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Abstract

This paper examines the evolution of networks when innovation

takes place as a result of agents bringing together their knowledge en-

dowments. Agents freely form pairs creating a globally stable match-

ing. paired agents combine their existing knowledge to create new

knowledge. We study the properties of the dynamic network formed

by these interactions, and the resultant knowledge dynamics. Each

agent carries an amount of knowledge of a certain type, and the in-

novative output of a pair is a function of the partners' endowments

and types. We �nd evidence that the pattern of substitution between

quantity and type of knowledge in the innovation function is vital in

determining the growth of knowledge, the emergence of expertise and

the stability of a number of network structures. Network structure it-

self exhibits a phase change when the relative importance of diversity

compared to quantity increases beyond a threshold value.
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1 Introduction

In the new economy, knowledge takes a great importance as an economic
good. Not only is knowledge tied to innovation and technological change,
it also becomes, perhaps as information, an economic good in its own right.
In both these roles, the production and distribution of knowledge and in-
formation has become a central part of the analysis and discussion of the
economy. The central concern of this paper is precisely this production and
distribution.

Economists have typically shied away from explicit discussions of knowl-
edge creation, as it often seems to demand non-trivial inputs of creativity, and
this is something about which economists have nothing to say. Thus knowl-
edge creation is often discussed simply in terms of cost-reducing, quality-
improving, or productivity-enhancing technical innovations. As such, it is
often modelled as a random event | a �rm makes a draw from a probability
distribution to determine next period's costs (or productivity or quality). If
�rms are thought to be able to a�ect their innovative ability through ex-
penditure, this can be modelled as changing the mean or variance of the
probability distribution.

In this paper we present a more explicit and less \black-boxed" model
of knowledge creation. We take seriously the idea of knowledge creation as
knowledge re-combination. There have been many empirical (largely case)
studies of innovation within �rms showing that the lion's share of economic
value from innovation arises from a process that is largely the re-combination
of existing knowledge.1 Creating knowledge most often involves putting to-
gether knowledge that already exists: knowledge is produced out of knowl-
edge. While there is now signi�cant empirical evidence supporting this view,
there has been virtually no theoretical or abstract work on this issue. The
present paper begins to address that lacuna.

Early models of di�usion, of which two early examples are Griliches (1957)
or Mans�eld (1961), use the epidemic paradigm. In these models popula-
tions are seen as \mixing" in the sense that any agent is equally likely to
come in contact with any other. While this has many advantages as a mod-
elling strategy (not least being that it �ts macro-structures relatively well)
it is somewhat unrealistic. More recently, economists have begun to pay

1See for example Kodama (1986,1992); Gibbons et al. (1994); Sutton and Hargadon
(1996) and Hargadon and Sutton (1997).
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attention to the networks over which information di�uses. In other words,
economists recognize that much knowledge transmission takes place in bi-
lateral (or if multi-lateral, then only multi-lateral among a small number of
agents) interactions. When this is the case, the network over which these
communications take place can be an important locus of investigation.2 In
many network models, though, the network structure is given, and even if
agents have many interactions, any agent interacts with a �xed, and typi-
cally small, subset of the population. But this seems unreasonable in many
instances | an agent will typically change the set of agents with whom he
interacts as he gains experience and learns about where the highest rents lie.

There are also models of evolving networks, but this area of inquiry has
remained relatively unexplored until the last few years. One approach in
the literature is the formation of networks (or coalitions) based on pure cost
considerations. Costs are described by a topological structure based on the
characteristics of the set of individuals: the closer two individuals are, the
less expensive it is for them to establish a relationship (Debreu, 1969; Haller,
1994). Another approach insists on the bene�ts from coalescing, for which co-
operative game theory is a natural framework. Later developments allow us
to distinguish three broad categories: purely cooperative approaches, purely
non-cooperative approaches, and mixed approaches, in particular the notion
of pairwise stability. Qin (1996) explores the cooperative situation, while the
non-cooperative approach is used in Bala and Goyal (1998, 2000). There it
is shown that when players can create one-sided links by simply making the
investment (i.e., an individual cannot prevent another one from connecting
him), a variety of Nash networks can emerge. Jackson and Wolinsky (1996)
consider the equilibrium concept of pairwise stability (individuals can both
severe and form connections), and show that only the star and the com-
plete network are equilibrium outcomes.3 Finally, in a very di�erent frame-
work in which interactions take place among adaptive individuals, a fully
dynamic account of social network evolution can be found in Plourabou�e et
al. (1998), and a speci�c application to buyer-seller networks is in Weisbuch
et al. (1997).

