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Abstract

This paper examines the conditions for volatility pesistence in real returns in heterogeneous agent
models with borrowing constraints, capital accumulation, production, and idiosyncratic endowment
shocks. When agents are �sufficiently heterogeneous�, through different endowment shocks volatil-
ity persistence in real returns emerges when capital accumulation is introduced, even if adjustment costs
are relatively small.
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1 Introduction

The signiÞcance of heterogeneous agent models for explaining key macroeconomic facts has led to calls for
a �requiem� for models based on the single �representative agent�. In particular, Carroll (2000) has drawn
attention to heterogeneity in agents as a key ingredient for explaining the aggregate marginal propensity
to consume as well as skewed wealth distribution. Earlier, Krusell and Smith (1998) found that a �small
amount� of heterogenity succeeds in replecating key features of wealth data.
Recent research with heterogeneous agent models has focused on the presence of borrowing constraints

to explain another key macroeconomic fact, namely, volatility clustering or persistence in real returns. Den
Haan (1997, 1999), den Haan and Spear (1998), and Zhang (2000) all examine the issue of volatility persis-
tence in short-term real interest rates, in an �incomplete markets� framework with a stochastic aggregate
endowment process, idiosyncratic income shocks and borrowing constraints. In these models, risk aversion
is identical among agents.1

However, all three papers leave out capital accumulation, production and growth in their environments
with limited borrowing/lending opportunities. Huggett (1997) introduced heterogeneous agents into a Brock-
Mirman stochastic growth framework with idiosyncratic endowment shocks and a continuum of agents, but
he did not consider question of volatility persistence in real returns.
Rouwenhorst (1995) acknowledged that attempts to explain many asset-pricing phenomena in models

with non-trivial production have proved to be less than successful. The reason is simple: ßuctuations in
consumption can always be reduced by altering production plans, so asset prices need not change due to
borrowing or lending pressures.
Jermann (1997) incorporates both habit persistence and adjustment costs of capital into a model with

production and a single representative consumer. He Þnds that both habit persistence and adjustment
costs are needed to replicate historical equity premia. His reasoning is direct: with no habit persistence,

1Research with these models has also focused on the well-known equity premium �puzzle� Þrst posed by Mehra and Prescott
(1985). Heaton and Lucas (1996) add transactions costs as well as short-sales constraints along with borrowing limits into
their model with heterogeneous agents.. They Þnd that either large transactions costs or a limited quantity of tradable assets
can produce a sizeable equity premium. This approach is in sharp contrast with that of Abel (1990), Constantinides (1990)
and Campbell and Cochrane (1999). These authors argue for �habit formation� in individual preferences in addition to the
standard time-separable utility function for explaining the equity premium puzzle in models with a single representative agent.
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people do not care about sharp ßuctuations in consumption, and with no adjustment costs, they can smooth
consumption by altering production plans.
This paper examines volatility persistence in heterogeneous agent framework. Analogous to Jermann�s

Þndings, without heterogeneity among agents, either through different degrees of risk aversion or different
endownment shocks, there would be little reason to trade, but without adjustment costs for productive
capital, individual agents would be able to smooth production by altering their production plans. Introducing
adjustment costs allows volatility persistence to emerge. However, this result should not be very surprising.
After all, the models which produce volatility persistence without capital accumulation may be interpreted
as special cases of capital accumulation with very high adjustment costs. There is no need to introduce habit
persistence. Perhaps �heterogeneity among agents� and habit perisistence are operationally equivalent, in
their ability to deliver similar results for asset returns, when they are combined with adjustment costs.
Once capital accumulation and production play a role in the model, volatility persistence in longer-term

returns, rather than short-term rates, takes center stage. Figure 1 pictures the behavior of the real long-term
aaa corporate bond yield since 1947.

Figure 1: Real Corporate Bond Yield

Table I lists the relevant statistical information as well as the GARCH propoerties of the long term bond
yeild pictured in Figure 1.
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Statistical Properties of Real Returns, 1948-2000
Mean .0311

Standard Deviation .0283
Skewness -.6330
Kurtosis 4.4363

GARCH Model for First-Differenced Real Bond Returns
rt = rt−1 + ²t
²t = N(0,σ

2
t )

σ2t = β
2
0 + β

2
1b²2t−1 + β22σ2t−1

Esimates /T-Statistics
β0 .0008 1.724
β1 .3491 3.117
β2 .9065 13.664

Table 1

Negative skewness and excess kurtosis are well-documented phemonenona in empirical asset-pricing stud-
ies. The GARCH behavior is statistically signiÞcant for the Þrst-differenced real returns.2

The next section describes the model to be used for this analyisis as well as the solution algorithm. The
third section assesses the results and the Þnal section concludes.

