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1 Introduction

In this paper oligopoly theory and population dynamics are combined to
describe the evolution of a renewable resource subject to harvesting under
imperfect competition. A renewable resource, here a fish population, has
on the one hand the capacity for reproduction and growth over time, where
the population dynamics can be captured by a so-called biological growth
or reproduction function. On the other hand, the stock of the resource is
diminished by the harvesting activities of either a sole owner or multiple
individuals. From an economist’s point of view a variety of interesting ques-
tions arise in this context: How do (optimal) harvesting paths look like?
In which situation, sole owner or multiple agents case, is it more likely to
observe conservation or extinction of the resource? What determines the in-
centives of the agents to drive the resource towards extinction and what is
the influence of the market structure?
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In many papers on the dynamics of fisheries it has been assumed that
the sea is open access, i.e. the fish stock is harvested by a large number of
unregulated, competitive fishermen with no barriers to entry or exit. Due
to perfectly competitive markets for harvested fish, the price for fish has
been taken to be constant. Here however, we assume that due to some
form of regulation, e.g. limited entry, access to the fishery is restricted. As a
consequence, our multi-agent multi-market bioeconomic model of commercial
fishing has to take two effects into account. First, it has to consider the
market externality which is present in such an oligopoly situation. This
means that every player influences the market prices via its quantity and,
accordingly, the payoffs of all other players. Second, it also has to account for
the stock externality, i.e. amounts harvested by one player are not available
to other players. As a consequence, all players have higher harvesting costs,
since these costs can be assumed to be inversely proportional to the available
resource stock.
Such multi-market, multi-agent models have been introduced recently

by Szidarovszky and Okuguchi (1998, 2000). They analyze an n-player, n-
market oligopoly game, and consider a biological growth function given by
the logistic law. They derive a one-dimensional dynamical system in contin-
uous time capturing the evolution of the fish population over time which is
subject to the harvesting activities of all players and they study two situa-
tions: The non-cooperative case, where all players act in their own interests,
by maximizing their own profits without taking account the effects on over-
all profits, and the cooperative venture case, where each player’s goal is to
maximize joint profits (in other words they act like a sole owner). For both
situations, the authors provide existence and stability results for this simple
situation. A crucial assumption in their papers — as well as in most of the
existing literature — is that fisherman are assumed to have perfect foresight,
i.e. they are able to accurately predict the future fish stock prevailing in the
sea. This rather restrictive assumption has been relaxed by Bischi and Kopel
(2002). Although they consider a similar setup, their model is formulated in
discrete time and they assume that fishermen are only boundedly rational. At
the time when the agents determine their optimal level of future harvesting
activities, the agents do not exactly know the future fish stock. Instead, all
the agents have is an imperfect estimate, which is revised as new information
about the fish stock becomes available. Obviously, this adaptation changes
the dimension of the model, and now the question of the extension of the
basins of existing equilibria becomes critical in order to shed some light on
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the question of extinction. In fact, due to global bifurcations that are specific
to two-dimensional dynamical systems represented by iterated noninvertible
maps of the plane, the topological structure of these basins might become
quite complicated and a thorough understanding of the mechanism causing
such changes and the relation to changes in structural parameters becomes
an important issue for policy makers.
This paper is organized as follows. First, we briefly summarize some

important properties of the logistic growth model for different values of the
intrinsic growth rate, since this has been an important topic in the literature.
We then investigate the dynamics of the fish stock which is subject to the
harvesting activities of boundedly rational agents. We are considering the
effects of harvesting costs and inertia in the expectations formation process
on the possibility of conservation. We then compare the results with the case
of a sole owner.

2 The biological growth law

LetX(t) denote the fish stock. We assume that in the absence of any harvest-
ing the stock of the fish population in period t is determined by the discrete
time logistic equation1

X(t+ 1) = Fu(X) = X(t) (1 + α− βX(t)) . (1)

The dynamical behavior of this equation has been studied extensively by
May (1976, 1987) and May and Oster (1976). The parameter α is referred
to as the intrinsic growth rate. To begin with, we briefly summarize some
results on the dynamics of the unharvested fish population. The map in (1)
is conjugate to the well known standard logistic map z0 = µz(1 − z) with
parameter µ = 1+α through the linear transformation X = (1+α)

β
z. For any

α > 0 there are two fixed points

X∗
0 = 0 and X∗

1 =
α

β
. (2)

The first represents a particular biological equilibrium, known as extinction of
the species. The second, α/β, is called the “carrying capacity” of the species

1Other similar natural laws for growth can be considered. For example, the Ricker
growth X(t+1) = X(t) exp [r (1−X(t)/K)] where r is the intrinsic growth rate, K is the
carrying capacity. This can be easily compared with the logistic growth (1) by considering
r = α and K = α/β.

3



when no harvesting occurs. The equilibrium point X∗
0 = 0 is unstable for

each α > 0, and the positive equilibrium X∗
1 is stable for 0 < α < 2. For

2 < α < 3, even if X∗
1 is unstable, a bounded positive attractor exists

around it, characterized by oscillatory dynamics (periodic or chaotic) and

trapped inside the absorbing interval I =
h
(1+α)2

16β
(3 + 2α− α2) , (1+α)

2

4β

i
, the

upper boundary of which is the maximum value c = Fu(α/2β) and the lower
boundary is its image c1 = Fu(c). For each 0 < α < 3, the basin of attraction
of the positive attractor is bounded by the unstable fixed pointX∗

0 = 0 and its
rank-1 preimage (X∗

0 )−1 = (1 + α) /β, i.e. the basin is given by the interval

B =
µ
0,
1 + α

β

¶
.

Hence, if the intrinsic growth rate is not too large, the fish population might
fluctuate, but never becomes extinct as long as the initial fish stock is in the
interval B. On the other hand, if the initial fish stock is out of the interval
B, the trajectory would take on negative values, which can be regarded as
extinction of the fish population in finite time (see e.g. Clarke, 1990, p.13).

