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Abstract
Agent based models take into account limited rational behaviour of

individuals acting on financial markets. The simulation of the behaviour
of such heterogenous agents and their interactions generate synthetic price
time series. At least for specific parameter settings, these synthetic price
time series exhibit marked similarities with actual financial market time
series and share some of their statistical characteristics.

In this paper we introduce an indirect estimation approach of the pa-
rameters of agent based models. It is based on the comparison of statistical
moments of simulated and actual time series. Using a refined global search
heuristic, we obtain estimates of some parameters of a specific agent based
model for the foreign exchange market. The paper presents details of this
estimation approach and first results for the US–$/DM exchange rate.

Keywords: Agent Based Model, Validation, Indirect Estimation, Simulation,
Foreign Exchange Market
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1 Introduction

Standard models of financial markets are based on fully rational behaviour of all
agents and indicate that markets are efficient (Fama, 1970). Although these mod-
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els are useful for understanding financial markets, most of them lead to predic-
tions in contrast to empirical findings like no trading volume, zero autocorrelation
of returns, and price volatility equal or lower than the volatility of the “funda-
mental value” (Levy, Levy and Solomon, 2000, p. 142). Furthermore, typical
statistical characteristics of financial market data like heavy tails and volatility
clustering are difficult to explain using these models (Cochrane, 1999). Finally,
the assumption of fully rational behaviour of homogenous agents is in stark con-
trast with empirical and experimental findings (De Bondt, 1998; Cheung and
Wong, 2000; Arnswald, 2001).

Agent based models provide an alternative route for modelling financial mar-
kets. These models allow for heterogenous agents, and limited rational behaviour
like momentum investment (Caginalp, Porter and Smith, 2000), herding or learn-
ing.1 Furthermore, the interactions between agents are taken explicitly into ac-
count. The special issues of Computational Economics and the Journal of Eco-
nomic Dynamics and Control in 2001 devoted to agent based models mirror the
growing interest in this type of models, which is not limited to financial market
modelling.2

Given that the aim of modelling consists in obtaining a simplified, but useful
representation of real financial markets, it seems straightforward to compare the
results of simulations of agent based models with empirical findings. For this pur-
pose, it is analyzed whether typical features of financial market data like momen-
tum investment (Lettau, 1997), chaotic behaviour (Brock and Hommes, 1997), or
heavy tails of return distributions (Lux, 1998, 2000) also appear in the simulated
data. In general, however, “validation . . . remains a very weak area for the class
of models described here.” (LeBaron, 2000, p. 698). Neither are parameters of
agent based models estimated or calibrated nor is the performance of the models
evaluated against actual data. This lack is attributed to the typically large num-
ber of parameters describing agent based models, which might allow to fit any
feature of real data, and to the complexity of model evaluation for a given set of
parameters, which, in general, is not possible analytically.

The contribution of this paper is to indicate, how evaluation of agent based
models can be strived for despite these hurdles. To this end, we undertake the
estimation of some parameters of a simple agent based model using a simulated
indirect estimation method. The estimates are obtained by minimizing a loss
function which is based on comparing moments of the simulated data with those
of empirical data for the foreign exchange market. Although our application
is limited to a single model and a small number of specific features, it seems
straightforward to extend the approach to a broader and more comprehensive set

1LeBaron (2000) provides an overview on some early approaches and different modelling
tracks. See also Levy et al. (2000) for an introduction.

2See Tesfatsion (2001a, 2001b).

2



of data characteristics and, consequently, to a larger set of model parameters.
However, as soon as the agent based model does not allow for an analytical so-
lution, available computing resources and optimization techniques may impose a
binding constraint on the number of parameters which can be taken into account.

In order to relax this constraint, Gilli and Winker (2002) introduce a global
optimization heuristic for the indirect estimation problem. Our first results from
applying this algorithm to the simple model of the foreign exchange market pre-
sented by Kirman (1991) indicate that – using estimated parameter values – it
provides a good approximation of the real data in terms of the two moments
underlying the estimation. However, due to the limited and ad hoc choice of
moments of the data, which have been taken into account for estimation, the
implicit test of the model against the data is not a very restrictive one yet. We
provide some further information on the time series properties of the simulated
data indicating the route for future research.3

The paper is organized as follows. In Section 2, the data are introduced
and the specific moments used later for indirect estimation are presented and
discussed. A short sketch of the simulation model is provided in Section 3. The
method used for indirect estimation of some parameters of this model is described
in some detail in Section 4. The results of a first implementation are summarized
in Section 5, while Section 6 provides a conclusion and the outlook on further
research.

