
Coalition Formation with Boundedly
Rational Agents∗

D. Fiaschi - P.M. Pacini
Department of Economics

University of Pisa
Via Ridolfi, 10
56124 Pisa (Italy)

September 11, 2000

Abstract

Many economic activities take place in groups, teams, clubs (coali-
tions for short). However, because of informational problems, the al-
location of agents in coalitional structures may face social dilemmas,
since people may cooperate in groups of limited size but, in larger
coalitions defection may become the dominant strategy. We analyze
the process of coalition formation in which agents’ expectations evolve
through repeated interactions in a large population setting. The se-
lection strongly depends on agents’ initial beliefs; the efficient coali-
tion structure is reached starting from a very limited set of initial be-
liefs and we show that the agents’ computational ability and learning
speed crucially affect outcomes. While overall efficiency is an increas-
ing function of agents’ computational ability, an increase in agents’
learning speed can have an ambiguous effect.

∗We thank C. Bianchi, C. Casarosa, E.M. Cleur, L. Fanti, N. Salvadori, P. Vagliasindi
and all participants to seminars delivered at the University of Pisa and Venice for helpful
comments; none of them is responsible for what is written here. This work has been
accomplished with MURST national funds (40%).
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1 Introduction
Cooperative behaviour often emerges at a group, rather than social level;
in many instances we observe the formation of independent groups, teams,
clubs, cooperatives (coalitions for short) each of them persecuting the same
goal (in turn provision of commodities, maximization of profits, raising of
public funds, standards of behavior etc.). This behaviour has been mostly
analyzed within the theoretical apparatus of cooperative games; however this
approach has recently undertaken a substantial revision in order to explain
the emergence of coalitional structures (CS) as the outcome of a bargaining
process in which agents cannot be committed to binding pre-play agreements;
therefore the CS formation game has been recast within the framework of
non-cooperative games (pioneering works are [12] and [15], see also [16])1.
Adopting this non-cooperative framework we analyze the problem of how a
population of individuals, persecuting the same goals, structures in coalitions
when agents and groups are subject to two competing forces: on one hand
an increasing returns to scale technology that incentivates aggregation, on
the other the non-monitorability of actions in formed coalitions that incenti-
vates free-riding behaviours, thus reducing the incentive to form and act in
groups2. In fact, as it will be shown in Section 2, this situation is compatible
with the presence of a multiplicity Nash equilibria, in the sense that there
are many, qualitatively different, partitions of society in cooperation groups
where no agent has an incentive to deviate from his course of action. Tradi-
tionally this indeterminacy has been reduced appealing to a sound refinement
proposed by [7], i.e. coalition proofness. However coalition-proofness requires
the possibility of a pre-play communication stage, in which agents can agree
at no cost to correlate their strategies (for example a simultaneous exit from
a coalition to form a new one), a stage that is difficult to justify when the
population is large, as in the case we are going to study. To overcome this
difficulty, we take another point of view and substitute the implicit pre-play
communication phase with an explicit dynamic process in which anonymous
agents repeatedly interact without the possibility of making jointly agreed

1This type of games well adapts to represent situations concerning the decentralized
supply of public goods (e.g. see [17]), the formation of cooperative firms (see [12]) or
multilateral bargaining; more generally they can be applied to all those situations in
which there is a problem of coordination and imperfect information (as to this point see
also [13]).

2For example, take the case of the formation of work cooperatives (research groups as
well). The larger the group the greater the potential output because of the integration of
different competencies and the cutting of administrative costs; but the larger the group
the more a single has an incentive to shirk, benefitting of collective output and saving on
the individual effort directed to the coalitional goal.
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deviations. At any stage any agent plays the strategy that is best for him,
given his beliefs about the behaviour of the others. The outcomes of indi-
vidual strategies provide the information on the basis of which beliefs are
revised, thus moving to a further stage of the game. An equilibrium is found
when a resting state is encountered in which beliefs and actions no further
change. In this way we try to provide an answer to the following questions:
when the population is so large that it is not reasonable to assume that
pre-play agreements can be reached, does a system in which agents act ra-
tionally find an equilibrium position? And, provided that it does, what are
the characteristics of the equilibrium positions? (see also [21])
Our main finding is that agents play the strategies sustaining a coalition

proof Nash equilibrium (CPNE henceforth) only if population start out with
a priori beliefs that are close to those sustaining coalition-proof outcomes; in
other words, in this dynamic setting coalition-proof positions can be reached
only if a large fraction of the population initially share the conviction that
all other people will act and cooperate in large coalitions; the role of learn-
ing will be just to size down the dimension of the equilibrium coalitions to
that consistent with individual incentives to cooperate. On the contrary, if
initial beliefs are dispersed and there is not such “optimistic” initial state
of expectations, the interaction among people will drive the system toward
equilibrium positions that are still Nash situations, but society is divided into
a larger number of groups than that corresponding to CPNE. To explana-
tion this fact consider a population in which there are also “less optimistic”
agents who believe that cooperation can be sustained only in small groups.
Then the latter ones will free-ride in large coalitions: this behaviour will in-
duce the revision of expectations for the “optimistic” agents who, in turn,
will be no longer ready to form large coalitions and accept the free-riding
behaviour of the “less optimistic” players, provided the latter ones cannot
be discriminated. This will determine a downward revision of the expecta-
tions on the cardinality of the maximal coalition capable of sustaining full
cooperation, so that, eventually, any equilibrium will be characterized by a
greater number of smaller coalitions than those would be observed were the
population made up only by “optimistic” agents. In particular we will show
that there are two main sets of resting points (attractor sets in the following);
the first one is made up of coalitional structures “close” to CPNE, i.e. there
is a very limited number of agents refusing aggregation, while the large part
of the population behave according to the CPNE prescriptions. The other
attractor set is characterized by coalitional structures in which coalitions are,
on the average, of smaller size, so that, given the available technology, the
overall result is certainly less efficient. Moreover the latter shows a greater
basin of attraction than the first one.
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The analysis is performed by means of computational experiments re-
producing an artificial society in which adaptive and heterogeneous3 agents
interact. Their behaviour results from two simultaneous learning processes4:
the first one deals with the revision of beliefs about the possible realizations
of an action, so that agents learn what will be the plausible outcome of a
strategy conditional on others’ behaviour; this revision of expectations will
take the form of a simple reinforcement learning process. The second one
deals with the choice of the course of action: given a certain set of beliefs, an
agent finds his best strategy through a process of learning and imitation on
the set of possible strategies; this decision process is modelled by means of
genetic algorithm (GA)5 which tends to capture the idea that agents, when
called upon to make a choice in a complex environment, do not make explicit
optimization, but rather operate on a set of rules that they continuously mod-
ify reacting to the effects of their own behaviour. In this framework we tested
the robustness of our results to various parametrizations of both learning pro-
cesses; we find that the overall allocation efficiency is an increasing function
of agents’ computational ability, while an increase in agents’ learning speed
can have a ambiguous effects (see Section 4.3).
For both the problem and the techniques used for the analysis, this work