The present paper contributes to the literature on network formation and
evolution in the context of knowledge creation and di�usion. We construct

2See for example David and Foray (1992); Valente (1995); Steyer and Zimmermann
(1998); Cowan and Jonard (1999 and 2000)

3For a good summary of some of the important existing work on game theoretical
analysis of network formation, see Jackson and Dutta (2001).
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a model in which �rms form alliances in order to create new knowledge and
in so doing transmit knowledge between them. We use this structure to
inquire about the relationship between aspects of knowledge creation and
the types of network structures that emerge. The dynamic model we develop
lies between the pure search for Nash equilibria of evolutionary game theory
and the melioration models of social network dynamics.

2 Creating knowledge through interactions

Strong evidence exists regarding the importance of recombination as a form
of innovation and knowledge creation. Economists have pointed out another
recent change in the knowledge environment of �rms. This is referred to as
\the expanding knowledge base" of �rms and industries.4 The general idea
is that in most industries today the technologies both being used and being
produced involve technological expertise that covers a much broader range
of \disciplines" than has hitherto been the case (see Smith, 2000). What
this implies is that types of knowledge necessary to innovate and compete
successfully can lie outside a �rm's main area of expertise. A now common
way of coping with this problem is to form an alliance with a �rm that has
the missing expertise. These cooperative agreements for R&D have grown
dramatically in number since 1976.5 Antonelli (1999) argues that inter-�rm
cooperation can be extremely e�ective in increasing the circulation of tacit
knowledge, and in creating possibilities for a �rm to acquire knowledge out-
side its boundaries. Further though, cooperation can enhance both \the
opportunity for accelerated recombination of the bits of codi�ed knowledge
generated by each cooperating �rm; [and] the scope for capitalizing on poten-
tial complementarities between the variety of �rms and between the di�erent
R&D activities performed by each �rm." (Antonelli, 1999, p. 10).

To model strategic technological alliances in their entirety is far beyond
the scope of this paper, and in particular we make no attempt to include
any issues of intellectual property rights in our discussion. We are inter-
ested, rather, in the nature of the networks of innovators that emerge from
a process in which �rms engage in bilateral cooperation to produce knowl-
edge. Technological alliances can be very rich and varied, not only in terms
of outputs but also in inputs and objectives of the participants, but for our

4See Zimmermann (1995); Cowan and van de Paal (2000).
5See Hagedoorn (2001) for a review and discussion of this trend.
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purposes we can focus on a single e�ect, namely the production of shared
knowledge; and consider only one type of input, namely the pre-existing
knowledge held by the participants.

In this paper we develop a model in which each period every �rm in the
population seeks a partner for knowledge creation. We restrict attention to
bilateral partnerships. Firms come together and pool their existing knowl-
edge to create new knowledge which they then both absorb. Partnerships
last for one period exactly, at the end of which each �rm seeks a new partner-
ship, possibly with the previous partner. That �rms search for (possibly) new
partners each period implies that over time a network of knowledge ows can
form, as �rms create links with several di�erent �rms. The central question
in this paper has to do with the structural properties of these networks and
whether the properties change under di�erent knowledge production tech-
nologies.

When innovation is the outcome of agents' pairwise interactions, rational
agents will seek partners to maximize the expected outcome of the partner-
ship. Put another way, at each period of time, an agent will rank each of his
potential partners on the basis of the expected bene�ts from that interac-
tion. The issue then is to divide the population into n=2 pairs such that each
agent's partner is the best he can have, given everyone else's preferences.

Problems of this sort have been addressed in the literature as matching
problems, as de�ned by Gale and Shapley (1962). Most of the literature
on matching has focused on desirable (stable) associations between agents
of two distinct populations (men and women, �rms and workers, ...), where
each individual tries to �nd a match with one or several individuals of the
other population. In the case at hand, however, individuals belong to a
single population of even cardinality n and search for a match within this
population. This problem, known as the roommate, or one-sided matching
problem (as opposed to the standard two-sided marriage problem), was �rst
mentioned in the original paper by Gale and Shapley (1962) (see also Knuth,
1976).

