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In a preceding paper (Laslier-Topol-Walliser, 2001), we studied the convergence properties,
in a repeated finite two-player normal form game, of some learning process where each player
uses a CPR (cumulative proportional reinforcement) rule. The CPR rule associates, at each
period, a ’valuation rule’ stating that the player computes for each action an index equal to its
past cumulative utility and a ’decision rule’ which states that the player plays an action with a
probability proportional to the preceding index. It is shown that the process converges with
positive probability toward any strict pure Nash equilibrium and with zero probability toward
some mixed Nash equilibria (which are characterized). By the way, for a single decision-maker
under risk, it is shown that the process converges toward the expected utility maximizing
action(s). The present paper considers a repeated finite two-player extensive form game with
perfect information and with generic payoffs (no ties for one player). The CPR rule is now
applied by each player, no more to the complete strategy of the player, but to each choice at a
given node, along the followed path of the game tree . It is shown that the process converges with
probability 1 toward the (unique) subgame perfect equilibrium path, obtained by a backward
induction procedure on actions and associated values.

A similar problem was already studied in the literature and leads to a similar result, but with
different and less natural learning rules. Jehiel-Samet (2000) consider a valuation rule where the
player computes for each action an index equal to its past average utility, and a decision rule
where he plays, with some given probability, the action maximizing the index and, with the
complementary probability, a random (uniformly distributed) action. Since some randomness is
present till the end of the process, the values converge toward the values corresponding to the
subgame perfect equilibrium (i.e. the payoffs that the players can reach at each node), but the
actions only approach the subgame perfect equilibrium actions (they reach the equilibrium
actions for their maximizing part). Pak (2001) considers a valuation rule where each action has a
stochastic index equal either to its past utilities (with a probability proportional to their
frequency) or to some random values (with a probability decreasing with the number of
occurences of that action), and a decision rule where he chooses the maximizing action. Here,
the process converges (for even a larger class of rules containing the preceding one) toward the
subgame perfect equilibrium actions, but not toward the equilibrium values (even if they are
recovered by taking the expected value of the random variable).

In both cases, the learning rule reflects a trade-off between an exploration and an exploitation
component, which happens in a non stationary context. Exploitation is expressed by the decision
rule which is a maximizing one and the valuation rule which is an averaging one. Exploration is
expressed by a random perturbation either on the decision rule (first case) or on the valuation
rule (second case). Moreover, such a perturbation is constant (first case) or decreasing (second
case). In the CPR rule, the exploration component is directly integrated in a non maximizing



decision rule, associated with a cumulative valuation rule which favours the exploitation
component. Hence, the trade-off is endogenous, leading to much exploration at the beginning of
the process and much exploitation at the end (exploration keeping however always active). As
shown, the process converges toward the subgame perfect equilibrium actions, but not toward the
perfect equilibrium values (even if the last may be recovered by divising the cumulative index by
the number of trials of an action).

1. Game and learning assumptions

Consider a finite generic game tree defined by a set I of players, a set N of non terminal
nodes (including the root node r), a set M of terminal nodes, a set A of edges (actions). Call d the
depth of the tree, i.e. the length of the greatest path in the tree. For each node n , call IÝnÞ the
player who has the move, AÝnÞ the set of actions at his disposal, GÝnÞ the subgame starting at the
node. For each node n or m (except for r), call BÝnÞ the (unique) action leading to it . For each
node m, call uÝmÞ the utility vector for the players, assumed to be positive. For any player, the
utility obtained at different terminal nodes differs : if m ® mv 5 M, uiÝmÞ ® uiÝmvÞ (sometimes,
it is assumed, more generally, that if the payoffs are similar for one player, they are similar for
the other player). A strategy s specifies an action played at each node; a mixed strategy specifies
a probability distribution on strategies; a behavioral strategy specifies a probability distribution
on the actions available at each node. The game has a unique subgame perfect equilibrium
(SPE); it is obtained by a backward induction procedure selecting maximizing action aDÝnÞ at
each node and attributing value vDÝnÞ at each node.

The stage game is now played an infinite number of times labelled by time t. At each period,
a path ht is described; each player i knows which nodes are successively reached and observes
the utility utÝiÞ he gets at its end. After t periods, call NtÝaÞ the number of times that action a was
used. The a-CPR (“action-Cumulative Proportional Reinforcement”) rule of each player i is not
defined on mixed strategies, but on behavioral strategies. It is composed of two parts:

- the valuation rule states that, at the end of each period t, for each node n (such that
i = IÝnÞÞ, each action a (such as a 5 AÝnÞ) is associated with an index v tÝaÞ which is the
cumulative utility obtained by that action in the past (each payoff obtainined at the end of a
trajectory is allocated to all actions in the trajectory); the initial valuation is v0.

