
united nations
educational, scientific

and cultural
organization

international atomic
energy agency

the

international centre for theoretical physics

H4.SMR/1304-10

"COLLEGE ON SOIL PHYSICS"

12 March - 6 April 2001

Concept of Scaling

M. Kutilek and D. R. Nielsen

Elsevier
Soil and Tillage Research (Journal)

Prague
Czech Republic

These notes are for internal distribution only

strada costiera, I I - 34OI4trieste italy - tel.+39 04022401 I I fax +39 040224163 - sci_info@ictp.trieste.it - www.ictp.trieste.it





College on Soil Physics
ICTP, TRIESTE, 12-29 March, 2001

LECTURE NOTES

Concept of Scaling

Extended text of the textbook
Soil Hydrology, 1994 by M. Kutilek and D.R. Nielsen

Miroslav Kutilek

Professor Emeritus
Nad Patankou 34, 160 00 Prague 6, Czech Republic

Fax/Tel. +420 2 311 6338
E-mail: kutilek@ecn.cz



262 Soil Hydrology

Figure 8.12. A self similar microscopic soil particle structure is the principle of
Millers' scaling (Miller and Miller, 1956).

8.4 SCALING

Scaling theories are based upon the assumption that the continuously
heterogeneous field is an ensemble of mutually similar homogeneous
domains. We assume that each of the domains can be characterized by the
SWRC h(6) which is related to the porous system through (4.11), or more
generally by

(8.12)

Two porous media of equal porosity are similar according to Miller and Miller
(1956) when a scale factor X exists which will transform one of the porous media
to the other. Such similar media have identical microscopic structures except
for scale, see Fig. 8.12. This kind of similarity leads to the constancy r\/X\ = ri/Xi
= r-JXi and to the formulation of a scaled, invariant pressure head h* such that

where h* can also be called an average pressure head and X* is an average
scaling factor. Alternatively, we can denote the parameters of a reference soil
with an asterisk.

Invariant microscopic flow in pores leads first to the formulation of an
equation for the mean pore water velocity, see Hagen-Poiseuille (5.10) for
laminar flow. Hence, the saturated hydraulic conductivity is

Ks=f(r2) (8.14)
and with the dimensionless term r/X, we obtain

Y*/(l*\ — Y / 2 2 /o ic\

S ' l ) """ *^Si' i [O.lDj

and analogously for K(9)
Y*(A\ /( 1*\ — Y (A\ / 1^ (Q -1 /r\
A \yjJ\A I — r^i\y)/ A,< ^O.IOJ

where K*s and K*(Q) are either average values or values of a reference soil. The
original scaling of Miller and Miller (1956) is restrictive in two aspects. First, a
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microscopic length is physically interpreted, and second, the requirement of a
constant porosity is rarely applicable.

Warrick et al. (1977) extended the use of the Millers1 single scaling factor
by introducing the degree of saturation (equivalent to the earlier relative soil
water content 6R) and eliminating the assumption of identical porosities. Thus,
they scaled 6 with the scaling factor 0s- Additionally, their derivation of X does
not require a search for a microscopic physical length. For the derivation of X,
the sum of squares

was minimized for r locations. Using this scaling procedure, a large dispersion
of experimental data of h(0/6s) and K(0/6s) was nicely coalesced into unique
functions, see Fig. 8.13. Hence, soil heterogeneity is approximated by the
stochastic character of X which retains its universal meaning with relations

J 6R = es4 *-(£ (8.17)
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Figure 8.13. The scattering of experimental hT(9j0 and Kr(0j0 data (left) is
substantially reduced by Warrick's scaling (Warrick et al, 1977). The lines
given in the upper and lower right hand graphs are the equations

(h = -6020 9RH(1 - 6R) - 2.14(1 - el) + 2.04(1 - e\) - 0.694(1- ei)]) and

[inK = -20.5 + 75.0 9R -109d\ + 59.78\], respectively.
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The modification for estimating A indicated in the Warrick et al. (1977)
procedure was fully developed by Simmons et al. (1979). They rejected the
assumption of microscopic geometrical similarity and based their method on
the similarity between soil hydraulic functions.
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Figure 8.14. Neutron probe soil water contents measured at different soil depths
and spatial locations during redistribution. Equation (8.18) is the solid
line describing the scaled data.