A one-sided stable matching is a partition of the population into n=2
pairs such that no two individuals can be found who would prefer each other
to their actual partners in the matching. Such a matching does not neces-
sarily exist (contrasting with the standard marriage problem, where a stable
matching always exists).6

6According to Bartholdy and Trick (1986), a suÆcient condition for the existence and
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3 The model

The model is two-part: innovation takes place as a result of the joint ef-
fort of pairs of agents, while in parallel a process of network formation and
evolution is at work. Regarding innovation, individuals' knowledge is com-
bined to produce new knowledge which is added to their existing knowledge
stocks. A production function encompassing both agents' amounts and types
of knowledge determines how much new knowledge is generated. How pairs
form is the second important issue in the model. The ranking agents make
of each other is a function of their joint knowledge pro�le (as explained be-
low). Hence rankings change over time because innovation changes individual
knowledge pro�les. A stable matching always exists (see Proposition 1) so
each period this stable match determines which pairs of agents combine their
knowledge. A number of issues are of interest in this model, falling within
two broad categories: the process of network formation and evolution; and
the properties of knowledge growth. Before examining them, we discuss both
matching and knowledge production in detail.

3.1 One-sided matching

Consider a �nite set S = f1; : : : ; ng of individuals engaged in repeated inter-
actions. Each individual i 2 S is characterized by a real-valued knowledge
endowment, vi, in the form of a quantity of knowledge �i > 0 and a com-
posite index representing a type of knowledge � 2 (0; �=2) : vi = (�i; �i:
This allows a very simple polar representation of individuals, as well as the
existence of a continuum of knowledge types. Individual knowledge level and
type are randomly drawn from a uniform distribution over (0; 1) � (0; �=2)
at the beginning of the process. At each period, agents seek partners with
whom to innovate and improve, as much as possible, their current knowledge
pro�les. Once knowledge has been created and absorbed, agents start again
a round of matching, based on their new knowledge pro�les.

Innovation then, is a process that combines the knowledge of two agents
and produces new knowledge. In this process, all else equal, more knowledge

uniqueness of a stable matching in the roommates problem is that individuals can be
ranked such that each agent prefers a roommate who is closer to him to anyone placed
further away in the ranking. Irving (1985) has proposed an eÆcient algorithm for �nding
a stable matching (provided one exists). By taking advantage of certain features of our
structure we are able to improve signi�cantly on Irving's algorithm.
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will be better. But diversity of knowledge inputs may also matter. Two
agents whose expertise lies in exactly the same �eld are likely not to �nd many
synergies. Thus in general diversity is bene�cial to the innovative process,
and enters positively into the production function. To �x ideas we model
this as a constant returns Cobb-Douglas function, the arguments being the
lengths of the knowledge vectors of the two agents (how knowledgeable they
are), and the extent to which their expertise di�ers, that is, the di�erence
between their knowledge \angles". The extent to which diversity matters is
a parameter we vary as the exponent on the \di�erence in angles" argument
in the Cobb-Douglas function.

A one-sided (or roommate) matching problem is de�ned as follows. Each
individual i 2 S has a strict preference ordering �i over all the individuals in
S�fig (a list of his most preferred �rst). All preferences are total and transi-
tive, and � denotes the pro�le of the preference orderings of the individuals.
The pair (S;�) is called a roommates matching problem. A matching is a
partition of S into n=2 disjoint pairs of roommates, i.e. a bijection � : S ! S
such that � (� (i)) = i for all i 2 S; and � (i) 2 S � fig; for all i 2 S: (Some-
times � (i) = j (or equivalently � (j) = i) is written (i; j) 2 �:) A matching
� is stable in (S;�) if there is no (i; j) =2 � such that

j �i � (i) and i �j � (j) :

When this fails, that is, when j �i � (i) and i �j � (j), both i and j would
leave their partners to match with each other.

In the particular problem examined here, generating the preference pro�le
� is done via a symmetric function r : S2 ! R+ which associates to any pair
of (distinct) individuals a value that represents the innovative output of this
pair.7 The pro�le of preference orderings � is then de�ned by

j �i k , r (i; j) > r (i; k) ; 8i; j; k 2 S; i 6= j 6= k: (1)

Disregarding cases of indi�erence (when there are i; j and k such that r (i; j) =
r (i; k)), it will be shown that a unique stable matching always exists.

7As we have modelled it, r is a constant returns Cobb-Douglas function in amounts
and diversity of knowledge.
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3.2 Knowledge and innovation

There are many ways to characterize knowledge, none of them without its
pitfalls. For our purposes two aspects of knowledge are important|quantity
and type. Recent views of innovation as recombination make it imperative
that any formal characterization of knowledge permit that equally knowledge-
able agents may know di�erent things. That is, the knowledge of an agent
comprises many di�erent types of knowledge. One approach then would be
to formalize knowledge as a long vector, each element representing a di�erent
type of knowledge. Agents di�er then along many dimensions. This proves
cumbersome in implementation however, and is more detailed than necessary
for the issues we are exploring here. A simpli�cation of this approach is to
represent an agent's knowledge as a pair: one element signifying a quantity of
knowledge; the other signifying a type. This representation has the drawback
that it takes what is clearly a complex thing, an agent's knowledge stock,
and represents it as a pair. But it has the great bene�t of simplicity; it is
easily generalized; and does capture some important elements of the nature
of knowledge.

