a relation-
ship between terminal velocity and diameter of raindrops as shown in figure 1.
Gunn and Kinzer (1949) confirmed these results.

Fall height in meter

>>

9

8

7

3

2

1

U
i
I

,'

i

1

k
y

y
Ss

j
A
'//
7,

f//
W
y.

//

//

+—

y

_—

——

—̂

-—
.—-
——

^
-̂ -

——
i -

ss=S

- -

.

^ — -

- —

•

^ - ^

^ ^

~

- — —

-

,«——

.

^ — -

^ — — •

— —

i —

— -

• —

— —

— —

—

—

- — -

— —

• - •

" 2 0
8

- 6
- 5

1
• • 2,b

- 2

- 1.5

- 1

-0 .75

-o ,50

5 6 7

Diameter in mm

Figure 1 : Relationship between dropdiameter and fall velocity for different
fall heights (after Laws, 194 1)



-339-

Ellison (1944) and Bisal (1960) showed that soil detachment and/or
splash erosion are related to the mass and velocity of falling drops. Mihara
(1959) and Free (1960) found that splash erosion is directly correlated with
kinetic energy. Kinetic energy of a falling raindrop may be computed indirectly
when the drop size and the terminal velocity are known. Kinetic energy may also
be determined by converting the kinetic energy into another form of energy which
may be more easily measured, such as with an acoustic recorder (Kinnell, 1968;
Forrest, 1970; De Wulf and Gabriels, 1982). But studies on this line are still
continuing.

Different authors found different relationships between kinetic energy
(E) and intensity (I) of rainfall:

Mihara (1952): E = 75.9I1*2

with E: erg/cm^.minute
I: mg/cm^.minute

Wischmeier and Smith (1958):
E = 916 + 331 log I

with E: foot ton/acre.inch
I: inch/hour

in metric units the expression is:

E = 1.213 + 0.890 log]0I
with E: kg m/m^ mm

I: mm/hour

In Zimbabwe, Hudson (1965) found:

E . 7 5 8 . 5 2 . I2ZJL1

with E: ergs x
I: inch/hour

For the Miami area, Kinnell (1973) found:
E = 8.37 I - 45.9

with E: ergs/cm^ sec
I: mm/hr

Carter et al. (1974) found in Louisiana and Mississippi:

E = 429.2 + 534.0 I - 122.5 I 2 + 78 I3

with E: foot ton/acre.inch
I: inch/hour

It is clear that there is a good correlation between kinetic energy
and rainfall intensity, but the equation and regression coefficient expressing
the relationship are different from one place to another, depending on the clima-
tic condition.

Wischmeier and Smith ( 1958) found as a result of extensive statistical
analysis that EI30J the product of the total energy of a rainstorm (E) and the
storm's maximum intensity for a 30-minute duration (I30) gave the best correla-
tion with soil loss.

The EI30 index has been widely used in America, and other countries
such as: India (Bhatia and Singh, 1976), West and Central Africa (Roose, 1977),
Indonesia (Bols, 1978), Belgium (Bollinne et al., 1980). However, the index has
not been entirely satisfactory, particularly for the tropical rainstorms (Lai,
1976). This author indicated that EI30 may underestimate the kinetic energy of
tropical storms. Hudson and Jackson (1959) found in Rhodesia that the EI30 index
was not efficient as might be expected from WischmeierTs studies in U.S. Ahmad
and Breckner (1974) found in Trinidad that the correlations of this index with
soil loss were generally low.

Hudson (1971) proposed an alternative method for estimating the erosi-
vity of rainfall. He defined the KE > 1 index as the sum of the kinetic energies
in storms with intensities greater than 1 in/hr (25 mm/hr). It is based on the
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concept that there is a threshold value of intensity at which rain starts to
become erosive. Such an index could be more adequate for describing rainfall ero-
sion hazards for tropical soils, which are generally characterized by well-struc-
tured profiles and infiltration rates greater than 1 in/hr.

Lai (1976) proposed the AI m index being the product of total rainfall
(A) in cm and maximum intensity (Im) in cm/hour for a minimum duration of 7.5
minutes.

Fournier (1960) in his attempt to correlate climatic parameters to
suspended sediment load in rivers defined a rainfall distribution coefficient
C as Pni/P where p m is the mean rainfall for the wettest month of the year and P
the mean annual rainfall. Soil erosion can be estimated using this coefficient
only insofar as the suspended sediment load of a river is related to the soil loss
for the whole catchment. Arnoldus (1980) obtained poor correlations between the
EI30 and Fournierfs indices. He proposed the modification:

12 ,

in which p. is the monthly precipitation and P is the annual precipitation.

3. THE SOIL ER0DIBIL1TY FACTOR K

The soil erodibility factor K in the universal soil loss equation
describes the susceptibility of the soil to erosion and reflects the fact that
different soils erode at different rates when the other factors that affect
erosion are the same. As intended by the USLE, the experimental determination
of K must be based on unit values for other factors in the equation (see further).