3 The model

There are n players and n markets, where n > 1. The n countries (or
players) harvest fish and each player sells the fish in its home market and
in the n− 1 foreign markets. The inverse demand functions for the markets
i = 1, 2, ..., n are given by pi = ai − bi(x1i + x2i + ... + xni), where xki(t)
denotes the amount of fish harvested by player k = 1, 2, ..., n and sold in
market i = 1, 2, ..., n at time period t. Each player’s harvesting costs depend
on the harvest rate and, additionally, on the total fish stock. This latter
assumption captures the fact that it is easier and less expensive to catch fish,
if the fish population is large. Let X(t) be the total fish biomass at time t
in the common sea and hk(t) = xk1(t) + xk2(t) + ... + xkn(t) the amount of
fish harvested by player k at time t. Then the cost function of player k is
given by Ck = ck + γk

h2k
X
, which satisfies the common assumptions that costs

are decreasing in the fish stock and increasing in harvest (see Clark 1990,
Szidarovszky and Okuguchi, 1998; note that this type of cost function can be
derived from a Cobb-Douglas-type “production function” with fishing effort
and biomass as the two inputs). Let si(t) = x1i(t)+x2i(t)+ ...+xni(t) be the
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amount of fish supplied (and sold) in country i at time period t. We assume
that the total fish harvested by the players equals the total fish supplied in
the markets, i.e. H(t) = h1(t)+h2(t)+ ...+hn(t) = s1(t)+ s2(t)+ ...+ sn(t).
As mentioned in the introduction, in resource economics it is usually as-

sumed that fishermen are completely informed about the growth law which
governs the reproduction of the fish stock. In determining their future har-
vesting activities such that profits are maximized, the players can take the
effect of the current fish stock on the harvesting costs into account. How-
ever, this assumption is rather restrictive. More realistically, the fishermen
have access to a collection of past data about the harvested amounts of fish
and some other indicators of the size of the fish population, from which they
then try to derive an estimate or a prediction of the future fish stock. With
every new piece of information, this estimate will be updated and be used
to determine the future harvesting activities. We assume that the players
have homogeneous expectations with respect to the fish stock (which might
be due to their common experience of working in the same industry), which
will be denoted as Xe(t) in what follows. This quantity denotes the common
expectation the players hold at time t− 1 of the fish stock prevailing in the
sea at time t. Recalling that the dynamics without commercial fishing is
given by (1) and taking into account that the total harvesting quantity on
the basis of the expected fish stock is H(Xe(t)), the evolution of the fish
stock subject to harvesting is governed by

X(t+ 1) = X(t) (1 + α− βX(t))−H(Xe(t)).

Obviously, there are many ways to model how agents derive an estimate from
past data. We will assume a simple learning rule called adaptive expectations,
which states that the new estimate is a weighted average of the previous
estimate and current data about the actual fish stock, where the weight on
the past estimate (or belief) is a measure of the inertia of the agents. We
will assume that at the end of the current period, using past observations
about harvests and fish stock, fishermen are able to derive the exact stock of
the resource. Hence, in our model fishermen are making a prediction about
the future fish stock by forming a weighted average between the current fish
stock and their previous prediction. The following 2-dimensional nonlinear
dynamical system in discrete time then describes the expectation updating

5



and the evolution of the fish stock

X(t+ 1) = X(t) (1 + α− βX(t))−H(Xe(t)) (3)

Xe(t+ 1) = λX(t) + (1− λ)Xe(t).

Note that any non-negative steady state of the 2-D model given by (3) (if
existing) has to fulfil Xe = X. This condition corresponds to the perfect
foresight case, where agents are assumed to be able to make exact predictions
of the future fish stock. Consequently, the equilibria in the perfect foresight
case and for the 2-dimensional model are the same2. The point X∗

0 = 0 is
always an equilibrium. Moreover, a positive X is an equilibrium if and only
if

α− βX =
H

X
= g(X). (4)

Accordingly, the steady state fish stocks are given by the positive intersec-
tions of the linear function α− βX and the curve of function g(X). In what
follows we will derive expressions for the total harvesting quantity H(Xe(t))
for the cases where the players behave noncooperatively and cooperatively
and we will characterize these quantities. Using the properties of the function
g, we can give results on the existence and number of long run steady states
in the two cases. Furthermore, we will illustrate the global dynamic proper-
ties of the 2-dimensional system — the basins of attraction of the equilibria
and the changes these basins undergo as parameters are varied.

4 The non-cooperative game

In the non-cooperative case each player tries to determine its harvesting
activity such that their own (short run) expected profit is maximized, without
taking into account any effect on the total profits. The expected profit of
player k in period t is then

πek(t) =
nX
i=1

[ai − bi(x1i + x2i + ...+ xni)]xki − ck − γk
h2k(t)

Xe(t)

2However, the reader should be aware that the stability properties are different. For a
comparison of the stability properties of the perfect foresight case and the 2-D model we
refer to Bischi and Kopel (2002).
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Note that, since we are interested in the harvesting quantities in equilibrium,
we assume that players accurately predict the quantities of their rivals. The
first order conditions for player k are:

∂πek
∂xki

= ai − bi(x1i + x2i + ...+ xni)− bixki − 2γk hk(t)
Xe(t)

= 0 i = 1, ..., n

from which

xki =
ai
bi
− (x1i + x2i + ...+ xni)− 2γk

bi

hk
Xe

i = 1, ..., n

follows. Solving this (linear) system of equations would give the optimal
quantities of fish, x∗ki, harvested by player k and sold in country i as a function
of the (current) expectation Xe. Instead, we focus on the total amount of
harvest by player k since it is the total amount of fish harvested which affects
the dynamics of the fish stock. To derive this quantity, we add the equations
above for all i = 1, ..., n to obtain

hk = A− (h1 + h2 + ..+ hn)− 2Bγk
Xe

hk (5)

where A =
Pn

i=1 (ai/bi) and B =
Pn

i=1 (1/bi). From this equation, we can
get the reaction function for player k,

hk =
A

2(1 + Bγk
Xe )
− 1

2(1 + Bγk
Xe )

(
X
j 6=k

hj). (6)

This relation and the fact that total harvest H =
Pn

j=1 hj =
P

j 6=k hj + hk
imply that

hk =
A

1 + 2Bγk
Xe

− H

1 + 2Bγk
Xe

.