2 The Model

The framework of this paper Þrst follows the incomplete markets framework of den Haan and Spear (1998),
and then adds capital accumulation. Then adjustment costs and learning enter the framework.

2.0.1 den Haan and Spear Framework

The usual constant relative risk aversion (CRRA) utility function characterizes the preferences of each agent
or household:

U(cit) =
(cit)

1−σi

1− σi (1)

where σi is the coefficient of relative risk aversion for agent i..
Each maximizes the following intertemporal discounted utility function over an inÞnite horizon:

E

" ∞X
t=0

βtU(cit)

#
(2)

with 0 <β < 1.
Each agent faces the following budget constraint:

cit + b
i
t = eit + (1 + r

l
t−1)b

i
t−1 when b

i
t−1 ≥ 0 (3)

cit + b
i
t = eit + (1 + r

b
t−1)b

i
t−1 when b

i
t−1 < 0 (4)

eit = sit · et (5)
NX
i=1

bit = 0 (6)

2 Evans (1998) has called attention to the role of instability in underlying long-run fundamental processes for explaining
much of the volatility in asset prices. In particular, Evans argues that instability in the dividend and discount-rate process
contribute �signiÞcantly� to the predictability of long-horizon asset returns. He conjectures that such instability may be due
to systematic forecasting errors by agents.
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where sit is the share of agent i at time t of aggregate endowment et, b
i
t is a risk-free one-period bond held

by agent i at time t, and rlt−1, rbt−1 are the lending and borrowing rates at time t-1. Aggregate lending or
borrowing sums to zero.
Each agent�s effective labor endowment depends on two processes: the overall labor endowment process

{et}, as well as the share of each agent, {sit} in the overall endowment:

sit =

·
1

N

¸
(1− ρs) + ρssit−1 + ²it, i = 1..N − 1 (7)

sNt = 1−
N−1X
i=1

sit (8)

²it ∼ N(0,σ2s) (9)

∆ ln(et) = ce + ρe∆ ln(et−1) + ²
e
t (10)

²et ∼ N(0,σ2e) (11)

where N is the number of agents.
The amount of debt of any agent is assumed to be limited to the present value of their endowment:

bit ≥ −
beit
1 + rb

(12)

The spread between the borrowing and lending rate is a function of the level of debt and past interest,
the current income of the agent, and the rate of growth of aggregate endowment:

rbt − rlt = ω0
µ
(1 + rbt−1)|bit|

et

¶ω1 ¡
sit
¢−ω2 ¡

eit
¢−ω3 (13)

where the variables sit,e
i
t are monotone transformations of s

i
t, e

i
t for obtaining values between zero and one.

2.1 Adding Capital and Production

Extending the model for capital and production opportunities requires the budget constraints to be amended
in the following way:

cit + b
i
t + k

i
t = wte

i
t + rtk

i
t−1 + (1− δ)kit−1 + (1 + rlt−1)bit−1 when bit−1 ≥ 0 (14)

cit + b
i
t + k

i
t = wte

i
t + rtk

i
t−1 + (1− δ)kit−1 + (1 + rbt−1)bit−1 when bit−1 < 0 (15)

The variables wt and rt represent the real wages and real returns on productive capital at time t. There
is a single Þrm that operates the technology, with marginal productivity conditions for wages and capital
returns based on aggregate capital and labor, kt and et:

f(k, e) = Akαe1−α (16)

w = fe = (1− α)Akαe−α
r = fk = αAk

α−1e1−α

k =
NX
i=1

ki

e =
NX
i=1

ei
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2.2 Adding Capital and Production with Adjustment Costs

When adjustment costs are added for capital accumulation for each agent, the budget constraints are amended
as follows:

cit + b
i
t + k

i
t = wte

i
t + rtk

i
t−1 + (1− δ)kit−1 +

φK
2

¡
kit − kit−1

¢2
+ (1 + rlt−1)b

i
t−1 (17)

when bit−1 ≥ 0 (18)

cit + b
i
t + k

i
t = wte

i
t + rtk

i
t−1 + (1− δ)kit−1 ++

φK
2

¡
kit − kit−1

¢2
(1 + rbt−1)b

i
t−1 (19)

when bit−1 < 0 (20)

where adjustment costs are captured by the quadratic relation, φK
2

¡
kit − kit−1

¢2
,with a Þxed adjustment

coefficient φK .