can be linked with those contributions analyzing the auto-organization in
economies where agents take decisions on the basis of a limited knowledge of
the environment: for example [11] studies the formation of coalitions in an
economy in which any agent can deal only with a limited number of other
agents and learning takes place by means of neural nets, while [24] analyzes
the auto-organization in an economy in which agents must coordinate to
elaborate at best the information they have and use GA to learn which is

3Here heterogeneity refers to agents’ initial beliefs on others’ actions. Indeed there
could be a further source of heterogeneity (as indicated by [10]), i.e. the different sets of
strategies with which agents start playing the game.

4The learning process is a crucial aspect in the modelling of any evolutionary game (for
an excellent review see [23]). A distinguishing feature of the present approach is that the
dynamics of the system is not driven by the payoffs that strategies receive when played,
but by the configuration of beliefs that change over time as new realizations of the system
occur; these affect the expected payoffs and, by this way, the strategies actually played.

5The use of GA to represent individual behaviour has been motivated by important
contributions from the theory of cognitive processes (see [19]). They have been increasingly
applied in economics: as to the applications to game theory the pioneering work is [6].
The extension to evolutionary games is recent: [9] provides some examples, [25] highlights
how information affects the evolution of players’ strategies in a prisoner’s dilemma game.
Most contributions using GA in economic analysis focus on macroeconomic models with
rational expectations and multiple equilibria (see [10], [22], [2], [3], [4] and [10]), but some
authors also tackle explicitly the decision problem (see [5], [18] and [20]).
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the most efficient structure.
The paper is organized as follows: Section 2 describes the basic char-

acteristics of the model, the strategies available to agents and the kind of
beliefs they initially have about the state of the world. Section 3 describes
the dynamic process of coalition formation and how, in this process, expec-
tations are revised and decisions are taken by means of the GA procedure.
Section 4 describes the calibration of the artificial experiments, the results
and their main characteristics, providing also some insights on how the re-
sults change when we change the basic parameters affecting agents’ learning
process. Conclusions close the paper. Some technical material is relegated
into the Appendices.

2 The model
The basic characteristics of the model are the following6: there is a population
= of I agents indexed by i. Agents are identical in all physical characteristics
and are endowed with 1 unit of time that they can use either working (li = 1)
or as leisure time (li = 0). They receive utility from the consumption of a
commodity y and leisure time, according to the following utility function

Ui (yi, li) = yi + (1− li) · ω,

where ω measure the pleasure of not working.
Agents can form coalitions, but an agent can participate into one and

only one coalition. A coalition is a group of agents that agree to share the
output they produce by means of the total labour input that they provide.
Labour is the only productive input and the technology for the production
of the coalitional output Y is given by the production function Y = Lα,
where L is the number of labour units and α is assumed to be greater than 1.
The production within a coalition has no external effect on the production
of other coalitions; commodity Y deteriorates in a single period.
We assume that the agreement within a group entails an equal sharing

distribution of the coalitional output, i.e. in a coalition of N agents anyone
receives an amount yi = Y

N
of the produced output Y . While participation

into a group is publicly observable, the contribution of the individual work-
ing time to the coalitional production process cannot be monitored, so that
defection (li = 0) cannot be punished.
Within this setting agent has to make two decisions: (i) which coalition to

participate into and (ii) which action to perform in a coalition, once formed.

6For the complete description of the model and proofs of statements see [13]
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The first action determines the formation of a CS σ, i.e. a partition of the
population = in coalitions Sk, while the second determines the individual
payoffs within a coalition Sk.

Strategies In this framework a strategy for an agent i must concern (i)
the formation of a coalition and (ii) the action to perform in a coalition once
formed. Therefore any strategy θi is made up of two components, i.e. θi =
{θ0i, θ00i }: θ0i is a signal indicating the maximum cardinality of the coalition
that i is ready to form7; θ00i is a complete contingent plan indicating the action
li that i is willing to take conditional on the cardinality of the coalition he
may happen to belong to. As an example a strategy θi can take the form

θi = {θ0i, θ00i } = {N, [1, 1, 1, 0, . . . ]}

meaning that agent i is ready to participate into any coalition of cardinality at
most N and cooperate (li = 1) in all coalitions with cardinality less or equal
to 3, while he will not cooperate (li = 0) in coalitions of greater cardinality.
Finally, we assume that agents cannot play mixed strategies.

Coalition formation Once strategies are announced, agents randomly
match. If two agents i and j match and min

©
θ0i, θ

0
j

ª ≥ 2 then the coalition
S = {i, j} forms; this coalition is ready to accept another (randomly chosen)
agent h provided min

©
θ0i, θ

0
j , θ

0
h

ª ≥ 3 otherwise h will be the first member of
a new coalition S0 and so on. A CS σ is obtained when = is partitioned in
groups S in such a way thatmin {θ0i}i∈S ≥ |S| (∀S ∈ σ) and there is no couple
of groups S and S 0 in σ such thatmin

©
min {θ0i}i∈S ,min {θ0i}i∈S0

ª ≥ |S|+|S 0|,
i.e. a CS σ is formed whenever no agent is compelled to participate into a
coalition of greater cardinality than the one he is willing to accept and no
two groups are compelled to remain separated when they could join without
the objection of any participant.