Adding over k = 1, 2, .., n then gives

H = A
nX

k=1

1

1 + 2Bγk
Xe

−H
nX

k=1

1

1 + 2Bγk
Xe

By defining

f(Xe) =
nX

k=1

1

1 + 2Bγk
Xe

.
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we obtain the optimal total harvesting quantity of all players in equilibrium:

H(Xe) = A
f(Xe)

1 + f(Xe)
. (7)

From this expression, we can derive the relative harvest

g(Xe) =
H(Xe)

Xe
. (8)

Straightforward, although tedious, calculations show that total harvest H
in (7) is strictly increasing and strictly concave in the expected fish stock,
i.e. ∂H/∂Xe > 0 and ∂2H/∂Xe2 < 0. Furthermore, the relative harvest in
(8) is strictly decreasing and strictly convex in Xe, i.e. ∂g/∂Xe < 0 and
∂2g/∂Xe2 > 0 (see Szidarovszky and Okuguchi, 1998).
Given that the total harvesting quantity is (7), the dynamical system (3)

can be written as

X(t+ 1) = X(t) (1 + α− βX(t))− Af(Xe(t))

1 + f(Xe(t))
(9)

Xe(t+ 1) = λX(t) + (1− λ)Xe(t)

where the parameters γk, α, β, A and B are positive and 0 ≤ λ ≤ 1. The
equilibrium condition (4) is now given by

α− βX = g(X) =
Af(X)

(1 + f(X))X
.

Let C =
Pn

i=1 (1/γk), then g(0) = AC/2B and g0(0) = −A(Pn
i=1 (1/γ

2
k) +

C2)/4B2. Given the properties of the function g, we can now state the
following results on the existence and number of steady states3:

(i) Assume first that g(0) > α and g0(0) < −β. Since lim
Xe→∞

g0(Xe) = 0 and

g0 strictly increases, there is a unique X such that g0(X) = −β.
(iA) If g(X) > α− βX, then no positive equilibrium exists.
(iB) If g(X) = α− βX, then there is a unique positive equilibrium.
(iC) If g(X) < α− βX, then there are two positive equilibria.

3Note that the equilibrium analysis presented here holds for all relative harvest func-
tions with the same qualitative properties as the function g.
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(ii) Assume next that g(0) > α and g0(0) ≥ −β. Then no positive equilib-
rium exists.

(iii) Assume that g(0) = α.
(iiiA) If g0(0) < −β, then there is a unique positive equilibrium.
(iiiB) If g0(0) ≥ −β, then there is no positive equilibrium.

(iv) Assume finally that g(0) < α. Then there is a unique positive equilib-
rium.

Notice that (iiiB) is the borderline case of (ii), (iiiA) is a borderline case
of (iv), and (ii) and (iA) can be treated in the same way. So we have four
basic cases (see figs. 1a-d). In case 1 no positive equilibrium exists. Case 2
is characterized by the existence of a unique positive equilibrium. In case 3
two positive equilibria X∗

1 and X∗
2 exist, where X

∗
1 < X∗

2 . In case 4, again
only 1 unique equilibrium exists.

4.1 A special case: The symmetric game

In addition to players having the same expectations due to a common back-
ground or experience, we may also assume that they use the same fishing
technology which is currently available. In a situation where γk ≡ γ for all
k, the game becomes symmetric, since all players face the same costs and
supply the same markets. The total harvest in equilibrium in the symmetric
non-cooperative game is

HS =
nAXe

(n+ 1)Xe + 2Bγ
. (10)

Obviously, since the game is symmetric

hk = hS =
HS

n
=

AXe

(n+ 1)Xe + 2Bγ
.

Note that this implies also that xki = xi =
ai
bi
− si − 2 γbi h

S

Xe , i.e. all players
supply the same amount of fish for market i.
Using these expressions, we can show that, when fixed costs ck are small,

the profit of each player is positive for all t. Since in the symmetric game the
players are identical, we can focus on the ‘representative player’. It suffices
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to show that total profits are positive, since each player receives the same
share. From the equation given in the previous paragraph, by summing

over all players k, we get si = nxi = n
ai
bi
− nsi − 2 γ

bi

HS

Xe
. This yields

si =
nai

(n+ 1)bi
− 2γHS

(n+ 1)biXe
. We will use this expression to show that the

total profit is positive. The expected total profit is

πe =
Pn

k=1π
e
k(t) =

Pn
k=1

nPn
i=1 [ai − bi(x1i + x2i + ...+ xni)]xki − ck − γk

h2k(t)

Xe(t)

o
=

(11)

=
Pn

i=1

£
ai(x1i + x2i + ...+ xni)− bi(x1i + x2i + ...+ xni)

2
¤−Pn

k=1ck − 1
Xe(t)

Pn
k=1γkh

2
k(t)

which for the symmetric non-cooperative game reduces to (in what follows
we neglect the expression for the fixed costs)

πe =
nX
i=1

[ai − bisi] si − nγ(hS)2

Xe
=

=
nX
i=1

[ai − bisi] si − γ(HS)2

nXe

Taking into account that ai − bisi =
ai

(n+ 1)
+

2γHS

(n+ 1)Xe
, this yields

πe =
1

n+ 1

Pn
i=1 aisi +

2γHS

(n+ 1)Xe

Pn
i=1 si −

γ(HS)2

nXe(t)
=

1

n+ 1

Pn
i=1 aisi +

2γ(HS)2

(n+ 1)Xe
− γ(HS)2

nXe(t)
=

1

n+ 1

Pn
i=1 aisi +

γ(HS)2

Xe(t)

(n− 1)
n(n+ 1)

> 0

Hence we have shown that the total profit in the noncooperative case is
positive if fixed costs are zero. If fixed costs are positive, but sufficiently
small, then πe remains positive. Note that this is true for all expected fish
stocks (i.e. also in the transient phase towards equilibrium) and not only in
equilibrium.
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From the equilibrium condition it is easy to see that the positive steady
states in the symmetric game can be given as solutions of the quadratic
equation