The inherent susceptibility of a soil to erosion by water is collecti-
vely determined by its structural and hydrological properties. Aggregate break-
down and particle detachment depend on aggregate stability and particle size
distribution characterisitcs. The particle-transporting runoff depends not only
on rainfall characteristics but also on water transmission and rillability pro-
perties of the soil, particularly infiltration rates at the prevailing antecedent
water contents.

The dependence of soil susceptibility to water erosion on textural,
structural, and hydrological properties has been established by several investi-
gators (Wischmeier and Mannering, 1969; Wischmeier et al., 1971; Roth et al.,
1974). They developed equations and nomographs which were recommended for
estimating K-values whenever experimental values are not available (figure 2 and
figure 3). These nomographs were widely used in the U.S. and in many other coun-
tries, including tropical. El-Swaify (1977) and El-Swaify and Dangler (1977)
however criticized the use of the nomographs to predict the erodibility of
tropical soils.

4. THE TOPOGRAPHIC FACTOR LS

It has been observed that soil loss per unit area increases with
increasing slope length and slope steepness. The slope steepness in percent (s)
and the slope length in meters (̂ ) are quantitatively incorporated in the USLE
by the dimensionless factors S and L respectively.

The exponential dependence of soil loss on slope steepness (or gradient)
is generally accepted. Mathematically the relation is:

E = c sa

where E is the erosion, s the slope in percent and a is an exponent.
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Figure 2 : Soil erodibility nomograph (Wischmeier et al., 1971)
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Figure 3 Roth, Nelson, and RomkensT (1974) nomograph for soil erodibility
estimation

Zingg (1940) analyzed the results of laboratory and field plot expe-
riments and found a value for a of 1.49. Musgrave (1947) used a = 1.35.
Wischmeier and Smith (1965, 1978) calculated the dimensionless S factor for the
USLE as:

2
S =

0.43 + 0.30 s + 0.043 s
6.613
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in which the figure 6.613 is the value of the numerator for a standard soil
plot (s = 9%).

Hudson and Jackson ( 1959) found that in the more extreme erosion
conditions of the tropics the slope effect is more exaggerated and that a figure
of about 2 is more appropriate for the exponent a.

It is agreed that the dependence of soil loss E on slope length 1 is
of the form:

E = b lm

in which b and m are empirical constants. For slopes of 3 percent or less the
exponent becomes 0.3, for 4 percent slopes it is 0.4, and for 5 percent or steeper
the exponent is 0.5 (Wischmeier and Smith, 1958). For the USLE the slope length
factor L, a dimensionless factor has been calculated as:

L = ( m
22.13'

where 1 is the slope length in meters and 22.13 m the length for standard plots
for which L = 1, and m is the exponent as explained above.

In the USLE a combined LS factor is used as shown in figure 4. This
figure is intended for use on uniform slopes.
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Foster and Wischmeier (1974) developed an equation to derive the LS
factor for irregular slopes by breaking them up into a series of segments each
with an uniform regular slope but having different gradients. Table 1 derived by
this procedure shows the amounts of soil loss for successive equal-length seg-
ments of a uniform slope. Segment No. 1 is always at the top of the slope. For
example, three equal length segments of a uniform 10 percent slope would be
expected to produce 19, 35 and 46 percent of the loss from the entire slope.
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Table 1 : Estimated relative soil losses from successive equal-length segments
of a uniform slope

Number of segments

2

3

4

5

1 Derived by the

Soil 1

Sequence numb*
of segment

1

2
1

2
3
1

2
3
4
1

2
3
4
5

formula:

i r Fraction of soil

m = 0 5

0.35
.65
19
.35
.46
.12
.23
.30
.35
.09
.16
.21
.25
.28

m+1
- (i-i)

m = 0.4

0.38
.62
22
35
43
14

.24

.29
33
11

17
21
.24
.27

m+1

loss

m = 0.3

0.41
.59
.24
35
41
.17
.24
28
.31
12
18
21
.23
.25

where j = segment sequence number, m = slope-length exponent

(0.5 for slopes > 5 percent, 0 4 for 4 percent slopes, and 0.3 for

3 percent or less), and N = number of equal-length segments into

which the slope was cT-nded.

The following calculation illustrates the procedure for a 150 meter
convex slope on which the upper third has a gradient of 5 percent; the middle
third 10 percent and the lower third 15 percent.

Segment °/>

1
2
3

CROP MANAGEMENT FACTOR

I s l o p e

5
10
15

C

Figure

1.2
3.0
5.5

Table

0. 19
0.35
0.46

LS

Product

0.228
1.050
2.530

= 3.808

The factor C in the universal soil loss equation is the ratio of soil
loss from land cropped under specific conditions to the corresponding loss from
clean-tilled, continuous fallow (Wischmeier and Smith, 1978). This factor mea-
sures the combined effect of all the interrelated cover and management variables,
crop sequence, productivity level, growing season length, cultural practices,
residue management, rainfall distribution.

