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Abstract

Motivated by the behavior of internet stock prices in 1998-2000, we present

a continuous time equilibrium model of bubbles where overconfidence gener-

ates agreements to disagree among agents about asset fundamentals. With

short-sale constraints, an asset owner has an option to sell the asset to other

agents when they have more optimistic beliefs. This re-sale option has a re-

cursive structure, that is, a buyer of the asset gets the option to resell it.

This causes a significant bubble component in asset prices even when small

differences of beliefs are sufficient to generate a trade. The model generates

prices that are above fundamentals, excessive trading, excess volatility, and

predictable returns. However, our analysis shows that while Tobin’s tax can

substantially reduce speculative trading when transaction costs are small, it

has only a limited impact on the size of the bubble or on price volatility. We

give an example where the price of a subsidiary is larger than its parent firm.

Finally, we show how overconfidence can justify the use of corporate strategies

that would not be rewarding in a “rational” environment.
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1 Introduction

The behavior of market prices and trading volumes of internet stocks during the period of

1998-2000 presents a challenge to asset pricing theories. Several studies have shown that

it is difficult to match prices to underlying fundamentals: The prices were too volatile,

the value of parent companies were less than the value of its holdings of an “internet”

subsidiary, and the volume of trade of internet stocks was excessive when compared to

that of more traditional companies.1

In this paper, we propose a model of asset trading based on short-sale constraints

and heterogeneous beliefs generated by agents’ overconfidence. The model can generate

equilibria that broadly fit these observations. We also provide explicit links between

certain parameter values in the model, such as trading cost and information, and the

behavior of equilibrium prices. In particular, this allows us to discuss the effects of

trading taxes and information on prices and trading volume. In addition, we examine

how overconfidence makes profitable corporate strategies that would not be rewarding in

a “rational” environment.

The presence of short-sale constraints is important in our set up, since it not only

prevents arbitrageurs from eliminating the bubbles,2 but also provides the asset owner

an opportunity (option) to profit from other investors’ over-valuation. Recent empirical

studies document that although limited shorting of internet stocks did occur, it was

very expensive at the margin, restricting the ability of arbitrageurs or other investors to

sell short.3 In the model, we take the extreme view that short sales are not permitted,

although our qualitative results should survive the presence of limited short sales as long

as the asset owners can expect to make a profit when others have higher valuations.

1Ofek and Richardson (2001) provide an excellent survey and many references on the market behavior of stocks
in the internet sector during this period. In particular they point out that “pure internet firms represented as
much as 20% of the dollar volume in the public equity market, even though their market capitalization never
exceeded 6%.”

2Shleifer and Vishny (1997) argued that in practice, arbitrage involves capital and that the capital available
to arbitrageurs is limited. This can cause arbitrage to fail. See also Xiong (2001), Kyle and Xiong (2001), and
Gromb and Vayanos (2002) for studies linking the dynamics of arbitrageurs’ capital with asset price dynamics.

3Several recent empirical studies have found evidence linking stock mispricing with short-sale constraints.
See Duffie, Garleanu, Pedersen (2001) for a description of the actual short-sale process, and a review on this
literature.
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Our model follows the insight of Harrison and Kreps (1978), that, when agents agree

to disagree and short selling is not possible, asset prices may exceed their fundamental

value. This difference was called the speculative component by Harrison and Kreps.

In their model, agents trade because they disagree about the probability distributions

of dividend streams. The reason for the disagreement is not made explicit. We study

overconfidence, the belief of an agent that his information is more accurate than what it

is, as a source of disagreement. Although overconfidence is only one of the many ways

by which disagreement among investors may arise, it is, as we summarize in the next

section, strongly supported by experimental studies of human behaviors, and it permits

us to specifically analyze the properties of the bubble and to link the dynamics of the

equilibrium to observables.4

We study a market for a single risky-asset with limited supply and many risk-neutral

agents in a continuous time model with infinite horizon. The current dividend of the asset

is a noisy observation of a fundamental variable that will determine future dividends. In

addition to the dividends, there are two other sets of information available at each instant.

The information is available to all agents, however, agents are divided in two groups and

each group has more confidence in one of the two sets of information.5 As a consequence,

when forecasting future dividends, each group of agents place different weights in the

three sets of information, resulting in different forecasts. Although agents in our model

know exactly the amount by which their forecast of the fundamental variable exceed

that of agents in the other group, they agree to disagree about their forecasts due to

their behavioral limitations. As information flows, the forecasts by agents of the two

groups fluctuate, and the group of agents that is at one instant relatively optimistic, may

become in a future date less optimistic than the agents in the other group. These changes

in relative opinion generate trades.6

4Behavioral biases of investors have also been used in recent papers, e.g. Barberis, Shleifer and Vishny (1998),
Daniel, Hirshleifer and Subrahmanyam (1998), Hong and Stein (1999), to study asset prices. What distinguishes
our paper is the analysis of the role of overconfidence in generating speculative behavior.

5The assumption that all agents see all the signals greatly simplify the mathematics and it allows us to
focus on the effects of heterogeneous beliefs. See Diamond and Verrecchia (1987) for a study of trading with
asymmetric information and short-sale constraints.

6Kandel and Pearson (1995) provide some empirical evidence for heterogeneous beliefs as a driving force for
trading.
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Each agent in the model understands that the agents in the other group are placing

different weights on the different sources of information. When deciding the value of the

asset, agents consider their own view of the fundamentals as well as the fact that the

owner of the asset has an option to sell the asset in the future to the agents in the other

group. This re-sale option, as a direct consequence of not allowing short-sale of assets

and of the limited supply of the asset, creates a bubble - a difference between prices and

fundamentals. This option can be exercised at any time by the current owner, and the

new owner gets in turn another option to sell the asset in the future. These characteristics

makes the option “American” and gives it a recursive structure. The value of the option

is the value function of an optimal stopping problem. Since the buyer’s willingness to

pay is a function of the value of the option that he acquires, the payoff for stopping is,

in turn, related to the value of the option. This gives us a fixed point problem that the

option value must satisfy.

We show that in equilibrium an asset owner will sell the asset to agents in the other

group, whenever his view of the fundamental is surpassed by the view of agents in the

other group by a critical amount. We call this difference the critical point. When there

are no trading costs, we show that the critical point is zero - it is optimal to sell the

asset immediately after the belief of the asset owner is “crossed” by that of agents in the

other group. This results in a trading frenzy. Our agents’ beliefs satisfy simple stochastic

differential equations and it is a consequence of properties of Brownian motion, that once

the beliefs of agents cross, they will cross infinitely many times in any finite period of time

right afterwards. Although agents’ profit from holding the resale option is infinitesimal,

the net value of the option is large because of the high frequency of trades. Since the

option value component in the asset price fluctuates with the difference in agents’ beliefs,

it contributes to the excess volatility of the asset prices. In this way, our model captures

excessive trading and excess volatility observed in internet stocks during the period of

1998-2000.

The size of the bubble increases with the degree of the agents’ overconfidence and the

fundamental volatility of the asset, because as these parameters increase beliefs become
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more heterogeneous.7 A calibrated example shows that the magnitude of the bubble

component can be large relative to the fundamental value of the asset. The same exercise

shows that an increase in the information content of the non-dividend signals, that is the

signals where there is disagreement over their precision, may increase the size of the

bubble.

The existence of heterogeneous beliefs and bubbles can cause the asset returns to be

predictable from the perspective of a (rational) econometrician. We show that the asset

returns can be predicted by the difference of beliefs between the overconfident asset owner

and the econometrician. This is consistent with the recent empirical evidence that stock

returns are, in fact, predictable using variables that are related to the ratio between stock

prices and their fundamental values. Our analysis also indicates an interesting possibility

that, if given the opportunity to trade, the econometrician is willing to pay more than the

reservation price of the current asset holder, even though he has exactly the same beliefs

about future dividends as the current (overconfident) owner. This happens because the

overconfident traders underestimate the volatility of beliefs and thus undervalue the resale

option.8

The bubble proposed in our model, based on the recursive expectations of traders to

take advantage of the mistakes of each other, is very different from the rational bubbles

studied in the previous literature including Blanchard and Watson (1982) and others.

Since investors in the models of rational bubbles all have the same rational expectations,

in order to make the rational bubbles sustainable, it is required that the assets must have

infinite maturity and that many variables, such as the asset prices and the changes of

asset prices, must have explosive conditional expectations. These requirements are either

restrictive or inconsistent with empirical evidence. To the contrary, the bubble in our

model does not require infinite maturity and variables such as the asset prices and the

changes of asset prices all have stationary distributions.

When there is a trading cost, our model shows that the critical point for trade increases

7A recent experimental study by Ackert et al. (2001) shows that price bubbles are larger for assets with
lottery characteristics. We interpret this result as stating that an increase in the fundamental volatility increases
the size of the bubble, and thus consistent with our model.

8This is analogous to the observation by De Long et al. (1990) that rational arbitrageurs may want to front
run positive-feedback traders.
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monotonically with the cost. Consequently, the trading frequency, asset price volatility,

and the option value are all reduced. This effect is very significant when the cost of

trading is small. At zero cost, an increase in the cost of trading has an infinite impact in

the critical point and in the trading frequency. However, the impact on price volatility

and on the size of the bubble is much more modest. As the trading cost increases, the

increase in the critical point also raises the profit of the asset owner from each trade, thus

partially offsetting the decrease in the value of the re-sale option caused by the reduction

in trading frequency.

Our analysis suggests that a transaction tax, such as proposed by Tobin (1978),

would, in fact, substantially reduce the amount of speculative trading in markets with

small transaction costs, such as foreign exchange markets. However, our analysis also

predicts that a transaction tax would have a limited effect on the size of the bubble

or on price volatility. Although it is difficult to estimate the exact numerical impact

of a trading tax, we provide an estimate based on a calibration exercise. According to

our calibration, a trading tax in excess of 1% causes a reduction of roughly 10% in the

magnitude of the bubble or in excess volatility. Since a Tobin tax will no doubt also

deter trading generated by fundamental reasons that are absent from our model,9 the

limited impact of the tax on the size of the bubble and on price volatility cannot serve

as an endorsement of the Tobin tax. The limited effect of transaction costs on the size

of the bubble is also compatible with the observation of Shiller (2000) on the existence

of bubbles in the real estate market, where transaction costs are high.

