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Abstract

This paper discusses externalities experienced by firms in making production
decisions in an economy, or a sector of an economy, by specifying the types
of conditional probabilities for entries and exists of additional production
units, or entries of production units of entirely new goods. Such conditional
probability specifications may result from assumptions on firms adjusting
their output rates in response to expected excess demand or profit changes
in environments where such excess demands or profits are functions of own
output rates, as well as those of other firms.

We utilize the notion of holding times in the continuous-time Markov
chain models to determine movements of outputs around an equilibrium
distributions of sizes of clusters of agents of different types. After a short
comment on how entries and exits are modeled in the standard economic
literature, we present an alternative approach using continous-time Markov
processes. We employ one- and two-parameter versions of the conditional
probability specifications, due to Ewens and Pitman respectively, in the
context of exchangeable partitons of existing total amounts of production
capacities.

In addition to the usual state vector which lists the number of agents
by types, we explain the use of partition vector as state vector in models
composed of a large number of exchangeable agents of possibly many types.
We illustrate the use of this new state vector by describing the equilibrium
distribution of agents by types in partition vector form. We suggest that
this approach is also useful in agent-based simulations.

Introduction

Economists often face problems of modeling collective behavior of a large
number of interacting agents, possibly of several different types. Models are
then used to explain such things as equilibrium size distributions of firms,
market shares by different types or kinds of goods, and so on, and finally how

∗Prepared for the 2002 Wehia conference

1



some macroeconomic regularities emerge as the number of agents increases
towards infinity.

To date, economists have not been very successful in modeling dynamic
or distributional phenomena in economics when markets involve several
types of agents. We explicitly assume that there are several types of agents
in our models, the number of which may or may not be known in advance,
and that models are open, that is, agents may enter or exit the models at
any time. In addition, agents may change their minds at any time about the
decisions or behavioral rules they use. In other words, agents may change
their types any time.1

In this paper, we interpret the word ”types” broadly. They may refer to
the decision rules or behavioral rules adopted by economic agents, or to the
kinds of goods they choose to produce. We assume that the number of types
are at most countable. We cannot assume in advance that we know all of
them because new rules or new goods may be invented in the future. This
is the so-called problem of unanticipated knowledge in the sense of Zabell,
see Zabell (1992).2

We discuss some new concepts not much used in economics in this paper.
For example, we introduce the notion of partition vector as state vectors,
which is different from the empirical distributions, and use the asssumption
of exchangeable partitions induced by agents of different types in the models,
in the technical sense of exchangeable random variables in the probability
literature. We utilize the notion of holding times from the literature on
continous-time Markov chain (also called jump Markov process) to decide
randomly which agents act first. We apply the equilibrium distribution
discovered by Ewens in the context of population genetics literature into
that of cluster sizes of agents by types. We show how to use these concepts
help us in modeling dynamics of interacting agents of several types.

The Ewens sampling formula is specified by a single parameter θ, which
controls the rate of entries of new types, and correlations among agents of
different types. We also describe its two-parameter extension by Pitman
(1992), which is specified by two parameters, α and θ discussed later.

We first illustrate the approach of the traditional economists by sketching
how the problem of allocating capital stock between two sectors is formulated
by Dixit (1989). After briefly mentioning some problems of this traditional
approach, we switch to our modeling procedure in terms of continuous-time
Markov chains with a large but finite number of interacting agents.

1 There is no lock-step behavior by agents.
2 Zabell describes the problem faced by statisticians in classifying samples of insects col-

lected in unexplored regions, since they may contain new species of insects, say. The naive
Bayesian approach is not applicable. See, however, Antoniak (1974) on non-parametric
Bayesian approach. He obtained the same distribution as the Ewens sampling formula,
Ewens (1972), which was discovered by Ewens in connection with the population gentics
work.
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A traditional approach to model two-sector econ-
omy

In 1989 Dixit has analyzed several economic problems, such as that of how
to optimally allocate capital stocks among two sectors, and of assessing the
effects of exchange rate changes to induce entries or exits of firms in some
export industry.

The reader should note that what Dixit derives are the entry and exit
price schedules, that is, the price as a function of the number of firms in
one sector, which triggers a move by one more firm from one sector to the
other, or move into or out of export business when n firms are already in one
sector or in the export business. He is silent about the decision processes of
individual firms, that is, he does not say which firms enter or exit next. In
other words, the decision problem he solves is that of the economic planner
of a centrally controlled economy, and not decision problems of individual
firms in a market of a decentralized economy. In spite of random prices his
approach is basically deterministic.