The magnitude of the C factor may be derived experimentally from
research plots designed to measure soil loss. To calculate its numerical value,
cropstage periods must be defined and their duration as well as cover effecti-
veness estimated. Each segment of the cropping and management sequence must be
evaluated in combination with the rainfall erosivity distribution for the region.

To calculate the C factor, the year is divided into a series of crop-
stage periods defined so that cover and management effects may be considered
approximately uniform within each period. Six cropstage periods were defined
by Wischmeier et al. (1978):

1. Rough fallow,
2. seedbed: 10% canopy cover,
3. establishment: 50% canopy cover (35% for cotton),
4. development: 75% canopy cover (60% for cotton),
5. maturing crop,
6. residue or stubble.
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Elwell and Stocking (1976) considered the time distributions of <:rops
cover and rainfall throughout the season, and developed a percent cover-soil loss
relationship as an alternative to the USLE cropping-management factor.

Table 2 reports the C factor identified by Roose (1977) for cultivated
crops on Alfisols and Oxisols in West Africa.

Table 2 : Estimated value of the C factor in West Africa (Roose, 1977)

Practice
Annual average
C factor

Bare soil 1
Forest or dense shrub, high mulch crops 0.001
Savannah, prairie in good condition 0.01
Over-grazed savannah or prairie 0.1
Crop cover of slow development or late planting

(first year) 0.3-0.8
Crop cover of rapid development or early planting
(first year) 0.01-0.1

Crop cover of slow development or late planting
(second year) 0.01-0.1

Corn, sorghum, millet (as a function of yield) 0.4-0.9
Rice (intensive fertilization) 0.1-0.2
Cotton, tobacco (second cycle) 0.5-0.7
Peanuts (as a function of yield and date of planting) 0.4-0.8
First year cassava and yam (as a function of date
of planting) 0.2-0.8

Palm tree, coffee, cocoa with crop cover 0.1-0.3
Pineapple on contour (as a function of slope)

(burned residue) 0.2-0.5
(buried residue) 0.1-0.3
(surface residue) 0.01

Pineapple and tied-ndging (slope 7%) 0.1

6. CONSERVATION PRACTICE FACTOR P

The conservation practice factor or support practice factor or erosion
control practice factor P in the USLE is the ratio of soil loss with a specific
control practice to the soil loss with up-and-down slope culture. The erosion
control practices to be considered are contouring, contour strip-cropping and
terracing.

The practice factors for the three major mechanical practices as
recommended by Wischmeier and Smith ( 1978) are shown in table 3.

Table 3 : Erosion control practice factor P (Wischmeier and Smith, 1978)

Land Slope,
percentage

1-2
3-8
9-12
13-16
17-20
21-25

Contouring

0.60
0.50
0.60
0.70
0.80
0.90

Contour
Strip cropping and
Irrigated Furrows

0.30
0.25
0.30
0.35
0.40
0.45

( 1)
Terracing

0. 12
0. 10
0. 12
0. 14
0. 16
O. 18

(1) For prediction of contribution to off-field sediment load

The factor for terracing is for the prediction of the total off-the-
field soil loss when the terrace and ridge are cropped the same as the inter-
terrace area. If within terrace interval soil loss is desired, the terrace inter-
val distance should be used for the slope length factor L.
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Chapter 1

Model Structures

A model is a description of the physical reality using mathematical equations. The

origin of these equations will determine the general model concept: the two basic

model structures are theoretical and experimental.

The theoretical model structure is also called conceptual. In this method, the modelled

system is described by the basic physical laws (equilibrium equations, conservation of

mass and energy, etc.. .) which determine the system behaviour. Depending on the

complexity of the processes one wants to model, there are almost always simplifications

necessary in order to make the calculations practicable. Many systems are not only

time-dependent, but also space dependent. Such systems are systems with distributed

parameters, and their corresponding models are then called distributed models. Usu-

ally, these models are simplified by lumping: the physical equations are only applied

on some points in space.

The experimental model structure is also called black-box or empirical. In this struc-

ture, the model is derived from measurements. Starting from a theoretical analysis, the

input and output variables are measured. These measurements are used to find math-

ematical relations between the measured variables. A difficult task is the elimination

of disturbing influences, which may result in erroneous measurements.

Both theoretical and experimental models have their advantages and disadvantages.

However, a huge advantage of the theoretical model structure is that the mathematical

relation is conserved between the system parameters and the physical parameters of

the processes. In experimental models these relations are lost, the system parameters
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are then just numbers without a physical meaning. When the system becomes more

complex, it becomes more and more difficult to implement a theoretical model. This

is a drawback not occurring in the experimental methodology.