β(n+ 1)X2 + (2βBγ − (n+ 1)α)X + nA− 2Bγα = 0

The existence conditions which characterize the four different cases described
above for the general (non-symmetric) game (see fig. 1) can be given in detail
when the game is symmetric. SinceC = n/γ, we get gS(0) = nA/2Bγ, gS0(0) =
−nA(n+1)/4B2γ2. Additionally, from gS0(X) = −β, we getX =

p
nA/(n+ 1)β−

2Bγ/(n + 1). As shown above, a comparison of the expressions gS(X) =p
βnA/(n+ 1) and α − βX provides insights on the existence and num-

ber of equilibria. For example, case 3 with two positive equilibria can be
characterized by the conditions

α <
nA

2Bγ

β <
n(n+ 1)A

4B2γ2

α > 2

r
βnA

n+ 1
− 2βγB

n+ 1

which are restrictions on the range of biological parameters α and β.

4.2 Entry of a new player in the non-cooperative case

Let us now assume that a new player enters the game. Hence the number
of players and markets increases from n to n + 1. What can be said about
the corresponding total harvests in the non-cooperative game? Under which
conditions will an increase in the number of players lead to an increase in
the total harvest?
To answer these questions, we denoteAn =

Pn
i=1 (ai/bi), Bn =

Pn
i=1 (1/bi),

and fn(X
e) =

Pn
k=1 1/(1 +

2Bnγk
Xe ). Under which conditions does

Hn+1 = An+1
fn+1(X

e)

1 + fn+1(Xe)
> An

fn(X
e)

1 + fn(Xe)
= Hn

hold? Using the relation An+1 = An + an+1/bn+1, it is easy to see that this
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inequality is equivalent to

an+1 >
bn+1An[fn(X

e)− fn+1(X
e)]

[1 + fn(Xe)]fn+1(Xe)

Hence, two cases have to be considered:

• Case 1: If fn(Xe) − fn+1(X
e) ≤ 0, then this inequality holds always.

Hence, Hn+1 > Hn holds always.

• Case 2: If fn(Xe)−fn+1(Xe) > 0, then this inequality is fulfilled if an+1
is sufficiently large (observe that the right-hand side of the inequality
is independent of an+1).
The condition fn(X

e)− fn+1(X
e) > 0 holds if and only if

nX
k=1

1

1 + 2Bnγk/Xe
>

nX
k=1

1

1 + 2Bn+1γk/Xe
+

1

1 + 2Bn+1γn+1/Xe
(12)

Notice that only the last term on the right hand side depends on γn+1.
Furthermore, since Bn+1 =

Pn+1
i=1

1
bi
>
Pn

i=1
1
bi
= Bn, for k = 1, 2, ...n,

we have
1

1 + 2Bnγk/Xe
>

1

1 + 2Bn+1γk/Xe
.

Accordingly, adding over all k yields

LHS =
nX

k=1

1

1 + 2Bnγk/Xe
>

nX
k=1

1

1 + 2Bn+1γk/Xe
= RHS

Clearly, if LHS−RHS ≥ 1, then (12) holds and fn(Xe)−fn+1(Xe) > 0
is always fulfilled. On the other hand, if LHS − RHS < 1, then γn+1
has to be sufficiently large for (12) to hold.

For the symmetric game a sufficient condition for HS
n+1 > HS

n is that
1

bn+1
≤ Bn

n
. In other words, if the sensitivity of demand with respect to price

changes of market n+ 1 is less than or equal to the average price sensitivity
of demand over all the remaining markets, then total harvest after entry of
the new player increases.
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5 Cooperative venture case

Let us now assume that the players form a cooperative venture. In this case
each player determines its harvesting activity such that the joint profit of all
players is maximized. That is, each players harvesting activity xki maximizes
the total sum of expected profits (see (11)). The first-order conditions for
each player k are

∂πe

∂xki
= ai − 2bi(x1i + x2i + ...+ xni)− 2γk hk(t)

Xe(t)
= 0 i = 1, ..., n

We rewrite these conditions as

ai
bi
− 2(x1i + x2i + ...+ xni)− 2γk hk(t)

biXe(t)
= 0 i = 1, ..., n (13)

Adding over all i yields

A− 2H − 2γkBhk(t)

Xe(t)
= 0

where we used the same definitions of A and B as before. Rewriting this
condition as

A− 2H
2Bγk

=
hk
Xe

and summing over all players gives the expression for the total harvest if
players form a cooperative venture

HV =
ACXe

2(CXe +B)
(14)

where as before C =
Pn

k=1
1
γk
. The relative harvest in this case is given by

gV (Xe) =
HV

Xe
=

AC

2(CXe +B)

It is easy to see that HV is strictly increasing and strictly concave and that
gV is strictly decreasing and strictly convex in Xe (see Szidarovszky and
Okuguchi, 2000). Moreover, for given Xe and n, the total harvest in the
cooperative case (14) is smaller than in the non-cooperative case (7): HV =
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ACXe

2(CXe +B)
< H = A

f(Xe(t))

1 + f(Xe(t))
, where f(Xe) =

Pn
k=1

1

1 + 2Bγk
Xe

.

Proof: The inequality given above is equivalent to

f(Xe(t)) >
CXe

CXe + 2B
.

Let zk =
Xe

2Bγk
. Then f(Xe) =

Pn
k=1

1

1 + 1
zk

=
Pn

k=1

zk
1 + zk

. The right hand

side of the inequality can be also expressed in terms of zk as
CXe

CXe + 2B
=

1

1 + 2B/CXe
=

1

1 + 1/
Pn

k=1zk
=

Pn
k=1zkPn

k=1zk + 1
. Since, for k = 1, 2, ..., n we

have
zk

1 + zk
>

zk
1 +

Pn
k=1zk

, adding these inequalities for all k proves the

claim.