A calibrated example shows that when trading costs are present, an increase in the

information content of the non-dividend signals, that are the signals where there is dis-

agreement over their precision, may decrease the average performance of traders. Intu-

itively, the increase in the informational content of the signals can increase the variation

in the difference of agents’ beliefs, and therefore causing higher trading frequency.

The existence of the option component in the asset price creates potential violations

to the law of one price. Through a simple example, we illustrate that the bubble may

9See Dow and Rahi (2000) and references therein for studies of effects of taxes on trading with fundamental
reasons.
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cause the price of a subsidiary to be larger than that of its parent firm. The intuition

behind the example is that if the value of a firm is the sum of two subsidiaries with

values that are perfectly negatively correlated, there will be no differences in opinion,

and hence, no option component on the value of the parent firm, but possibly strong

differences of opinion about the value of a subsidiary. This nonlinearity of the option

value may help explain the mispricing of carve-outs that occurred in the late 90’s such

as the 3Com-Palm case.10

The presence of overconfidence makes it profitable for managers to exploit corporate

strategies that would not be used in a more “rational” world. We discuss how the model

in this paper can be used to justify the observation in the real world of corporate strategies

such as IPO underpricing or name changes. We argue that because these strategies lead

to an increase in analysts coverage and media attention, and therefore they lead to an

increase in the precision of the information contained in the non-dividend signals, which,

in turn, as we argued above, increases the price of the stock. The observation of these

strategies in the real world strengthens the case for our model.

There is a large literature on the effects of heterogeneous beliefs. Harris and Raviv

(1993) show that heterogeneous beliefs can generate speculative trading. They derive

a model in which there are no trading costs and agents trade when their beliefs cross

each other. However, they do not study the bubble associated with this type of specu-

lative behavior and many of the other properties we discuss. Kyle and Lin (2001) study

the trading volume caused by overconfident traders in a model without short-sale con-

straints. Morris (1996) shows that heterogeneous beliefs and short-sale constraint can

lead to IPO long-run under-performance. Detemple and Murphy (1997), and Basak and

Croitoru (2000) study the effect of heterogeneous beliefs on assets prices through posi-

tion constraints. Hong and Stein (2001) study asymmetric price movements generated

by heterogeneous beliefs. Viswanathan (2001) analyzes the strategic behavior of traders

in a model with heterogeneous beliefs and short-sale constraints.

Other types of models have been proposed to explain bubbles. Allen and Gorton

10Lamont and Thaler (2001), Mitchell, Pulvino and Stafford (2001), Schill and Zhou (2000), and Ofek and
Richardson (2001) empirically analyze mispricings in these recent carve-outs.
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(1993) study the incentives of fund managers to churn bubbles. Allen, Morris, and Postle-

waite (1993) provide a mechanism of bubbles through higher order beliefs among agents.

Abreu and Brunnermeier (2001) show that the inability of arbitrageurs to coordinate

their selling strategies can allow bubbles to persist. Horst (2001) provides a mathemat-

ical framework to study bubbles caused by the social interaction among agents. Duffie,

Garleanu and Pedersen (2001) study a model in which investors have heterogeneous be-

liefs and short-selling of assets requires a searching and bargaining process. In their

model a bubble in asset prices results from the lending fee which the asset owner can

collect.

The structure of the paper follows. Section 2 briefly reviews the literature related

to overconfidence and financial markets. Section 3 describes the structure of the model.

Section 4 derives the evolution of agents’ beliefs. Section 5 sets up a recursive Bellman

equation for the optimal exercise of the asset owner’s re-sale option. Section 6 discusses

several of the characteristics of the equilibrium dynamics in the absence of trading costs.

In Section 7, we discuss the effects of trading costs to the equilibrium dynamics. Section

8 shows that more information can lead to worse trading performance of investors. In

section 9, we construct an example where the price of a subsidiary is larger than its parent

firm. In section 10, we discuss the possible strategies that firm managers can adopt to

take advantage of bubbles. Section 11 concludes the paper.

2 Overconfidence and financial markets

Psychology studies show that people tend to be overconfident. Alpert and Raiffa (1982),

and Brenner et al. (1996) and other calibration studies find people overestimate the

precision of their knowledge. Camerer (1995) argues that even experts can display over-

confidence. Hirshleifer (2001) and Barber and Odean (2002) contain extensive reviews of

the literature.

In finance, researchers have developed theoretical models to analyze the implications

of overconfidence on financial markets. Kyle and Wang (1997) show that overconfidence

can be used as a commitment device over competitors to improve one’s welfare. Daniel,

7



Hirshleifer and Subrahmanyam (1998) use overconfidence to explain the predictable re-

turns of financial assets. Odean (1998) demonstrates that overconfidence can cause ex-

cessive trading. In these studies, overconfidence is modelled as overestimation of the

precision of one’s information. We follow a similar approach in this paper.

Overconfident investors believe more strongly in their own assessments of assets’ value

than that of others. In this way, overconfidence leads to heterogeneous beliefs or differ-

ences in opinions. In fact, we derive that each overconfident investor believes that the

belief of other investors randomly fluctuates around his own belief according to a lin-

ear mean-reverting diffusion process. Varian (1989) and Harris and Raviv (1993) study

speculative trading caused by heterogeneous beliefs. Odean (1999), and Barber and

Odean (2002) provide empirical evidence that individual investors decrease their welfare

by trading too much.

3 The model

There exists a risky asset with a dividend process that is the sum of two components.

The first component is the fundamental variable that will determine future dividends.

The second is “noise.” More precisely, the cumulative dividend process Dt satisfies:

dDt = ftdt + σDdZD
t , (1)

where ZD is a standard Brownian motion. The quantity f is not observable. However,

it satisfies:

dft = −λ(ft − f̄)dt + σfdZ
f
t , (2)

where λ ≥ 0 is the mean reversion parameter and Zf is a standard Brownian motion.

The asset is in finite supply and we normalize the total supply to unity.

There are two sets of risk-neutral agents. The assumption of risk neutrality not only

simplifies many calculations but also serves to highlight the role of information in the

model. Since our agents are risk-neutral the dividend noise present in equation (1) has

no direct impact in the valuation of the asset. However, the presence of dividend noise

makes it impossible to infer f perfectly from observations on the cumulative dividend
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process. Agents will use the observations on D and any other signals that are correlated

with f to infer current f and to value the asset. In addition to the cumulative dividend

process, all agents observe a vector of signals sA and sB that satisfy:

dsA
t = ftdt + σsdZ

A
t (3)

dsB
t = ftdt + σsdZ

B
t , (4)

where the vectors ZA and ZB are standard Brownian motions. We assume that all four

processes ZD, Zf , ZA and ZB are mutually independent. Agents in group A (B) think of

sA (sB) as their own signal although they can also observe sB (sA). Heterogeneous beliefs

arise because each agent believes that the precision of his own signal is larger than its

true precision. Agents of group A (B) believe that the volatility of noise to the signal sA

(sB) is σs

φ
instead of σs, where φ ≥ 1 measures the degree of overconfidence. This way of

modelling overconfidence through the exaggeration of the precision of signals is standard

in the finance literature such as Kyle and Wang (1997), and Odean (1998). In addition, we

assume that the beliefs of each group concerning the evolution of cummulative dividends,

the drift of cumulative dividends and the signals are common knowledge. In particular

each agent of group A (B) understands that agents of the other group has a different

opinion concerning the precision of the signals.

One way to summarize the model structure is to state that agents in group A believe

that (ZD, Zf ,
φ(sA−

∫ t

0
fudu)

σs
,

sB−
∫ t

0
fudu

σs
) is a four dimensional Brownian motion, whereas

agents of group B believe that (ZD, Zf ,
sA−

∫ t

0
fudu

σs
,

φ(sB−
∫ t

0
fudu)

σs
) is a four dimensional

Brownian motion. Agents in both groups are “irrational” in the sense that they do not

infer the precision of their signals through the observations of the signals, even though

they could do it. This is a behavioral assumption that is well supported by experimental

studies.11 Alternatively one can imagine that the agents know the correct volatility of

their signal but simply use the wrong weights when solving their filtering problem (see

section 4) , overweighing their own signal.12

11Girsanov’s theorem guarantees that the probability model of the two set of agents are not equivalent, that is
there are events that agents of group A attribute positive probability whereas agents of group B attribute zero
probability, and the reverse also occurs.

12It is perhaps more satisfactory to assume instead that agents in group C ∈ {A,B} believe that dsC
t =
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Each group is large and there is no short selling of the risky asset. We assume the

market to be perfectly competitive in the sense that agents in each group value the asset

at their reservation price. To value future cash flows we may either assume that every

agent can borrow and lend at the same rate of interest r, or equivalently that agents

discount all future payoffs using rate r, and that each class has infinite total wealth.

These assumptions will facilitate the calculation of equilibrium prices.

4 Evolution of beliefs

The model that we described in the previous section implies that the evolution of a

trader’s view of the difference in beliefs among traders in the two groups has a particularly

simple structure (see Proposition 1 below). The presence of overconfidence has two

effects. On the one hand it makes each agent believe that even if today the difference in

beliefs is positive, it may become negative in the future. On the other hand it increases

the mean reversion of the difference in beliefs. This is the content of Proposition 1.

Since all variables involved are Gaussian, the filtering problem that the agents face

is standard. With Gaussian initial conditions the conditional beliefs of agents of group

C ∈ {A, B} is Normal with mean f̂C and variance γC . We will characterize the stationary

solution. According to section VI.9 in Rogers and Williams (1987),

γA = γB = γ =

√
λ2 + σ2

f

(
1

σ2
D

+ 1+φ2

σ2
s

)
− λ

1
σ2

D
+ 1+φ2

σ2
s

, (5)

and that the conditional mean of the beliefs of agents in group A satisfies:

df̂A = −λ(f̂A − f̄)dt +
φ2γ

σ2
s

(dsA − f̂Adt) +
γ

σ2
s

(dsB − f̂Adt) +
γ

σ2
D

(dD − f̂Adt). (6)

Since f mean-reverts, the conditional belief also mean-reverts. The other three terms

represent the effects of “surprises” in the three sources of information. These surprises

ψftdt+ σsdZ
C
t , since it is much harder to infer the drift than to infer a diffusion coefficient from data. However,

while in our formulation everything depends only on the difference of beliefs (see Proposition 1 below), in this
alternative formulation one must keep track of the evolution of beliefs for each group. Consequently the formulas
for the trading times etc... are much more complicated. In any case, the qualitative picture should not change.
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can be represented as standard mutually independent Brownian motions for agents in

group A:

dWA
A =

φ

σs

(dsA − f̂Adt), (7)

dWA
B =

1

σs

(dsB − f̂Adt), (8)

dWA
D =

1

σD

(dD − f̂Adt). (9)

Note these processes are only Wiener processes in the mind of group A agents.