2 Characteristics of financial market data

The statistical description of financial market data is a large and still growing
field (Cochrane, 1999; Cont, 1999; Arifovic and Gençay, 2000). Consequently, a
large number of specific features of these data has been described already. Given
that typical agent based models include a large number of parameters, which have
to be set, calibrated or estimated, it seems reasonable to use as much information
from empirical data as possible in order to obtain reliable estimates and powerful
tests of the models. Therefore, future extensions of the approach presented in
this paper will have to take into account a much larger number of moments of
financial market data than considered in our first application. We will discuss
some possible extensions in Section 5.

Nevertheless, in order to introduce the method of indirect estimation to agent
based models of financial market data, we start with a small, ad hoc selected
number of moments in order to keep the computational load small and to gain
a better understanding of the resulting objective function. Figure 1 provides the
daily logarithmic returns of the DM/US–$ exchange rate (implicit EURO/US–$

3See also LeBaron (2000, p. 699) for a discussion of more restrictive tests.
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rate from January 1999), which serves as empirical example.
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Figure 1: Daily Returns DM/US–$

The high number of large positive and negative returns hints at heavy tails of
the return distribution. Consequently, the third moment (kurtosis) of the return
distribution is expected to be significantly larger than for a normal distribution.4

This typical feature of financial market data will serve as one of the moments
to be matched in our simulated estimation approach. Besides the leptokurtosis
of daily returns, the literature also describes a decreasing leptokurtosis under
time aggregation (Lux, 1998). Therefore, Table 1 shows the empirical skewness
and kurtosis of the returns for non overlapping time periods of differing length.
The result support the view of a decreasing leptokurtosis under time aggrega-
tion for the returns of the DM/US–$ exchange rate. We do not take this effect
into account for the estimation procedure, but will comment on the issue in our
discussion of the results.

Table 1: Impact of time aggregation on the distribution of returns DM/US–$
(11.11.1991 – 8.11.2000)

Skewness Kurtosis
daily 0.027 4.983
weekly 0.031 4.106
monthly 0.264 3.248

4We are aware of the discussion about the existence of higher order moments (Lux, 2000).
Therefore, future analysis will also make use of tail index measures and statistics based on the
whole return distribution.
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The second characteristic feature of the daily return series, which will be used
for the indirect estimation approach, is the time varying volatility. The simplest
model for capturing this feature is a standard ARCH–model.5 Let rt denote the
daily logarithmic return, then an AR(1)–process for rt with ARCH(1)–effect can
be described by

rt = β0 + β1rt−1 + εt, where V ar(εt) = α0 + α1ε
2
t−1 . (1)

In Table 2 some maximum–likelihood estimation results are presented for the
coefficients of this model using different sample periods in order to assess the
robustness of the estimates.

Table 2: Estimated AR– and ARCH–coefficients

Sample
5.1.71 – 5.1.71 – 1.1.80 – 1.1.90 – 11.11.91 – 11.11.91 –
9.11.00 31.12.79 29.12.89 29.12.99 9.11.00 31.12.98

β̂1 0.006 0.077 0.024 -0.050 -0.047 -0.070
α̂1 0.213 0.534 0.113 0.130 0.124 0.172

Note: Bold face number indicate significance at the 5%–level.

Although the estimated coefficients exhibit some variation depending on the
sample chosen, the estimated ARCH(1)–effect α1 is always significant, typically
in a range between 0.1 and 0.25. Consequently, the time series generated by the
agent based models should replicate this feature. For the further analysis, the
ten year sample from 11.11.1991 to 9.11.2000 is fixed.

It should be kept in mind that neither the estimates of kurtosis nor the ARCH–
model provide a satisfying description of the exchange rate time series or the
return time series.6 Nevertheless, these features appear to be significant and
robust. Hence, they may contribute to the estimation of parameters of agent
based models (Gouriéroux and Monfort, 1996). As long as our estimates are based
on only these two moments of the data, they can hardly be highly discriminatory.
Consequently, in order to discriminate between several agent based models using
simulation based indirect estimation, further moments of the exchange rate time
series have to be taken into account in future applications.

5An introduction to ARCH–models for financial market data is provided by Gouriéroux
(1997). Again the simple ARCH–model can be replace by more complex GARCH–models or
nonlinear models like MS–AR (Dewachter, 2001) or SETAR. Furthermore, statistics based on
the conditional distribution of returns will be used in future implementations.