Note that this result is valid only for a given expected fish stock. Since the
positive stable long-run equilibria fish stocks for the cooperative game and
the non-cooperative game might be different, nothing is said how these steady
states and the corresponding total harvests in these steady states relate to
each other.
In the cooperative venture case with adaptive expectations, the evolution

of the fish stock subject to harvesting is governed by

X(t+ 1) = X(t) (1 + α− βX(t))− ACXe

2(CXe +B)
(15)

Xe(t+ 1) = (1− λ)Xe(t) + λX(t)

The equilibrium condition (4) is now given by

α− βX = gV (X) =
AC

2(CX +B)
.

Since the function gV has the same qualitative properties as the function g
in the noncooperative case, conditions (i)-(iv) presented above can be used
to characterize the existence and number of steady states in the cooperative
venture case (see figures 1a-d, where a qualitative illustration is given). We
now have gV (0) = AC/2B = g(0) but gV 0(0) = −AC2/2B2 < g0(0). Fur-
thermore, since HV (X) < H(X), we also have gV < g. Therefore, case 1
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may remain the same, or even cases 2 or 3 will occur. That is, if there is
no positive equilibrium for the non-cooperative case, full cooperation may
result in the emergence of one or two (positive) equilibria, X∗V

1 and X∗V
2

(fig. 1a). In case 2, full cooperation will result in the appearance of two
positive equilibria, X∗V

1 and X∗V
2 , where the original positive equilibrium

(for the non-cooperative case) is always between the two new equilibria (for
the full cooperation game); see fig. 1b. In case 3, with full cooperation two
equilibria still exist. The change occurs with respect to the location of the
equilibria: the smaller equilibrium decreases and the larger one increases, i.e.
X∗V
1 < X∗

1 and X∗V
2 > X∗

2 (fig. 1c). Considering case 4 we notice that with
full cooperation the unique positive equilibrium increases with respect to the
noncooperative game, i.e. X∗V > X∗ (fig. 1d).
We may summarize the intuition of these results by the following state-

ments. Comparing the noncooperative and the full cooperation cases, we
observe that for the same expected fish stock, agents acting cooperatively
harvest less than if they act in a noncooperative way. This aggregate be-
havior eventually leads to a higher fish stock remaining in the sea in the
long run. Cooperation leads to conservation. These insights are in line with
earlier results for game-theoretic models of fisheries (e.g. Clarke 1990, Lev-
hari and Mirman 1982) and are typical of the well known prisoner’s dilemma
situation4.
Finally, note that, in contrast to the non-cooperative case, it is possible to

use the equilibrium condition to derive explicit expressions for the equilibria.
In addition to the steady state X∗

0 = 0, we get in the cooperative case further
steady states as the solutions of the quadratic equation

2CβX2 + (2Bβ − 2αC)X +AC − 2Bα = 0.

4One might imagine the following fishermen’s dilemma (see Clark 1990). Two fish-
ermen can employ two different strategies, severe exploitation (competitive attitude) or
moderate exploitation (cooperative attitude). For suitably chosen payoff the well known
conclusions of a symmetric 2x2 game is that cooperation (a bi-lateral agreement for less
fishing effort) implies conservation. A higher fish stock implies higher harvesting results
for each, resulting in higher profits.
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5.1 A special case: The symmetric game

If we consider the symmetric case again, that is γk ≡ γ for all k, then
C = n/γ, and it is easy to see that

HV S =
AnXe

2(nXe + γB)
(16)

We have for the harvesting quantity of a single player

hk = hV S =
HV S

n
=

AXe

2(nXe +Bγ)
.

Again it is rather straight forward to show that total profit is positive.
Since players are identical, using the relation given above, we get from (13)

that si =
ai
2bi
− γHV S

nbiXe
. Furthermore, this yields ai − bisi =

ai
2
+

γHV S

nXe
.

Hence, the total profit is

πe =
nX
i=1

[ai − bisi] si − γ(HV S)2

nXe

=
1

2

nX
i=1

aisi +
γHV S

nXe

nX
i=1

si − γ(HV S)2

nXe
=

=
1

2

nX
i=1

aisi > 0

An interesting results follows, if we assume that positive steady states
exist in the symmetric game with and without full cooperation and compare
the expressions for the total harvesting quantities in these steady states. Let
∆ = X∗V S

2 − X∗S
2 denote the difference between the positive stable steady

states in the cooperative venture case (X∗V S
2 ) and the non-cooperative case

(X∗S
2 ) for the symmetric game, where X

∗V S
2 > X∗S

2 . Then HV S(X∗V S
2 ) =

AnX∗V S
2

2(nX∗V S
2 + γB)

> HS(X∗S
2 ) =

nAX∗S
2

(n+ 1)X∗S
2 + 2Bγ

if and only if ∆ > (n −
1)X∗V S

2 X∗S
2 /2γB. In other words, the total harvest in equilibrium in the

cooperative case is larger than in the non-cooperative case if and only if
some relative difference between the positive stable steady states X∗V S

2 and
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X∗S
2 is sufficiently large. Hence, in this case cooperation does not only lead

to higher conservation, but the larger stock eventually leads also to a higher
total harvest (due to increased growth of the resource).
Moreover, we can again provide details on the existence conditions of equi-

libria and compare them with the conditions for the noncooperative game.
In the symmetric full cooperation game we have gV S(0) = An/2Bγ and
gV S0(0) = −An2/2B2γ2.
From gV S0(X) = −β, we get X =

p
A/2β −Bγ/n. A comparison of the

expressions gV S(X) =
p
βA/2 and α−βX again provides insights on the ex-

istence and number of equilibria. For example, case 3 in the full cooperation
case with two positive equilibria can be characterized by the conditions

α <
nA

2Bγ

β <
n2A

2B2γ2

α >
p
2Aβ − βγB

n
.

The first condition coincides with the condition in the noncooperative game,
but the second condition is less restrictive.

5.2 Entry of a new player in the cooperative case

We are now studying the effect of entry of a new player opening a newmarket.
An, Bn and fn(X

e) are defined as before. Let Cn =
Pn

k=1
1
γk
. Again, we are

interested in conditions such that harvest after entry occurred is larger, i.e.