In both theoretical and experimental methods, one can make a distinction between

stochastic and deterministic models. A model is stochastic if one or more system

parameters are random variables. This means that the exact value of that parameter

can not be determined. In natural systems such variables are abundant (e.g. the daily

amount of rainfall, the length of the daily queues on the motor ways, etc. . . ) . Probably,

almost all physical, social and economic parameters have a stochastic nature. In some

cases, these fluctuations are not important and are not taken into account. Then, one

can say that these parameters are quasi-deterministic. Consider the output variable

y(t) of a dynamical system with as input variable u(t). When the value of y(t) can be

exactly derived from the system behaviour and from the input variable u(t), then we

can say that y(t) is a deterministic system. It is then possible to make the following

division concerning the model structure (Clarke, 1973):

1. stochastic-theoretical

2. stochastic-experimental

3. deterministic-theoretical

4. deterministic-experimental

These four groups can then be further extended in:

1. linear systems

2. nonlinear systems

When the output signal yi(t) corresponds with the input u\(t) and 2/2(i) corresponds

with the input U2(£), then the system is called linear when y\{t) + y<i(t) corresponds

with U\(t) + u<i(t) (superposition principle). This linearity may not be confused with

the linearity in statistical (regressions) sense.



Chapter 2

Infiltration Processes

2.1 Infiltration processes

Infiltration is the process of water penetrating from the ground surface into the soil.

Many factors influence the infiltration rate, including the condition of the soil surface

and its vegetation cover, the properties of the soil, such as its porosity and hydraulic

conductivity, and the initial moisture content of the soil. Soil strata with different

physical properties may overlay each other, forming horizons. Also, soil exhibits a

large spatial variability even within relatively small areas such as a field. As a result

of these spatial and time variations in soil properties, infiltration is a very complex

process. Consequently, it can be described only approximately with mathematical

equations (Chow et al., 1988). These mathematical equations can be subdivided into

two main groups: the Green-Ampt (Green and Ampt, 1911) and the Richards equa-

tions (Richards, 1931). Remark that these references might look 'old'. However, it is

only now, with the processing capacity of modern computers, that the power of these

equations can be fully exploited inside distributed hydrological models.

2.2 Units

Table 2.1 gives an overview of the SI units used in soil physics. To convert from the SI

units to the indicated units, multiply by the indicated value
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Table 2.1: Conversion factors for commonly used units in soil physics

Quantity

water potential

water potential

water potential

water flux density

hydraulic conductivity

SI units

1 J•kg'1

1 J•kg-1

1 J•kg"1

1 kg • m~2 • 5""1

1 kg • 5 • ra~3

Equivalent units

0.102 meters of water

1 kPa

0.01 bar

1 mm • s"""1

58.8 cm • min"1

2.3 Infiltration during unsteady rainfall events

Most rain events, if not all, have an unsteady character: there are multiple periods of

infiltration during surface ponding and infiltration without surface ponding. Under a

ponded surface the infiltration process is independent of the effect of time distribution of

rainfall. The rate of infiltration reaches its maximum capacity and is referred to as the

infiltration capacity. Without surface ponding, all the rainfall infiltrates into the soil.

The infiltration models described in the previous sections describe infiltration during

ponding. If the time that separates the two stages can be determined, the difficulty

involved in modelling infiltration during an unsteady rainfall event is reduced, since

the infiltration for different stages can be treated separately.

One such methodology to simulate infiltration during unsteady rainfall events is the

'time compression approximation' (Ibrahim and Brutsaert, 1968), which can be used

in combination with any infiltration model. This method implies the knowledge of

the infiltration characteristic of the soil. Figure 2.1 shows the general concept of the

time compression approximation. If the soil infiltration characteristic is superimposed

with the first part of cumulative rainfall curve, then the portion which will infiltrate

can be estimated graphically: at time t\ a portion /x will infiltrate. The second part

of the cumulative rainfall curve should be superimposed at I\. The third part of the

cumulative rainfall curve is superimposed at 72. Finally, the fourth part is superimposed

at 73. During the second and fourth time interval, no runoff is generated.
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Figure 2.1: 77ie top graph shows the cumulative precipitation of an unsteady rain event.

The bottom graph shows the time compression approximation concept, wherein the grey

line is the soil infiltration characteristic.