A representation of the innovation process must satisfy several minimal
requirements. Consider two individuals i and j with knowledge stocks (�i; �i)
and (�j; �j) respectively. Suppose they are paired in a stable matching. As in-
novation is jointly conducted, after innovation has taken place, the following
should be true:

� the knowledge amounts held by i and j have increased;

� the knowledge types of i and j have changed;

� the distance between the knowledge types of i and j has fallen.

In a geometric sense, both vectors are longer after the innovative episode,
and the angle between them has decreased, but this still does not give us a
precise idea of the direction of change. A fourth assumption is necessary for
the description of innovation to be complete:

� most often, innovation produces knowledge of a type which is \be-
tween" the types of the two contributors; however, innovation some-
times produces very di�erent knowledge.
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Geometrically, these four assumptions mean that individuals grow by
moving north-east, and most often stay within the cone they lie in before
innovation. Figure 1 symbolically depicts in dotted lines the two zones where
individuals will be driven by innovation, and the way innovation changes
individual endowments, by adding a new vector to the initial endowments.
Most often the type of knowledge e� produced by the innovation lies between
�j and �i, the current types of the two partners, as in the example represented,
but this is not necessarily the case.

-
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Figure 1: Innovation in the space of knowledge

Operationally, each pair of agents creates an amount of new knowledge
determined by the production function, and this amount is simply added to
their existing knowledge endowments. The type of knowledge determined
is a random variable e� distributed according to a truncated normal, with
mean, � = (�i + �j) =2 and standard deviation s: The knowledge type of an
individual is modi�ed by innovation and becomes a weighted mean of his
previous knowledge type and the type of new knowledge generated by inno-
vation. This accounts for the relative importance of old and new knowledge
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in an individual's knowledge stock.
The standard deviation of e� is a parameter we vary. If a technological

system is deeply entrenched in a trajectory, we would expect the standard
deviation to be small. On the other hand, in a case in which there is wide
scope for technological discovery in many areas, the standard deviation of this
distribution would be large. The smaller the standard deviation the more
likely the new knowledge will lie \between" the knowledge of the partners.
Varying this parameter permits us to explore the dynamics of these di�erent
situations.

Formally, the innovation function is r : S2 ! R+ ; with

r (i; j) = j�i � �jj
� (�i�j)

1�� ; � 2 (0; 1) :

Parameter � measures the importance of diversity in knowledge types in
the innovative process. Individual i's new knowledge endowment is simply
�i (t+ 1) = �i (t) + r (i; j) ; and given the innovation is in type e�-knowledge,
i's new knowledge type is

�i (t+ 1) =
�i (t)

�i (t+ 1)
�i (t) +

r (i; j)

�i (t+ 1)
e�;

the weighted mean of his previous knowledge type and the new knowledge
type, where the weights are the relative amounts of knowledge involved.

3.3 The knowledge dynamics

Each period pairs are formed, innovation takes place and endowments change.
At the end of the period the partnership is dissolved. This process is repeated,
and we investigate the long run behaviour of the system. In principle knowl-
edge vectors grow in length inde�nitely, but types of knowledge are bounded
between 0 and �=2. Eventually, in the creation of knowledge, only amounts
matter as that argument will dominate in the production function. This is
clearly unreasonable. To solve this problem we re-normalize every period so
that the population average knowledge vector has length one. What this im-
plies is that data on aggregate knowledge levels have no meaning. However,
we can still reasonably measure growth rates, and variance in knowledge lev-
els across agents. In examining knowledge, two issues are of concern: its
growth and its distribution. and allocation of knowledge in this economy.
The economy's knowledge growth rate is simply the growth rate of the av-
erage knowledge level per period. It will be evaluated along the simulation
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horizon. Since the mean level of knowledge is by de�nition 1, the variance of
knowledge levels �2 = 1

n

P
i �

2
i � 1 provides a good measure of the equality

of the distribution.