HV
n+1 =

An+1Cn+1X
e

2(Cn+1Xe +Bn+1)
>

AnCnX
e

2(CnXe +Bn)
= HV

n

Using again the relation An+1 = An + an+1/bn+1, it is easy to see that
this inequality is equivalent to

an+1 > bn+1
An(CnBn+1 − Cn+1Bn)

Cn+1(CnXe +Bn)

Two cases have to be considered:
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• Case 1: If CnBn+1−Cn+1Bn ≤ 0, then this inequality always holds and
entry increases total harvest.

• Case 2: If CnBn+1 − Cn+1Bn > 0, then this inequality holds if an+1 is
sufficiently large. Observe that CnBn+1 = Cn(Bn +

1
bn+1

) > Cn+1Bn =

(Cn+
1

γn+1
)Bn if and only if γn+1 > Bnbn+1/Cn, i.e. if γn+1 is sufficiently

large.

If we consider the symmetric game, a sufficient condition forHV S
n+1 > HV S

n

is again 1
bn+1
≤ Bn

n
. As in the non-cooperative game, if the price sensitivity of

demand in the newmarket is less than or equal to the average price sensitivity
of demand over all the remaining markets, then total harvest increases after
entry of the new player.

6 Local and global stability of equilibria

After having extensively discussed the existence of equilibria in the non-
cooperative and full cooperation game and the special cases of symmetric
games, we are now turning our attention to an analysis of the stability prop-
erties of the long run steady states. The two-dimensional discrete dynamical
system in (3) can be represented as an iterated point mapping

T :

½
X 0 = X (1 + α− βX)−H (Xe)
Xe0 = λX + (1− λ)Xe (17)

Each time the map T is applied, a point of the plane (X,Xe) is moved to
another point, which represents the state of the system at the next time step.
A trajectory of the system with adaptive expectations

τ(X(0), Xe(0)) =
©
(X(t), Xe(t)) = T t(X(0), Xe(0)), t ≥ 0ª

is generated by T starting from an initial condition (X(0), Xe(0)). The pro-
jection of a point along the trajectory on the horizontal axis gives the time
evolution of the fish stock, the projection on the vertical axis gives the time
evolution of expectations. Time periods at which the trajectory is close to
the diagonal Xe = X correspond to periods at which expectations are quite
accurate, whereas points far from the diagonal represent over/under esti-
mates of the real fish stock (depending on the fact if the point is above or
below the 45-degree line).

18



In the non-cooperative game, the total harvestH is given in (7). To derive
stability conditions for the equilibria, we have to analyze the eigenvalues of
the Jacobian matrix

DT (X,Xe) =

"
1 + α− 2βX −An

Df(Xe)

[1+f(Xe)]2

λ 1− λ

#
,

computed at the fixed point considered, where f(Xe) =
Pn

k=1X
e/(Xe +

2Bγk). For example, let us consider the equilibrium O = (0, 0). We have

DT (0, 0) =

·
1 + α −AC

2B

λ 1− λ

¸
,

and the characteristic equation is

z2 − Tr(O)z +Det(O) = 0

where Tr(O) = 2 + α − λ and Det(O) = (1− λ) (1 + α) + λAC/(2B). The
conditions for stability are

1− Tr(O) +Det(O) > 0 ( = 0 means that z = 1 is an eigenvalue)

1 + Tr(O) +Det(O) > 0 ( = 0 means that z = −1 is an eigenvalue)
1−Det > 0 ( = 0 means that both the eigenvalues have |z| = 1)

The first condition gives AC/(2B) > α. It is easy to see that this condition
coincides with the stability condition of the model where agents have perfect
foresight; see Bischi and Kopel (2002). The second condition becomes 4 +
(2− λ)α+λAC/(2B)−2λ > 0, which is always satisfied. The third condition
gives the extra stability condition

AC/(2B) < (λ− α (1− λ)) /λ.

So, we can conclude that the range of local asymptotic stability of the ex-
tinction equilibrium, defined by

α < AC/(2B) < 1− α
1− λ

λ

is non-empty only if α < λ. It is again easy to show that the range of
stability of the extinction equilibrium is smaller under adaptive expectations
than under perfect foresight (Bischi and Kopel 2002). We cannot conclude,
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however, that extinction is less probable. In fact, the conditions above only
concern asymptotic stability, whereas extinction might even occur in finite
time, due to trajectories which exit the positive quadrant. For example,
whenever the fixed point (0, 0) is an unstable focus (complex eigenvalues with
modulus greater than one), trajectories would eventually assume negative
values. In such a case, we can say that extinction in finite time occurs,
even if the extinction equilibrium is unstable (see Clark 1990 and Bischi and
Kopel, 2002 for a more detailed discussion on this point).
For the study of the basins of the long run steady states it is important

to notice that the map T which describes the adaptive process in the non-
cooperative case, is a noninvertible (or many-to-one) map5. Given a point¡
X 0,Xe0

¢
several distinct points may exist which are mapped into

¡
X 0, Xe0

¢
.

Put differently, several preimages can be obtained by solving (17) with re-
spect to (X,Xe), so that the inverse relation (X,Xe) = T−1

¡
X 0,Xe0

¢
is a

multivalued function. In fact, from½
X 0 = X (1 + α− βX)−H (Xe)
Xe0 = λX + (1− λ)Xe

we obtain X = 1
λ

¡
Xe0 − (1− λ)Xe

¢
, where Xe is a real solution of the

equation

β (1− λ)

λ2
(Xe)2+

1− λ

λ

µ
2β

λ
Xe0 − (1 + α)

¶
Xe−X 0+

1 + α

λ
Xe0−β

λ
Xe02 = H (Xe)

The positive solutions of this equation are located at the intersections (if
any) of a parabola and the increasing and concave function H. Hence, we
can have two, one or no positive solutions (indeed, there are several negative
solutions, but we can neglect these preimages).
As the map T is continuously differentiable, it is easy to obtain the equa-

tion of LC−1, since it is included in the set of points at which the determinant
of the Jacobian vanishes:

detDT (X,Xe) = (1− λ) (1 + α− 2βX) + λDHn(X
e) = 0. (18)

5This property also holds for the one-dimensional map which gives the dynamics under
PF, i.e. Xe = X for all time periods t. It is easy to see that this map has an unimodal
graph (see Bischi and Kopel, 2002). The map is a Z0−Z2 noninvertible map, i.e. a point
of its codomain may have two preimages or no preimage, like the logistic map.