2 A Determination of the soil infiltration characteristic

For accurate infiltration/runoff modelling, it is necessary to derive the soil specific infil-

tration characteristic from field measurements ! However, when the infiltration/runoff
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has to be determined on homogeneous soils (soils without crack formation, stones,

vertic properties and with a deep homogenous soil profile, e.g. the Luvisols of West-

ern Europe) the infiltration characteristic can be determined using the Green-Ampt

concept:

the wetting front is a sharp boundary dividing the soil of initial moisture content (#;,

m • ra~3) below from saturated soil with moisture content (05, m • ra~3) above. The

basic infiltration equation is based on the Darcy equation (Schmidt, 1996):

(2.1)
xwf{t)

wherein, i is the infiltration rate (kg-s-m"3), Ks is the saturated hydraulic conductivity

(A^-s-ra"3), \Pm the matric potential (J-kg~l), ^g the gravitational potential (J-kg"1)

and xwf(t) the depth of the wetting front (TO) at time t. This infiltration equation can

be further simplified by supposing:

Atfm « *mt- (2.2)

with, tymi the matric potential at the initial water content #;. Equation (2.1) is com-

posed of a stationary and instationary component. The stationary component is:

Afyg dxwfi ( .
i1 = -Ka

 £ = -Ka -g = pw-A6- —f- (2.3)
xwfi at

wherein, g is the gravitational constant (TO • s~2), pu; is the water density (kg • rn~3),

and A8 = 9S — 6{. Integrating equation (2.3) results in:

Xwfl = -2LJL1 (2.4)
Pw • At/

The instationary component is:

i2 = -Ks — — = pw • A^ • !̂  (2.5)

Integrating this equation results in:
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Pw.A6

The depth of the wetting front is the result of both the stationary and unstationary

component:

+ ) (2-7)

All parameters in equation (2.1), which is used to determine the soil specific infiltration

characteristic, are now determined. To apply this infiltration model in practice, the

following data are necessary:

1. the saturated hydraulic conductivity

2. the water retention characteristic of the soil.

Remark that this methodology ONLY applies for HOMOGENEOUS soil profiles. If

this is not the case, the soil specific infiltration characteristic has to be determined

from field experiments !

2.4.1 Estimation of the saturated hydraulic conductivity

The saturated hydraulic conductivity (K$) can be estimated if the soil texture and soil

density of the soil are known. A frequently used equation to estimate Ks is (Campbell,

1985):

/ v 1.3-6

Ks = 0.004 • — • e-6.9-mc-3.7.m5 (2.8)
\Ps J

wherein mc is the clay ( 0 - 2 /jun) mass fraction (kg • kg~l), ms is the silt (2 — 50 //m)

mass fraction (mass • mass""1), and ps is the density of the soil (ton • ra~3). In this

equation, Ks is expressed in (kg • s • m"3). To convert this to (m • /i""1), equation (2.8)

must be multiplied with 35.28. The parameter b is a function of the 'air entry' water

potential, i(jes (J • fcp""1), and the standard deviation of the geometric diameter of the

soil particles, ag, according to:
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6 = (-2 • As) + (0.2 • a9) (2.9)

The air entry water potential is the water pressure in a capillary tube beneath the

meniscus. When the water pressure becomes lower than the air entry water potential

then the capillary tube cannot retain the water anymore. The air entry water potential

of a certain soil can be estimated with:

tie* = -0.5 . (eg"0'5 (2.10)

where dg is the geometric diameter of the soil particles (mm). The geometric diameter

and the geometric standard deviation can be calculated using (Shirazi and Boersma,

1984):

(2.11)

(2.12)G9 = exp \

wherein, n is the number of textural classes, Fn is the mass fraction of textural fraction

n (kg • kg"1), and dn the mean diameter of textural fraction n (mm).

2.4.2 Estimation of the water retention characteristic

The knowledge of the water retention characteristic is essential to describe water move-

ment through a soil profile. The determination of the water retention characteristic

consists of measuring the soil water content at given suction levels. A continuous curve

is then fitted through the measurements. The best known and most frequently used

curve, is the Van Genuchten model (Van Genuchten, 1980):

(2.13)0 = 0r+ :
(1 + [a • h)n)

In this equation a, n and m(= 1 — 1/n) have no physical meaning and determine the

general form of the curve. 9S is the moisture content at saturation (cm3 • cra~3), 6r is
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the residual moisture content at a pF of 4.2 (cm3 • cm 3) and h is the matric potential

(cm H2O). Because m and n are not independent, m can be set to equal 1, such

that equation (2.13) can be simplified to a function of four parameters (#5 ,# r ,a, n).

Rewriting equation (2.13) results in:

The four parameters of this equation (08i 6r, a, n) can be estimated using the pedotran-

fer functions of Vereecken et al. (1989):

6S = 0.81 - (0.283 • ps) + (0.001 • Cl) (2.15)

9r = 0.015 + (0.005 • Cl) + (0.014 • C) (2.16)

a = ezp(-2.486 + (0.025 • So) - (0.351 • C) - (2.617 • p8) - (0.023 • Cl)) (2.17)

n = ea:p(0.053 - (0.009 • 5a) - (0.013 • C) + (0.00015 • So2) (2.18)

wherein, ps is the soil density (g • cm~3), Cl is the clay content (%), 5a is the sand

content (%) and C is the organic carbon content (%). These regression equations were

derived from Belgian soil types and have an adjusted R squared value of respectively:

84.8, 70.3, 68.0 and 56.0. With these equations the water retention characteristic can

be estimated based on the texture, organic carbon content and the soil density.