Equilibria A configuration of strategies θ∗ = {θ∗i}i∈= is a Nash equilibrium
of the game if it gives rise to aCS σ∗ and a corresponding profile of actions l∗

such that no agent has an incentive to deviate from his strategy. Indeed this
game may have many Nash equilibria and the following example can give an
intuition of this fact:

7This is motivated by the consideration that agents are identical in all physical respects
and differ only as to unobservable characteristics, so that their identity does not matter
for the formation of coalitions. The fact that θ0i is the maximal acceptable cardinality
implies that an agent, signalling θ0i, refuses to participate in all coalitions larger than θ0i
but is ready to belong to coalitions of smaller cardinality.
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Example 1 Suppose that I = 4, ω = 0.635 and α = 1.428. The individual
payoffs from cooperation and defection are reported in the following Tables,
where rows represent the cardinality of a possible coalition and columns the
number of other cooperators in the corresponding coalition

Cooperation
0 1 2 3

1 1 . . .
2 0.5000 1.3454 . .
3 0.3333 0.8969 1.6003 .
4 0.2500 0.6727 1.2002 1.8100

Defection
0 1 2 3

1 0.6350 . . .
2 0.6350 1.1350 . .
3 0.6350 0.9683 1.5319 .
4 0.6350 0.8850 1.3077 1.8382

Clearly the grand coalition with full cooperation can never form as a Nash
equilibrium, because everyone has an incentive to defect. However each of
the following strategy profiles is a Nash equilibrium

∀i, θ∗i = {1, [1, 0, 0, 0]}
∀i, θ∗∗i = {2, [1, 1, 0, 0]}
∀i, θ∗∗∗i = {3, [1, 1, 1, 0]}

They give rise to the following partitions of society in groups characterized
by full cooperation

θ∗ → σ∗ = {Sk}4k=1 , |Sk| = 1
θ∗∗ → σ∗∗ = {Sk}2k=1 , |Sk| = 2
θ∗∗∗ → σ∗∗∗ = {S1, S2} , |S1| = 3, |S2| = 1

Indeed any partition of society in groups {S1, . . . , SK} such that 1 ≤
|Sk| ≤ N̄ (α) where N̄ (α) is the cardinality of the maximal coalition in
which cooperation is incentive compatible for all its members8, is a Nash
equilibrium for a suitable configuration of strategies; for example the CS
σ0 = {S 01, . . . , S 0K}, 1 ≤ |Sk| ≤ N̄ (α), is certainly a Nash equilibrium if i’s
strategy is θi = {θ0i, θ00i } = {|S0k| , [1, . . . , 1, 0, . . . ]}, Sk 3 i, where the last 1
in the conditional action part of θi is in the |S 0k|th position.

8Provided 1
2 < ω < 1, N̄ (α) is the integer part of the value of N solving the equation

Nα − (N − 1)α − ω · N = 0. N̄ (α) is monotonically increasing in α, so that all agents
merge and cooperate in the grand coalition provided α ≥ α∗ > 1, where α∗ solves Iα

∗ −
(I − 1)α∗ − ω · I = 0. Furthermore, since N̄ (α) < 2 for α ≤ 1, it follows that increasing
returns are a necessary condition in order to observe cooperation in groups of at least 2
agents. Finally, for α ∈ (1,α∗) cooperation can emerge just in coalitions that are proper
subsets of =; this is the case we will deal with in the rest of the paper.
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Among all Nash equilibria the CS in which all, but possibly one, coali-
tions have cardinality N̄ (α), is particularly interesting because it implies the
maximum aggregate output and furthermore it is a coalition-proof Nash equi-
librium (see [13]). However the implementation of this refinement presumes
a lot of communication and coordination capacities on the side of agents.
To see this take the Nash equilibrium situation in which every agent plays
the strategy θ∗i = {1, [1, 0, 0, 0]} and the CPNE profile in which, for every i,
θ∗∗∗i = {3, [1, 1, 1, 0]}; to reach the second from the first at least three agents
has to correlate their strategies and mutate both the maximal acceptable car-
dinality and the conditional action part of their strategies. While this seems
plausible in small groups, where communication can take place easily and at
no cost, it seems less justifiable in large societies where the search for precom-
mitments may be very resource expensive. Therefore the problem remains
open about what are the most plausible outcomes of the social interaction
out of the multiplicity of Nash equilibria, when the pre-play communication
phase is not allowed.
In this paper we analyze this equilibrium selection problem by adopting

an evolutionary approach. We suppose that agents play repeatedly the game;
at each stage they choose their strategies on the basis of their beliefs on the
other agents’ behaviour, having as time-horizon only one period (i.e. they
play a series of one-shot games). Then, at the end of every period, agents
revise their beliefs on the basis of experience. While the fact that agents
will finally play Nash equilibria is an expected outcome, our focus will be on
the question on which Nash equilibrium agents will play. In this we will pay
attention to key factors, as initial beliefs and shape of learning processes,
driving the selection among the possible (Nash) equilibria.
The analysis is performed by computational experiments; the next Section

describes the details of the artificial setting we use for the simulations.

3 The design of the simulation
The basic idea behind the simulation is to represent the evolution of the game
as a sequence of periods. At the beginning of each period every agent plays a
strategy stating the maximum cardinality of the coalition he intends to belong
to and the action he will take, conditional upon the effective cardinality of the
realized coalition. The choice of a strategy is the outcome of a maximizing
process conditional on the current period beliefs about the actions of the
others; the decision process is implemented by GA, that, as we will see,
provide a very intuitive way to model learning and emulation, two crucial
aspects of any decision process.
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The strategies θ = (θ1, ..., θI) played by the agents and the randommatch-
ing process described in the previous Section determine the CS σ and the
agents’ actions l = (l1, ..., lI) of the current period. Given σ and l, every
player uses this new information to upgrade his beliefs and receives his pay-
off. This concludes the period. The simulation goes on until a persistent
pattern in the CS emerges (see Appendix B for more details). In the follow-
ing we describe the various components of this procedure in more details9.