3 Solution Methods

The solution method we use is the parameterized expectations algorithms (PEA), presented in den Haan.
and Marcet (1990a), Marcet (1988, 1993), and Marcet and Lorenzoni (1998). This method is Þrst used in
the case of full rationality and then in the case of �bounded rationality� with last squares learning.

3.1 Parameterized Expectations with Fully Rational Heterogeneous Agents

The Euler equation for the den Haan and Spear pure endowment economy, or for bonds in the production
economy, takes the following form for the �lending� agent i:¡

cit
¢−σi

= βE
h¡
cit+1

¢−σi
(1 + rlt)

i
(21)

In the extended production economy, without adjustment costs, the Euler equation for capital has the
following form: ¡

cit
¢−σi

= βE
h¡
cit+1

¢−σi
(1 + rt − δ)

i
(22)

By arbitrage, the lending rate is equal to the net return on capital:

rlt = rt − δ (23)

Finally, in the case of a production economy with adjustment costs, the Euler equation has the form:¡
cit
¢−σi £

1 + φK
¡
kit − kit−1

¢¤
= βE

h¡
cit+1

¢−σi {1 + rt − δ − φK ¡kit+1 − kit¢}i (24)

By arbitrage, the gross lending rate is equal to the net return on capital, less adjustment costs:

(1 + rlt) =
1 + rt − δ − φK (kt+1 − kt)
1 + φK(φK (kt − kt−1)

(25)

To solve the Euler equation for the optimal decision rule for each agent, we make use of parameterized
expectations, extensively analyzed by Marcet (1988, 1993), and den Haan and Marcet (1990).
The Euler equation is parameterized for each agent in the following way:¡

cit
¢−σ

= βΨi(xit; γ
i) (26)

where the functional form Ψi is a neural network, with instrument set xit,and parameters γ
i.

Each agent forms expectations on the basis of observing personal consumption and labor endowments,
as well as aggregate endowment in the den Haan/Spear framework. Hence, xit = [c

i
t, e

i
t, et]. In the extended
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model with production, each agent forms expectations on the basis of observing personal captial, personal
labor endowment, as well as aggregate capital and aggregate labor endowment. Thus xit = [k

i
t, e

i
t, kt,et].

The neural network speciÞcation of the expectations function Ψi(kit, e
i
t,Kt; γ

i) has the following form:

nil,t =
J∗X
j=1

bijx
i
j,t (27)

N i
l,t =

1

1 + e−n
i
l◦,t

cΨit =
L∗X
l=1

κilN
i
l,t

where J* is the number of exogenous or input variables, K* is the number of neurons, nit is a linear combina-

tion of the input variables, Nit is a logsigmoid or logistic transformation of n
i
t, and

cΨit is the neural network
prediction at time t of E

h¡
cit+1

¢−σi (1 + rt+1 − δi for agent i, summarized by the function Ψi(kit, eit,Kt;γi),
with the parameter set {γi} = {bij ,κik}, j = 1, ..., J∗, l = 1, ..., L∗.
As seen in this equation, the only difference from ordinary non-linear estimation relating �regressors�

to a �regressand� is the use of the hidden nodes or neurons, N. One forms a neuron by taking a linear
combination of the regressors and then transforming this variable by the logistic or logsigmoid function.
One then proceeds to thus one or more of these neurons in a linear way to forecast the dependent variable
�

ψt.
Sargent (1997) has shown that the neural network speciÞcation does a better job of �approximating� any

non-linear function than polynomial approximations, in that sense that a neural network achieves the same
degree of in-sample predictive accuracy with fewer parameters than a polynomial approximation, or achieves
greater accuracy than a polynomial one, using the same number of parameters.
The main choices that one has to make for a neural network is L*, the number of hidden neurons, for

predicting a given variableΨi Generally, a neural network with only one hidden neuron closely approximates a
simple linear model, whereas larger numbers of neurons approximate more complex non-linear relationships.
Obviously, with a larger number of neurons in the hidden layer of the network, one may approximate
progressively more complex non-linear phenomena, but at the cost of an increasingly larger parameter set.
The approach of this study is to use relatively simple neural networks, between two and four neurons, in

order to show that even relatively simple neural network speciÞcations do well for approximating non-linear
relations implied by forward-looking expectations in stochastic dynamic general equilibrium models.
Each agent solves the optimization problem for γi for each agent in order to minimize the sum of squares

of the following error metric:

Min

{γi}
TX
t=1

[ςit]
2 (28)

ςit = βΨit(k
i
t, e

i
t,Kt; γ

i)− βE
h¡
cit+1

¢−σi
(1 + rlt)

i
for bit ≥ 0 (29)

ςit = βΨit(k
i
t, e

i
t,Kt; γ

i)− βE
h¡
cit+1

¢−σi
(1 + rbt )

i
for bit < 0 (30)

The error function is minimized, subject to the following constraints:

Kt > 0 (31)

cit > 0 (32)

bt =
X
i

|ait|−Kt (33)

bit ≥ − beit
1 + rb

(34)
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where bt represents aggregate borrowing at time t. Individuals are net borrowers if their asset holding are
less than zero.
Marcet and Singleton (1998) discuss the computational procedure for parameterized expectations solu-

tions to problems with constraints on asset holdings. The approach they suggest is to Þrst solve the model
as if all agents are unconstrained by the limits on their portfolio transactions. Secondly, if an agent borrows
too much, the relevant asset position is set at its limits. They note that once these steps are completed, �the
possibility of being constrained in the future affects agents� decisions today�, even if the debt limits are not
currently binding [Marcet and Singleton (1998), p. 15].
Since the parameterized expectation solution is a relatively complex non-linear function, the optimization

problem is solved with a repeated hybrid approach. First a global search method, genetic algorithm, similar
to the one developed by Duffy and McNelis (2001), is used to Þnd the initial parameter set {γi}, then a local
optimization, the BFGS method, based on the quasi-Newton algorithm, is used to �Þne tune� the genetic
algorithm solution.
De Falco (1998) applied the genetic algorithm to nonlinear neural network estimation, and found that his

results �proved the effectiveness� of such algorithms for neural network estimation.. The main drawback of
the genetic algorithm is that it is slow. For even a reasonable size or dimension of the coefficient vector, the
various combinations and permutations of the coefficients which the genetic search may Þnd �optimal� or
close to optimal, at various generations, may become very large. This is another example of the well-known
�curse of dimensionality� in non-linear optimization. Thus, one needs to let the genetic algorithm �run�
over a large number of generations�perhaps several hundred�in order to arrive at results which resemble
unique and global minimum points.
Quagliarella and Vicini (1998) point out that hybridization may lead to better solutions than those

obtainable using the two methods individually. They argue that it is not necessary to carry out the quasi-
Newton optimization until convergence, if one is going to repeat the process several times.. The utility
of the quasi-Newton BFGS algorithm is its ability to improve the �individuals it treats�, so �its beneÞcial
effects can be obtained just performing a few iterations each time� [Quagliarella and Vicini (1998): 307].

4 Calibration

Table II lists the parameter conÞguration we use in the baseline simulations of the model.

Table II: Parameter SpeciÞcation
Discount Rate β = .99486
Production and Depreciation A = 1,α = .36, δ = .025
Borrowing Limits b= −1
Risk Aversion σi = 1.5, i = 1, 2.
Share process ρs= .91,σs= .022
Endowment process ce = .001536, ρe = .62,σa = .001
Spread parameters {ωi}= [.03, 1, 1, 0], [.03, 1, 1, 2]

The parameter speciÞcation is similar to previous studies. The production and depreciation parameters
come from Jermann (1997), while the other parameters are identical to those used by den Haan and Spear
(1998).
The sample size for the model is 2000. The number of neurons set for each agent is three.

5 Simulation Results

This section Þrst takes up the results for the den Haan/Spear framework, followed by the extended models:
capital with no adjustment costs, capital with adjustment costs, and capital with learning and low adjustment
costs.

5.1 den Haan/Spear Model

The evolution of the borrowing rate on loans in the model without capital appears in Figure 2.
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Fiugre 2: Borrowing Rate in den Haan-Spear Model
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Figure 3: Conditional Variance of Differenced Returns in den Haan-Spear Model

Table 2 summarizes the statistical properties of the asset returns in the den Haan - Spear model.