10



Chapter 3

Overland Flow Processes

3-1 Distributed flow routing: the Saint-Venant equations

The flow of water over the land, through the soil and in stream channels of a watershed

is a distributed process because the flow rate, flow velocity and flow depth vary in space

throughout the watershed. Estimates of flow rate and/or water level at important

locations in the channel can be obtained using a distributed flow routing model. This

type of model is based on the partial differential equations (the Saint-Venant equations

for one-dimensional flow) that allow the flow rate and water level to be computed as

function of space and time, rather than time alone, as in the lumped models. The flow

processes in natural hydrological systems vary in all three space dimensions. However,

for many practical situations, the spatial variation of velocity across the channel and

with respect to the depth can be ignored, so that the flow process can be approximated

by a one-dimensional model. The Saint-Venant equations (de Saint-Venant, 1871)

describe a one-dimensional unsteady open channel flow. Because the Saint-Venant

equations form the basis of almost all physical flow routing models the mathematical

background of these equations is given here.

Consider an elementary channel segment (figure 3.1), with a length dx and a small

time interval dt. Then, based on the principle of mass conservation, one can write:

^ . dt = Q • dt - (Q + ^ -dx J • dt. (3.1)

In this equation is S the storage in the control volume, Q(x,t) the segment inflow and
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[-> Energy grade line

Figure 3.1: Elementary channel segment.

Q + ((dQ/dx) - dx) the segment outflow. Consider A the cross-sectional area, then is

S = A • dx and consequently:

dA
(3.2)

thus:

--— • dx • rft = —-— •
at ox

• dt (3.3)

the continuity equation then becomes:

= 0. (3.4)
UJu UL

The second basic equation is based on the energy balance. Applying the Bernoulli

equation on the elementary channel section gives:

p

p-9

\ [X+dx

9 dt
dx + F] = 0 (3-5)

wherein, z is the elevation of the water level (m), p the pressure (N • m~2), p is the

fluid density (/c^-m~3), 5 the gravitational constant (ra-s~2), a the Coriolis coefficient

( - ) , v the mean velocity of the flow (m • s"l)) and F the hydraulic head (m). Consider

12



Overland Flow Processes

a constant hydrostatical pressure in every cross-section (z + p/pg is constant) and for

a point at the surface is p = patmospherical = 0. Consider also a turbulent flow, so that

a « 1. Equation (3.5) can then be rewritten as:

x+dx dv \

ir^H <3-6>
By dividing with x, using the lim<te->o operator and by considering a constant t:

dz d { v2 \ 1 d ( r*+«to dv \ dF n

or:

(3.8)

with 5/ = dF/dx the head loss per unit length. Introducing the water level h in

replacement of the elevation z, with z = y + h, results in:

and with:

^ = -sm(<5) « - 5 0 (3.10)
ax

wherein So is the local bed slope, with 6 having small values. Equation (3.8) can then

be written as:

S b + + ( ) + + S / _ o .
ox dx\2*gj g at

The latter equation can also be written in terms of the dependent variables Q (dis-

charge) and h (water level). Taking into account that Q = v • A, and v perpendicular

on A (thus, for small bed slopes So), equation (3.11) becomes:

+ ( A ( + \ (312)

dt +dx\A ~ U 2 dx {6A }

13
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s-s dh-J-.dQ

bf~bo~dx g-A It

(

dx g-A It g-A dx \A

The momentum equation can then be written as:

Kinematic wave

Diffusion wave

Dynamic wave

Equation (3.4) forms together with equation (3.14) the Saint-Venant equations. In

equation (3.14) the terms are respectively: the local acceleration term, the convective

acceleration term, the pressure force term, the gravity force term and the friction force

term.

3.2 Overland flow routing model

The simplest distributed model is the kinematic wave model, which neglects the local

acceleration, convective acceleration and pressure terms in the momentum equation. It

assumes So = Sj and the friction and gravity forces balance each other. The diffusion

wave model neglects the local and convective acceleration terms but incorporates the

pressure term. The dynamic wave model considers all the acceleration and pressure

terms in the momentum equation. Kinematic waves govern flow when inertial and

pressure forces are not important. Dynamic waves govern flow when these forces are

important, such as in the movement of a large flood wave in a wide river. For a

kinematic wave motion, the Saint-Venant equations reduce to (Chow et al., 1988):

——h — = q continuity equation (3.15)
ox ot

So = Sf momentum equation (3.16)

wherein Sf is the friction slope and supposed to be equal to the bed slope, So (m-m""1),

q is the lateral inflow per unit width (m3 • s"1 • ra"1), A is crossectional flow area (m2)

and Q is the discharge (m3 • s"1). The momentum equation can also be represented by