For simpler explanations, assume that the economy is closed, that is, the
total number of firms is fixed at N . All firms are assumed to be indistin-
guishable, and choose between two alternatives of either producing goods
one or goods two.3 Suppose that there are n firms producing goods two,
and N − n firms producing goods one. The prices of the two goods are
normalized to be 1 and P , that is, P is the price of goods two in terms of
goods one. It depends on n, but this dependence is suppressed for simpler
notation.

The economy as a whole receives profit (net revenue) (per unit period)
of

R(P,n) = PF (n) +G(N − n),

where F and G are the production function of sector 2 and 1 respectively,
given as functions of the number of firms. If P is sufficiently high, then it
is more profitable for firms in sector one to move to sector two. There is an
entry cost associated with changing sectors

h(P,n) = h0[G(N − n+ 1) −G(N − n)].

This assumes that the move takes one period to complete, and that the cost
of moving is proportional to the lost production because one firm in sector
one shuts down its production to start producing goods two. In a move in
the opposite direction, the loss of move is given by

l(P,n) = l0[F (n) − F (n− 1)].

Here h0 and l0 are some positive constants.
Let V (P,n) be the value function of this economy. It is the discounted

expected present value of the stream of profits when the economy (a central
planner) optimally allocates the firms between the two sectors. Denoting

3 This is a problem of birth-death or a binary choice model, see Aoki (1996).
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the discount rate by ρ, it is given by

ρV (P,n) = R(P,n) + E(
dV

dt
).

This expression is a typical one in finance. Regarding the expected value
of the economy as financial asset, the right-hand side, which is the sum of
the revenue and the capital gain (loss) term, must equal to the return from
holding the asset on the left-hand side.

Now, one firm moves from sector one to two when P satisfies

V (P,n− 1) = V (P,n) − h(P,n),

and
VP (P,n − 1) = VP (P,n) − hP (P,n).

Denote this P by P+
n . The first equation states that at this critical or

switch-over price, the values with n− 1 and n minus the cost of moving are
the same. The second equation is a technical gradient-matching condition
without which the assumption that V is the optimal value is violated. The
other switch-over price P−

n at which a firm moves back to sector one from
sector two is similarly expressed. Dixit assumed that P moves as a Brownian
process, and solved for V , and then derives these prices. When P (t) cuts
the schedule P+

n from below, then a move of firm from sector one to two
occurs, that is n changes to n + 1. Similarly for a move from n to n − 1
which occurs at price P−

n .
What are some of the objections to this analysis? First, there is no

explanation about which of the N−n firms decide to move. On the macroe-
conomic level, it does not matter when firms are truly indistinguishable,
including managerial abilities. As to firm managers’ decision problems, how
do they decide that it is their turn to move? Does the central planneer of
this economy choose one firm, by lining up the firms in the order of marginal
productivity or some such measure? Perhaps all firms are lined up linearly,
and they enter one by one as P monotonically increase. But, firms are as-
sumed to be indistinguishable. There is apparently no uncertainty as to
which firm enters next, or exit next. This may only be possible in a planned
economy. Problems of imperfect or incomplete information and externalities
among firms (agents) are cleverly hidden or abstracted away in his analysis.

An Alternative Approach: Basic Setup

Aoki and Yoshikawa (2001), and Aoki (2002, Chapt. 8) are examples of
some alterntive approaches to that sketched above. Basically, our approach
focuses on the random partitions of the set of firms into clusers induced by
subsets formed by firms of the same types, and utilizes the conditional prob-
ability specifications for new entries and exits to derive equilibrium distri-
butions for cluster sizes. We use the master equation (backward Chapman-
Kolomorov equation) as the dynamic equation for the probabilities of state
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vectors.4

Given the total number of agents, N , and the number of possible types,
K, both of which are assumed in this paper to be known and finite for ease
of explanation, we examine how the N -set, that is, the set {1, 2, . . . ,N} is
partitioned into K clusters, or subsets. This partition is treated as a random
exchangeable partition in the sense of Zabell (1992). We do not discuss here
the situation with K tending to infinity or infinite. See Kingman (1993,
1978a,b) who used the order statistics of the fractions of agents by types,
and invented what is known as the paint-box process and the resultant
Poisson-Dirichlet distribution to solve this problem. In this exposition we
mostly keep K finite, but large.