3.1 Initial beliefs and agents’ type

In this game agents play their “best” strategy given their expectations on
others’ behaviour; according to the two parts of a strategy, agents have two
forms of expectations:

1. the probability that a coalition of size N will form if one communicates
his willingness to participate in coalitions of size at most S. This prob-
ability is indicated by Pi (N |S) and we assume that, at the beginning,
everyone believes that all coalitions of smaller size than S are equiprob-
able, i.e. P̄i (N |S) = 1

S
, 1 ≤ N ≤ S, and P̄i (N |S) = 0, N > S, for all

S ∈ [1, I]. This hypothesis corresponds to the case that agents do not
know the rule governing the formation of coalitions, except for the fact
that they are to be voluntary10.

2. the probability that other people in a coalition will cooperate; in this
respect, and to keep things as simple as possible, we distinguish only
three different types of initial beliefs

• optimistic agents: agents of this type assign high confidence to the
fact that other people are cooperators; more precisely they believe
that any other agent is a cooperator with probability p = 0.9 ir-
respective of the size of the coalition he may be into. Therefore
the initial probability Q̄i (n|N) of finding n other cooperators in
a coalition of cardinality N is the value at n of the binomial dis-
tribution with probability 0.9 and N − 1 trials.

• mildly optimistic agents: they start playing with a lower con-
fidence about the cooperative attitude of the other agents; for
them the probability that any other agent will be a cooperator,

9The software used for the simulation is available from the authors upon request.
10We performed our analysis also for the case in which agents have heterogeneous beliefs

on the coalition cardinality and the results do not change. This shows that the cooperation
beliefs are the key factor in deciding which strategy has the highest expected payoff.
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irrespective of the size of the coalition, is p = 0.6, i.e. the initial
probability Q̄i (n|N) of finding n other cooperators in a coalition
of cardinality N is the value at n of the binomial distribution with
probability 0.6 and N − 1 trials.

• pessimistic agents: agents of this type assign a very low probability
to the fact that anyone else is a cooperator, i.e. for them we set
p = 0.3.

It is trivial to observe that the more optimist an agent is (i.e. the higher
the value of p) the greater is the cardinality of the maximal coalition in which
the corresponding agent is ready to cooperate (naturally always within the
limit of N̄ (α))11. As an example take the situation described in the example
1; the following table reports the expected payoffs for eight different strategies
related to the three different types of initial beliefs:

Initial Beliefs
Opt. M. Opt. Pess.

{1, [1, 0, 0, 0]} 1 1 1∗

{1, [0, 0, 0, 0]} 0.635 0.635 0.635
{2, [1, 1, 0, 0]} 1.1304 1.0036* 0.8768

Strategies {2, [1, 0, 0, 0]} 1.0425 0.9675 0.8925
{3, [1, 1, 1, 0]} 1.2406* 1.0224 0.8126
{3, [1, 1, 0, 0]} 1.2274 1.0417 0.8698
{4, [1, 1, 1, 1]} 1.3379 1.0466 0.7739
{4, [1, 1, 1, 0]} 1.3505 1.0810 0.8356

We can see that, for the optimists, the maximal coalition that can form
with full cooperation is of size 3; indeed, even if to play a strategy with a
maximum acceptable coalition of 4 has a greater expected payoff, however the

11The values of the probabilities determining the degree of optimism are appropriately
chosen in order to make the optimist to sustain cooperation in the 3 person coalition, the
mildly optimist in the 2 person coalition and the pessimist to sustain cooperation only
if he is alone. The following table reports in the second row the minimum values of the
probability with which an agent in a coalition cardinality from 1 to 4 (first row) should
expect that everyone else in his coalition will cooperate, in order to cooperate himself:

|S| 1 2 3 4
p 0 0.39 0.77 1

.

This means that cooperation is always the best action for an agent in the singleton coali-
tion; in a coalition of 2 persons, an agent cooperates only if the probability with which he
expects that the other cooperates is at least 0.39 and so on. Defection is always the best
action when an agents finds himself in a coalition of cardinality greater than 3.
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dominant strategy in that situation would be to defect. In the same manner
the mildly optimists will sustain full cooperation in coalition of cardinality
2; finally pessimists will cooperate only in the singleton coalition. In other
words, optimistic beliefs can sustain a strongly associative (SA) behaviour,
mildly optimistic beliefs can sustain a weakly associative (WA) behaviour and
pessimistic beliefs sustain only a non associative (NA) behaviour. Starting
from this consideration, in the sequel we will term SA those that are ready
to aggregate and sustain cooperation in coalitions of at least 3 persons, WA
those that are ready aggregate and sustain cooperation in coalitions of 2
persons and NA those that are ready to form just singleton coalitions. One
of the purposes of the simulation is just to map any configuration of initial
beliefs to a configuration of final behaviours, in order to see how interaction
and learning modify beliefs and consequently final outcomes.

3.2 Revision of beliefs

Individual expectations are revised through time. Starting from prior beliefs,
posterior distributions are formed taking into account observations; observa-
tions are relative to the local experience of an agent, i.e. he can know only the
cardinality of the coalition he happens to be into and the profile of actions of
the other members. We assume that the mechanism governing the process of
revision of expectations is of a very simple type and takes the characteristics
of a reinforcement learning. In this we assume that agents are naive in the
sense that

1. the realization of a coalition (and its cardinality) is regarded as con-
tingent upon the strategy an agent plays, so that the realization of a
coalition of small cardinality when the strategy signalled the willingness
to accept only coalitions of small size does not affect the probability
that an agent assigns to the same coalitional size as a consequence of
communicating the willingness to accept larger coalitions and

2. the realization of a certain level of cooperation is contingent upon the
cardinality of the realized coalition, so that the realization of a low level
of cooperation in a large group does not affect the probability assigned
to the same level of cooperation in coalitions of different size.

