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                                                                    Abstract

There is no presumption that collective behavior of interacting agents leads to collectively satisfactory
results. How well agents in adapting to their social environment is not the same as how satisfactory
the social environment is that they collectively create. In this paper, we attempt to probe deeper
understanding at this issue by specifying how agents interact by adapting their behavior. We
consider the asymmetric coordination problems formulated as minority games. We address the
following basic question: how do interacting agents realize an efficient coordination without any
central authority by self-organizing macroscopic order from the bottom up? We introduce a new
adaptive model based on the concept of give-and-take, in which agents yield to others if they gain
and randomize their actions if they lose or do not gain. We show that both efficiency and equlity of
colective behavior are siginificantly improved if agents adapt with the give-and-take strategy. We
also investigate how agents co-evolve their give-amd-talke strategies from the bottom-up.

Keywords:  aymmetric coordination,  give-and-take, social efficiency, coevolution, meta-rule

1.  Introduction

There are many situations where interacting agents can benefit from coordinating their actions.

Social interactions pose many coordination problems to individuals. For example, individuals face

problems of sharing and distributing limited resources in an efficient way. Consider a competitive

network routing problem in which the paths from sources to destination have to be established by

multiple agents. In the context these traffic networks, for instance, agents have to determine their

route independently, and in telecommunication networks, they have to decide on what fraction of

their traffic to send on each link of the network.

     Coordination implies that increased effort by some agents leads the remaining agents to follow

suit, which gives rise to multiplier effects. We classify this type of coordination as symmetric

coordination [3]. Coordination is also necessary to ensure that their individual actions are carried

out with little conflicts. We classify this type of coordination as asymmetric coordination [7].

Consider the following situation: A collection of agents have to travel using either the route A or

route B. Each agent gains the payoff if he chooses the route which is also determined by what the

majority does. This type of coordination is classified as symmetric coordination. On the other hand,
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each agent gains a payoff if he chooses the opposite route to what the majority does. This type of



coordination is classified as asymmetric coordination.

     Coordination problems are characterized with many equilibria, and they often face the problem

of coordination failure resulting from their independent inductive processes [1][4]. An interesting

problem is then under what circumstances will a collection of agents realizes some stable situations,

and whether they satisfy the conditions of social efficiency. In recent years, this issue has been

addressed by formulating the minority games (MG)[2][10]. However, the growing literature on the

MG treats agents as automata, merely responding to changing environments without deliberating

about individuals’ decisions [13]. There is no presumption that the self-interested behavior of

agents should usually lead to collectively satisfactory results [8][9]. How well each agent does in

adapting to its social environment is not the same as how satisfactory a social environment they

collectively create for themselves. An interesting problem is then under what circumstances will a

society of rational agents realize social efficiency? Solutions to these problems invoke the intervention

of an authority who finds the social optimum and imposes the optimal behavior to agents. While

such an optimal solution may be easy to find, the implementation may be difficult to enforce in

practical situations. Self-enforcing solutions, where agents achieve optimal allocation of resources

while pursing their self-interests without any explicit agreement with others are of great practical

importance.

       Previous researches on the collective action or the problems of coordination include the

standard assumption that agents use the same kind of adaptive rule. In this paper, we depart from

this assumption by considering a model heterogeneous agent with respect to their meta-rules of

interactions. We also use the term emergent to denote stable macroscopic patterns arising from the

local rules of agents. The interaction of many individuals produces some kind of coherent, systematic

behavior. Since it emerges from the bottom up, we describe it as an example of self-organization.

The surprise consists precisely in the emergence of a macrostructure from the bottom up, which is

from simple local rules that outwardly appear quite remote from the collective phenomena they

generate. In short, it is not the emergent macroscopic object per se that is surprising, but the

generative sufficiency of the simple local adaptive rules.

     We are interested in the bottom-up approach for leading to more efficient coordination with the

power of more effective learning at the individual levels [11]. Within the scope of our model, we

treat models in which agents make deliberate decisions by applying rational learning procedures.
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We explore the mechanism in which interacting agents are stuck at an inefficient equilibrium.