Jump Markov Process Models

Here we follow Aoki (1996, 1998, 2000a,b,c, 2002) and sketch the basic
ingredients for our modeling procedure without too much detail. The reader
is asked to consult the cited references for detail.

Excluding pathological phenomenon of an infinitely many jumps in a
small time interval, continuous-time Markov chains, also known as jump
Markov processes, are specified by transition rates.

Define a state vector Xt which takes on the value n := (n1, n2, . . . , nK),
called frequency or occupancy vector, where ni is the number of agents of
type i, i = 1, 2, . . . ,K, N = n1 + n2 + · · · + nK .

In our model we need to specify entry rates, exit rates and rates of type
changes. Over a small time interval ∆, rates are multiplied by the length
of interval to approximate the conditional probabilities up to O(∆). Entry
rates by an agent of type j is given by

w(n,n + ej) = φj(nj ,n),

where ej is a vector with the only nonzero element of one at component j.5

Exit rates of an agent of type k specified by

w(n,n − ek) = ψk(nk,n)

and transition rates of type i agent changing into type j agent by

w(n,n − ei + ej) = λi,jν(ni, nj ,n).

With transition rates between states specified, the dynamics for the prob-
ability is given by the following equation, where s, s′, and s′′ refer to some
states

dP (s, t)/dt =
∑
s′
w(s′, s)P (s′, t)

4 In the above two-sector model the scalar variable of the number of firms in sector one,
say, serves as the state variable. In an open model with K sectors, a K-dimensional vector
is used.

5 For example, w(n, n + ej)∆ ≈ Pr(Xt+∆ = n + ej).
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−
∑
s′′
w(s, s′′)P (s, t).

This is called the master equation in phyics, ecology and chemistry, and
we follow their usage of the name.

A special example of interest has the transition rates:

w(n,n + ek) = ck(nk + hk),

for nk ≥ 0,
w(n,n − ej) = djnj,

nj ≥ 1, and
w(n,n − ej + ek) = λjkdjnjck(nk + hk),

with λjk = λkj , and where j, k = 1, 2, . . . K. We assume that dj ≥ cj > 0,
and hj > 0, and λjk = λkj for all j, k pairs.

The first transition rate specifies entry rate of type k agents, and the
second that of the exit or departure rate by type j agents and the last spec-
ifies the transition intensity of changing types by agents from type j to type
k. In the entry transition rate specification cknk stands for attractiveness of
larger group, such as network externality which makes it easier for others to
join the cluster or group, and ckhk stands for the innovation effects which is
independent of the group size. These transition rates for type changes are in
Kelly (1979). We need interactions or correlations among agents. It turns
out that parameter θ, to be introduced in connection with (2) below, plays
this role. See Aoki (2000a, 2002b). The jump Markov process thus specified
has the steady state or stationary distribution

π(n) =
K∏

j=1

πj(nj),

where

πj(nj) = (1 − gj)−hj

(
−hj

nj

)
(−gj)nj

where gj = cj/dj .
These expressions are derived straightforwardly by applying the detailed

balance conditions to the transition rates. See Kelly (1979, Chapt.1) for
example.

To provide simpler explanation, suppose that gj = g for all j. Then,

noting that
∏

j(1− g)−hj = (1− g)−
∑

j
hj , the joint probability distribution

is expressible as

π(n) =

(
−∑hk

n

)−1 K∏
j=1

(
−hj

nj

)
. (1)

Another class of interesting transition rates arise by applying what is
called the Johnson’s sufficientness hypothesis6 in the statistical literature.

6 Johnson’s sufficientness postulte stipulates that the conditional probability that the
next agent which enters is of type i, given the current state vector, is f(ni, n), that is, a
function of the existing number of agents of type i and that of the total number of agents
in the model. See Zabell (1982).
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In modeling industrial sector with ni being the number of agents of type
i, the word type may refer to the kinds of goods being produced by firm i
or ni may refer to the size of the ”production line”, that is, a measure of
capacity utilization by firm producing typ i good. Zabell (1982) proved that
under the assumption of exchangeable partitions the functional form of f is
specified by

f(ni, n) =
ni

n+ θ
, (2)

with some positive scalar parameter θ. Therefore, the entry rate of a new
type is given by θ/(n+ θ). More generally, they are of the form

w(n,n + ek) =
α+ nk

Kα+ n
,

which reduces to (2) in the limit of α going to zero, and K to infinity while
their product approaches θ, and

w(n,n − ej) =
nj

n
.