Statistical Properties of Real Returns in den Haan - Spear Model
Mean .008

Standard Deviation .0796
Skewness .1877
Kurtosis 5.0932

GARCH Model for First-Differenced Real Returns in den Haan - Spear Model
rt = rt−1 + ²t
²t = N(0,σ

2
t )

σ2t = β
2
0 + β

2
1b²2t−1 + β22σ2t−1

Esimates /T-Statistics
β0 .0016 2.953
β1 .1084 1.376
β2 .8682 4.700

Table 2

While the den Haan-Spear model replicates well the excess kutosis of long-term real returns, it does not
deliver negative skewness. While the GARCH coefficient is close to the actual garch coefficient, the arch
coefficient is insigniÞcant.

5.2 Capital Accumulation with No Adjustment Costs

Figure 4 pictures the Þrst difference of the return on loans as well as the accumulation of capital of the two
agents, when capital accumulation is introduced into the model with no adjustment costs.

9



Figure 4: Returns and Capital Accumulation with No Adjustment Costs

As should be clear from this Þgure, there is little or no volatility persistence in the Þrst difference of real
returns. Once capital accumulation is introduced, the volatility is �transferred� from real returns to capital
accumulation itself, since there are no costs for adjusting these costs.
The statistical properties of the Þrst difference of the real returns appear in Table 3.

Statistical Properties of Real Returns in Model with Capital and No Adjustment Costs
Mean 0.0067

Standard Deviation 0.0040
Skewness 0.1633
Kurtosis 1.7640

Table 3

5.3 Capital Accumulation with Adjustment Costs

Figure 5 pictures the Þrst difference of the return on loans as well as the accumulation of capital of the two
agents, when capital accumulation is introduced into the model with adjustment costs.
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Figure 5: First Difference of Real Returns and Capital Accumulation with Adjustment Costs

The conditional variance appear of real returns appears in Figure 6.
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Figure 6: Conditional Variance of Real Returns with Adjustment Costs

Table 4 summarizes the statistical properties of the asset returns in the model with adjustment costs.

Statistical Properties of Real Returns in Adjustment Costs Model
Mean .0163

Standard Deviation .0049
Skewness -.3608
Kurtosis 1.765

GARCH Model for First-Differenced Real Returns in Adjustment Costs Model
rt = rt−1 + ²t
²t = N(0,σ

2
t )

σ2t = β
2
0 + β

2
1b²2t−1 + β22σ2t−1

Esimates /T-Statistics
β0 .00000001534466 2.755
β1 0.217 7.6688
β2 0.7168 36.7713

Table 4

6 Conclusion
This study shows that the introduction of capital does indeed �smooth out� the volatility persistence found
in real returns in models with Þnancial frictions but no captial accumulation. Introducing adjustment costs
does indeed cause volatility persistence to reappear in real returns. It also brings out negative skewness in
the level of real returns, which pure friction models without capital accumulation fail to reproduce.
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The results show that �heterogeneity� delivers many of the same results as �habit persistence�. Which
assumption is more realisitic, of course, is a matter of judgement. Introducing either one of these assumptions
increases the complexity of the model, but in different ways. So appealing to �Occan�s razor� does not
resolve the issue. However, given the widespread use of heterogeneity of agents for helping to explain
other macroeconomic phenomena, it makes sense to stay with this framework for analyzing asset return
phenomena as well.

References

[1] Abel, Andrew B. (1990), �Asset Pricing Under Habit Formation and Catching-Up with the Joneses�,
American Economic Review: Papers and Proceedings 80, 38-42.

[2] Campbell, John Y. and John Cochrane (1999), �By Force of Habit: A Consumption-Based Explanation
of Aggregate Stock Market Behavior�, Journal of Political Economy 107, 205-251.

[3] Carroll, Christopher D. (2000), �Requiem for the Representative Consumer? Aggregate Implications
of Microeconomic Consumption Behavior�. American Economic Review, 90, 110-115.

[4] Constantinides, George M. (1990), �Habit Formation: A Resolution of the Equity Premium Puzzle�,
Journal of Political Economy 98, 519-543.

[5] __________., and Darrell Duffie (1996), �Asset Pricing with Heterogeneous Consumers�. Journal
of Political Economy 104, 219-331.

[6] Dai, Qiang (2001), �Asset Pricing with Production and Labor�. Working Paper, Stern School of
Business, New York University.

[7] De Falco, Ivanoe (1998), �Nonlinear System IdentiÞcation By Means of Evolutionarily Optimized Neural
Networks�, in Quagliarella, D., J. Periaux, C. Poloni, and G. Winter, editors, Genetic Algorithms and
Evolution Strategy in Engineering and Computer Science: Recent Advances and Industrial Applications.
West Sussex: England: Johns Wiley and Sons, Ltd.