While agents understand that the outcome is inefficient, each agent acting independently is power

less to manage the collective activity about what to do and also how to decide. The design of

efficient collective action is crucial in many fields. In collective activity, two types of activities may

be necessary: Each agent behaves as a member an society, while at the same time, it behaves

independently by adjusting its view and action. At the individual level, it learns to improve its

action based on its own observation and experiences. At the same level, they put forward their

learnt knowledge for consideration by others. An important aspect of coordination is the learning

rule adapted by individuals.

2. Formalisms of  the EL Farol Problem and Minority Games 

The EL Farol bar problem and its variants provide a clean and simple example of asymmetric

coordination problems [1][4]. Brian Arthur used a very simple yet interesting problem to illustrate

effective uses of inductive reasoning of heterogeneous agents. There is a bar called El Farol in

downtown Santa Fe. Many agents are interested in going to the bar each night. All agents have

identical preferences. Each of agents will enjoy the night at El Farol very much if there are no more

than the threshold number of agents in the bar. However, each of them will suffer miserably if there

are more than  the threshold number of agents. In Arthur’s example, the total number of agents is

N=100, and the threshold number is set to 60. The only information available to agents is the

number of visitors to the bar in previous nights.

     What makes this problem particularly interesting is that it is impossible for each agent to be

perfectly rational, in the sense of correctly predicting the attendance on any given night. This is

because if most agents predict that the attendance to be low (and therefore decide to attend), the

attendance will actually be high, while if they predict the attendance will be high (and therefore

decide not to attend) the attendance will be low. Arthur investigated the number of agents attending

the bar over time by using a diverse population of simple rules adapted by agents. One interesting

result obtained is that over time, the average attendance of the bar is about 60. Agents make their

choices by predicting ahead of time whether the attendance on the current night will exceed the

capability and then take the appropriate course of action. Arthur examined that the dynamic driving

force behind this equilibrium.

     The Arthur's "El Farol" model has been extended in the form as Minority Games (MG), which
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show for the first time how equilibrium can be reached using inductive learning [2]. The MG is



played by a collection of rational agents G A i Ni= ≤ ≤{ : }1 . Without losing the generarity, we can

assume N is an odd number. On each period of the stage game, each agent must choose privately

and independently between two strategies S S S= { , }1 2 . We represent the action of agent Ai  at the

time period t  by a ti ( ) = 1 if he chooses S1, and a ti ( ) = 0  if he chooses S2. Given the actions of all

agents, the payoff of agent Ai is given by

     [Payoff scheme 1]

(i)  u ti ( ) = 1             if  a ti ( ) = 1  and  p t a t Ni
i N

( ) ( ) /= ≤
≤ ≤
∑

1

θ

(ii) u ti ( ) = 0            if a ti ( ) = 0   and  p t( ) >θ                                       (2.1)

where θ  is the capacity rate, andθ = 0 6.  with the El Farol problem, and θ = 0 5.  with the  MG .

Each agent first receives aggregate information p t( )of all agents' actions, and then decides whether

to choose S1  or S2. Each agent is rewarded with a unitary payoff whenever the side choosen happens

to be chosen by the minority of the agents, while agents on the majority side receive nothing.

      Since A t a ti
i N

( ) ( )≡
≤ ≤
∑

1

 represents the total number agents to choose S1 (the total attendance) the

time period t,  the payoff scheme in (2.1) can be summarized as follows:      

                         u t a t A ti i( ) ( )sgn( ( ))= −                                                                                    (2.2)

The payoff function in (2.2) becomes to be the step function as shown in Fig.1.

     We have another payoff scheme specifiesd as follows:

     [Payoff scheme 2]

                        u t a t A t N A t a ti i i
i N

( ) ( ) ( ) / , ( ) ( )= − =
≤ ≤
∑

1

                                                       (2.3)

The payoff function in (2.3), which is shown in Fig.2, is linear with respect to the proportion of the

attendaces p t a t Ni
i N

( ) ( ) /=
≤ ≤
∑

1

.  Each agent also gets aggregate information p t( )which aggregate all

agents' actions, and then he decides whether to chooses S1  or S2. Each agent is rewarded with a

payoff which is linearly decreasing function of the proportion of the attendance, p t( ).With the

payoff in scheme 1, whenever the side an agent chooses happens to be chosen by the minority of

agents, they receive a unitary award, while agents on the majority side receive nothing. With the

payoff in scheme 2, whenever the side an agent chooses happens to be chosen by the minority of
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the agents, they receive an award which is proportional to the level of the crowdedness.
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                Fig1. The payoff scheme 1                                   Fig 2. The payoff scheme 1