3.4 Network dynamics

A relational network exists in this economy, but in a dynamic rather than a
static sense. To study its properties, the list of connections active after the
last ` periods of the simulation horizon are recorded (in practice, we will drop
the �rst 100 realizations and ` will be equal to 2; 000). This we do because
the one-period graph only consists of isolated pairs, whereas over the last
` periods a weighted graph can be constructed by counting the number of
activations for any connection. Let G (S; Vt) be the graph associated with
the stable matching achieved at time t = 0; 1; 2; : : : ; that is Vt (i; j) = 1 if
(i; j) 2 �t and Vt (i; j) = 0 otherwise. The weighted graph recording past
interactions is denoted G (S;W ) ; whereW (i; j) = W (j; i) is the frequency of
activation of the connection between i and j over the �nal ` periods. For this
graph several quantities are of interest. We study the frequency distribution
of collaborations and, following Watts and Strogatz (1998), two structural
parameters: the average path length and the average cliquishness.8

To examine network structure directly, we use path length and cliquish-
ness. Weighted-graph equivalents of path length and cliquishness are con-
structed �rst.9 A measure of local connectivity bearing a strong resemblance
to cliquishness can be computed as

CW =
X
i

X
j 6=i

X
l 6=j

W (i; j)W (i; l)W (j; l) : (2)

The product involved in this triple sum is only non-zero when i, j and l
have all been in contact with each other. So CW is a measure of the extent
to which an individual's partners are partners of each other. Unfortunately
CW does not take its values in a well de�ned range, so its interpretation
is slightly more diÆcult that the standard cliquishness index. Similarly, a
proximity index can be de�ned as the largest value along any path of the

8If one thinks of social networks representing friendship, both have intuitive interpre-
tations. The path length is the number of friendships in the shortest chain connecting two
agents. Cliquishness reects the extent to which the friends of one agent are also friends
of each other.

9In what follows the time index is dropped for the sake of simplicity.
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product of the number of meetings. The general proximity index of i and j
is equal to

LW (i; j) = max
(i1;:::;ik)

W (i; i1)W (i1; i2) : : :W (ik; j) ; (3)

where the maximum is taken over all the possible paths, and we are interested
in LW =

P
i

P
j 6=i LW (i; j) : Proximity is roughly the inverse of path length,

but an interpretation problem analogous to the one mentioned for CW arises
with this statistic.

To address these interpretation problems we consider the original mea-
sures produced by Watts and Strogatz (1998) in a slightly modi�ed con-
text. Instead of working directly on W; rede�ne W (i; j) to be equal to 1 if
W (i; j) � W � and 0 otherwise, where W � is de�ned as follows. As a null
hypothesis assume that the distribution of partnerships is de�ned as a uni-
form multinomial with n � 1 categories. This de�nes a mean and standard
deviation for each element W (i; j). Then choose W � to be equal to the mean
minus 2 standard deviations.10 We can now use the standard de�nitions of
cliquishness and path length.

Formally, de�ning d (i; j) as the distance or length of the shortest path
between i and j; the average path length is

L =
1

n

X
i

X
j 6=i

d (i; j)

n� 1
(4)

and simply measures how distant vertices are on average, which is a global
property of the graph. Average cliquishness C is a measure of local connectiv-
ity capturing the share of active links between any given vertex's neighbours.
It is written

C =
1

n

X
i

X
j;l2W (i)

W (j; l)

ni (ni � 1) =2
; (5)

where ni = #fj j d (i; j) = 1g is the size of i's neighbourhood. These four
statistics together give a reasonably complete description of the structural
properties of the underlying network. We add one simple measure, namely
the average degree of the graph D = 1

n

P
i ni; as a measure of the density of

the interaction structure.
10The value of this algorithm is that it provides a systematic way of deciding whether

W (i; j) is close enough to zero that it can be considered unimportant from the point of
view of network structure. Using the mean minus a single standard deviation as the cut-o�
produces qualitatively identical results.
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4 Existence: Stable matching

Before turning to the emergence of network structure and the associated
knowledge dynamics, we discuss the matching mechanism present in this
model. Because any pair of agents assigns the same cardinal value to their
match, a unique stable match always exists. We can prove this proposition
by construction.

Proposition 1 For any innovation function r : S2 ! R+ generating a

strict preference ordering �, the matching problem (S;�) has a unique stable
matching �.