Similarly, the conditional mean of the beliefs of agents in group B satisfies:

df̂B = −λ(f̂B − f̄)dt +
γ

σ2
s

(dsA − f̂Bdt) +
φ2γ

σ2
s

(dsB − f̂Bdt) +
γ

σ2
D

(dD − f̂Bdt). (10)

These surprise terms can be represented as standard mutually independent Wiener pro-

cesses for agents in group B:

dWB
A =

1

σs

(dsA − f̂Bdt), (11)

dWB
B =

φ

σs

(dsB − f̂Bdt), (12)

dWB
D =

1

σD

(dD − f̂Bdt). (13)

Again, we emphasize that these processes form a standard 3-d Wiener process only for

agents in group B.

Since the beliefs of all agents have constant variance, we refer their beliefs to the

conditional mean of the beliefs, and let gA and gB denote the differences in beliefs:

gA = f̂B − f̂A (14)

gB = f̂A − f̂B. (15)

Agents in group A believe that signal sA is more precise than signal sB, and their up-

dating rule reflects this difference in precision. They also “know” that agents in group B

mistakenly believe that sA is less precise than sB. Over time they expect that future div-

idends will reflect more the behavior of sA, and for this reason they expect that the belief

of agents in group B will mean-revert towards their own belief. The next proposition

states this property formally:
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Proposition 1

dgA = −ρgAdt + σgdWA
g , (16)

where

ρ = λ + (1 + φ2)
γ

σ2
s

+
γ

σ2
D

> 0, (17)

σg = (φ2 − 1)
√

1 + 1/φ2
γ

σs

, (18)

where WA
g is a standard Wiener process for agents in group A, and it is independent to

innovations to f̂A.

Proof: see appendix.

The dynamics of gA in the mind of group A agents exactly captures the essence of their

overconfidence. On the one hand the presence of overconfidence makes σg > 0. Agents of

group A think that group B agents put too little weight on sA and too much weight in

sB. This causes the difference in their beliefs to fluctuate over time as information flows

in from the dividend and the signals to reflect more coming fundamental shocks. On

the other hand a larger φ leads to a forecast of faster mean reversion in the difference of

beliefs. Although the reaction of agents in each group to their own signal is not optimal,

their over-reaction to the signal actually makes their beliefs converge faster.

In an analogous fashion gB satisfies:

dgB = −ρgBdt + σgdWB
g , (19)

where WB
g is a standard Wiener process for agents in group B, and it is independent to

innovations to f̂B.

We are also interested in the belief of a rational econometrician who processes all the

information objectively. We use a superscript of R to denote the rational econometrician.

His belief is also normal with mean f̂R and variance γR. Similarly, the variance of the

rational belief is

γR =

√
λ2 + σ2

f

(
1

σ2
D

+ 2
σ2

s

)
− λ

1
σ2

D
+ 2

σ2
s

, (20)
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and the conditional mean of the rational belief satisfies:

df̂R = −λ(f̂R − f̄)dt +
γR

σ2
s

(dsA − f̂Rdt) +
γR

σ2
s

(dsB − f̂Rdt) +
γR

σ2
D

(dD − f̂Rdt). (21)

These surprise terms can be represented as standard mutually independent Wiener pro-

cesses for the rational econometrician:

dWR
A =

1

σs

(dsA − f̂Rdt), (22)

dWR
B =

1

σs

(dsB − f̂Rdt), (23)

dWR
D =

1

σD

(dD − f̂Rdt). (24)

From the perspective of the rational econometrician, the difference of beliefs among

the overconfident agents would also mean revert to zero, except the process has different

volatility parameters:

dgA = −ρgAdt + σ′gdWR
g , (25)

where WR
g is a standard Wiener process for the rational econometrician and

σ′g =
√

2(φ2 − 1)
γ

σs

. (26)

Note that σ′g > σg, i.e., the econometrician anticipates more volatility in the difference

of beliefs between the overconfident agents because he knows that there is more noise in

the signals than each group of overconfident agents.

5 Trading

In our set-up trading is costly - a seller pays c per unit of the asset sold. This cost may

represent an actual cost of transaction or a tax. Fluctuations in the difference of beliefs

across agents in different groups will induce trade. It is natural to expect that investors

that are more optimistic about the prospects of future dividends will bid up the price of

the asset and eventually hold the total (finite) supply.

At each t, agents in group C = A, B are willing to pay pC
t for a unit of the asset. The

presence of the short-sale constraint, a finite supply of the asset and an infinite supply of
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prospective buyers guarantees that any successful bidder will pay his reservation price.13

The amount an agent is willing to pay reflects that agent’s fundamental valuation and

the fact that he may be able to sell his unit at a later date at the demand price of the

other group. If we let o ∈ {A, B} denote the group of the current owner, ō the other

group, and Eo
t the expectation of members of group o, conditional on the information

they have at t, then:

po
t = sup

τ≥0
Eo

t

[∫ t+τ

t
e−r(s−t)dDs + e−rτ (pō

t+τ − c)
]
, (27)

where τ is a stopping time, and pō
t+τ is the reservation value of the buyer at the time of

transaction t + τ . Note that pō
t+τ − po

t+τ − c represents the trading profit to the seller.

Since, dD = f̂ o
t dt + σDdW o

D, we have, using the equations for the evolution of the

conditional mean of beliefs (equations (6) and (10) above) that:∫ t+τ

t
e−r(s−t)dDs =

∫ t+τ

t
e−r(s−t)[f̄ + e−λ(s−t)(f̂ o

t − f̄)]ds + Mt+τ , (28)

where Eo
tMt+τ = 0. Hence, we may rewrite equation (27) as:

po
t = max

τ≥0
Eo

t


t+τ∫
t

e−r(s−t)[f̄ + e−λ(s−t)(f̂ o
t − f̄)]ds + e−rτ (pō

t+τ − c)

 . (29)

To characterize equilibria we will start by postulating a particular form for the equi-

librium price function, equation (30) below. Proceeding in a heuristic fashion we derive

properties that our candidate equilibrium price function should satisfy. We then con-

struct a function that satisfies these properties and verify that in fact, we have produced

an equilibrium.14

Since all the relevant stochastic processes are Markovian and time-homogeneous, and

traders are risk-neutral, it is natural to look for an equilibrium in which the demand

price of the current owner satisfies

po
t = po(f̂ o

t , go
t ) =

f̄

r
+

f̂ o
t − f̄

r + λ
+ q(go

t ). (30)

13This observation simplifies our calculations, but is not crucial for what follows. We could partially relax the
short sale constraints or the division of gains from trade, provided it is still true that the asset owner expects to
make speculative profits from other investors.

14Our argument will also imply that our equilibrium is the only one within a certain class. However, other,
less intuitive, equilibria may exist.
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with q > 0 and q′ > 0. This equation states that prices are the sum of two components.

The first part, f̄
r

+
f̂o

t −f̄

r+λ
, is the expected present value of future dividends from the view-

point of the current owner. The second is the value of the resale option, q(go
t ), that

depends on the current difference between the belief by the other group’s agents and the

belief by the current owner. We call the first quantity the owners’ fundamental valuation

and the second the value of the resale option. Applying equation (30) to evaluate pō
t+τ ,

and collecting terms we may rewrite the stopping time problem faced by the current

owner, equation (29) as:

po
t = po(f̂ o

t , go
t ) =

f̄

r
+

f̂ o
t − f̄

r + λ
+ sup

τ≥0
Eo

t

[(
go

t+τ

r + λ
+ q(gō

t+τ )− c
)

e−rτ
]
. (31)

Equivalently, the resale option value satisfies

q(go
t ) = sup

τ≥0
Eo

t

[(
go

t+τ

r + λ
+ q(gō

t+τ )− c
)

e−rτ
]
. (32)

Hence to show that an equilibrium of the form (30) exists it is necessary and sufficient

to construct a option value function q that satisfies equation (32). This equation is a

recursive Bellman equation. A candidate function q when plugged into the right hand

side must yield the same function on the left hand side. The current asset owner chooses

an optimal stopping time to exercise his re-sale option. Upon the exercise of the option,

the owner gets the “strike price”
go

t+τ

r+λ
+ q(gō

t+τ ), the amount of excess optimism that the

buyer has about the asset’s fundamental value and the value of the resale option to the

buyer, minus the cost c of exercising the option. Different from a typical optimal exercise

problem of American options, the “strike price” in our problem depends on the re-sale

option value function itself. This makes the problem more difficult.

Intuitively, the value of the option q(x) should be at least as large as the gains realized

from an immediate sale. The region where the value of the option equals that of an

immediate sale is the stopping region. The complement is the continuation region. The

discounted value of the option e−rtq(go
t ) should be a (local) martingale in the continuation

region, and a (local) supermartingale in the stopping region. These conditions can be

stated as:

q(x) ≥ x

r + λ
+ q(−x)− c (33)
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1

2
σ2

gq
′′ − ρxq′ − rq ≤ 0, with equality if (33) holds strictly. (34)

In addition, the function q should be continuously differentiable (smooth pasting). We

will derive a smooth function q that satisfies equations (33) and (34) and then use these

properties and a growth condition on q to show that in fact the function q solves (32).

To construct the function q we guess that the continuation region will be an interval

(−∞, k∗), with k∗ > 0. k∗ is the minimum amount of difference in opinions that generates

a trade. As usual we begin by examining the second order ordinary differential equation

that q must satisfy, albeit only in the continuation region, that is:

1

2
σ2

gu
′′ − ρxu′ − ru = 0 (35)

The following proposition helps us construct an “explicit” solution to equation (35).

Proposition 2 Let

h(x) =


U
(

r
2ρ

, 1
2
, ρ

σ2
g
x2

)
if x ≤ 0

2π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

M
(

r
2ρ

, 1
2
, ρ

σ2
g
x2

)
− U

(
r
2ρ

, 1
2
, ρ

σ2
g
x2

)
if x > 0

(36)

where Γ(·) is the Gamma function, and M : R3 → R and H : R3 → R are two Kummer

functions described in the appendix. h(x) is continuously differentiable at x = 0 with a

value of

h(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (37)

Then any solution u(x) to equation (35) that is strictly positive and increasing in (−∞, 0)

must be of the following form: u(x) = β1h(x) with β1 > 0.