      The MG game is characterized with many solutions. It is easy to see that this game has
N

N( ) /−




1 2

 asymmetric Nash equilibria in pure strategies in the case where exactly (N-1)/2 agents

choose either one of the two sides. The game also presents a unique symmetric mixed strategy Nash

equilibrium in which each agent selects the two sides with an equal probability. We analyze the

structure of the MG to see what to expect. The social efficiency can be measured from the average

payoff of one agent over a long-time period. Consider the extreme case where only one agent take

one side, and all the others take the other side at each time period. The lucky agent gets a reward,

nothing for the others, and the average payoff per agent is 1/N. Equally extreme situation is that

when (N-1)/2 agents on one side, (N+1)/2 agents on the other side where the average payoff is

about 0.5. From the society point of view, the latter situation is preferable.

        Several methods have been suggested to lead an efficient outcome when agents learn from

each other [2][15]. All agents have access to public information of p t( ),τ τ ≤ . The past history

available at the time period t is represented by µ( )t . How do agents choose actions under the

common information µ( )t ? Agents may behave differently because of their personal beliefs on the

outcome of the next time period p t( )+1 , which only depends on what agents do at the next time

period t+1, and the past history µ( )t  has no direct impact on it.

 3. Decomposition of Minority Games into 2x2 Asymmetric Games

The matching methodology also plays an important role in the outcome of the game. Agents

interact with all other agents, which is known as the uniform matching, or they interact with a
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randomly chosen agent. Agents are not assumed to be knowledgeable enough to correctly anticipate



all other agents’ choices, however they can only access on the information about the aggregate

behavior of the society with the random matching.

     Agents are rewarded a unitary payoff whenever the side chosen happens to be chosen by the

minority of the population. The El Farol prolem and Minority Games have a common feature that

an agent’s utility depend on the number of total participants. We now show the MG can be

represented as 2x2 games in which an agent play with the aggregate of the society of the population

N with payoff matrix in Table 1. Let suppose each agent plays with all other agents individually

with the payoff matrix in Table 1. The payoffs of agent Ai  from the play with all other agents with

S1 and S2  are given:

              U S n N n A ti ( ) ( )1 1 1= − + − − = − −

              U S n N n A ti ( ) ( ) ( )2 1 1= − − − = +                                                                                    (3.1)

where n represents the number of agents to choose S1. Deviding the above payoffs by N, we obatin

the average payoff of each interaction with one agent as:

              U S U S N A t Ni i( ) ( ) / ( ) /1 1= ≅ −

              U S U S N A t Ni i( ) ( ) / ( ) /2 2= ≅                                                                                             (3.2)

       We denotethe proportion of agents to choose S1 at the time period t by p t a t Ni
i N

( ) ( ) /=
≤ ≤
∑

1

. The

payoffs of agent Ai  from the play with one randomly chosen agent (random matching) with S1 and

S2  are given:

               U S a t N p ti i
i N

( ) ( ) / ( )1
1

1 1= − = −
≤ ≤
∑              U S a t N p ti i

i N

( ) ( ) / ( )2
1

= =
≤ ≤
∑                         (3.3)

The above payoff scheme is described in Fig.3.

 Table 1 The payoff matrix of the minority games                 Table 2 The payoff matrix of the general minority games
The other's

strategyOwn's

strategy

(go)
S1

(stay)

S2

(go)
S1

(stay)
S2

0

0

0

1
0

1
1

1

        

The other’s

strategyOwn’s

strategy

(go)
S1

(stay)

S2

(go)

S1

(stay)

S2

0

0

0

θ
0

θ
1−θ

1−θ

The El Farol model is about the equilibrium, the MG is about fluctuations, these two models can be

treated with the following generic formulation: Let suppose each agent play the two-person game
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using the payoff matrix in Table 2 with all other agents or the aggregate of the society. The



         

0.5 1

1

p( t) = A(t)/ N

Ui(S1)

Ui(S2 )
(ai( t) =1)

(ai( t) = 0)

       Fig3:The payoff scheme of the payoff matrx in Table1

payoff when agent Ai chooses S1 and the aggregate chooses S2 is given by θ θ( )0 1< < , and the

payoff when agent Ai chooses S2 and the aggregate chooses S1 is given by 1 −θ . The El Farol

problem can be modeled with θ = 0 6. , which is the ratio of the bar, and the MG is formulated with

θ = 0 5. .