-the decision rule states that, at each period t, if node n is attained, the player chooses an
action a (such as a 5 AÝnÞ) with a probability ptÝaÞ proportional to v tÝaÞ.

Of course, the extensive-form stage game can be tranformed into a normal-form one by
introducing the notion of strategy. Using the CPR rule on that normal form defines the s-CPR
(“strategy-Cumulative Proportional Reinforcement”) rule:

-the valuation rule states that, at the end of period t, each strategy s is associated with an
index v tÝsÞ which is the cumulative utility obtained by that strategy in the past;

-the decision rule states that, at each period, each player chooses a strategy s with a
probability ptÝsÞ proportional to v tÝsÞ.

It must be noticed that a generic extensive- form game does not generally lead to a generic
normal-form game.

2. Strategy-based vs action-based learning

In this section, only two-player games will be considered. The utility for the first player of
the combination of a strategy si of the first player and of a strategy sj of the second player is
denoted uij. The convergence results obtained by LTW for the s-CPR process of players acting
on a generic normal-form game can nevertheless be applied to a normal-form game obtained
from an extensive-form one. However, the relevant results only concern convergence toward a
strict pure-strategy Nash equilibrium (i.e.each player’s equilibrium strategy is a strict best



response to the other’s one). A strict equilibrium is obtained in a reduced extensive-form game
only for a very restrictive class of games. These games, like the centipede game, are such that
any deviation from the longest path immediately leads to a terminal node.

Lemma 1: For a generic extensive-form game, a Nash equilibrium is strict iff it reaches all
non-terminal nodes

Proof : A strict Nash equilibrium reaches all nodes. If some node were not reached, by
modifying the action of the player playing at that node, the equilibrium would be kept, hence this
player would obtain the same utility with a different strategy. Conversely, if a Nash equilibrium
reaches all nodes, it is strict. If a Nash equilibrium reaches all nodes, it must be the unique
subgame perfect equilibrium since the perfect equilibrium is obtained by a backward induction
procedure; moreover, a subgame perfect equilibrium is strict due to genericity of the
extensive-form game. QED

Hence, for the specific games where the subgame perfect equilibrium reaches all nodes, the
equilibrium is obtained with probability 1 by a s-CPR learning process.

The problem is to know wether the s-CPR process may converge toward a non strict pure
strategy Nash equilibrium. Since such equilibria may be weakly dominated, a partial answer
would be given if, in a s-CPR process, weakly dominated strategies were eliminated. In fact, it is
only possible to prove that strongly dominated srategies are eliminated :

Lemma 2: For a normal-form game, the s-CPR process eliminates strongly dominated
strategies

Proof : Call, at each period t, x ih the frequency of playing simultaneously si (by player 1) and
sh (by player 2) in the past. In continuous time, the evolution of the deterministic associated
process is given by (equation 8 in LTW):

.
x ih= ?x ih + piqh

The probability of playing strategy si is given by:
pi = >h x ih uih / > jh x jh ujh

By differenciating the second equation and replacing along the first, one gets the differential
evolution of two strategies si and sj of the first player :

.
pi / pi ?

.
pj / pj =>h qhÝuih ? ujhÞ / > lh x lhulh

If strategy si is strictly dominated by strategy sj , the numerator is greater than some positive
lower bound (and the denominator is strictly positive). The differential inequation

.
pi / pi ?

.
pj /

pj > S > 0 implies pi/pj > eSÝt?toÞ, hence (since pi is upper bounded), pj goes to 0. By a usual
proof, the stochastic process converges too to the elimination of sj in continuous time, hence in
discrete time.QED

Consider for instance the following game (similar to the chain-store paradox ) in extensive
and normal form:

1 2
¤————¤———– (4,2)
P P
P
P
(3,3) (1,1)

S C

S (3,3) (3,3)

C (1,1) (4,2)

In this game, even if actions and strategies structurally coincide, the two Nash equilibria have



different convergence properties for the two learning processes (by anticipating on the further
convergence result on a SPE for the a-CPR rule):

-the subgame perfect equilibrium CC is strict, hence it is obtained with positive probability
by the s-CPR process and with probability 1 by the a-CPR process

-the equilibrium SS is not strict, hence there is no convergence result available by the s-CPR
process and this equilibrium is obtained with probability 0 by the a-CPR process