[8] Den Haan, Wouter J. (1997), �Solving Dynamic Models with Aggregate Shocks and Heterogeneous
Agents�. Macroeconomic Dynamics 1.

[9] __________ (1999), �The Importance of the Number of Different Agents in a Heterogeneous Asset-
Pricing Model�, Working Paper, Department of Economics, University of California, San Diego. Web
page: www.ucsd.edu/~wdenhaan/papers.html.

[10] den Haan. Wouter and Albert Marcet (1990a), �Solving the Stochastic Growth Model by Parameterizing
Expectations�, Journal of Business and Economic Statistics 8, 31-34.

[11] __________and Scott A. Spear (1998), �Volatility Clustering in Real Interest Rates: Theory and
Evidence�. Journal of Monetary Economics 41, 431-453.

[12] Duffy, John and Paul D. McNelis (2001), �Approximating and Simulating the Stochastic Growth Model:
Parameterized Expectations, Neural Networks and the Genetic Algorithm�. Journal of Economic Dy-
namics and Control, 25, 1273-1303. Web site: www.georgetown.edu/mcnelis.

[13] Evans, Martin D. D. (1998), �Dividend Variability and Stock Market Swings�, Review of Economic
Studies 65, 711-740.

[14] Heaton, John and Deborah J. Lucas (1996), �Evaluating the Effects of Incomplete Markets on Risk
Sharing and Asset Pricing�. Journal of Political Economy 104, 443-487.

[15] Huggett, Mark (1997), �The One-Sector Growth Model with Idiosyncratic Shocks: Steady States and
Dynamics�. Journal of Monetary Economics 39, 385-403.

13



[16] Jermann, Urban J. (1997), �Asset Pricing in Production Economies�. Working Paper, Department of
Finance, Wharton School, University of Pennsylvania.

[17] Krusell, Per and Anthony A. Smith, Jr. (1998), �Income and Wealth Heterogeneity in the Macroecon-
omy�. Journal of Political Economy 106, 867-896.

[18] Marcet, Albert (1988), �Solving Nonlinear Models by Parameterizing Expectations�. Working Paper,
Graduate School of Industrial Administration, Carnegie Mellon University.

[19] __________(1993), �Simulation Analysis of Dynamic Stochastic Models: Applications to Theory
and Estimation�, Working Paper, Department of Economics, Universitat Pompeu Fabra.

[20] __________ and Guido Lorenzoni (1998), �Parameterized Expectations Approach: Some Practi-
cal Issues� in Ramon Marimon and Andrew Scott, editors, Computational Methods for the Study of
Dynamic Economies. Oxford: Oxford University Press.

[21] __________ and Kenneth J.Singleton, (1998), �Equilibrium Asset Prices and Savings of Het-
erogeneous Agents in the Presence of Incomplete Markets and Portfolio Constraints�. Macroeconomic
Dynamics, forthcoming.

[22] Mehra, Rajnish and Edward C. Prescott (1985), �The Equity Premium: A Puzzle�, Journal of Monetary
Economics 15, 145-61.

[23] Rosser, Jr., J. Barkley, Ahmed Ehsan, Georg C. Hartmann (2001), �Volatility Via Social Flaring�.
Unpublished Manuscript, Department of Economics, James Madison University.

[24] Sargent, Thomas J. (1997), Bounded Rationalilty in Macroeconomics. Oxford: Oxford University Press.

[25] Quagliarella, Domenico and Alessandro Vicini (1998), �Coupling Genetic Algorithms and Gradient
Based Optimization Techniques� in Quagliarella, D. J., Periaux, C. Poloni, and G. Winter, editors,
Genetic Algorithms and Evolution Strategy in Engineering and Computer Science: Recent Advances
and Industrial Applications. West Sussex: England: Johns Wiles and Sons, Ltd.

[26] Quagliarella, D. J., Periaux, C. Poloni, and G. Winter (1998), Genetic Algorithms and Evolution Strategy
in Engineering and Computer Science: Recent Advances and Industrial Applications. West Sussex:
England: Johns Wiley and Sons, Ltd.

[27] Rouwenhorst, G.K. (1995), �Asset Pricing and Business Cycles�, in Thomas Cooley, editor, Frontiers
of Business Cycle Research.

[28] Zhang, Harold H. (2000), �Explaining Bond Returns in Heterogeneous Agent Models: The Importance
of Higher Order Moments� Journal of Economic Dynamics and Control 42, 1381-1404.

14