     Social efficiecy of the MG also depends on the payoff scheme. First of all, we obatin with the

payoff scheme 1. Let suppose there exists some central authority, and it leads that a little bit larger

number of agents than Nθ  choose S1 if θ ≥ 0 5. , and a little bit fewer agent than Nθ  choose S1 if

θ < 0 5. . In this case the average payoff per agent is obtained as Max ( , )θ θ1 − . Similary, if the

central authority leads that a little bit fewer number of agents than Nθ  choose S1 if θ ≥ 0 5. , and a

little bit larger than Nθ  choose S1 if θ < 0 5. . In this case the average payoff per an agent is

obtained as  Min( , )θ θ1 − . Then we have the following average payoffs as the best case and the

worst case:

   [The payoff of the best case]

                           Max
0 1

1
≤ ≤

−
θ

θ θ( , )                                                                                                 (3.4)

   [The payoff of the worstcase]

                           Min
0 1

1
≤ ≤

−
θ

θ θ( , )                                                                                                 (3.5)

Thefore the average payoffs of the best case and the worst case become the same at θ =0.5.

     We now consider with the payoff scheme 2 in (2.3). The expected payoff of an agent who

chooses S1  is given 1-θ, and that of an agent who chooses S2 is θ, where θ denotes the proportion of

agents who choose S1 .Therefore the average payoff of an agent is given by 2 1θ θ( )− , which takes

the maimum value 0.5 at θ =0.5. The average payoff under the payoff scheme 2 is also shown in
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Fig.4 as the function of the capacity rate θ.
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1

θ

MinMin

MaxMax

                            Fig4: The average payoff under the payoff scheme1

4. Models of Individual Learning

Game theory is typically based upon the assumption of a rational choice. In our view, the reason for

the dominance of the rational-choice approach is not that scholars think it to be realistic. Nor is

game theory used solely because it offers good advice to a decision maker, because its unrealistic

assumptions undermine much of its value as a basis for advice. The real advantage of the rational-choice

assumption is that it often allows deduction. The main alternative to the assumption of rational

choice is some form of adaptive behavior. The adaptation may be at the individual level through

learning, or it may be at the population level through differential survival and reproduction of the

more successful individuals. Either way, the consequences of adaptive processes are often very hard

to deduce when there are many interacting agents following rules that have nonlinear effects.

     We specify how agents adapt their behavior in response to others' behavior in strategic

environments. Among the adaptive mechanisms that have been discussed in the learning literature

are the following [5][6][12][14]. An important issue in strategic environment is the learning strategy

adapted by each individual.

(1) Reinforcement learning

     Agents tend to adopt actions that yielded a higher payoff in the past, and to avoid actions that

yielded a low payoff. Payoff describe choice behavior, but it is one's own past payoffs that matter,

not the payoffs of the others. The basic premise is that the probability of taking an action in the

present increases with the payoff that resulted from taking that action in the past. [6]

(2) Best  response learning

     Agents adopt actions that optimize their expected payoff given what they expect others to do. In

this learning model, agents choose best replies to the empirical frequencies distribution of the
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previous actions of the others.



(3) Evolutionary learning

     Agents who use high-off payoff strategies are at a productive advantage compared to agents who

use low-payoff strategies, hence the latter decrease in frequency in the population over time (natural

selection). In the standard model of this situation agents are viewed as being genetically coded with

a strategy and selection pressure favors agents that are fitter, i.e., whose strategy yields a higher

payoff against the population.

(4) Social learning

     Agents learn from each other with social learning. For instance, agents may copy the behavior of

others, especially behavior that is popular to yield high payoffs (imitation). In contrast to natural

selection, the payoffs describe how agents make choices, and agents' payoff must be observable by

others for the model to make sense. The crossover strategy is also another type of social learning.

     These learning models can be represented on the spectrum in Figure 3. The reinforcement

learning and social learning based on give-and-take take limiting cases representing at the right-most

and left-most points of the spectrum.