Proof The algorithm to construct the stable matching is as follows. Let S0 =
S and �0 = f?g: Consider the roommate matching problem (S0;�) ; where
the pro�le of preference orderings � is de�ned by the innovation function
r, as stated in equation (1). As preferences are strict, there is a single
pair (a1; b1) such that r (a1; b1) = max(i;j)2S2

0
;i6=j r (i; j) : No matching which

does not involve this pair could be stable, as a1 and b1 both prefer each
other to any other person they might be matched with. Hence the pair
(a1; b1) is necessarily part of a stable matching. Let �1 = �0 + (a1; b1) and
S1 = S0�fa1; b1g: Consider then the new matching problem (S1;�) : It only
involves n � 2 individuals with exactly the same preferences (modulo those
concerning a1 and b1) as before this operation. Again there is a single pair
(a2; b2) such that r (a2; b2) = max(i;j)2S2

1
;i6=j r (i; j) : Let then �2 = �1+(a2; b2)

and S2 = S1 � fa2; b2g: Repeat until everyone belongs to a pair: the set
� � �n=2 is a stable matching as no pair can blockade it, and it is unique as
the sequence (a1; b1) ; (a2; b2) ; : : : ; (an=2; bn=2) is uniquely de�ned. �

In case of a tie (that is to say when individual i can achieve the same
innovative output with two or more di�erent partners), existence is still
guaranteed but uniqueness is lost. The elimination algorithm to �nd a sta-
ble matching is unchanged, except that when two (or more than two) pairs
achieve the same output, one of them is picked up randomly and the pro-
cedure just iterates. It is worth mentioning that the algorithm for getting
a stable matching in this particular matching problem is much simpler and
faster than the multi-pass algorithm proposed by Irving (1985). However
computational constraints remain heavy: the algorithm for �nding a stable
matching is still polynomial O (n2) and it is repeated every time period; and
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a non-polynomial algorithm is necessary for computing both the path length
L and the proximity index LW :

5 Numerical analysis

There are in the model two parameters that could a�ect the evolution of
the network structure: s, the standard deviation of the distribution from
which the angle of innovation is drawn; and �, the value of diversity in
knowledge production. In the experiments that follow we simply examine
two representative values for s, running each experiment twice, once for high
and once for low s. The e�ects of � we examine in more detail. Random
values of � are drawn from a uniform distribution over (0; 1). For each �
value n = 100 individuals repeatedly interact over a horizon of length 3,000
periods. We build a data sample of 100 di�erent �-values and two s-values
and the associated statistics. We extract the underlying structure from these
data using non-parametric estimation techniques.

5.1 Network dynamics

The emergence of network structure can be described using three indicators:
local order or cliquishness; path lengths; and density or degree of the graph.
We examine the e�ects of two parameters, �, a measure of the importance
of diversity in innovation, and s, which measures the extent to which new
knowledge lies between the expertise of the innovators. In the discussion
that follows, we restrict ourselves to the 0=1 graph. Analyzing the weighted
graph, using the measures discussed above creates a problem of interpreta-
tion, since the measures are not bounded. Graphically, however, the patterns
are identical to those produced by analysing the 0=1 graph.

5.1.1 Density

Figure 2 plots the relationship between density, as measured by the average
degree, and � for two values of s, s = 0:1 (focussed trajectory) and s = 3
(diversi�ed trajectory).

What we observe is that there is a phase change in the structure of the
graph for �� � 0:4. When � � �� the degree is very low. This implies that
agents in general have had very few partners over history, and have tended to
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Figure 2: Average number of connections per individual

interact repeatedly with the same partners. For � > ��, the network is very
di�erent. Agents interact with many di�erent partners over time, no longer
sticking to the same ones. It is worth mentioning that for small values of �
(for both values of s) and for � close to 0.25 in the case s = 0:1, the degree
can be signi�cantly larger than 1 although not systematically. This suggests
a small region (roughly speaking for 0:2 < � < 0:4) where two types of
regimes can exist: a world of pairs (degree equal to one) and a more complex
world of degree above 1 and below 15, depending on the path taken by the
process. After �� by contrast there is only one regime with degree around
50. Also note that when � is further increased after 0.75, the degree tends to
decline when innovation is very localized (small s), while it remains constant
when innovation is less focussed (large s).

In Figure 3 we depict the number of individuals involved only in pairs that
are stable over time, i.e., of individuals having a unique life-long innovation
partner.
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Figure 3: Number of individuals involved in pairs

The phase change that exists for the degree is also present when the
number of paired individuals is considered, with a sharp decline from a large
number (between 96 and 100) below �� to 0 for � > ��. There is also
some noise in the region [0:2; 0:4], with a number of paired individuals that
doesn't follow a clear pattern, a phenomenon similar to what we observed for
the degree on Figure 2. Above �� persistent pairs do not form. Interestingly,
for very small � and a diversi�ed innovative trajectory (large s), no pairs
form and, as we will see when the path length is considered, we even get a
connected graph.