Proof: see appendix.

We will also need properties of the function h that are summarized in the following

Lemma.

Lemma 1 h, which is strictly positive and increasing in (−∞, 0), is strictly positive in

R and satisfies h′ > 0, h′′ > 0, h′′′ > 0, lim
x→−∞

h(x) = 0, and lim
x→−∞

h′(x) = 0.
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Proof: see appendix.

Since q must be positive and increasing in (−∞, k∗), we know from Proposition 2 and

Lemma 1 that

q(x) =

{
β1h(x), for x < k∗

x
r+λ

+ β1h(−x)− c, for x ≥ k∗.
(38)

Since q is continuous and continuously differentiable at k∗,

β1h(k∗)− k∗

r + λ
− β1h(−k∗) + c = 0 (39)

β1h
′(k∗) + β1h

′(−k∗)− 1

r + λ
= 0. (40)

These equations imply that

β1 =
1

(h′(k∗) + h′(−k∗))(r + λ)
, (41)

and k∗ satisfies

[k∗ − c(r + λ)](h′(k∗) + h′(−k∗))− h(k∗) + h(−k∗) = 0. (42)

The next Theorem shows that for each c there exists a unique k∗, that solves equation

(42) and as a consequence of equation (41), a unique β1. Hence the smooth pasting

conditions are sufficient to fully determine the function q and the “trading point” k∗.

Theorem 1 For each trading cost c ≥ 0 there exists a unique k∗ that solves (42). If

c = 0 then k∗ = 0. If c > 0, k∗ > c(r + λ).

Proof: see appendix.

When a trade occurs the buyer has the highest fundamental valuation. The difference

between what a buyer pays and his fundamental valuation can be legitimately named a

bubble. In our model this difference is given by

b = q(−k∗) =
1

(r + λ)

h(−k∗)

(h′(k∗) + h′(−k∗))
. (43)

Using equation (43) we can write the value of the re-sale option as

q(x) =

{ b
h(−k∗)

h(x), for x < k∗

x
r+λ

+ b
h(−k∗)

h(−x)− c, for x ≥ k∗.
(44)
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The next Theorem establishes that in fact q solves (32). The proof consists of two parts.

First we show that (33) and (34) hold and that q′ is bounded. We then use a standard

argument (see e.g. Kobila (1993) or Scheinkman and Zariphopoulou (2001) for similar

arguments) to show that in fact q must solve equation (32).

Theorem 2 The function q constructed above is an equilibrium option value function.

The optimal policy consists of exercising immediately if go > k∗, otherwise wait until the

first time in which go ≥ k∗.

Proof: see appendix.

To facilitate our discussion on the duration between trades, we define

u(x, k) = Eo[e−rτ(k)|x], with τ(k) = inf{s : go
t+s > k}, x ≤ k. (45)

u(x, k) is the discount factor for cashflow received in the future when the difference in

beliefs reaches the level of k for the first time given the current difference in beliefs is

x. Standard arguments (e.g. Karlin and Taylor (1981), page 243) show that u is a

non-negative and strictly monotone solution to:

1

2
σ2

guxx − ρxux = ru, u(k, k) = 1. (46)

Therefore, Proposition 2 implies that

u(x, k) =
h(x)

h(k)
. (47)

Note that the free parameter β1 in the h function has no effects on u.

Using the discount factor u(x, k), we can interpret the optimal stopping problem in

equation (32) as choosing the optimal trading point k:

q(x) = sup
k≥0

[(
k

r + λ
+ q(−k)− c

)
u(x, k)

]
, (48)

where x is the current difference in agents’ beliefs. The optimal trading point k∗ rep-

resents the compromise between larger trading profits k
r+λ

+ q(−k) − c and the smaller

discount factor u(x, k) from choosing larger k. Solving this optimization problem gives

exactly the same optional trading point k∗ as the one from the smooth pasting condition.

In the following sections we discuss several properties of the equilibrium pricing func-

tion and associated bubble.
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6 Properties of equilibria without trading cost

In this section we discuss several of the characteristics of the equilibrium dynamics in the

absence of trading cost. This serves as a benchmark for our discussions. Most properties,

except trading barrier and trading frequency, carry similarly to cases with trading costs.

6.1 The bubble and trading frenzy

When c = 0, Theorem 1 shows that k∗ = 0, that is a trade occurs each time traders’

fundamental beliefs “cross”. Nonetheless the bubble is strictly positive, since

b =
1

2(r + λ)

h(0)

h′(0)
. (49)

Owners do not expect to sell the asset at a price above their own valuation, but the option

has a positive value. This result may seem counterintuitive. To clarify it, it is worthwhile

to examine the value of the option when trades occur whenever the absolute value of the

differences in fundamental valuations equal an ε > 0. An asset owner in group A (B)

expects to sell the asset when agents in group B (A) have a fundamental valuation that

exceeds the fundamental belief of agents in group A (B) by ε, that is gA = ε (gA = −ε).

If we write b0 for the value of the option for an agent in group A that buys the asset

when gA = −ε, and b1 for the value of the option for an agent of group B that buys the

asset when gA = ε, then

b0 =
[

ε

r + λ
+ b1

]
h(−ε)

h(ε)
, (50)

where h(−ε)
h(ε)

is the discount factor from equation (47). Symmetry requires that b0 = b1

and hence,

b0 =
ε

(r + λ)

h(−ε)

[h(ε)− h(−ε)]
. (51)

Another way of deriving b0 is to note that by symmetry:

b1 =
[

ε

r + λ
+ b0

]
h(−ε)

h(ε)
, (52)
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and hence we may derive an expression for b0 that reflects the value of all future options

to sell, properly discounted :

b0 =
ε

r + λ

h(−ε)

h(ε)
+

(
h(−ε)

h(ε)

)2

+

(
h(−ε)

h(ε)

)3

+ · · ·


=

ε

(r + λ)

h(−ε)

[h(ε)− h(−ε)]
. (53)

As ε → 0,

b0 →
1

2(r + λ)

h(0)

h′(0)
= b. (54)

In this illustration, as ε → 0 trading occurs with higher frequency and the waiting time

goes to zero. In the limit traders will trade infinitely often and the small gains in each

trade compound to a significant bubble. This situation is similar to the cost from hedging

an option using a stop-loss strategy studied in Carr and Jarrow (1990).

It is a property of Brownian motion that if it hits the origin at t, it will hit the origin

at an infinite number of times in any non-empty interval [t, t + ∆t). In our limit case of

c = 0 this implies an infinite amount of trade in any non-empty interval that contains

a single trade. However, frequent trading is not essential in causing the bubble. As we

will show in Section 7, trading costs can greatly reduce the trading frequency, but not

the bubble.

6.2 Excess volatility

The option value component also introduces another source of volatility in addition to the

fundamental volatility. According to Proposition 1, the innovations in the asset owner’s

belief f̂ o and the innovations in the difference of beliefs go are independent. Therefore,

the total price volatility is the sum of the fundamental value volatility and the volatility

of the option component.

Proposition 3 The volatility from the option value component is given by 1
(r+λ)

(φ2−1)γ√
2σs

h′(go
t )

h′(0)
.

Proof: see appendix.

Since h′ > 0, and in equilibrium go ≤ 0, the volatility of the option value is maximum

at the trading point go = 0. The volatility of the option value at the trading point,
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1
(r+λ)

(φ2−1)γ√
2σs

, increases when the interest rate or the degree of mean reversion decreases.

Equation 5 guarantees that γ increases when the volatility of fundamentals σf increases.

Hence an increase in the volatility of fundamentals has an additional effect on price

volatility at trading times, through an increase in the volatility of the option value.

In this way, our model captures excessive trading and excess volatility observed in

internet stocks during the period of 1998-2000.

6.3 Comparative statics

In this subsection we present results on the effect of certain parameter changes on the

option value function q and the value of the bubble b. Let

α =
σ2

g

2ρ
, β =

r

ρ
. (55)

The parameters α and β determine the coefficients of the differential equation that h

solves. We start by establishing the effect of changes in α and β on b and q.

Lemma 2

b =

√
2α

4(r + λ)

Γ
(

β
2

)
Γ
(

1
2

+ β
2

) . (56)

b increases with α and decreases with β. For all x < 0, q(x) = bh(x)
h(0)

increases with α and

decreases with β.

Proof: See appendix.

Proposition 1 allows us to write α and β using the parameters: φ, λ, σf , is =
σf

σs
and

iD =
σf

σD
. is and iD measure the information in each of the two types of signals and the

dividend flow respectively. To simplify mathematics, we set λ = 0, then

α =
(φ2 − 1)2(φ2 + 1)i2sσ

2
f

2φ2 [(1 + φ2)i2s + i2D]
3/2

(57)

β =
r√

(1 + φ2)i2s + i2D
(58)

Differentiating from these equations, one can show the following:
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Fixing all the other parameters, as φ increases, α increases and β decreases. Therefore,

from Lemma 2 b and q(x), for x < 0, increase. The option value and the bubble increase

with the degree of overconfidence.

Fixing all the other parameters, as σf increases, α increases and β is unchanged.

Therefore, using Lemma 2, b and q(x), for x < 0, increase. The option value and the

bubble increase with the noise of the fundamental.

Fixing all the other parameters, as r increases, α is unchanged and β is increased.

Therefore, using Lemma 2, b and q(x), for x < 0, decrease. An increase in the interest

rate decreases the option value and the bubble.

6.4 What if the bubble may burst?

There are several ways in which we can imagine a change in equilibrium that brings b

to zero. The over-confident agents may correct their over-confidence. The fundamental

volatility of the asset may disappear. The public information (the type of information

that all agents can agree on) may become infinitely precise. For concreteness imagine

that agents in A (B) believe that agents in B (A) will at some point change their opinion

and agree with them on the precision of the signals sA and SB. This type of belief is again

overconfident! Suppose further that agents in A (B) believe that this change of mind

happens according to a Poisson process ΘA (ΘB). Finally suppose that these Poisson

processes have a common Poisson parameter θ and that they are independent of each

other and of the four Brownian motions that describe the model.