See Costantini (1979, 2000), and Zabell (1982) for circumstances under
which these transition rates arise. See Aoki and Yoshikawa (2001) and Aoki
(2002, Sec.8.6) for an application of this type of transition rates in models
of economy or sectors of economy.

Partition Vectors and Ewens Distribution

Now, we introduce the partition vector a = (a1, a2, . . . , an), so called by
Zabell,7 where ak is the number of types or clusters with exctly k agents.
Consequently we have an inequality∑

i

ai = Kn ≤ K,

where Kn is the number of groups or clusters formed by n agents, and∑
i

iai = n,

which is an accounting identity.
In the occupancy problems we count the number of different ways for

placing distinguishable or indistinguishable balls into boxes, where boxes
are assumed to be distinguishable or indistinguishable, that is, unlabelled.
See Feller (1957, p. 36). As we mentioned earlier, partitions are induced
by the clusters which contain agents of the same types. When boxes are
unlabelled, the partition vector describes their state.

To further simplify our presentation, let us suppose that hj = h for all
j.8 Then

π(n) =

(
−Kh
n

)−1 K∏
j=1

(
−h
j

)aj

.

7 This vector is called by different names by Kingman (1980), and Sachkov (1996).
8 This assumption is not necessary. All we need is that the product Khj has the same

positive limit as K goes to infinity and hj to zero.
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This is so because there are aj of the ns which equal j.
Now suppose that K becomes very large and h very small, while the

product Kh approaches a positive constant θ. We note that the negative
binomial expression (

−h
j

)aj

approaches (h/j)aj (−1)jaj as h becomes smaller. Suppose Kn = k ≤ K.
Then, there are

K!
a1!a2! · · · an!(K − k)!

many ways of realizing a vector. Hence

π(a) =

(
−θ
n

)
(−1)n

K!
a1!a2! · · · an!(K − k)!

∏
j

(
h

j
)aj . (3)

Noting that K!/(K − k)! × hk approaches θk in the limit of K becoming
infinite and h approaching 0 while keeping Kh at θ, we arrive, in the limit,
at the probability distribution, known as the Ewens distribution, or Ewens
sampling formula very well known in the genetics literature, Ewens (1972),
and Kingman (1987).

πn(a) =
n!
θ[n]

n∏
j=1

(
θ

j
)aj

1
aj !

,

where θ[n] := θ(θ+1) · · · (θ+n−1). This distribution has been investigated
in several ways. See Arratia and Tavaré (1992), or Hoppe (1987). King-
man (1980) states that this distribution arise in many applications. There
are other ways of deriving this distribution. We next examine some of its
properties.

The number of clusters and value of θ

Ewens sampling formula has a single parameter θ. Its value influences the
number of clusters formed by the agents. Smaller values of θ tends to pro-
duce a few large clusters, while larger values produce a large number of
smaller clusters.

To obtain some quick feels for the influences of the value of θ, take n = 2
and a2 = 1. All other as are zero. Then

π2(a1 = 0, a2 = 1) =
1

1 + θ
.

This shows that two randomly chosen agents are of the same type with
high probability when θ is small, and with small probability when θ is large.
In fact, θ controls correlation between agents’ types or classification. Fur-
thermore, the next two expreme situations may convey the relation between
the value of θ and the number of clusters. We note that the probability of
n agents forming a single cluster is given by

πn(aj = 0, 1 ≤ j ≤ (n− 1), an = 1) =
(n− 1)!

(θ + 1)(θ + 2) · · · (θ + n− 1)
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while the probability that n agents form n singleton is given by

πn(a1 = n, aj = 0, j �= 1) =
θn−1

(θ + 1)(θ + 2) · · · (θ + n− 1)
.

With θ much smaller than one, the former probability is approximately
equal to 1, while the latter is approximately equal to zero. When θ is much
larger than n the opposite is approximately true.

We can show that

Pn(Kn = k) =
1
θ[n]

c(n, k)θk,

where c(n, k) is known as the signless Stirling numbers of the first kind, and
is defined by

θ[n] =
n∑
1

c(n, k)θk.

See Hoppe (1987) for the derivation. Stirling numbers are discussed in van
Lint and Wilson (1992, p.104) for example.