(Chow et al., 1988):

14
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A = a-Qfi. (3.17)

Based on the Manning equation, with 5/ = 50 and R = A/P (R is the hydraulic radius

and P the wetted perimeter) the following relation can be found:

with n the Manning roughness coefficient (s • m~1//3). This last equation can be solved

for ,4:

3/5

The parameters a and /? in equation (3.17) are then:

0'6

0 = 3/5 = 0.6 (3.21)

For a broad overland flow, P equals the hillslope segment width, B. Equation (3.15)

has two dependent parameters: A and Q. A can be eliminated by differentiating

equation (3.17) and by substituting the term dA/dt in equation (3.15). This results

in:

In order to calculate the net erosion and deposition along a hillslope, it is necessary

to know the hydrographs of every hillslope segment. To determine these hydrographs,

equation (3.22) can be solved using a finite difference numerical method (figure 3.2).

The objective of the numerical solution is to solve equation (3.22) for Q(z,t) at each

point on the x-t grid, given the channel parameters a, 0, the lateral inflow q(t) and

the initial and boundary conditions. In particular, the purpose of the solution is to

determine the outflow hydrograph of a certain hillslope segment.

15
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The numerical solution of the kinematic wave equation is more flexible than the ana-

lytical, it is more easy to handle variations in the channel properties and in the initial

and boundary conditions, and serves as an introduction to numerical solution of the

dynamic wave equation (which can be implemented in future versions of the STM-

2D/3D model). Equation (3.22) can be written as, with i and j variables indicating

respectively the hillslope or channel segment and the time step:

j j

_ Qi+l

At
(3.23)

j-At

Time

J+1

IT Ax
o

Q = - i -
8t At

Q.JT
0 Known value of Q

O Unknown value of Q
Space

i-Ax

Figure 3.2: Implicit linear finite difference scheme for solution of the kinematic wave

equation (Chow et al, 1988).

Equation (3.23) can now be solved for the unknown Qi+i, with Axi the length of a

segment i (m):

16
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3 - 1
4- At ( S±il£±i\

(3.24)

To solve equation (3.24) three boundary conditions must be known: (1) the maximum

length of a time step to ensure accurate calculations (applies only to explicit schemes),

(2) the upstream boundary condition Q{0,t) and (3) the lateral inflow q(t).

For a given precipitation event and soil parameters, the Green-Ampt runoff volume,

Q(GA), can be calculated. The water level, h (ra), and the wave celerity, Ck (ra • s"""1),

can be calculated using the following equations:

wherein B is the width of the flow (ra), and in the case of a broad overland flow (sheet

flow) B equals the width of a segment.

A necessary condition for the stability of the numerical algorithms is that the time step

of an explicit finite difference routine must be small enough (the Courant condition),

according to (Courant and Friedrichs, 1948):

/ AxA
At < minimum — \ . (3.27)

\CkiJ
This condition requires that the time step is smaller than the time for a wave to travel

the distance Ax{. If At is so large that the Courant condition is not satisfied, then

there is an accumulation or piling up of water. The Courant condition does not apply

for implicit schemes, like the one shown in figure 3.2. Figure 3.3 shows two hydrographs

at the outlet of a straight rectangular shaped channel with a uniform slope of 5 %, and

10 segments of each 30 meter. The hydrograph at the upper boundary is known and

the hydrographs are calculated using an implicit linear finite difference scheme of the

kinematic wave, with time steps of 76 s (the Courant condition) and 300 s (a timestep

4 times larger than the Courant condition). From this figure, it can be concluded that

the general shape of the outlet hydrograph is not dependent on the time step of the

17
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calculations in an implicit scheme. However, the larger the time step, the less accurate

the peak discharge is determined. Therefore, it is advisable not to chose the time step

too large.

8
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/ \
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Courant condition
Time step = 76 s
Time step = 300 s

-
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,
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Figure 3.3: Two hydrographs at the channel outlet for a given upstream wave. The

channel has a uniform slope of 5 % and consists of 10 segments, each 30 m long.

The hydrographs were calculated using a linear implicit finite difference scheme of the

kinematic wave equation. The time step of the calculations was 76 s (the Courant

condition) and 300 s.

3.3 Boundary conditions for the overland flow

The upstream (at segment i = 1) boundary condition for an overland runoff flowline

can be written as:

Q{ = Q(TCA){ (3.28)

with Q(TCA) the runoff amount determined with the Green-Ampt infiltration model

in combination with the time compression algorithm (TCA). The lateral inflow can

then be quantified with:

18
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4 - « (3-29)

3.4 Es t imat ing t he Manning roughness coefficient

Chow (1959) reported mean values for the Manning roughness coefficients for pasture,

field crops, light brush and weeds, dense brush, and dense trees are respectively: 0.035,

0.040, 0.050, 0.070 and 0.100.