In this case it is easy to see that the option value is

q(x) = max
k

[(
k

r + λ
+ q(−k)

)
Eo

te
−(r+θ)τ

]
. (59)

Effectively, a higher discount rate r + θ is used for the profits from exercising the option,

but all the reasoning of the earlier sections hold. In particular, the results from section

6.3 show that an increase in θ decreases b and q(x). When agents realize that bubble

might burst in the future, the bubble becomes smaller.
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6.5 A calibration exercise

We give a numerical example to illustrate the magnitude of the bubble component for

certain parameter values that are inspired by the recent internet stocks bubble. By

substituting α and β into the expression for b in Lemma 2 , we obtain

b =
σf

(r + λ)

is(φ
2 − 1)

√
(φ2 + 1)

4φ [(1 + φ2)i2s + i2D]
3/4

Γ
(

r+θ

2
√

(1+φ2)i2s+i2D

)
Γ
(

1
2

+ r+θ

2
√

(1+φ2)i2s+i2D

) . (60)

The first term in this expression,
σf

r+λ
is exactly the volatility of the fundamental value

of the asset. Because we assumed that the fundamentas are normally distributed this

volatility is measured in “dollars” as opposed to percentages. We can use this dollar

amount of fundamental volatility as a numeraire of the bubble component. To determine

the rest of the bubble component, we need to know six parameters: r, λ, θ, φ, is and iD.

The mean-reverting parameter of the fundamental variable λ has been set to be 0 in

equation (60). We set the interest rate r = 5% and the bubble burst rate θ = 0.1. The

overconfidence parameter φ can be calibrated from psychology studies. According to an

experiment reported by Alpert and Raiffa (1982), the 98% confidence intervals projected

by a group of individuals only cover 60% of the realizations. If a symmetric interval

around the mean contains 60% of the mass of a N(µ, σ), it will contain 98% of a N(µ, σ′)

if σ′ = σ
2.77

. Hence we set φ = 2.77. In our model, the dividend volatility measures the

amount of public information that all agents can agree on. From our numerical exercises,

the bubble component is not very sensitive to iD. So we have chosen two values iD = 0.1

and iD = 2 for illustration. The bubble component depends crucially on is, the amount

of information that agents disagree about.

In Figure 1, we plot the bubble component b as a function of is. b is measured as a

multiple of the fundamental volatility
σf

r+λ
. A few observations can be made about the

bubble component. First, it increases with is. The bubble becomes larger when there is

more information for agents to disagree. Second, the bubble component decreases with

iD, although this dependence is less dramatic. The bubble becomes smaller when there

is more information that agents can agree on. Third, the bubble can be very significant.
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Figure 1: Bubble measured by multiples of fundamental volatility. The following parameters
have been specified: r = 5%, λ = 0, φ = 2.77, θ = 0.1.
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Figure 2: Bubble vs. Overconfidence Coefficient. The following parameters have been specified:
r = 5%, λ = 0, θ = 0.1, is = 1, iD = 2.
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If we postulate is = 1, that is the noise in the agents’ information is as volatile as the

fundamental variable, the bubble component is about eight times fundamental volatility,

and this value can be much larger than the fundamental value of the asset.15

In Figure 2 we plot the bubble b versus the overconfidence coefficient φ . The bubble

is of the same order as the asset’s fundamental volatility even with a relative small

overconfidence coefficient φ = 1.5.

6.6 Expected returns

In this subsection, we discuss the expected returns in the asset with the presence of het-

erogeneous beliefs and bubbles. From the perspective of the overconfident asset holder,

the expected return is always the risk free rate from the construction of the equilib-

rium. The expected return can be very different from the perspective of a (rational)

econometrician. We denote

dQ = dp + dD − rpdt (61)

as the instantaneous excess return from holding the asset. The following proposition

gives the expected excess return from the perspective of a rational econometrician.

Proposition 4 For the econometrician, the expected excess return for the asset holder

is

ER[dQ] = −
[
1 +

γ

r + λ

(
1 + φ2

σ2
s

+
1

σ2
D

)] (
f̂ o − f̂R

)
dt +

1

2

(
σ′

2
g − σ2

g

)
q′′(x)dt, (62)

where f̂ o and f̂R are the mean beliefs of the asset owner and the econometrician respec-

tively.

Proof: see appendix.

From Proposition 4, there are two components in the expected excess return. The

first part is generated from the difference of expected value of the fundamentals between

the asset owner and the econometrician. If the asset owner has a higher mean, the

15Although risk neutrality of investors may have inflated the bubble size, the presence of only two groups of
overconfident investors leads to an under-estimation of the bubble.
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econometrician expects a negative excess return. Note that although the asset owner

has the highest expected value for f among all overconfident agents, this expected value

might be lower than that of a rational observer.

The second part of the expected excess return is generated from the option component

of the asset price. Since, as we argued in Section 4, x has a larger volatility in the mind

of the econometrician (σ′2g > σ2
g), the econometrician expects the re-sale option to be

exercise quicker than the asset owner, and therefore expects a positive return from the

option component.

According to Proposition 4, the expected asset return changes over time, and can

be predictable from the difference between the rational belief and the “irrational” belief

of the asset owner. This is consistent with some empirical work that argues that stock

returns are in fact predictable using variables that are related to the ratio between stock

prices and their fundamental values (See Fama and French (1992) for detail).

The positive expected excess return from the option component gives an interesting

possibility that, if given the opportunity to trade, an econometrician may be willing to pay

more than the reservation price of the current owner even if he has slightly less positive

beliefs about future dividends. The econometrician understands that the volatility of

beliefs is higher than the estimates of the overconfident owners and therefore attributes

a higher value to the resale option.16 This situation counters the common intuition that

rational traders would always trade to reduce bubbles, and in this sense is analogous to

the trading strategy of rational arbitrageurs discussed in De Long et al. (1990) to front

run positive feedback traders.

6.7 Comparison with rational bubbles

There has been a large literature studying rational bubbles including Blanchard and

Watson (1982) and others. In these studies, all agents have rational expectations, and the

asset prices can be decomposed into two parts, a fundamental component and a bubble

component which is expected to grow at a rate equal to the risk free rate. Although this

16This result is only indicative since the rational econometricians are not present in the model. Their presence
will affect the price dynamics and change the strategies of overconfident traders. A full characterization of these
issues is left for future research.
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type of bubble models is consistent with rational expectations and constant expected

returns, it is based on investors’ expectation that other investors would drive prices

even higher in the future independent of any fundamental reasons. Campbell, Lo, and

MacKinlay (1997, pages 258-260) provide a detailed discussion on the properties of the

rational bubbles. To make this type of bubbles sustainable, the asset must have an infinite

maturity and the asset prices cannot have any upper price limit so that the bubble can

always be expected to grow. An important property of the rational bubbles is that

many variables, such as the asset price and the change of the asset price, have explosive

conditional expectations, but this property is not consistent with empirical evidence. In

addition, the rational bubbles cannot explain the observed predictability of stock returns.

The bubble in our model is generated through the recursive expectations of investors

to take advantage of the mistakes of each other. Differing from the rational bubbles,

the bubble in our model does not need to be explosive although its magnitude could

be very significant. Consequently, variables such as the asset price and the change of

asset price in our model have stationary distributions. While our model has an infinite

horizon, the bubble should still exist for an asset with only finite maturity, which is not

possible for rational bubbles. The derivation of such a model with finite horizon might

be more complicated due to the dependence on the maturity. In addition, the bubble in

our model can generate predictable returns that are consistent with empirical evidence.

7 Effects of trading costs

We now examine the effects of trading costs. According to Theorem 1, the trading barrier

k∗ becomes nonzero when there is a trading cost, and k∗ satisfies equation (42). The

bubble b and the option value q(x) are determined in equations (43) and (44) respectively.

Let η(x) denote the volatility of the option value component. η(x) represents the excess

volatility caused by the speculative trading, and by Ito’s Lemma it must satisfy

η(x) =

√
2(φ2 − 1)γ

σs(r + λ)

h′(x)

(h′(k∗) + h′(−k∗))
, ∀x ≤ k∗. (63)

The following proposition shows that increasing the trading cost c raises the trading

barrier k∗ and reduces b, q(x) and η(x).
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Proposition 5 If c increases, the optimal trading barrier k∗ increases. Furthermore, the

bubble b, the option component q(x) and the excess volatility η(x) (∀x ≤ k∗(c) ) decrease.

As c → 0, dk∗

dc
→∞, but the derivatives of b, q(x), and η(x) are always finite.

Proof: see appendix.

In order to illustrate the effects of trading costs, we use the following parameter values

from our previous calibration exercise,

r = 5%, φ = 2.77, λ = 0, θ = 0.1, is = 1.0, iD = 2.0. (64)

Figure 2 shows the relations of the trading barrier k∗

r+λ
, expected duration between trades,

the bubble b, and η(0) (the excess volatility when beliefs coincide), with respect to the

trading cost c. The expected duration between trades is measured in years. The trading

barrier k∗

r+λ
, the excess volatility η(0), the bubble b, and the trading cost c are all measured

in multiples of the fundamental volatility
σf

r+λ
. For the illustration, we also adopt a value

of σf = 0.66 which can be translated into a 66% fundamental volatility per annum. This

value is consistent with the price volatility of internet stocks after the crash of 2000.

Panel A of Figure 3 shows the optimal trading barrier k∗

r+λ
together with the barrier c

which represents the minimum level in difference of beliefs that allows the asset owner to

cover the trading cost. The difference between these two barriers represents the profits to

the asset owner for exercising his option. When the trading cost is zero, the asset owner

sells the asset immediately when it is profitable and the profits are infinitely small. As

the trading cost increases, the optimal trading barrier increases, and the rate of increase

near c = 0 is dramatic, since the derivative dk∗

dc
is infinite at the origin. As a consequence,

the trading frequency is greatly reduced by the increasing trading cost as shown in Panel

B. Note that the profits from each trade k∗

r+λ
− c also increase dramatically with the

trading cost near c = 0.

As shown in Panels C and D, the trading cost also reduces the bubble and the excess

volatility, but only at a limited rate even near c = 0. Although we expect that the great

reduction in trading frequency caused by the increase in the trading cost should greatly

reduce the bubble, this effect is partially offset by the the increase in profits in each
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Figure 3: Effects of trading costs. The following parameters have been specified: r = 5%, φ =
2.77, λ = 0, θ = 0.1, is = 1.0, iD = 2.0.

trade.17 Similar intuition applies to the effect of the trading cost on excess volatility.

According to our calibration exercise, increasing the trading cost by 2%, measured in

multiples of fundamental volatility, from the case with zero trading cost would cause a

reduction of about 10% to the magnitudes of both the bubble and the excess volatility.

This increase in the trading cost represents an ad valorem tax in excess of 1.3%.