Two-parameter generalization of the Ewens distri-

bution

Pitman (1992) generalized the Ewens’ distribution by useing the transition
rates

w(n,n + ej) =
nj − α

n+ θ
,

where θ + α > 0.
With this, the conditional probability that a new type enters in the next

∆ time interval is approximately given by Knα+θ
n+θ ∆. Pitman also derived the

equilibrium distribution for this two-parameter version.
There are interpretations in terms of what is called size-biased sampling

of these, but we will not stop here to explain them. See Kingman (1992),
and Pitman (1992, 1995)

Clusters in partition vector

We cite some examples from Kelly (1979)as being suggestive of other appli-
cations to economic modeling.9 There are N basic units partitioned into
distinct clusters or collections, with ai being the number of groups consisit-
ing of i units. Recall that we mean by units some basic building blocks from
which objects that cluster are made up.

The transition rate w(a,a + ei) = α represents the process in which a
basic unit or singleton (called isolate in Kelly (1979, chapt.8)) joins a group
of size i at rate α, i = 1, 2, . . . . The transition rate w(a,a− ei) = β refers to

9 This subsection is based in part on Kelly (1979, Chap. 8). We use ai rather than mi

used in Kelly.
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the rate at which a singleton (one basic unit) leaves that group to become
an isolate. Call a cluster of size i i-cluster.

We assume a is a Markov process in which the transition rate w(a,a −
e1−ei+ei+1) = αa1ai, i ≥ 2. This refers to the rate at which an isolate joins
an i-cluster, hence forming one more i+ 1-cluster. When two isolates form
a new group of size 2, the transition rate is w(a,a−2e1 + e2) = αa1(a1 −1).
The rate at which an i-cluster breaks up into an isolate and a cluster of size
i− 1 is represented by w(a,a + e1 + ei−1 − ei) = iβai, i ≥ 2. The transition
rate w(a,a + 2e1 − e2) = 2βa2 refers to one cluster of size 2 divides into 2
isolates. In a more general setting, suppose that the transition rate of one
r-cluster and one s-cluster form one u-cluster. It is written as

w(a,a − er − es + eu) = λrsuaras,

when r �= s. With r = s, we specify the transition rate by

w(a,a − 2er + eu) = λrruar(ar − 1),

and
w(a,a − eu + er + es) = µrsuau

is the transition rate of one u-cluster breaking up into one r-cluster and one
s-clustter. In the simple example described above, we have

λ1,i,i+1 = α,

and
µ1,i−1,i = iβ,

for i ≥ 2.
Assume that λrsu = λsru and µrsu = µsru. We check the detailed balance

conditions and verify that the equilibrium distribution is of the form

π(a) = B
∏
r

car
r

ar!
,

provided there are positive numbers c1, c2, . . . , such that

crcsλrsu = cuµrsu.

We can easily verify that the detailed balance conditions are satisfied.
In the simple example, we note tht

cr =
β

αr!

satisfies the detailed balance conditions.
For a closed model with N fixed, the equilibrium distribution

π(a) = B
N∏

i=1

1
ai!

(
β

αi!
)ai

is an example of assemblies analyzed by Arratia and Tavaré. Here mi =
(β/α) serves as the ”number” of labelled structures on a set of size i, that is
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the number of the labelled structure in this example is independent of the
size of the block.

In the more general development that follow the example, if we set

cr =
mr

r!

then mr is the number of the labelled structures on a set of size r.

Concluding Remarks

This paper proposes a finitary approach to economic modeling, that is to
start with a finite number of agents with discrete choice sets, and with
explicit transition rates. It discusses several entry and exit transition rates in
economic models. In particular, it presented Ewens and related distributions
as candidates for distributions of cluster sizes formed by a large number of
economic agents who interact in a market. This distribution seems to be
very useful in economic modelings, although we have only a few examples so
far. However, see Arratia, Barbour and Tavaré (1992), and Kingman (1980).
These and other investigations strongly suggest that the Ewens’ and related
distributions are robust and ubiquitous.

Although no application is described in this paper, Aoki (2002a, 2002b)
has one simple application in which stocks of a holding company is traded
by a large number of agents. With θ = .3, two largest groups are shown
to capture nearly 80 per cent of the market shares and hence dominate the
market excess demands for the shares, which in turn determine the station-
ary distributions of price. In this way it is also possible to relate the tail
distribution of the market clearing prices with entry and exit assumptions.
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