To formalize this process of beliefs revision, consider the expectations
about the cardinality of a coalition12 and let Ht

i (N |S) be the relative fre-
quency with which agent i observed the formation of a coalition of cardinality
12The same analysis could be performed as to the beliefs about the expected number of

cooperators.
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N up to period t as a consequence of playing a strategy θ in which θ0i = S;
then for any t > 0

P t+1i (N |S) =

½
(1− δ) · P ti (N |S) + δ ·Ht

i (N |S) if θ0ti = S
P ti (N |S) otherwise

(1)

P 0i (N |S) = P̄i (N |S) given,

where δ is a parameter measuring the importance of experience in the for-
mation of beliefs.
Equation (1) states that agents revise the prior on the possible events en-

suing from S on the basis of the relative frequencies with which they occurred
in the past, including last period observation, but the same last period ob-
servation is not used to modify the beliefs concerning the possible outcomes
of different strategies.
To better understand the properties of this learning mechanism, assume

that an agent i plays always the same strategy, so that he is always ready to
accept coalitions of the same cardinality S; then we have that

P t+1i (N |S) = (1− δ) · P ti (N |S) + δ · T (N)
t

P 0i (N |S) = P̄i (N |S) given

where T (N) is the number of times a coalition of cardinality N occurred up
to period t. By this we get that

P ti (N |S) = (1− δ)t · P̄i (N |S) + δ ·
tX
s=1

(1− δ)t−s · T (N)
S

i.e. there is a progressive decay of a priori probability P̄i (N |S) at a rate −δ
and, in the limit, the individual beliefs tends to the observed frequencies.
We stress that, even in the case in which all agents would share the same
initial beliefs, since every agent has different information about the history,
the individual beliefs, at least in the first period, may become heterogeneous.

3.3 The decision process

GA is the engine by which strategies are selected and reproduced to arrive
to a strategy that is “optimal” given individual beliefs; in this process also
new strategies are created and evaluated. This algorithm seems well suited
to our purposes because it offers a very intuitive way to model the decision
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process typical in the evolutionary approach, where trial-and-error learning
and imitation are two crucial aspects13.
Building on the idea of natural selection, GA start working on a set of

candidate strategies for a given period and select the strategies with the
highest fitness, calculated as the expected payoff given the beliefs on oth-
ers’ strategies, and “recombine” their single components (building blocks) to
produce new ones. An intuitive interpretation of these building blocks is
to consider a strategy as the result of different components; for example a
component could be the action for a coalition of a certain cardinality; if this
action is particularly efficient (and this is measured by the fitness of string),
then GA will tend to use this component in the formation of new strategies.
The performance of GA is further aided by what has been termed imitation:
in this context imitation means that an agent uses the observable part of the
strategies played by others in his coalition as new building blocks (genetic
material) to produce better strategies. In the following we briefly describe
the working of the GA procedure.

Encoding The first step is to represent the strategy in a way that can be
handled by GA. This is done by coding a strategy in a binary alphabet as
a string of bits; the first indicates the maximum cardinality of the coalition
agent intends to belong to (this encodes θ0i) and the second the contingent
plan of actions (θ00i ) conditional on the cardinality of possible coalitions. For
example take an economy with 4 agents; in such a case a possible strategy is
a string like the following:

0 1| {z }
maximum cardinality

1 1 1 1| {z }
conditional actions

By this strategy an agent intends to form a coalition with a maximum ac-
ceptable cardinality of 3 ( 0 1 in binary alphabet) and cooperate in every
coalition he can belong to (the first three bits of the second substring are 1,
which means cooperation)14.
Therefore the set of rules (strategies) is a J × L binary matrix, where J

is the number of strategies coexistent in the population (the “mind” of an
agent) and L is the number of bits necessary to express a CS in binary form.
13Moreover, by a computational point of view, GA has been proved to be very efficient

in searching for a solution in highly dimentional spaces, which is particularly useful in our
case, where agents are looking for the best strategies in a solution space that, according
to our encoding procedure (see later), is the

³
I + log(I)

log(2)

´
-dimentional hypercube.

14We use a string with a fixed length to simplify algorithm implementation, although,
in this case, the 4th bit in the second substring is not necessary (indeed the maximum
cardinality for this strategy is equal to 3).
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As it is well known, GA work sequentially and their procedure is made
up by three basic steps: (i) selection, (ii) recombination and (iii) mutation.
Each of them will be dealt with separately.

Selection In the biological evolution, the greater is the ability of a species
to adapt and cope with the environment, the higher is the probability for it to
survive and reproduce; similarly GA privilege those strings (strategies) with
the highest fitness, giving them the highest chance to survive and reproduce.
In order to model this mechanism we assume that J strings are drawn from
the available population, where the probability of a string to be drawn is
positively correlated to its fitness indexes F ti (j)

15. In this way the highest
is the fitness index the highest is the probability that the corresponding
strategy is selected and passed to the next step of the procedure; conversely
strategies with a low fitness index are candidate to be eliminated soon, since
they proved inefficient.

Cross-over The mere selection of the fittest strategies serves the purpose
to refine the set of current schemas but does not allow for the discovery of
better ones. This further step is accomplished by recombining the building
blocks of the selected proposals, as in the natural process of procreation and
consequent exchange of genes. By “mixing” the building blocks (genes) of
the fittest strategies we get new strings with an hopefully enhanced capacity
of adaptation to the environment; such a mixing is called cross-over. There
are several ways to model the crossing over of strings. We adopt the most
commonly used in the literature: first a couple of strings is picked up at
random from the set of selected strings (they are candidate to be parents)
and, with a certain probability, they mix their genes. This means that each
of them is partitioned into two substrings of length v and L− v respectively,
where v is a random integer drawn from an uniform distribution over the
interval [2, L− 1]; finally two substrings of equal length are interchanged
and, by recombination, we get two new strings. For example take the pair of
strings

1 1 0 1 1 0

1 0 1 0 1 0

and suppose that the random integer v = 2 is drawn; then each string is cut
respectively into two substrings of length 2 and 4 and the two substrings of

15In our computational experiment, the Geometric Selection algorithm has been used;
see Appendix A for details.
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length 4 are interchanged

1 1 0 1 1 0
↓ ↑

1 0 1 0 1 0

Recombination of substrings finally yields the following two new strings
(strategies)

1 1 1 0 1 0

1 0 0 1 1 0

The newly generated proposals are substantially different from their parents,
although they are “based” on them.

Mutation A crucial element in any evolutionary process is chance. The
presence of chance in our context is taken into account by adding a further
step in the GA procedure in which every single bit in the set of strings is
subjected (with a low probability) to a random mutation of its state. By this
trick we avoid the lock-in phenomenon and we help search to escape from
local inefficient optima.