The effectiveness of a trading tax to reduce speculative trading has been hotly debated

since James Tobin’s (1978) initial proposal for a transaction tax in the foreign currency

markets. Shiller (2000, pages 225-228) provides an overview of the current status of this

debate. Our model implies that trading costs are crucial for determining the trading

frequency, at least when we start from an initial position of low costs, but that trading

costs have a more limited impact in excess volatility or the magnitude of the price bubble.

Our calibration shows that an ad valorem tax of 1.3%, a proportion that exceeds the

17Vayanos (1998) provides an interesting analysis of the effects of transaction cost on asset prices in a life-cycle
model. He shows that an increase of transaction cost can reduce the trading frequency and therefore may even
cause asset prices to be higher.
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proportion contemplated in most “Tobin tax” proposals, decreases bubbles and excess

volatility by only 10%. Our calibration can also be used to answer a question raised by

Shiller of why bubbles can exist in real estate markets, where the transaction costs are

typically high. In reality, trading also occurs for other reasons, such as liquidity shocks

or changes in risk bearing capacity, that are not considered in our analysis and, for this

reason, the limited impact of transaction costs on volatility and price bubbles cannot

serve as an endorsement of Tobin’s proposal.

8 Trading performance

Although the agents in our model are all risk neutral price takers, their trading perfor-

mance, i.e., the returns of their trading account, does not equal the risk free rate. This

is due to two reasons. The first one is overconfidence and is present even in the absence

of transaction costs. The second reason is transaction costs. Trading costs make trading

a negative sum game, and therefore worsens performance. In this subsection we analyze

the impact of transaction costs on trading performance.

Since the two groups are symmetric, we need only to analyze the aggregate trading

cost. If the current difference of beliefs among agents is go = x ≤ k, the first trade

occurs when go hits k, the trading point. The discount factor for cashflows received at

that time is u(x, k) as shown in equation (45). The second trade occurs when go moves

from −k to k after the first trade, and the discount factor for cashflows received then

is u(x, k)u(−k, k). Similar arguments apply for subsequent trades. Therefore, the total

present values of all the future trading costs is

K =
∞∑
i=1

cu(x, k)u(−k, k)i−1 =
cu(x, k)

1− u(−k, k)
=

ch(x)

h(k)− h(−k)
(65)

where the last equation follows from equation (47).

Our model provides an example where more information can cause investors to do

worse in their trading. We model the increase in information as a decrease in the diffusion

coefficient σs of the (non-dividend) signal. Holding the volatility of fundamentals σf

constant, a decrease in σs is equivalent to an increase in the information coefficient is.

An increase in is can cause investors to trade more and consequently incur higher trading
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Figure 4: Aggregate present value of future trading costs. The following parameters have been
specified: r = 5%, φ = 2.77, λ = 0, θ = 0.1, iD = 2.0, c = 0.1.

cost, whenever c > 0. This result echoes the discussion by Barber and Odean (2001) who

argue that the greater volume and variety of information created by the recent advances

in information technology can feed the illusion of knowledge of investors and cause them

to trade more aggressively and perform worse in their trading.

We illustrate the effect of the amount of information in the signals, is, on trading

costs K using the parameter values from our calibration exercise:

r = 5%, φ = 2.77, λ = 0, θ = 0.1, iD = 2.0, c = 0.1. (66)

As shown by Figure 4, the total trading costs K increases with is. In this case, the

increased amount of information causes more variation in the differences of agents’ beliefs,

and inducing higher frequency of trading.18 Therefore, due to overconfidence, the trading

performance of agents can deteriorate as more information becomes available.

18This result may only hold under certain conditions.

31



9 Can the price of a subsidiary be larger than its parent firm?

The existence of the option value component in asset prices can potentially create viola-

tions to the law of one price. In this section, we use an example to illustrate this type

of situation. Especially, we want to illustrate a situation where the price of a subsidiary

can be larger than its parent company.

There are two firms 1 and 2 traded in the market. For simplicity, we assume the divi-

dend processes of both assets follow the process in equation (1) with the same parameter

σD but with independent innovations and with different fundamental variables f1 and f2

respectively. The fundamental variables f1 and f2 are unobservable and both follow the

linear mean-reverting process in equation (2) with the same parameters λ, f̄ and σf . To

illustrate the point, we consider a very special case that the innovations in the processes

of f1 and f2 are perfectly negatively correlated. Discussions on more general cases are

left for future research.

There is another firm (firm 3) traded in the markets, and the dividend flow of firm 3

is exactly the sum of the dividend flows of firms 1 and 2. In this sense, firms 1 and 2 are

both subsidiaries of firm 3, and the fundamental variable of firm 3 is the sum of that of

firms 1 and 2: f3 = f1 + f2. Since the innovations of f1 and f2 are perfectly negatively

correlated, f3 is a constant determined by initial conditions.

All these three firms are traded by the two groups of agents described in Section 2.

Since the fundamental variables of firms 1 and 2 fluctuate and are unobservable, these

agents try to infer their values. According to our discussions before, overconfidence can

generate heterogeneous beliefs among agents in different groups about the fundamental

variables of these assets. Through the trading among agents, an option component exists

in the prices of these two assets. Due to the perfect negative correlation in the innovations

to the fundamental variables of these two assets, the beliefs of agents about these two

assets are also perfectly negatively correlated, i.e., when f̂A
1 ( f̂B

1 ) moves up by certain

amount, f̂A
2 (f̂B

2 ) moves down by the same amount. To simplify our discussion, let us

consider the case without trading cost. In this case, agents with higher mean beliefs

always hold the asset. Therefore, when agents in group A are holding firm 1, agents in
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group B must be holding firm 2. As a consequence, the option components in the prices

of these two firms are always the same. Therefore, the prices of firms 1 and 2 can be

expressed as

p1 =
f̄

r
+

f̂1 − f̄

r + λ
+ q(x), p2 =

f̄

r
+

f̂2 − f̄

r + λ
+ q(x), (67)

where x = f̂ ō
1 − f̂ o

1 = f̂ ō
2 − f̂ o

2 < 0.

Since agents in both groups know that the fundamental variable of firm 3 is a constant,

there are no heterogeneous beliefs about f3. Therefore, there is no option component or

bubble in the price of firm 3. The price of firms can be expressed as

p3 =
2f̄

r
+

f̂1 + f̂2 − 2f̄

r + λ
. (68)

According to our calibration exercise, the existence of option component in the prices of

assets 1 and 2 can cause the value of an individual firm to exceed that of firm 3, even

though all prices are nonnegative.

From this simple example, we can see that the speculative bubble can cause the price

of a subsidiary to be larger than its parent firm.19 Although highly stylized, this analysis

may help clarify the episodes such as 3Com’s equity carve-out of Palm and its subsequent

spinoff.20 In early 2000, for a period of over two months the total market capitalization

of 3Com was significantly less than the market value of its holding in Palm, a subsidiary

of 3Com. Similar situations also happened in other carveout cases studied in Lamont

and Thaler (2001), Mitchell, Pulvino and Stafford (2001), Schill and Zhou (2000), and

Ofek and Richardson (2001). Interestingly, according to Lamont and Thaler (2001), the

turnover rate of the subsidiaries’ stocks is on average about six times higher than that

of the parent firms’ stocks. Our model also predicts that, in this context, trading in the

subsidiary would be much higher than trading in the parent company, because of the

much higher fluctuation in beliefs about the value of the subsidiary.

19Duffie, Garleanu, and Pedersen (2001) provide another mechanism to explain this phenomenon based on the
lending fee that the asset owner can expect to collect.

20The missing link is that we have not demonstrated that the divergence of beliefs on the combined entity was
smaller than the divergence of beliefs on the Palm spinoff.
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This example also illustrates the fact that the diversification of a firm reduces the

bubble component in the firm’s stock price because diversification reduces the funda-

mental uncertainty of the firm and therefore reducing the potential disagreements among

investors. This result provides a possible explanation to the diversification discount puz-

zle - the fact that the stock of a diversified firm appears to trade at a discount when

compared to the stock of a similar undiversified firm.21

10 Bubbles and corporate strategies

Due to the short-sale constraints, arbitrageurs or other rational investors cannot take

advantage of the bubbles studied in our model. On the other hand firm managers may

be able to profit by adopting strategies that increase share prices. As we showed in

subsection 6.5 above, for reasonable parameter values the bubble increases whenever we

increase the information content of the signals, is or decrease the information content

of the dividend process, iD. In this section we show that we may use the model in this

paper to explain the recent popularity of certain corporate strategies.

10.1 IPO underpricing

The underpricing of a firm’s initial public offering (IPO) have been severe and puzzling.

As reviewed by Ritter (2002), the average first day return of an IPO is about 10 to 15

percent. For the recent internet stock IPOs, it is common to see first day returns of 50%

or even more than 100%. This means in some cases hundreds of millions of dollars left

on the table.

Rajan and Servaes (1997), and Aggarwal, Krigman, and Womack (2001) show that

higher initial returns on an IPO leads to more analysts and media coverage. In our model

this increase in information would increase the value of the stock. Therefore, the IPO

unerpricing could be a strategy used by firm managers to boost the price of their stocks.

Firm managers, who typically hold residual shares, can get greater payoffs from sub-

sequent sales of their own personal shares after the lock-up period. Our model thus

predicts that underpricing is more likely to occur when managers hold a larger share of

21See Lang and Stultz (1994), Burger and Ofek (1995), and Servaes (1996).
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the firm, what agrees with the empirical results in Aggarwal, Krigman, and Womack

(2001) who show that managerial share and option holdings are positively related to first

day IPO underpricing.

If underpricing occurs because of the mechanism we propose, a larger underpricing

should be associated with a larger trading volume. In fact, Reese (2000) finds that the

higher initial IPO returns is associated with larger trading volume for more than three

years after issuance.

10.2 Name changes

In the recent internet stock bubble many firms changed their names to a “dotcom” name.

Cooper, Dimitrov, and Rau (2001) use a sample of 147 firms that change their name to

a dotcom name between June 1998 and July 1999, to document abnormal returns on

the order of 53 percent in the five days around the announcement date. Lee (2001) also

documents that the average trading volume rises twelve fold on the announcement date

in a sample of 114 firms that change their names to dotcom between January 1995 and

June 1999, even though these name changes were not accompanied by any changes in

strategy.

If, as it seems likely, the name change increased the attention of the analyst and

investor communities during the period when internet stocks were “hot”, the name change

produced an increase in the amount of information available about the company. The

numerical illustration in subsection 6.5 shows that this name change could increase the

value of the stock.