19



Chapter 4

Sediment Transport Processes

For the erosional processes in rills and gullies, Nearing et al. (1997) reported a simple

but very accurate transport function. Based on laboratory flume experiments (soil

in V-shaped flumes was exposed to a known discharge) using silt loam and sandy

loam soils, these authors found a single logistic relationship (R2 = 0.93) between the

unit sediment load and the stream power of the overland flow, for all soil types (see

figure 4.2). This indicates that for all unconsolidated agricultural soils in the Belgian

loess belt the same transport function can be used. The stream power can be calculated

with:

uj = p w - g < S - q (4.1)

wherein pw is the density of water (g • cm~~s), g is the gravitational constant (cm • s~~2),

S is the slope (m • m~l) and q is the discharge per unit width (cm2 • s '1) . The resulting

rill transport equation can be written as:

ec+d>logio{u)

logio(q.) = a + b> {1 + eC+d.logio{u)) (4.2)

with parameters a = -34.47, b = 38.61, c = 0.845, d = 0.412. Prom their experiments

it was found that for slopes lower than 30 %, transport capacity was already reached

within the first 180 cm of rill length.

Although the most important transport of soil particles towards the drainage system

is governed by rill flow, sheet erosion processes in the interrill areas are an important
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source of sediment transport towards the rills. Because rills are also fed with sediment

from interrill areas, we might therefore expect that transport capacity will be reached

very rapidly, also on very steep sloping areas. To have an idea of the sediment delivery

toward the rilling system on an agricultural field, a similar type of transport function

was developed for the sheet erosion processes.

This was done using the results of 140 laboratory rainfall simulations. Prom these 140

laboratory experiments, 133 experiments were carried out in the period from 1973 to

1998 by Pauwels (1973), Gabriels (1974), Verdegem (1979), De Beus (1983), Goossens

(1987) and Gabriels et al. (1998). All these experiments were done using sandy, loamy

to silty soils. In addition, 7 rainfall experiments were performed on an alluvial clay soil

(42 % clay) (Biesemans, 2000). The textural composition of the soils used in all these

experiments is given in figure 4.1.

Silt

100 90 80 70 60 50 40 30 20 10

Figure 4.1: Textural composition of the soil used for the rainfall simulations (Biese-

mans, 2000).

All laboratory rainfall experiments were performed on a smoothed surface to prevent

possible rilling and to ensure a broad sheet flow during the simulated rain. The inten-

sities of the simulated rain was held constant during the experiments and ranged from

20 to 128 mm • /i"1. The width of the soil pans was 20 to 30 cm and the length 30 to

90 cm. The slope of the soil pans ranged between 4 and 33 %. The duration of the

experiments was between 60 and 120 minutes, and the soil loss was measured at 5 or
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10-minute intervals, depending on the intensity of the simulated rain. This resulted in

672 observations of discharge and soil loss.

The measurement of the discharge, Q (cm3 • s~~x), is very straightforward: depending

on the simulated rainfall intensity, every 5 or 10 minutes the amount of runoff is

caught in a graduated cylinder. Because a broad sheet flow is established during the

simulations, the width of the flow equals the sample width and the volumetric water

flux per unit plane width, g, is directly computable. If the measured unit sediment

load, qs (g • cm"1), is log-log plotted against the stream power of the overland flow

(figure 4.2), a linear relationship can be identified in the data. This relationship is

also a function of the clay content. The higher the clay content, the lower the unit

sediment load. On figure 4.2, it can be clearly seen that the unit sediment load is

between 1 and 3 log cycles higher for the laboratory rainfall experiments than for the

flume experiments of Nearing et al. (1997). This can be explained by the raindrop

impact. Because sheet flow is broader and more shallow than rill flow, the momentum

of a raindrop impact can act directly upon the soil surface. Consequently, raindrop

impact can be considered as the most important soil detachment process in interrill

areas. The parameters of the regression power equations, with there corresponding

correlation coefficient are also given in figure 4.2. Remark that the exponents of the

regression equations are all (except one) around 1.3. The incercept of the regression

equations is a measure of the erodibility of the soil. In general, the higher the clay

content, the higher the cohesion and the lower the erodibility.

When the erosion processes are observed in the field, the soil loss from an agricultural

field towards the drainage system is almost only the result of rill flow. The laboratory

rainfall experiments proved that the soil transport from the interrill areas towards the

rill system in a field is much higher than the possible transport in a rill (at the same

stream power level). Therefore, in the MathCad program (which can be found in the

Appendix), only the transport equation for rill flow is used.
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Figure 4.2: Soil transport function (Biesemans, 2000): stream power as predictor for

the unit sediment load. Note that the laboratory flume experiments of Nearing et al.

(1997) had a much wider stream power range than the laboratory rainfall experiments.
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