 

give&take evolution:crossoverbest-responsereinforcement

                      

                         Fig.5 : The spectrum of learning models

5. Collective Behavior with Best-Response Learning

With the assumption of rationality, agents are assumed to choose an optimal strategy based on a

sample of information about what other agents have done in the past. Agents are able to calculate

best replies and learn the strategy distribution of play in a society. They gradually learn the strategy

distribution in the society. With best-response learning, each agent calculates the best strategy

based on information about the current distributional patterns of strategies [5]. At each period of

time, each agent decides which strategy to choose given the knowledge of the aggregate behavior of

the population. Each agent thinks strategically, knowing that everyone else is also making a rational

choice given its own information.

     An important assumption is how they receive knowledge of the current strategy distribution. For

simplicity we assume that there is no strategic interaction across time; an agent’s decision depends
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only on current information and not on any previous actions. The dynamics for collective decision



of agents are described as follows: Let p(t) be the proportion of agents who have chosen S1 at time t.

Let Ui(Sk) be the expected payoff to Ai when Sk, k=1,2, is chosen. The best-response is then given as

follows:

        If   Ui(S1)   >  Ui(S2)    then choose  S1 

        If   Ui(S1)   <  Ui(S2),   then choose  S2                                                                                   (5.1)

The expected payoffs of agent Ai are obtained as

         U S p t U S p ti i( ) ( ( )) ( ) ( ) ( )1 21 1= − = −θ θ,        (5.2)

The best-response  adaptive rule of agent Ai  is then obtained as follows:

       (i)  If   p(t) < θ,    then  choose   S1

      (ii)  If   p(t) > θ ,  then  choose  S2                                                                                           (5.3)

The aggregate information p(t), the current status of the collective decision, provides a significant

effect on agents' rational decisions.

     The result of the learning with the global best-response strategy is simple. Starting from any

initial condition p(0), it cycles between the two extreme situations where all agents choose S1 or S2.

Under this cyclic behavior, no agent gains resulting in a huge waste.This result has a considerable

intuitive appeal since it displays situations where rational individual action, in pursuit of well-defined

preferences, lead to undesirable outcomes.

6. Collective Behavior with Mixed Strategies

In this section, we provide simulation results when each agent adapts the same strategy RND(x),

which represents the mixed starategy x=(x, 1-x) of chossing S1 with the probability x and S2 with

1-x. In the section 2, we showed that the MG can be analyzed by the 2x2 games. The rational

behaviour of an agent in the MG becomes to be the same as the one when each agent interacts to all

other agents  with the payoff matrix in Table 1. The payoff matrix in Table 1 has the unique

symmetric mixed strategy Nash equilibrium in which each agent selects the two sides with the

equal probability. If all agents adapt the mixed Nash equilibrium strategy, RND(0.5), each agent

can expect the payoff 0.5 of each time period, and the society payoff follows a binomial distribution

with the mean equal to N/2 and the variance N/4. The variance is also an measure of the degree of

social efficiency. The higher the variance, the higher magnitude of the fluctuations around N/2 and

the corresponding aggregate welfare loss.
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     We consider a population of agents with N=2,500 with the capacity rate θ=0.5. In Figure 6, we



showed the simulation result when all agents adapt the same mixed Nash equillibrium strategy

RND(0.5). The Fig 4(a) shows the number of agents having chosen S1 and S2 over time, and it is

shown that the average number of agents who choose S1(Go) converges to the capacity of the bar,

indicating that collective behavior satisfies the constraint. In Fig.4 (b), we showed the proportion of

agents with the same average payoff. The avergae payoff per agent ranges from 0.7 to 0.3, and the

diffrence of payoff for lucky agents and that of unlucky agetns becomes large. This indicate that the

social inequality spreads throughout the society.

   

                               (a)                                                                           (b)

Fig.6: The simuulation result under Nash equilibrium startegies: (a)The number of agents to choose

S1 and S2, (b) the proportion of agents with the same average payoff under the mixed Nash strategy

7. Collective Behavior with Give-and-Take Strategies

Several learning rules have been found to lead an efficient outcome when agents learn from each

other [2][15]. In this  section, we propose the give-and-take strategy which departs from the

conventional assumption such that agents update their behaviors in order to improve their measure

functions such as payoffs. It is commonly assumed that agents tend to adopt actions that yield a

higher payoff in the past, and to avoid actions that yield a low payoff. With the give and take

learning, on the contrary, agents are assumed that they yield to others if they receive the payoff by

taking the opposite starategy at the next time period, and they choose randomly if they do not gain

the payoff. We formalize the payoff scheme with give-and-take strategy as foilows:

        (i) If a ti ( ) = 1 (Choose S1 ) and p t( ) <θ  (Minority), then agent Ai  gains the one unit

       (ii) If a ti ( ) = 0 (Choose S2)  and p t( ) >θ  (Minority), then agent Ai  gains the one unit
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      (iii) If a ti ( ) = 1 (Choose S1 ) and p t( ) >θ  (Majority), then agent Ai  gains nothing



      (iv) If a ti ( ) = 0  (Choose S2) and p t( ) <θ   (Majority), then agent Ai  gains nothing                 (7.1)

     We denote the status of the collective choice by all agents with the following state variable ω( )t

as follows:

            ω θ( ) ( )t if A t N= ≥1       ω θ2 0( ) ( )t if A t N= <                                                         (7.2)

 Each agent receives common information on ω( )t  which aggregate all agents' actions of the last

time period, and then decides whether to choose S1  or S2 at the time period t+1 by considering

whether he is rewarded at the previous time t: The action a ti ( )+1 of agent Ai  at the next time period

t+ 1 is determined by the following rules:

        (i) ( ( ) ) ( ( ) ) ( )ω t a t a ti i= ∧ = ⇒ + =0 1 1 0

       (ii) ( ( ) ) ( ( ) ) ( )ω t a t a ti i= ∧ = ⇒ + =1 0 1 1

      (iii) ( ( ) ) ( ( ) ) ( ) ( )ω t a t a t RND xi i= ∧ = ⇒ + =1 1 1

      (iv) ( ( ) ) ( ( ) ) ( ) ( )ω t a t a t RND yi i= ∧ = ⇒ + =0 0 1                                                                     (7.3)

where RND(x) represents the mixed starategy x=(x, 1-x) of chossing S1 with the probability x and S2

with 1-x.

[give-and-take strategy without delibration]

     If agents with give-and take learning adapt the random strategies RND(x)=RND(y) in (5.3) as the

mixed starategies  x=y=(0.5, o.5) of the payoff matrix Table 1, we define as give-and-take strategy

without careful delibrattion. We consider a population of agents with N=2,500 with the capacity

rate θ=0.5. In Figure 7, we showed the simulation result when all agents adapt pure give-and take

learning. It is shown that the number of agents who choose S1(Go) converges to about 2N/3, larger

than the capacity. In

[give-and-take strategy with Delibration]

     We now consider how agents choose the radom strategy RND(x) when they are in the majority

by choosing S1 , the radom strategy RND(y) when they are in the majority by choosing S2 , so that

they eventually to converge to the capacity. The expected number of agents to choose S1  at the next

time t+1 if they use the rules in (5.3) is given as

                        A t xA t N A t( ) ( ) ( )+ = + −1                                                                                  (7.4)

Therefore, if they choose RND(x)  so that

                        A t N( )+ =1 θ                                                                                                           (7.5)

, then  we can obtain  x as
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                        x N N A t A t= − −{ ( ( ))}/ ( )θ                                                                                    (7.6)



Here we assume the condition N A t N− ≤( ) θ  is satisfied. In the case when the attendance is more

that the capacity (over crowded), the number of agents to stay at home is smaller than the capacity.

This assumption is easily satisfied with θ = 0 5. .

     Similarily we obtain the mixed strategy RND(y) when they are in the majority by choosing S2  .

The expected number of agents to choose S1  at the next time t+1 if they use the rules in (5.3) is

given as

                          A t y N A t( ) ( ( ))+ = −1                                                                                      (7.7)

Then, if we choose RND(y) so that the following condition is satisfied.

                        A t N( )+ =1 θ                                                                                                           (7.8)

Then we obtain as y as

                          y N N A t= −θ /( ( ))                                                                                                 (7.9)

Here we assume the condition of N A t N− ≥( ) θ  is satified. In the case when the attendance is

below than the capacity, the number of agents to stay at home is greater than the capacity. This

assumption is  also easily satisfied with θ = 0 5. .