10.3 Spinoffs and carve outs

In section 9 we argued that our model may explain the large number of spin offs and carve

outs that occurred during the internet bubble. In the model, another possible source of

increased valuation following a breakup is an increase in the amount of information that

is generated about the parts that result from the breakup. Gilson et al. (2001) document

that breakups are accompanied by an increase in analyst’s coverage. However they also

show that consensus among analysts forecasts increases, what should decrease valuation.
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10.4 Earnings management

Investigating a sample of 100,000 quarterly earnings reports from 1974-1996, Degeorge,

Patel, and Zeckhauser (1999) argue that firms make great efforts to match analyst fore-

casts or just beat them by one penny. They also argue that managers have the ability

to smooth earnings and obscure the information revealed by earnings reports. Degeorge,

Patel, and Zeckhauser (1999) state that “within generally accepted accounting principles

(GAAP), firm managers have considerable flexibility in the choice of inventory methods,

allowance for bad debt, expensing of research and development, recognition of sales not

yet shipped, estimation of pension liabilities, capitalization of leases and marketing ex-

penses, delay in maintenance expenditures, and so on”. In fact, D’Avolio, Gildor and

Shleifer (2001) argue that the quality of information available to investors has deterio-

rated over time.

Although in our model the firm’s production of information is summarized by the

dividend flow, in reality firms produce much more detailed information in their earnings

report. We interpret all information provided in the earnings report as information

contained in the dividend process. Hence a decrease in the information content of the

earnings report corresponds to a decrease in iD which, as we argued above, may lead to

a higher valuation of the stock.

11 Conclusion

In this paper, we provide a simple model to study bubbles generated from speculative

trading among agents with heterogeneous beliefs. Heterogeneous beliefs come from the

overconfidence of agents. With a short-sale constraint, an asset owner has an option to

sell the asset to other agents when they have more optimistic beliefs. By solving the

optimal exercise strategy of the asset owner through a Bellman equation with an optimal

stopping problem, we are able to obtain an analytical solution for the equilibrium. This

allows us to discuss the magnitude of the bubble, trading frequency, asset price volatility

and the predictability of returns in the equilibrium. These properties are consistent with

the recent internet stock bubbles. In particular, our model shows that a small trading
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tax may be effective in reducing speculative trading, but that it may not be very effective

in reducing price volatility or the size of the bubble. Through a simple example, we also

illustrate that the bubble can cause the price of a subsidiary to be larger than its parent

firm, a strong violation of the law of one price. In addition, our model allows us to discuss

certain strategies that firm managers can adopt to exploit the bubbles. These strategies

include IPO underpricing or name changes. The observation of these strategies in the

real world strengthens the case for our model.
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A Some Proofs

A.1 Proof to Proposition 1

The process of gA can be derived from the conditional beliefs f̂A and f̂B in equations (6)

and (10):

dgA = df̂B − df̂A = −
[
λ + (1 + φ2)

γ

σ2
s

+
γ

σ2
D

]
gAdt +

(φ2 − 1)γ

σ2
s

(dsB − dsA). (A1)

The difference of beliefs gA mean-reverts with a parameter of

ρ = λ + (1 + φ2)
γ

σ2
s

+
γ

σ2
D

. (A2)

In the mind of agents in group A,

dsA = f̂Adt +
σs

φ
dWA

A , (A3)

dsB = f̂Adt + σsdWA
B , (A4)

according to equations (7) and (8). Therefore,

dgA = −ρgAdt +
(φ2 − 1)γ

σ2
s

(
σsdWA

B − σs

φ
dWA

A

)
. (A5)

We can simplify the notation to

dgA = −ρgAdt + σgdWA
g (A6)

with

σg = (φ2 − 1)
√

1 + 1/φ2
γ

σs

, (A7)

dWA
g =

1

σs

√
1 + 1/φ2

(
σsdWA

B − σs

φ
dWA

A

)
. (A8)

It is easy to verify that WA
g is independent to the innovations to f̂A in the mind of agents

in group A.

Similar derivation can be done for the difference of beliefs gB in the mind of agents

in group B.
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A.2 Proof to Proposition 2

Let v(y) be a solution to the following differential equation

yv′′(y) + (1/2− y)v′(y)− r

2ρ
v(y) = 0. (A9)

It is straightforward to verify that

q(x) = v

(
ρ

σ2
g

x2

)
(A10)

satisfies the equation we need to solve:

1

2
σ2

gq
′′(x)− ρxq′(x) = rq(x). (A11)

According to Chapter 13 of Abramowitz and Stegum (1964), the general solution of

equation (A9) is

v(y) = αM

(
r

2ρ
,
1

2
, y

)
+ βU

(
r

2ρ
,
1

2
, y

)
. (A12)

M(·, ·, ·) and U(·, ·, ·) are Kummer functions defined as

M(a, b, y) = 1 +
ay

b
+

(a)2y
2

(b)22!
+ · · ·+ (a)ny

n

(b)nn!
+ · · · (A13)

where

(a)n = a(a + 1)(a + 2)...(a + n− 1), (a)0 = 1, (A14)

and

U(a, b, y) =
π

sin πb

{
M(a, b, y)

Γ(1 + a− b)Γ(b)
− y1−b M(1 + a− b, 2− b, y)

Γ(a)Γ(2− b)

}
. (A15)

For our purpose, the following asymptotic properties of these functions are useful:

My(a, b, y) > 0, ∀y > 0 (A16)

M(a, b, y) → +∞, U(a, b, y) → 0, as y → +∞. (A17)

Due to the non-uniqueness of the transformation in equation (A10), we need to discuss

the solution for two separate regions x ≤ 0 and x > 0. In order to guarantee that u(x) is

positive and increasing for x < 0, α coefficient in equation (A12) must be zero. Therefore,

u(x) = β1U

(
r

2ρ
,
1

2
,

ρ

σ2
g

x2

)
if x ≤ 0. (A18)
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In the other region, the solution can be expressed as

u(x) = α2M

(
r

2ρ
,
1

2
,

ρ

σ2
g

x2

)
+ β2U

(
r

2ρ
,
1

2
,

ρ

σ2
g

x2

)
if x > 0. (A19)

The solution must have continuous value and first order derivative at the point x = 0.

From the definition of the two Kummer functions, we can derive

x → 0−, u(x) → β1π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

, u′(x) → β1π
√

ρ

σgΓ( r
2ρ)Γ( 3

2)

x → 0+, u(x) → α2 + β2π

Γ( 1
2
+ r

2ρ)Γ( 1
2)

, u′(x) → − β2π
√

ρ

σgΓ( r
2ρ)Γ( 3

2)

(A20)

By matching the values and first order derivatives of u(x) from the two sides of x = 0,

we have

β2 = −β1, α2 =
2β1π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A21)

The function value at x = 0 is

q(0) =
β1π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A22)

A.3 Proof to Lemma 1

h(x) is solution to the

αh′′ − xh′ − βh = 0, (A23)

where α =
σ2

g

2ρ
> 0 and β = r

ρ
> 0, that is positive and increasing in (−∞, 0).

If x∗ ∈ R with h(x∗) > 0 and h′(x∗) = 0 then h′′(x∗) = βh(x∗)/α > 0. Hence h has

no local maximum while it is positive and as a consequence it is always positive and has

no local maxima. In particular h is monotonically increasing. Since h′ > 0 for x ≤ 0 and

h′′ ≥ 0 for x ≥ 0, h′(x) > 0 for all x. From the solution constructed in Proposition 2,

limx→−∞ h(x) = 0.

Note any solution to the differential equation is infinitely differentiable. Next, we

show that h is convex. For x > 0, h′′(x) = xh′(x)/α + βh(x)/α > 0. To prove that h is

also convex for x < 0, let us assume that there exists x∗ < 0 such that h′′(x∗) ≤ 0. Then

h′′′(x∗) = x∗h′′(x∗)/α + (β + 1)h′(x∗)/α > 0. (A24)
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This directly implies that h′′(x) < 0 for x < x∗. Then limx→−∞ h′(x) = ∞. In this

situation the boundary condition h(−∞) = 0 can not be satisfied. In this way, we get a

contradiction.

Let v(x) = h′(x). v(x) is positive and increasing from the properties that we have

proved for h(x). v also satisfies the following equation:

αv′′(x)− xv′(x)− (β + 1)v(x) = 0. (A25)

This equation is very similar to the one satisfied by h(x). By repeating the same proof

for h, one can show that v(x) is also convex and limx→−∞ v(x) = 0.

Actually, one can show that any higher order derivative of h(x) is positive, increasing

and convex.

A.4 Proof to Theorem 1

Let

l(k) = [k − c(r + λ)](h′(k) + h′(−k))− h(k) + h(−k). (A26)

We first show that there exists a unique k∗ that solves l(k) = 0.

If c = 0, l(0) = 0, and

l′(k) = x[h′′(k)− h′′(−k)] > 0, for all k 6= 0. (A27)

Therefore k∗ = 0 is the only root to l(k) = 0.

If c > 0, then

l(k) < 0, for all k ∈ [0, c(r + λ)]. (A28)

Also, since h′′ and h′′′ are increasing (Lemma 1),

l′(k) = [k − c(r + λ)][h′′(k)− h′′(−k)] > 0, ∀k > c(r + λ), (A29)

l′′(k) = h′′(k)− h′′(−k) + [k − c(r + λ)][h′′′(k)− h′′′(−k)] > 0, ∀k > c(r + λ).(A30)

Therefore l(k) = 0 has a unique solution k∗ > c(r + λ).
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A.5 Proof to Theorem 2

First we show that q satisfies equation (33). Using equation (44), we have

q(−x) =

{ b
h(−k∗)

h(−x) for x > −k∗

−x
r+λ

+ b
h(−k∗)

h(x)− c for x ≤ −k∗.
(A31)

We must establish that

U(x) = q(x)− x

r + λ
− q(−x) + c ≥ 0, ∀x. (A32)

A simple calculation shows that

U(x) =


2c for x < −k∗
−x
r+λ

+ b
h(−k∗)

[h(x)− h(−x)] + c for −k∗ ≤ x ≤ k∗

0 for x > k∗
(A33)

Thus,

U ′′(x) =
b

h(−k∗)
[h′′(x)− h′′(−x)], −k∗ ≤ x ≤ k∗. (A34)

From lemma 1 we know for U ′′(x) > 0 for 0 < x < k∗, and U ′′(x) < 0 for −k∗ < x < 0.