Simmons et al. (1979) as well as others (see authors and those cited in
Hillel and Elrick, 1990) have derived scaling relations that have not yet been
sufficiently examined under field conditions to define criteria for their
acceptance or rejection. Some of the formulations are physically based while
others are mathematical techniques of inspectional analysis. Sposito and Jury
(1990) showed that Richards1 equation will be invariant under scaling
transformations only if K(6) is a power or exponential function. If that is the
case, the solution of Richards1 equation obtained for one location can then be
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scaled to other locations in the same field or domain. Assuming K(6) is an
exponential function and a unit hydraulic gradient exists during redistribution
in the absence of evapotranspiration, Simmons et al. (1979) recommended that
(7.28) be scaled with a common value of J3 in (7.27) for all locations within a
field. Fig. 8.14a shows soil water content versus redistribution time for a total of
608 measurements (19 times at 32 locations) within 4 plots covered by plastic
sheeting to prevent evaporation after steady state infiltration had ceased. Fig.
8.14b shows the data from Fig. 8.14a. scaled with reduced time T and a common
initial value of 0O. The solid line in Fig. 8.14b is

(8.18)

where 60 = 0.408 cm3-cnr3,/? = 50, K* = 5.29 cm-d"1, z* = 120 cm and
T=CQ2z*(az)~1 [a is defined in (7.26) and co is the scale factor for each location
defined by Ko=co2K* where K* is the scale mean of all Ko.]. The measured 6
deviate from the solid line with a pooled standard deviation is 0.008 cm3-cm~3 -
a value comparable to the neutron probe measurement error.

Methods based upon regression analysis are described as functional
normalization techniques (Tillotson and Nielsen, 1984). With this approach
being only macroscopic, geometrical similarity of the porous system is therefore
not the condition for scaling. The idea of a universal X for all hydraulic
functions was abandoned as it was found that X for scaling /I(0R) is not
necessarily identical with that of K(6R). Even if the two scaling factors are
different, they are generally correlated. In order to differentiate from the
previous universal single set of scaling factors Xi, we shall now use symbols a\i
and <x*ii for the two sets of scaling factors, the first one denoting the scaling of h
and the second denoting the scaling of K. Hence, we have

A set of sampling locations is similar if the soil hydraulic functions can be
scaled. Warrick (1990) reviewed the application of this scaling in three different
regions, while Clausnitzer et al. (1992) demonstrated that simultaneous scaling
with a\ and ai is not always as successful as independent scaling using a single
scaling factor X (our notation here).

Still yet another scaling proposal of Vogel et al. (1991) is based upon the
assumption that the spatial variability of soil hydraulic functions has two
components, one being linear and the other being non-linear. Supposing that
the linear component is dominant, he proposed linear scaling with

h K{h) 0{h)-er / o o n Na^K a* = FP0 *mrffcirr
 (a20)

Any of the above types of scaling should be tested for the measured set of
functions. For the selected type of scaling the invariant form of Richards'
equation is applied together with the scaled boundary conditions. We can
denote the soils as Warrick, or Simmons, or Vogel similar. Once successfully
scaled, computed fluxes can be "descaled" for any given sampling point. Of
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greater importance is the study of the variability of the scaling parameters by
stochastic and geostatistical methods. Scaling yields higher quality data or more
useful information when soil samples within one soil type are scaled
independently from other soil types (Clausnitzer et al., 1992). The variability of
soil hydraulic functions is appropriately expressed by scaling factors within each
soil type where their pdf and correlation structure can be easily determined.
Additional details on numerical procedures of scaling are described by
Clausnitzer et al. (1992). Appropriate developments of dimensionless variables
and scaled basic equations for various types of boundary conditions and soil
hydrological problems have been assembled by Hillel and Elrick (1990).