     We also consider a population of agents with N=2,500 with the capacity rate θ=0.5. In Figure 8

shows the simulation result when all agents adapt the give-and take learning rules in (5.3). Fig 8(a)

shows the number of agents having chosen S1 and S2 over time, and it is shown that the average

number of agents who choose S1(Go) converges to the capacity, indicating that collective behavior

satisfies the constraint. Fig.8 (b) shows the proportion of agents with the same average payoff. The

majority of agents receive the avergae payoff 0.5. This result indicates that not only social efficiency,

but also social equality are achieved with give-and-take strategy.

            

                               (a)                                                                                    (b)
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Fig.7: Simulation result of give-and-take strategy with delibration (θ=0.5) (a)The dynamic change of numbers of agents



of having choosen S1 and S2  (b) The proportion of agents with the same payoff

      As shown in Section 3, the the average payoff per agent is given by 2 1θ θ( )− , which takes the

maimum vallue at the capacity rate θ =0.5. We evaluate the performace of give-and take learning

with with the capacity rate θ=0.6, the capacity rate of the El Farol problem. In Figure 8, we showed

the simulation result. The Fig 8(a) shows the number of agents of having chosen S1 and S2 over

time. It is shown that the average number of agents who choose S1(Go) converges to the capacity

given by Nθ.. In Fig.8(b), we showed the proportion of agents with the same average payoff. The

majority of agents received the payoff less than 0.5, which is the average payoff at the efficient

collective behavior. The deviation of the averarge payoff become to be large compared with Fig.

8(b).

       We evaluate the performace of give-and take learning with with the capacity rate θ=0.4, and

the simulation result is shown in Figure 10. As shown in Fig 8(a) the number of agents to choosS1

(Go) eventualy converged to the capacity Nθ.  In Fig.9(b), we showed the proportion of agents with

the same average payoff and the majority of agents received the payoff less than 0.5, which is the

average payoff at the efficient collective behavior. The deviation of the averarge payoff become to

be large compared with Fig. 7(b). This result indicate that the problems of inefficiency and uneuity

become to be crucial if the capacity rate θ  deviates from 0.5, and increasing the asymmetry of the

minority and majority sides. This implies that we may need the central authority in order to achieve

both social efficiency and equity in asymmetric situations.

                                   (a)                                                                              (b)

Fig.8: Simulation result of give-and-take strategywith delibration (θ=0.6)(a)The dynamic change of

numbers of agents of having chosen S1 and S2  (b) The proportion of agents with the same payoff
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8. Evolutionary Learning with Local Matching

In this section, we investigate evolutionary learning where agents learn from the most successful

neighbours, and they co-evolve their strategies over time. Each agent adapts the most successful

strategy as guides for their own decision (individual learning). Hence their success depends in large

part on how well they learn from their neighbours. If the neighbour is doing well, its strategy can

be imitated by all others (collective learning). In an evolutionary approach, there is no need to

assume a rational calculation to identify the best strategy. Instead, the analysis of what is chosen at

any specific time is based upon an implementation  of the idea that effective strategies are more

likely to be retained than ineffective strategies [15]. Moreover, the evolutionary approach allows

the introduction of new strategies as occasional random mutations of old strategies. The evolutionary

principle itself can be thought of as the consequence of any one of three different mechanisms. It

could be that the more effective individuals are more likely to survive and reproduce. A second

interpretation is that agents learn by trial and error, keeping effective strategies and altering ones

that turn out poorly. A third interpretation is that agents observe each other, and those with poor

performance tend to imitate the strategies of those they see doing better.

        In this section we consider the local matching as shown in Fig. 10, where each agent is

modeled to be matched with his 8 neighbours. Each agent is modeled to be matched several times

with the same neighbour, and the rule of the strategy selection is coded as the list as shown in

Figure 11.

    

N=50

N=50

        Fig 9:  A Society of agents with loccal interactions: Each agent interact with 8 neighbours

     A part of the list is replaced with that of the most successful neighbour. An agent's decision rule

is represented by the N  binary string. At each generation gen , gen lastgen∈ [ ,.., ]1 , agents repeatedly

play the game for T  iterations. An agent Ai , i N∈ [ ]1... , uses a binary string i  to make a decision

about his action at each iteration t , t T∈ [ ]1... . A binary string consists of 22 positions (genes). Each
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position pj , j ∈ [ ]1 22, , is represented as follows. The first and second position, p1 and p2, encodes



the action that the agent takes at iteration t = 1 and t = 2 . A position pj , j ∈ [ ]3 6, , encodes the history

of mutual hands (cooperate or defect) that agent i  took at iteration t −1 and t − 2  with his neighbor

(opponent). A position pj , j ∈ [ ]7 22, , encodes the action that agent i  takes at iteration t > 2,

corresponding to the position pj , j ∈ [ ]3 6, .