Imitation A crucial aspect of any learning process is to emulate the most
successful strategies played by the opponents. To make more realistic the
analysis we consider that agent i can imitate only what he can observe,
i.e. only the cardinality of his coalition, that provides new information on
the maximum acceptable cardinality, and the actions actually played by the
agents belonging to his coalition (not their full strategies, that are unobserv-
able). Therefore he will replace some of the best candidate strategies with
new ones obtained modifying the formers both in the maximal cardinality
part and conditional action part so as to incorporate the new accruing in-
formation. For example if agent i is in a coalition of 3 agents and all others
cooperate, he modifies some of his strategies so as to set to 3 the maxi-
mum acceptable cardinality and to 1 the third bit of the second substring.
Therefore, if one of his strings was

1 1 1 1 0 0 ,

he could modify it according to observed realization as to become

0 1 1 1 1 0 .
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Fitness The fitness of a string is nothing but its expected payoff conditional
on the individual beliefs P ti (., .) and Q

t
i (., .) in the period in which it is to

be evaluated. In particular, if an agent consider playing a strategy θ =
{θ0, θ00} = {θ0, [θ001, . . . , θ00N , . . . θ00I ]}, Qti (n,N) · P ti (N, θ0) is the probability
with which i expects to find himself in a coalition of N people with other

n and Qti (n,N) ·P ti (N, θ0) ·
µ
(n+θ00N)

α

N
+ (1− θ00N) · ω

¶
is the expected payoff

in that situation. Therefore the expected payoff of playing θ in period t, i.e.
the fitness F ti (θ) to the strategy θ = {θ0, θ00} is given by

F ti (θ) =
θ0X
N=1

"
P ti (N |θ0) ·

NX
n=0

Qti (n|N) ·
µ
(n+ θ00N)

α

N
+ (1− θ0N) · ω

¶#

where θ00N is the N
th component of the conditional action part of the strategy

θ.

4 Computational experiments and results
Our computational experiments can be divided in two main stages; in the first
we analyze how, setting the parameters regarding learning speed and com-
putational ability to appropriate values, a population composed by agents
with heterogeneous initial beliefs evolves through repeated interactions by
learning and experimentation (see Section 4.2). In the second we analyze
how our findings are robust to changes in the degree of computational ability
and in the learning speed (see Section 4.3).
In any stage we run several simulations changing, for a given distribution

of initial beliefs, the seed of random number. This is necessary to eliminate
possible random disturbances, deriving from the fact that agents’ initial set
of candidate strategies are randomly generated and GA make use of random
numbers. From another point of view, we can say that a further source of
heterogeneity among agents is introduced by the differences in the initial
set of candidate strategies (see [26]), so that it is necessary to run many
simulations with different random numbers in order to eliminate this fact.
We identify equilibria with positions of the system that do not show “sig-
nificative” changes over appropriate number of periods. The presence of
such resting states is captured by a stopping condition, that is detailed in
Appendix B.
The next Section reports the value of parameters common to all simula-

tions.
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4.1 Parameterization

For simplicity we limit our attention to an economy with just 16 agents; even
if the economy is so simple, the set of possible strategies is very large being
made up by 220 elements. As regarding to the parameters of model we set
α = 1.428 and ω = 0.635; these values respect all the constraints of Section
2, i.e. 1 < α < α∗ (in the present case the condition Iα − (I − 1)α − ωI = 0
gives α∗ = 1.6608) and 1

2
< ω < 1. Given these parameters, the cardinality

of the greatest coalition capable of sustaining cooperation is N̄ (α) = 3, so
that every partition of 16 agents in coalitions with 3 or less agents with full
cooperation are Nash equilibria. The CPNE is given by 5 coalitions of 3
agents and 1 of one agent; it is easy to check that this configuration implies
maximum aggregate output, subject to the individual incentive constraints.
Regards to GA, we set to 30 the number of strings forming the individual
population of rules (that is J = 30), the parameter for the geometric selection
to 0.8 (that is pgs = 0.8, see Appendix A), the crossover probability to 0.6
and the mutation probability to 0.01.

4.2 Equilibrium selection

In this section we study the profile of equilibrium strategies with respect to
the agents’ initial beliefs.
We set the speed of learning process equal to 0.25 (that is δ = 0.25), the

number of iterations of GA per period equal to 25 (see Section 4.3 for more
details) and consider 153 different compositions of initial population defined
on the basis of agents’ initial beliefs (any possible permutation of 16 agents
for the possible three types of initial beliefs). For every possible composition
of initial population we ran 50 simulations, modifying the seed of random
numbers, so that we have 153× 50 = 7650 observations.
The following Figure reports in a three dimensional simplex the frequency

of the rest points of the simulations. Every vertex corresponds to a popula-
tion composed by only one type of agents; in particular the vertex on the top
corresponds to a population with only NA agents, the vertex on the right-
bottom to a population of only WA agents and finally the vertex on the
left-bottom to a population with only SA agents. Every point in the simplex
corresponds to a mixture of these three types of agents and the darker is the
color of that point the higher is the frequency with which the corresponding
combination of types occurs in the simulation.
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[SA WA NA]=[0 16 0] [SA WA NA]=[16 0 0] 

[SA WA NA]=[0 0 16] 

Figure 1

Figure 1 shows that most of the rest points is characterized by a popula-
tion of WA and NA agents and only few simulations converge to a population
with a significative amount of SA agents (in particular the shadow zone on
the left represents more or less the 15% of total rest points, while the shadow
zone on the right the 80%). It is worth observing that populations composed
only by SA and NA agents (all the rest points near to the segment on the
left) and those with only WA and NA agents (all the rest points near to the
segment on the right) are the most frequent, while population composed by
SA and WA agents show difficult to coexist (all the rest points near to the
segment on the bottom).
However notice that Figure 1 does not show how the rest points are

related to the initial composition of the population. To see this we calculate
the number of times a simulation converged to every points in the grid (all the
possible rest points) and consider only those for which this number is greater
than 1/100 of the total number of simulations (that is 7560/100 = 75.6);
we find that most simulations converge to two main sets, one on the right,
denoted as A, and one on the left, denote as B, of simplex. Moreover we
characterize the basin of attraction of these two sets by calculating for every
possible starting point the percentage of simulations converging to one of two
sets. The following Figure reports the results:
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Share of possible equilibrium configuration : 0.098039 Share of initial conditions leading to A: 0.7834