5.1.2 Path Length

We see in Figure 4 the same phase change, at the same value of �� in average
path length as in the density graph.

For � < ��, the graph is disconnected. That is, there are isolated groups
of agents who interact within groups but not across groups. In principle, this
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Figure 4: Average path length between any pair of individuals

makes the average path length in�nite.11 To keep the �gure informative, we
only consider a small range over the y-interval so between 0 and �� most of
the points are invisible. When � > ��, path length is very small. The lowest
possible path length is 1, and exists only in a complete graph. The networks
we obtain are thus not complete (their degree is below 55, and a complete
graph must have degree 99 in our case) but do have relatively short paths.
What this implies is that knowledge ows relatively rapidly around the graph,
and indirect exploitation of distant knowledge, through successive rounds of
innovation, can be an active feature of the economy. It is known that for
a �xed density, random graphs have very short average path lengths. The
formula (which is valid for in�nite size graphs) for the average path length

11Recall that average path length refers to the average path length between pairs of
nodes in the graph. If there is no path between two agents, this creates an in�nitely long
path between them, making the average path in�nite. In our calculation of path length,
two disconnected agents have a path length of 10,000 rather than in�nity. This makes the
calculation possible.
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over a random graph with n vertices and average degree d is ln(n)= ln(d). In
Figure 4 we represent the path length of the equivalent random graph (that
is the random graph with 100 vertices and a degree a given in Figure 2). The
path length in our case is consistently above the path length of the equivalent
random graph. The networks that emerge from our dynamic process are not
random, but do have path lengths approaching those of a random graph of
the same degree. Interestingly, and related to the previous paragraph, it is
worth mentioning that in a diversi�ed trajectory (and to a smaller extent in
a focussed one) there are situations with low � (� � 0) in which path length
is �nite (between 2 and 7 in the �gure).

5.1.3 Local Order and Network Structures

To describe local order we use the standard measure of cliquishness: the
share of my partners who are also partners of each other.
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Figure 5: Average cliquishness

Like the previous structural measures, cliquishness shows a phase change
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at the same value of ��. Cliquishness is not de�ned for a graph of disjointed
pairs, so our convention is to assign a value of zero for cliquishness of a pair.
At the other extreme, a complete graph has a value of 1, and so does a
collection of complete disconnected components. In �gure 5 we see for small
values of � many networks with C close to 0, but most often strictly positive.
Since we know that the graph is disconnected here (and thus not complete)
this means that we must be observing the emergence of a \caveman graph",
that is, a graph of disconnected, complete subgraphs. From �gure 2 it is
clear that the caves are very small, since the average number of connections
per agent is between 1 and 3. When the value of the average cliquishness
gets very small, is that there are many isolated pairs in the network. In
this part of the parameter space \only length matters" so the two agents
with the most knowledge will partner, and create the largest innovation,
thus maintaining their positions as the most knowledgeable agents. Their
partnerships is stable, as is the partnership of the next most knowledgeable
pair, and so on. There is a small range, roughly 0:3 < � < 0:45 in which
the graph consists of several, but a falling number of, subgraphs which are
themselves highly cliquish. We no longer have a caveman graph, but rather
several connected, but not complete subgraphs.

The cliquishness of the equivalent random graph almost perfectly tracks
the observed cliquishness, whatever the value of s.

5.2 Knowledge dynamics

Figure 6 depicts the relationship between the long-run economy-wide knowl-
edge growth rate and �.

For both values of s there seem to be, again, two regimes of knowledge
growth | one associated with a disconnected graph, and one with a con-
nected graph. In both regions knowledge growth rates as diversity becomes
more important. The contrast between large and small s is explained by the
fact that with a small value of s, there is a natural convergence over time
in the knowledge type of the population. Since innovations tend to occur
\between" the knowledge of the members of the innovating pair, knowledge
types converge over time. When � is large, diversity is important, and this
convergence e�ect reduces growth. When s is large, however, diversity is
preserved over time, since there is a large variance in the type of knowledge
created, so the natural convergence is mitigated by the randomness here.

Again, though, there is a small ambiguous region, for 0:25 < � < 0:4,
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Figure 6: Growth rate of the average knowledge level

where there is some intermediate behaviour between that of the connected
and disconnected regimes. As discussed above, in this region we see the emer-
gence of something resembling a caveman graph | small connected (some-
times complete) sub-graphs within the disconnected total graph. Within
each cave, we have the behaviour of a connected graph, which, holding �
constant, is good for knowledge production.