Agent :

First & Second
Strategies

Memory Rules of strategy choices

2bit 4bit 16bit

First and Second Own Strategies

Memory of 2 histories

Own Strategies (t > 3)

Meta-rule of interaction

   Fig 10: The representation of  the meta-rule a the list of strategies               

       Each agent interacts with the agents on all eight adjacent squares and imitates the strategy of

any better performing one. In each generation, each agent attains a success score measured by its

average performance with its eight neighbours. Then if an agent has one or more neighbours who

are more successful, the agent converts to the strategy of the most successful of them or crosses

with the strategy of the most successful neighbour. Neighborus also serve another function as well.

If the neighbor is doing well, the behaviour of the neighbour can be shared, and successful strategies

can spread throughout a population from neighbour to neighbour [11].

    We also consider the error at the choice of the startegy. Agents choose their staetegy which is

specified by the meta-rule. However, we assume there exists small probabilitty of choosing the

wrong strategy. We showed the si,ulation results without any erro and with the error rate 5% in Fig.

11. Consequently, we can conclude that evolution learning leads to a more efficient situation in the

strategic environments. Significant differences were observed when agents have small chances of

making mistakes.  As shown Fig 11 (a), the highest payoff and the lowest payoff become to be

close, which imply that each agent acquires the almost the same.
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Max

Min

Ave Ave
Max

Min

                    (a) Withou any mistake                                      (b) Error rate: 5%

                            Fig 11: The average payoff with evolutionary learning

     At beginging, wach agent has a diffrent meta-rule which is specified by the 16 bit information.

In Fig 12, we showed the meta-rules acquired by 400 agents, which are aggregated into 15 types.

The numbers of the blanket represent the numbers of agents who acquiredthe same types of the

meta-rules. Those 15 meta-rules have also the commonality as shown in Fig.12. If agents choose

S1(0) and their oppnent chooses S2(1) at the previous time period, then they choose  S2(1).  If agents

choose S2(1) and their oppnent chooses S1(0) at the previous time period, then they choose S1(0).

These rules represent if they gain then they change their staetegy, and this is the principle of

give-and-take strategy as discussed at the section 7.  From this result we can conclude that  the

evolutionary learning of meta-rules with some mistakes help agents to acquire give-and-take rules

in the long run, which lead a society of agents to be both efficient and equitable.              

             
Fig 12: The types of the meta-rules acquired by 400 agents:  The numbers of the blanket represent
the numbers of agents who acquiredthe same types of the meta-rules.
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                                     Fig 13: The commonalities of the meta-rules

9. Conclusion

The interaction of heterogeneous agents produces some kind of coherent, systematic behavior. We

investigated the macroscopic patterns arising from strategic interactions of heterogeneous agents

who behave based on local rules. In this paper we addressed questions such as: 1) how a society of

selfish agents self-organizes, without a central authority, their collective behavior to satisfy the

constraints? 2) How does learning at individual levels  generate more efficient collective behavior?

3) How does co-evolution in a society put in its indivisible hand to promote self-organization of

emerging collective behaviors? In previous works in the area of collective behavior, the standard

assumption has been that agents use the same kind of adaptive rule. In this paper, we departed from

this assumption by considering a model heterogeneous agent with respect to their meta-rule of

making decisions at each time period. Agents use ad hoc meta-rules to make their decision based on

past performance. We also considered several types of learning rules for agents to update their

meta-rule to make decisions. We considered specific strategic environments in which a large number

of agents have to choose one of two sides independently and those on the minority side win, which

is known as minority game. A rational approach is helpless in our minority game by generating a

large-scale social  inefficiency. We introduced a new learning model at the individual level, give-

and-take strategy in the situation where every agent should make his decision based on the past

history of the collective behavior. It is shown that emergent collective behavior is more efficient

-18-
than that generated from the mixed Nash equilibrium strategies. We also proposed collaborative



learning based on Darwinism. It is shown that in strategic environments where every agent  has to

keep improving their meta-rule in order to survive, if agents learn  from each other, then the social

efficiency is realized without central of authority.
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