20



The graph of the curve LC−1 is shown in fig. 2. Applying the map T to points
of LC−1 yields the critical curve of rank-1, LC = T (LC−1). The curve LC
can now be used to identify regions of the plane whose points have different
number of preimages, just as the critical points of a one-dimensional map
can be used to locate regions with different preimages (see e.g. the quadratic
map). These critical curves separate the phase plane into regions Zk whose
points have k preimages, or, equivalently, where k distinct inverses of T are
defined (see e.g. Mira et al., 1996, or Agliari et al., 2002). It is interesting to
note that for λ < 1 the locus LC−1 of merging preimages (or critical curve
of rank-0) has equation

X =
1

2β

·
1 + α+

λ

1− λ
DH(Xe)

¸
whereas if λ = 1 (i.e. in the case of naive expectations), then detDT never
vanishes, since detDT = DH(Xe) > 0 for each Xe. So, for λ = 1 no
critical curves exist. The presence of critical curves may have important con-
sequences on the structure of the basins’ boundaries. The fact that several
preimages may exist give rise to the possibility of having non-connected or
multiply connected basins. The creation and the structure of the basins can
be explained by using the concept of critical curves, since the occurrence of
global bifurcations, i.e. contacts between critical curves and the boundaries
of the basin, give rise to important and significant changes (for recent appli-
cations in economics, see Bischi et al., 2000, Bischi and Kopel 2001, 2002,
Bischi et al. 2002).
In the full cooperation game, the dynamic evolution of the fish stock and

the expectations is described by (3), where H is replaced by

HV (Xe) =
ACXe

2 (CXe +B)
.

The qualitative properties of the resulting 2-dimensional dynamical system
are quite similar to the properties of (17). However, important differences in
the quantitative effects are caused by the lower total harvesting quantity, the
different conditions for the existence of equilibria and the different location
of the positive equilibria with respect to the noncooperative game. Also the
shape of LC−1, whose equation is (1− λ) (1 + α− 2βX)+λDHV

n (X
e) = 0, is

quite similar, and the vertical asymptote in the (X,Xe)−plane has the same
equation X = (1 + α) /β. However, as DHV (Xe) < DH (Xe), the curve
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LCV
−1 is to the left of (and below of) LC−1. The main differences between

the two cases, non-cooperative and full cooperation game, as far as stability
and stability extent is concerned (i.e. extension and structure of the basins,
which give information about the robustness with respect to exogenous per-
turbations both in fish stock and in fish stock estimates) can be better appre-
ciated by carrying out some numerical experiments, where these numerical
studies are guided by the analytic/geometric results described above.

6.1 Numerical Explorations

For the intrinsic growth rate and the biological parameter β we choose

α = 3, β = 1. (19)

In this situation, the dynamics of the unharvested population evolving ac-
cording to (1) would exhibit chaotic oscillations around the carrying capacity
α/β = 3.
We now consider the non-cooperative game with two players and two

markets, n = 2, where a1 = 5, a2 = 4.5, b1 = 2, b2 = 2. This set of parameters
yields the aggregate parameters A = 4.75, B = 1. In the numerical explo-
rations we will focus on the impact of changes in the cost parameters γ1 and
γ2 on the extent of the basins and their structure. Furthermore, we will also
investigate the effect of variations in λ, which measures the inertia of the
fishermen to revise their expectations as new information becomes available.
The influence of changes in the cost parameters is of significant interest, since
the costs of harvesting can be changed by such methods as restricting the
length of the fishing season, setting total catch limitations, and regulating
the type of fishing gear used. The influence of changes in the expectations
formation process is interesting from a behavioral point of view. If fishermen
put a higher weight on the most recently observed fish stock, does this lead to
more conservative behavior or not? We start our explorations with high costs
for both players. Intuitively, high harvesting costs should prevent over-fishing
and lead to conservation. Indeed, this intuition is confirmed by the numeri-
cal results shown in fig. 3a. Since AC/(2B) < α there is a unique positive
equilibrium at (2.384, 2.384) and the basin of this equilibrium (shown in light
color) is rather large. The equilibrium is far away from the basin boundaries,
which can be taken as an indication that in such a situation even exogenous
shocks will not result in disaster; the model is robust with respect to noise.
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The grey region represents the set of initial conditions which result in ex-
tinction of the species (where we do not distinguish extinction in the long
run from extinction in finite time). The fixed point (0, 0) is in this situation
a saddle point, and its stable set constitutes the boundary which separates
the two regions. The situation changes for decreasing cost parameters, see
figs. 3b-d. First, notice that two positive equilibria exist, where (X∗

1 ,X
∗
1 ) is

a saddle point, and its stable set now constitutes the boundary which sepa-
rates the basin of the stable equilibrium (X∗

2 ,X
∗
2 ) and the set of points which

lead to extinction. The size of the basin B becomes smaller and smaller until
it reduces to a set which is so small that “stability” has lost any practical
meaning (see fig. 3d). To investigate the role of the speed of adjustment, we
used the same parameters as in fig. 3d, but increased the value of λ from 0.5
to 0.9 in fig. 3e. The basin of the stable equilibrium is enlarged. Obviously,
less inertia in revising expectations results in an enlargement of the basin of
the stable equilibrium. We can conclude that there are two possible ways to
achieve “more stability” in terms of the extent of the basin of the equilib-
rium. A policy maker may increase the costs of harvesting the resource and
may prevent over-fishing the resource. This result is quite reasonable. If it
is more expensive for fishermen to harvest the resource, the total harvesting
activity is reduced. As a result, conservation of the resource is achieved from
a larger set of initial combinations of the actual and expected fish stock. A
different route to higher stability is to make the fishermen believe that the
use of the most recent observation of the fish stock gives a better prediction
of future fish stocks than relying previous observations.
Surprising and unexpected effects are obtained when slightly different sets

of parameters are considered. Let us put

a1 = a2 = 5.5 ; b1 = b2 = 1 ; λ = 0.3.