The issue of equity is addressed by considering  = �=�; the coeÆcient
of variation of individual knowledge levels. CoeÆcient  measures how dis-
persed around the average individual the population is, relative to this av-
erage individual. As we re-normalize at each time step, the coeÆcient of
variation reduces to the standard deviation. Figure 7 depicts the way 
varies with �.

For � < ��,  is approximately equal to 7, which corresponds to a situa-
tion in which knowledge is concentrated in the hands of exactly 2 individu-
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Figure 7: CoeÆcient of variation of individual knowledge levels

als.12 There is a �rst fall in dispersion a bit before the critical �, and then a
very marked one down to a point where under both small and large s things
stabilize. For small s the coeÆcient of variation stays around 1 whereas it
stabilizes in the vicinity of 0.5 for large s. Hence dispersion decreases with �
in a non-smooth way, and the decrease is more marked when the trajectory is
more dispersed, undergoing a phase change which again is very comparable
to what could be observed concerning network structure. In the beginning of
the parameter space \only length matters" so the two agents with the most
knowledge will partner, and create the largest innovation, thus maintaining
their positions as the most knowledgeable agents. Their partnerships is sta-
ble, as is the partnership of the next most knowledgeable pair, and so on. As
renormalization carries on, we end up with all the \renormalized" knowledge

12Given that we renormalize knowledge levels each period, the standard deviation is
equal to 7 if and only if 98 individuals have 0 (or almost 0) and 2 have 50, for an average
1.
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being held by the two most knowledgeable individuals. It takes a signi�cant
weight on variety to combat this tendency and to allow for pairs to uctuate,
entailing that homogeneity in terms of levels decreases. It is worth men-
tioning that at the other end of the parameter space, \only angle di�erence
matters", which means that the two most distant (in angle) individuals will
be matched, so will the next more di�erent individuals, and so on. However
the size of their innovation does not matter, only angles do. So with time,
because innovation tends to take place \between" the knowledges of the in-
novating pair, there is a trend of decreasing diversity in the population, as
all agents lie between the two most extreme agents of the previous period.
This e�ect is mitigated, of course, as s increases.

6 Conclusion

In this paper we have focussed on issues of knowledge dynamics and emerg-
ing network structures when agents create knowledge through partnership
agreements. We have emphasized that knowledge creation through coopera-
tion can be a complex process that involves pooling the competencies of the
partners in di�erent ways, depending on the nature of the innovation pro-
cess. Similarly, given a pooling structure, di�erent types of knowledge can
be either substitutes or complements for each other in the innovation process
itself. The former consideration is represented by the � parameter in our
model, the latter by the elasticity of substitution � in a constant elasticity of
substitution production function. Both parameters a�ect the results, both in
terms of the rate of knowledge production, and in terms of the network struc-
ture. Knowledge creation is fastest when the knowledge creation production
function exhibits complementarity in its inputs. The nature of knowledge
pooling has no noticeable e�ect however. By contrast, heterogeneity among
agents regarding their knowledge levels is, generally, decreasing in �: As it
becomes more possible for one partner to dominate in the pooling process
(or perform more of the innovation activity) heterogeneity across agents de-
creases.

The nature of knowledge pooling turns out to be crucial in determining
the emergent structure of the network. When � is very low, stable matchings
create pairs of agents whose expertise lies in the same �elds �elds | agents
can be seen as substituting for each other. Innovation tends to occur in that
single �eld of expertise, and the two agents remain good partners for each
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other in the next round. This implies the emergence of stable pairs of agents;
the network becomes a set of n=2 disconnected pairs. By contrast, when �
approaches 1, stable matchings create pairs of agents whose respective exper-
tise lies in di�erent �elds. Innovation in this case does not reinforce existing
expertise of the two agents and thus make them more similar, but rather
reducing the di�erences between them. Thus a pair matched in this round,
because they are more similar to each other after innovation are less likely
to be a good match in the next round. What this implies is that pairs of
agents will form and disintegrate rapidly, agents will constantly search for
new partners, and the emergent network will approach a random network.
With � values between these extremes, the network structure too is between
the extremes. Here knowledge pooling creates a mixture of the two agents'
knowledge with each knowledge type. As � grows from its minimum value the
diameter of the stable groups or cliques increases from two. The emergent
cliques tend to be relatively complete, but globally the graph remains discon-
nected. Cliquishness increases, and is maximal at � = 0:5. For intermediate
values, 0:5 < � < 1, cliquishness falls, as the islands of communicating agents
make external connections, opening themselves to each other by establish-
ment of \shortcut" links. Global path length falls in this region and it may
be that small worlds, as de�ned by Watts and Strogatz (1998), emerge.
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