Up to now we have demonstrated the scaling of soil hydraulic functions
of field soils in order to ascertain reference soil parameters and the statistical
character of the scaling factors. However, scaling techniques offer still a greater
opportunity to formulate Richards' equation in an invariant form for the
solution of elementary hydrological processes. Once a solution is known for a
defined soil or boundary condition and is expressed in scaled variables, it is
valid for all soils or boundary conditions within the given class of flow
problem. Two different procedures are available, (i) Variables and soil hydraulic
functions are scaled by the boundary condition with these scaled variables
usually not being dimensionless. (ii) Variables are scaled to dimensionless
forms using soil hydraulic functions. These solutions are similar to traditional
expressions of solutions of flow problems in dimensionless variables.

The first procedure was used in the study of two scaling classes, (i)
Infiltration with a constant flux at the soil surface (Neuman's boundary
condition) and infiltration into a crust-topped soil (Kutflek et al., 1991).
Variables z, t and 6 scaled by the boundary condition, i.e. either using the flux
density q0 (left-hand column) or using the resistance R (right-hand column) are

t = qa
0T t = RaT (8.21)

z = qlT z = RbZ* (8.22)

The soil hydraulic functions expressed in a power form D(0) = Do(0- 0r)
n, h(0) =

-p(0 - dry
m and X(0) = K<,(0 - 6r)

v similarly scaled are
D(0) = qnj D'(0*) D(0) = Rcw D*(0*) (8.24)

h{6) = q:mrh\e*) h{6) = R-cw/t'(0*) (8.25)

And, Richards' equation in the diffusive form (5.68) transcribed into scaled
variables invariant to q0 is

Similarly, (5.68) transcribed into scaled variables invariant to R is

c-a)M = R(cn+c-Zb)^L^.jgll _ R (o . - ( - )£^1 . (8.28)
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Boundary conditions are expressed in a similar manner. The exponents for the
above conditions are

-2m-n 2m+n ^

m+n+l
-m

m+n+l
1

2m+n+l
m

2m+n+l
-1

(8.30)

(8.31)
m+n+l 2m+n+l

The solution of the infiltration problem plotted in scaled variables 0*(Z*, T*) is
valid for the whole class, i.e. either for all variations of constant flux at the soil
surface, see Fig. 8.15, or for all variations of resistance (except for R = 0), see Fig.
6.25.

SCALED SOIL WATER
CONTENT 0*

0 0.1 0.2 0.3 0.4 0.5

Figure 8.15. Scaling of Richards' equation through the boundary flux for NBC
infiltration offers unique soil water profiles for all fluxes. Scaled variables
are d\ Z* and time T (Kutilek etal, 1991). The sym bols D, • and O
designate values of q0 = 0.05, 0.15 and 0.25 cm-h'1, respectively.The value
ofKsisO.mcm-h'1.

The second scaling procedure elaborated by Warrick and Hussen (1993) is
applicable to a broader family of flow classes, e.g. redistribution and upward
flow. They defined the dimensionless variables

?=z/z0 T'=t/t0 (8.32)
and functions

0 * = ^ - , K*=K/K0, h*=h/z0 (8.33)
do-6r

where 60 < 0s and Ko = K(60). When they considered the soil hydraulic
characteristics
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e<-e.
they defined

Kr (es-et

z_ =

and

(8.34)

(8.35)

Hence, in Richards1 equation all variables and soil hydraulic functions are
scaled with each equation being invariant and dimensionless. An example of a
scaled soil water profile 0*(Z*, T*) for infiltration with DBC is given in Fig. 8.16.

SCALED SOIL WATER
CONTENT 0*

0 0.2 0.4 0.6 0.8 1.0

Figure 8. 16. Soil water profile for Guelph loam (Warrick and Hussen, 1993) in

scaled variables 9*(Z*,T*)for DBC infiltration is unique in 8*(Z*) for T*
= 0.4 and 0.8. Data points represent the following combinations of
saturated hydraulic conductivity (cm-h'1) and relative soil water content

j : H.332,1.0], [2.664,1.0], [1.332,0.9]and[2.664,0.9].

A scaling procedure is also advantageous for the solution of the inverse
problem of infiltration (Warrick, 1993). With the soil hydraulic functions being
scaled together with variables, the procedure is conveniently reduced to simple
algebraic computations instead of repetitive numerical simulations.