Figs. 4a-e show the basins of the positive stable equilibrium for decreasing
values of the cost parameters γ1 and γ2. Here we can observe global bifurca-
tions which drastically change the topological structure of the basin B from a
simply connected set (figs. 4a and b) to a multiply connected set (connected
with holes inside) in fig. 4c, to a non-connected set (union of disjoint por-
tions) in figs. 4d and 4e. These significant changes of the basins are due to
contacts between the basin boundary and the critical curve LC (see e.g. Mira
et al., 1996, Abraham et al., 1997, Bischi, Gardini and Kopel, 2000, Bischi
and Kopel, 2001, Agliari et al., 2002). Hence, they are known as contact
bifurcations. Of course, basin structures like those shown in figs 4c and d
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have important consequences for practical considerations. In contrast to the
previous situations, a slight dislocation of a point in the phase space can now
have serious consequences with respect to the long run fate of the fish stock.
Such a final-state sensitivity (see Grebogi et al. 1983; Brock and Hommes
1997), where the complexity does refer to any attracting set but concerns the
choice of the initial condition, is of particular relevance in fishery economics.
Small differences or noise can lead to vastly different outcomes, namely con-
servation or extinction. It is important to note that such a complexity of
the basin (multiply connected or non-connected) can only arise in discrete
dynamical systems generated by the iteration of a noninvertible map.6

We now consider the full cooperation game. Recall that in this case,
the agents choose their individual harvesting quantities such that the joint
profits of all players is maximized. Hence, we can refer to this situation as if
players are conducting a cooperative venture. In order to obtain a comparison
with the non-cooperative game, we consider the same parameters as those
used in fig. 4e and examine the extent of the basin of the stable positive
equilibrium in the full cooperation case (fig. 5). Obviously, the basin is
simply connected and larger than in the non-cooperative case. The complex
topological structure, which causes a loss of robustness and predictability,
cannot be observed here for this set of parameters. Simply connected basins
are obtained even with lower values of the cost parameters.
Our results confirm (and generalize) the conclusion about the role of co-

operation which can be found in the literature (see Clarke 1990, Levhari and
Mirman 1982, and in particular, Szidarovszki and Okuguchi 2000). As far
as the stability extent of the positive stable equilibrium is concerned, coop-
eration leads to more stability. In addition to these differences, we can also
observe that the stable equilibrium in the non-cooperative game is closer to
the basin boundary than in the full cooperation game for similar values of the
cost parameters (cf. figs. 4b and 5). This raises another issue, namely how
“stability” can be measured in terms of the extent of the basins of attraction.
In fig. 4b, although the basin might be considered as “large”, the equilibrium

6A higher value of the parameter λ (e.g. λ = 0.8) would again achieve stability as far
as the extension of the basin is concerned. In this case increasing values of λ also imply
that any complexity in the topological structure of the basins is lost. This is due to the
fact that as λ→ 1 the Jacobian determinant never vanishes, so no critical curves exist. It
is also interesting that under the assumption of PF with the same parameters as in the
present scenario no complexities arise.
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is quite close to the basin boundary. Such a situation might not be considered
as being very stable despite this large basin, since displacements of the tra-
jectory which are due to small perturbations or small errors in the prediction
of the fish stock might cause the fish stock to go extinct. Small mistakes can
make all the difference between conservation or extinction. The situation is
different in the full cooperation game, where the equilibrium is further away
from the boundary. Here, small mistakes do not matter that much, and we
would consider such a situation as being more stable (for a more rigorous
treatment of these issues we refer the interested reader to McDonald et al.
1985)

7 Conclusions

In this paper we introduced a multi-market multi-agent game-theoretic model,
where a renewable resource is subject to the harvesting activities of n agents.
The fishermen harvest the resource and offer it for sale on n different mar-
kets. In contrast to the existing literature, we assume that fishermen are
only boundedly rational, i.e. they do not know the reproduction function of
the resource. Instead they use an adaptive expectations scheme to update
their beliefs about the fish stock.
Given this framework, we have calculated the total harvesting quantities

in the cooperative and the non-cooperative case and provided existence con-
ditions for the equilibria of our model. In the cooperative case players choose
their actions in order to maximize joint profits instead of maximizing their
individual payoffs. It has been shown that for given expectations the total
harvesting quantity is smaller if players form a cooperative venture.
We also studied the global stability of the equilibria in our model, i.e.

the extent of the set of points which result in conservation and the struc-
ture of this set. As a conclusion, our investigation confirms the intuition
that cooperation leads to conservative behavior. We have observed that for
the same set of parameters the basin of attraction of the equilibrium in the
cooperative game with adaptive expectations is larger than the basin of the
equilibrium in the non-cooperative game. Furthermore, the structure of the
basins is less complex. Although we could see non-connected and multi-
ply connected basins for the non-cooperative case, if players are assumed to
cooperate the basins of the corresponding equilibrium is connected and sim-
ple. Our results show that earlier results continue to hold in an extended
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expectations-feedback- framework, where multiple agents compete on differ-
ent markets.
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Figure 1a: Players act noncooperatively and no equilibrium exists (case

1).  If players start cooperating, then two positive equilibria can occur

(case 3).
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Figure 1b: Players act noncooperatively and a unique equilibrium

exists (case 2).  If players start cooperating, then two positive equilibria

emerge (case 3).
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Figure 1c: Players act noncooperatively and a two positive equilibria

exist (case 3).  If players start cooperating, then the equilibria are

shifted.
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Figure 1d: Players act noncooperatively and a unique positive

equilibrium exists (case 4).  If players start cooperating, then this

equilibrium is shifted to the right.
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