Share of possible equilibrium configuration : 0.058824 Share of initial conditions leading to B: 0.1234

A 

B 

Figure 2

On the left of Figure 2 we represent the two attractor sets (A and B),
while on the right the two basins of attraction, where the depth of the gray
is proportional to the probability of convergence to the relative attractor set;
we note that the set A is greater than set B (respectively 9.8% and 5.9% of
all possible rest points), but the basin of attraction of the first one is greater
than the second one (respectively 78.3% and 12.3% of the total number of
simulations). Notice that the two attractor sets count for more than the 90%
of the total number of simulations.
The light gray zone on the frontier of two basins represents the initial

populations for which the convergence to one of two sets is not well defined,
that is, starting from those configurations of the population, the probability
of convergence to both sets is considerably greater than 0. For example,
an initial population composed by 14 optimistic agents, 2 mildly optimistic
agents and 0 pessimistic agents has a probability equal to 0.32 to converge
to the set A and 0.56 to the set B, while an initial population composed
by 12 optimistic agents, 2 mildly optimistic agents and 2 pessimistic agents
has a probability equal to 0.50 to converge to the set A and 0.38 to the set
B; heuristically the number of optimistic agents is crucial in deciding the
probability of convergence to B.
Our previous findings are confirmed by the following Figure in which to

every possible initial configuration of the population is associated the average
payoff in the corresponding resting points:

19



1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

Figure 3

The low efficiency of the resting points is evident. The most efficient CS,
corresponding to the CPNE, is given in our case by 5 coalition of size 3 and
a coalition of size 1 and it corresponds to an average payoff of 1.5628. We
see that only the simulations where almost all the population have optimistic
initial beliefs converge to this result, otherwise the average payoff is notably
lower. As we expected there is a strong relationship between the composition
of initial population and the average payoff of the corresponding rest points.
According to Figure 2 we see that if the number of mildly optimistic agents
is greater than a certain threshold with respect to the number of optimistic
agents, then the corresponding rest points are characterized by an average
payoff lower than the one could be theoretically expected on the basis of the
composition of the initial population (indeed the basin of attraction of the
set A includes initial population where optimistic agents are a relevant part).
This result is due to the free-riding behaviour of mildly optimistic agents in
coalitions of size 3 (given their beliefs, this is their best action), which causes
the optimistic agents to revise their beliefs downturn. However, if the number
of mildly optimistic agents is very low, it is possible that the cooperative
behavior of optimistic agents affect the beliefs of mildly optimistic agents,
inducing the latter ones to cooperate in coalitions of size 3. The following
Figure, reporting the difference between the effective average payoffs and the
theoretical average payoffs calculated on the basis of the initial population,
confirms this intuition:
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Figure 4

The initial populations where mildly optimistic agents are a few (1 or 2)
and optimistic agents are the majority (from 8 to 16) converge towards the
set B and therefore the effective average payoff is higher than the theoretical
one (in Figure 3 this is represented by the three small light areas on the
left); in other words the mildly optimistic agents become optimistic agents
and cooperate in coalitions of size 3 (this is also evident from Figure 2 if we
consider the extent of the basin of attraction of the set B). On the contrary,
when the number of mildly optimistic agents is relevant (from 3 to 8), even if
optimistic agents are always a significant part of the initial population (from
13 to 7), the system converges with higher probability to the set A (see Figure
2) and therefore the effective average payoffs are considerably lower than the
theoretical ones.

4.3 Agents’ computational ability and learning speed

There are important contributions in the literature showing the importance
of agents’ computational abilities in the selection of an equilibrium (see [1]),
as well as of their learning speed (see [14]). In our context the computational
ability is measured by the number of iterations of GA per period, while
the speed of learning is measured by δ. In the following we analyze how
our findings are affected by these two parameters and provide example of
simulations with alternative values.
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4.3.1 Computational ability

It is evident that agents’ computational abilities can affect the rest points of
the simulation, since they affect the accuracy of the individual maximization
process. Therefore it is worth to analyze this aspect in order to eliminate a
possible bias in the results. We ran several simulations with 16 optimistic
agents, setting δ = 0.25 and varying the number of iterations of GA per-
formed in every period from 1 to 50. The following Figure reports the most
significative statistics (average coalition cardinality, average number of coop-
erators, average payoffs, average convergence time with respect to the number
of iterations of GA for period)16:

0 10 20 30 40 50

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

Avg Num. of Coop. and Avg Coal. Card.

0 10 20 30 40 50

1.44

1.46

1.48

1.5

1.52

1.54

Average Payoff

0 10 20 30 40 50
102

104

106

108

110

112

114

116

118

120

Average Convergence Time

Figure 5

Figure 5 shows that a number of iterations of GA equal to 25, that is
the one we have considered in the previous Section, guarantees that the rest
points are not substantially affected by the agents’ computational ability
(indeed this already holds for a number equal to 5). We note that for a low
number of iterations of GA, that is in presence of “imprecisions” in agents’
decision process, both the average cardinality and the average payoff are
remarkably lower.
To investigate thoroughly this aspect we ran a simulation where the num-

ber of iterations of GA is set to 1. The following Figure reports the results:

16The top line in the first picture of Figure 5 depicts the average cardinality of the
formed coalitions, while the lower line reports the average number of cooperators when
the number of iterations of GA varies as reported on the horizontal axis.
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Share possible equilibrium configuration : 0.0065359 Share of initial conditions leading to A: 0.012418

Share possible equilibrium configuration : 0.098039 Share of initial conditions leading to B: 0.92261

A 

B 

Figure 6

As we expected, the greater imprecision in the decision process leads to
the formation of coalitions of smaller cardinality; in particular the attractor
set on the left disappears, the one on the right collects more than the 92% of
the total number of rest points and another attractor set appears, whose size,
however, is very small. The implications in terms of overall average payoffs
are trivial, so that it is redundant to report the Figure.
This findings can be heuristically explained by the fact that there are

many situations where it is sufficient the presence of just one defector within
a coalition to make defection the best action the next period for all the
agents belonging to that coalition and the inaccuracy in the individual rea-
soning may induce someone to choose the wrong strategy, i.e. one prescribing
defection when cooperation would have been profitable. This mistake will
certainly lower current payoff but, more importantly, will propagate the in-
centive to defect in all coalitions of that size, due to the working of the
expectation revision mechanism.