Since U ′(k∗) = 0, U ′(x) < 0 for 0 < x < k∗. On the other hand, U ′(−k∗) = 0, so U ′(x) <

0 for −k∗ < x < 0. Therefore U(x) is monotonically decreasing for −k∗ < x < k∗. Since

U(−k∗) = 2c > 0 and U(k∗) = 0, U(x) > 0 for −k∗ < x < k∗.

We now show that equation (34) holds. By construction, equation (34) holds in the

region x ≤ k∗. Therefore we only need to show for x ≥ k∗,

1

2
σ2

gq
′′(x)− ρxq′(x)− rq(x) ≤ 0. (A35)

In this region, q(x) = x
r+λ

+ b
h(−k∗)

h(−x) − c, thus q′(x) = 1
r+λ

− b
h(−k∗)

h′(−x) and

q′′(x) = b
h(−k∗)

h′′(−x). Hence,

1

2
σ2

gq
′′(x)− ρxq′(x)− rq(x)

=
b

h(−k∗)

[
1

2
σ2

gh
′′(−x) + ρxh′(−x)− rh(−x)

]
− r + ρ

r + λ
x + rc

= − r + ρ

r + λ
x + rc ≤ −(r + ρ)c + rc = −ρc < 0 (A36)
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where the inequality comes from the fact that x ≥ k∗ > (r + λ)c from Theorem 1.

Also q has an increasing derivative in (−∞, k∗) and has a derivative bounded in

absolute value by 1
r+λ

in (k∗,∞). Hence q′ is bounded.

If τ is any stopping time, the version of Ito’s lemma for twice differentiable functions

with absolutely continuous first derivatives (e.g. Revuz and Yor (1999), Chapter VI)

implies that

e−rτq(go
τ ) = q(go

0) +
∫ τ

0

[
1

2
σ2

gq
′′(go

s)− ρgo
sq
′(go

s)− rq(go
s)
]
ds +

∫ τ

0
σgq

′(go
s)dWs (A37)

Equation (34) states that the first integral is non positive, while the bound on q′ guar-

antees that the second integral is a Martingale. Using equation (33) we obtain,

Eo
{
e−rτ

[
go

τ

r + λ
+ q(−go

τ )− c
]}

≤ Eo
[
e−rτq(go

τ )
]
≤ q(go

0). (A38)

This shows that no policy can yield more than q(x).

Now consider the stopping time τ = inf{t : go
t ≥ k∗}. Such τ is finite with probability

one, and go
s is in the continuation region for 0 ≤ s < τ. Hence using exactly the same

reasoning as above, but recalling that in the continuation region (34) holds with equality

we obtain that

q(go) = Eo
{
e−rτ

[
go

τ

r + λ
+ q(−go

τ )− c
]}

. (A39)

A.6 Proof to Proposition 3

Since q(x) = 1
2(r+λ)

h(x)
h′(0)

, the volatility of q(go
t ) is given by 1

2(r+λ)

h′(go
t )

h′(0)
multiplied by the

volatility of go
t . From the proof to proposition 1,

dgo
t = −

[
λ + (1 + φ2)

γ

σ2
s

+
γ

σ2
D

]
go

t dt +
(φ2 − 1)γ

σ2
s

(dsō − dso). (A40)

We need to determine the volatility of this process from the perspective of an objective

econometrician. From equations (3) and (4) the volatility of sō−so is
√

2σs in an objective

measure. Hence the volatility of go is
√

2(φ2−1)γ
σs

.
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A.7 Proof to Lemma 2

It is obvious that b increases with α. We can directly show that
Γ(β

2 )
Γ( 1

2
+β

2 )
decreases with

β by plotting it. Therefore, b decreases with β.

The option value component is q(x) = bh(x)
h(0)

where h(x) is a positive and increasing

solution to

αh′′(x)− xh′(x)− βh(x) = 0, h(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A41)

q(x) is not effected by letting h(0) = 1.

Assume α̃ > α, let h̃(x) satisfy the following differential equation

α̃h̃′′(x)− xh̃′(x)− βh̃(x) = 0, h̃(−∞) = 0, h̃(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A42)

We can show h̃(x) > h(x) for all x < 0. Let

f(x) = h̃(x)− h(x). (A43)

Then f(−∞) = f(0) = 0 using Lemma 1. f(x) has no local minimum x∗ with f(x∗) < 0.

If such a local minimum exists, f ′(x∗) = 0 and f ′′(x∗) ≥ 0. On the other hand, from the

equations satisfied by h̃(x) and h(x), we have

[α̃h̃′′(x)− αh′′(x)]− x[h̃′(x)− h′(x)]− β[h̃(x)− h(x)] = 0. (A44)

This equation implies that

α̃h̃′′(x∗) < αh′′(x∗). (A45)

Since α̃ > α, this further implies that h̃′′(x∗) < h′′(x∗). This is equivalent to f ′′(x∗) < 0,

which contradicts with x∗ being a local minimum. Therefore, f(x) cannot have a local

minimum with its value less than zero. Since f(−∞) = f(0) = 0, f(x) must stay above

zero for x ∈ (−∞, 0). Therefore, h̃(x) > h(x) for all x < 0. This directly implies that

the option value component q(x) increases with α for all x < 0.

Assume β̄ > β, let h̄(x) satisfy the following differential equation

αh̄′′(x)− xh̄′(x)− β̄h̄(x) = 0, h̄(−∞) = 0, h̄(0) =
π

Γ
(

1
2

+ r
2ρ

)
Γ
(

1
2

) . (A46)
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We can show h̄(x) < h(x) for all x < 0. Again let

f(x) = h̄(x)− h(x). (A47)

We first establish that f(x) has no local maximum x∗ with f(x∗) > 0. If such a local

minimum exists, f ′(x∗) = 0 and f ′′(x∗) ≤ 0. On the other hand, from the equations

satisfied by h̄(x) and h(x), we have

α[h̄′′(x)− h′′(x)]− x[h̄′(x)− h′(x)]− [β̄h̄(x)− βh(x)] = 0. (A48)

This equation implies that

β̄h̄(x∗) < βh(x∗). (A49)

Since β̄ > β, this further implies that h̄(x∗) < h(x∗). This is equivalent to f(x∗) < 0,

which contradicts with f(x∗) > 0. Therefore, f(x) cannot have a local maximum above

zero. Since f(−∞) = f(0) = 0, f(x) must stay below zero for x < 0. This directly

implies that h̄(x) < h(x) for all x < 0, and q(x) decreases with β for all x < 0.

A.8 Proof to Proposition 4

By substituting the price function in equation (30) into the excess return, we have

dQ =
df̂ o

r + λ
+ dq(x) + dD −

[
f̄ +

r

r + λ
(f̂ o − f̄) + rq(x)

]
dt. (A50)

Without losing generality, we assume the asset owner is from group A, therefore f̂ o = f̂A.

From the perspective of the econometrician,

dD = f̂Rdt + σDdWR
D , (A51)

df̂A = −λ(f̂A − f̄)dt +
φ2γ

σ2
s

(dsA − f̂Adt) +
γ

σ2
s

(dsB − f̂Adt) +
γ

σ2
D

(dD − f̂Adt)

= −λ(f̂A − f̄)dt +
φ2γ

σ2
s

(f̂Rdt + σsdWR
A − f̂Adt)

+
γ

σ2
s

(f̂Rdt + σsdWR
B − f̂Adt) +

γ

σ2
D

(f̂Rdt + σDdWR
D − f̂Adt)

= −λ(f̂A − f̄)dt− γ

(
1 + φ2

σ2
s

+
1

σ2
D

)
(f̂A − f̂R)dt

+
φ2γ

σs

dWR
A +

γ

σs

dWR
B +

γ

σD

dWR
D . (A52)
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Therefore, we can derive the expected return as

ER[dQ] = − λ

r + λ
(f̂A − f̄)dt− γ

r + λ

(
1 + φ2

σ2
s

+
1

σ2
D

)
(f̂A − f̂R)dt

+ER[dq(x)] + f̂Rdt−
[
f̄ +

r

r + λ
(f̂A − f̄) + rq(x)

]
dt

= −
[
1 +

γ

r + λ

(
1 + φ2

σ2
s

+
1

σ2
D

)]
(f̂A − f̂R)dt + ER[dq(x)]− rq(x)dt.(A53)

Since the difference of beliefs x follows the process in equation (25) from the perspective

of the econometrician, ER[dq(x)] = −ρxq′(x)dt + 1
2
σ′2gq

′′(x)dt. We also have 1
2
σ2

gq
′′(x) −

ρxq′(x)− rq(x) = 0,

ER[dq(x)]− rq(x)dt =
[
−ρxq′(x) +

1

2
σ′

2
gq
′′(x)− rq(x)

]
dt

=
1

2

(
σ′

2
g − σ2

g

)
q′′(x)dt (A54)

Therefore,

ER[dQ] = −
[
1 +

γ

r + λ

(
1 + φ2

σ2
s

+
1

σ2
D

)]
(f̂A − f̂R)dt +

1

2

(
σ′

2
g − σ2

g

)
q′′(x)dt. (A55)

A.9 Proof to Proposition 5

Let

l(k, c) = [k − c(r + λ)](h′(k) + h′(−k))− h(k) + h(−k). (A56)

k∗(c) is the root of l(k, c) = 0. If c > 0

dk∗

dc
=

(r + λ)

[k∗ − c(r + λ)]

[h′(k∗) + h′(−k∗)]

[h′′(k∗)− h′′(−k∗)]
> 0. (A57)

Hence k∗(c) is differentiable in (0,∞). Now suppose cn → 0. The sequence k∗(cn) is

bounded and every limit point k̄∗ must solve l(k̄∗, 0) = 0. Hence k̄∗ = 0 and the function

k∗(c) is continuous. Hence dk∗

dc
approaches ∞ as c → 0. The claims on b and q(x) follow

from equations equations (43) and (44), and Lemma 1. The derivative of η(x) with

respect to c is

dη(x)

dc
=

√
2(φ2 − 1)γ

σs(r + λ)

h′(x)(h′′(k∗)− h′′(−k∗))

(h′(k∗) + h′(−k∗))2

(
−dk∗

dc

)

= −
√

2(φ2 − 1)γh′(x)

σs[k∗ − c(r + λ)](h′(k∗) + h′(−k∗))
< 0. (A58)
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Therefore, η(x) decreases with c. However, note that dη(x)
dc

is finite as c → 0 although

dk∗

dc
→∞ as c → 0.
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