If the first player continues, for the s-CPR process as well as for the a-CPR process, the
second player chooses to stop or to continue according to its index and their indices are likewise
increased . If the first player stops, for the s-CPR process, the second player chooses to stop or to
continue with a probability proportional to its index and, since each strategy gets the same result,
their indices grow on average proportionally to their initial value; but for the a-CPR process, the
second player has not to act and the indices of his strategies are unchanged. Hence, the process
has more inertia in the first than in the second case since differential utilities have less impact on
the indices. Notice that, as concerns convergence of the s-CPR process, applied to
extensive-form games, toward a non SPE Nash equilibrium, no result is available, even in
specific cases. Conversely, it should come as no surprise that the a-CPR process applied to
extensive-form games, which is in fact the analog of the s-CPR process applied to (intrisically)
normal- form games, converges to the SPE; this result will be shown now.

3. Convergence results
A necessary condition for sufficient exploration is that the a-CPR process visits each node an

infinite number of times. This condition is ensured by the first result:
Proposition 1: With the a-CPR rule applied to an extensive-form game, each node is

attained an infinite number of times with probability 1
Proof : Consider any node n 5 N where player IÝnÞ has AÝnÞ as her set of available actions.

The following statement is first proven: if n is reached an infinite number of time, then each
action a 5 AÝnÞ is choosen an infinite number of times. For each a 5 AÝnÞ, the utility that player
IÝnÞ obtains after choosing a is in some interval ß uminÝaÞ, umaxÝaÞà. The cumulative utility
associated to an action other than a is thus bounded above by an affine function of time.
Therefore, the argument on the proof of proposition 1 in LTW applies. Proposition 1 follows.
Since the initial node is obviously reached an infinite number of time, by succesive steps in the
tree, such is the case for all nodes. QED.

Proposition 1 ensures that each path (including the SPE path) is attained with probability 1
an infinite number of times. The second result shows that the SPE path is played infinitely more
often than any other path :

Proposition 2: With the a-CPR rule, the probability of playing the SPE path converges to 1
Proof : It goes by backward induction on subgames
Let ( I,^Þ be a probability space on which a repeated play of the game is realized; hÝt,gÞ is

the CPR history at date t and ÝhÝt,gÞÞ t³1 is the CPR trajectory for draw g 5 I .
Consider any node n preceding a terminal node (and called a penultimate node). The player

IÝnÞ faces an individual choice between actions in AÝnÞ of which aDÝnÞ is the maximizing one.
For any g, the process reaches node n an infinite number of times; one may label these dates by a
new index b. Slightly abusing notation, the probability of playing aDÝnÞ at date b writes
pbÝaDÝnÞÞ. Consider now the event:

Fn = g 5 I / limb¸K pbÝaDÝnÞÞ = 1
According to proposition 4 in LTW applied to time scale b, the process converges almost

surely towards the maximizing action:
^ÝFnÞ = 1
Especially, for almost all g, there exists T such that, if t ³ T, then ptÝaDÝnÞÞ ³ 1 ? O
Consider now any node nv which precedes only penultimate or terminal nodes (and called an

antepenultimate node). The player IÝnvÞ faces now an individual choice between lotteries in



AÝnvÞ. Any action aÝnvÞ leads to some node n (such that nv = BÝnÞ) where another player IÝnÞ
plays the actions in AÝnÞ with some probabilities, hence a lottery LÝnÞ. However, the
probabilities involved in the lotteries vary from one period to the other and proposition 4 in LTW
is no more directly applicable. It is necessary to introduce intermediate lotteries with fixed
probabilities, conditional to the fact that action aÝnvÞ is the SPE action or not

-if aÝnvÞ = aDÝnvÞ leading to node n, the lottery LÝnÞ gives utility uÝaDÝnÞÞ with probability
1 ? O and utility 0 with probability P

-if aÝnvÞ ® aDÝnvÞ leading to node nv, the lottery LÝnvÞ gives utility uÝaDÝnvÞÞ with probability
1

According to the result for a penultimate node, the lottery LÝnÞ dominates lottery LÝnÞ as
much as t ³ T and lottery LÝnvÞ is always dominated by LÝnÞ. According to proposition 4 in
LTW, since the game is generic, if e is small enough, the player chooses asymptotically lottery
LÝnÞ over any LÝnvÞ. Hence, by the same argument than in the proof of proposition 4, the player
chooses asymptotically LÝnÞ over LÝnvÞ.

The same reasoning can be continued for nodes before antepenultimate ones. QED
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