4.3.2 Learning speed

Another key factor in evolutionary games is agents’ learning speed. In order
to test the importance of this factor we ran several experiments varying the
parameter δ, taken as given a population of 16 optimistic agents and setting
to 25 the number of iterations of GA for period; in particular we consider
101 different values of δ in the range [0, 1] (that is from 0 to 1 with step 0.01)
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and for any value of δ we ran 50 simulations. The following Figure reports
the most significative statistics, whose meaning is the same as in Figure 5:
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We observe that for δ ∈ [0.1, 0.9] the properties of rest points do not
show substantial changes, so that the choice of δ = 0.25 for our previous
experiments seems to be appropriate; however it is worth to investigate what
happens for extreme values of δ.
For low value of δ agents do not learn from experience; they play strategies

indicating an acceptable coalitional cardinality greater than that compatible
with full cooperation and, at the same time, they do not cooperate, given
the persistent (incorrect) beliefs that other agents will be cooperating. As
learning speed increases, agents learn that this strategy is also adopted by
other agents, so that they decrease the acceptable coalition cardinality and
play cooperation (this happens for values of δ around 0.1). The following
Figure reports the attractor sets and the basins of attraction for δ = 0.05:
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Share possible equilibrium configuration : 0.013072 Share initial condition leading to A: 0.040392

Share possible equilibrium configuration : 0.078431 Share initial condition leading to B: 0.60915

Share possible equilibrium configuration : 0.071895 Share initial condition leading to C: 0.16405
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Figure 8

With respect to the case in which δ = 0.25, there is a new attractor set,
denoted as A in Figure 8, characterized by a population with a large number
of NA agents; however there is a sensible reduction in the size of the basin
of attraction of the set B. These results confirm our previous intuition, even
if the basin of attraction of the set C, representing the most efficient rest
points, is slightly increased.
Finally for high values of δ we notice that the average payoff is slightly

decreased. This happens because a higher “reaction” to experience can easily
lead to the destruction of optimistic beliefs in presence of possible “mistakes”
in the formulation of strategies. For example if some agent does not cooperate
in a coalition with cardinality equal or lower than 3 (we know that this is not
the best action for an optimistic agent), this can lead other optimistic agents
to revise drastically their beliefs, so that they will not cooperate in future in
coalitions of cardinality equal to 3. This effect is stronger when the value of
δ increases. The following Figures reports the attractor sets and the basins
of attraction for δ = 0.95:
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Share possible equilibrium configuration : 0.13725 Share initial condition leading to A: 0.6834
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Figure 9

Notice that, with respect to the case in which δ = 0.25, the attractor set
with SA agents disappears, which confirms our previous intuition (of course
this result entails a decrease of the overall efficiency).

5 Conclusions
In this paper we have shown that, if agents adjust their behaviour on the
basis of their experience, then they play the CPNE strategies only if the
population starts out with a priori beliefs that are close to those sustaining
coalition-proof outcomes; in this case the role of the learning process will
be just to size down the dimension of the equilibrium coalitions to the one
consistent with individual incentives to cooperate. The composition of initial
population strongly affects the selection of equilibrium. The computational
experiments highlight how there are two main attractor sets, the first one
characterized by a population composed by a large part of strongly associa-
tive agents and a minority of not associative agents, while the second one is
characterized by a population composed by a large part of weakly associative
agents and a minority of not associative agents. This suggests that equilib-
ria with a population of strongly associative and weakly associative agents
are not “sustainable” because of the free-riding behaviour in large coalitions
of the weakly associative agents. Moreover we observe that the possibility
that weakly associative agents become strongly associative is limited to the
case in which weakly associative agents are a strict minority in a population
with a large share of associative agents. On the contrary, if the number of
weakly associative agents is sufficiently high, we observe convergence toward
an equilibrium in which there are no strongly associative agents. These find-
ings suggest that these two attractor sets can be preserved even in face of
small random perturbations in agents’ beliefs. Therefore a straightforward
extension of this work would be to allow for random mutations in agents
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characteristics in order to test the robustness of the attractor sets from a
purely evolutionary point of view.
Finally we test the robustness of our results for various parametrizations;

we find that the overall efficiency is an increasing function of agent’s compu-
tational capabilities, while an increase in agents’ learning speed can have an
ambiguous effect.
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A Geometric selection
Let F ti be the vector representing the fitness at the period t of the strings
of the agents i. The geometric selection assigns to the string j the following
probability to be selected

Pj =

·
pgs

1− (1− pgs)J
¸
(1− pgs)rj−1 ,

where pgs is the probability of the best string to be selected, J the total
number of strings and rj the ranking of the string j, with the highest fitness
having r equal to 1.

B Stopping condition
The stopping condition is implemented taking in account the possibility that
a sequence of coalition structures can show a cyclical pattern or that possible
temporary departures from steady state can occur just because of the intrin-
sic stochasticity of agents’ decision process. Therefore we adopt a stopping
condition which tests if a change in the coalition structure can be explained
by simple random disturbance around a structural attractor. In particular, in
period t, we consider the distribution of coalitions-cooperators in the periods
from t−n to t−1 (we choose n = 50 in our computational experiments) and
verify that the current period observation is drawn from the same distribu-
tion generating the past observations. In particular, let Ot be the I× (I + 1)
matrix in which the number at the crossing of row r and column c reports
the number of agents that are allocated in a coalition of cardinality r with
c cooperators, and let T t = 1

n
·Pt−1

s=t−nO
s; then we calculate the following

index17

χ =
IX
i=1

I+1X
j=1

¡
Otij − T tij

¢2
T tij

and the simulation is stopped when χ is lower than the value of the χ2

statistics at level 0.99 with ((I − 1) · I) degrees of freedom.

17If hti,j is zero, then in the computing the test we consider a small positive number.
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