6In fact, the coefficient of determination for the ARCH–model is smaller than 0.002.
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3 A simple agent based model

From the large number of agent based models proposed to mirror characteristic
properties of financial markets, this paper deals only with a single model. This
model introduced by Kirman (1991, 1993) stresses the importance of interaction
between heterogenous, not fully rational individuals. Of course, future research
will take into account further models of this type, but also models concentrating
on individual learning, as one of the ultimate goal of our analysis is to discriminate
between different modelling approaches based on observed data.

The model assumes that two groups of individuals act on the foreign exchange
market. The members of the first group act on fundamentals, while the second
group follows a simple chartist rule based on last period return. Besides this
heterogeneity in agent behaviour, an even more important feature of the model
is that the type of an individual can change over time. This may happen due
to a random mutation with probability ε or as a result of direct interaction with
a second individual. Therefore, it is assumed that if two agents meet randomly
on the market place, the second one will convince the first one of his point of
view with a given probability δ. In this case, the total share of fundamentalists
and chartists in the population will change. As our results presented in Section 5
will show, these simple model of heterogenous agents with interaction is able to
generate quite complex dynamics of the time series of daily logarithmic returns
including ARCH–effects, excess kurtosis and decreasing leptokurtosis under time
aggregation.

For the application on the foreign exchange market, it is assumed that fun-
damentalists expect the exchange rate St to return gradually to its fundamental
value S̄ which is assumed to be known with certainty. Consequently, the expected
change of the exchange rate for fundamentalists is given by Ef [∆St+1] = ν(S̄−St).
The chartists are assumed to extrapolate last period returns, i.e. their expecta-
tions are given by Ec[∆St+1] = St − St−1.

In order to derive a time series for the exchange rate, some additional as-
sumptions are required. In contrast to Frankel and Froot (1986), who first used
a similar model of the foreign exchange market, and De Grauwe and Dewachter
(1993) the weights of fundamentalists and chartists are not fixed. They evolve
according to the shares of fundamentalists and chartists in the population rep-
resented by a set of n agents. However, instead of using these shares directly,
Kirman (1991) propose to use the assumption that all agents have some knowl-
edge about the share of fundamentalists. Consequently, their behaviour adjusts
to the expected majority. As the signal on this majority is subject to some error,
this assumptions leads to a higher probability of large shares of either fundamen-
talist views or chartist views dominating the market. As in Frankel and Froot
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(1986) the market price is calculated as a weighted mean of market expectation

Em[∆St+1] = wtE
f [St+1] + (1 − wt)E

c[∆St+1] ,

where wt is the share of agents expecting fundamentalists to be dominating,
and fundamental value. This market outcome can be motivated based on the
assumption of risk averse agents.

Of course, this model can be extended and modified in several directions.7 For
example, the probability δ of convincing another trader could be made dependent
on past success. Furthermore, the market price could be obtained from explicitly
modelled demand and supply schedules of individual agents. The number of
different agent types can be increased (Lux, 1998) etc. However, since our goal in
this paper is to present simulation based indirect estimates of model parameters,
we stick to the basic model and leave a comparison with more sophisticated
variants for future research.

4 Indirect estimation

Besides the two parameters ε and δ already introduced, a view further parameters
have to be set in order to describe the agent based model completely. Table 3
provides an overview on these parameters.

Table 3: Parameters of the agent based model

Label Interpretation Value
n number of agents 100
iter number of interactions 50 000
inter number of interactions per trading day 50
ν adjustment speed in fudamentalists’ expectations 0.045
σ2

s variance of price shocks 0.25
c weighting factor in price function 0.5

Of course, all of them could be incorporated in the estimation approach de-
scribed in this section. However, as the resulting optimization problem is non
standard and requires the use of a new global optimization routine, we restricted
ourselves to the addition of a third parameter, namely the variance of errors in
the majority assessment σ2

q . For the resulting three dimensional parameter space,
it is still possible to obtain a good approximation of the objective function on a

7E.g. Chiarella, Dieci and Gardini (2001).
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grid of the parameters values using a reasonable amount of computer resources.8

This grid allows to assess the results generated from the optimization algorithm,
in particular, whether the algorithm converges to a solution in the vicinity of the
global optimum or rather to some local minimum as it might result from Monte
Carlo variance. Given the good performance of the algorithm on this problem,
we plan to increase the dimensionality of the parameter space after some further
tuning of the algorithm and the selection of an objective function taking into
account more moments of the data.

As pointed out in Section 2, this first implementation points at matching
the observed ARCH(1)-effect α1emp and the observed kurtosis kdemp , measured at
a daily time scale, of the daily logarithmic returns of the DM/US-$ exchange
rate. The objective function measures the discrepancy between these empirical
moments and the mean of the estimated moments kd and α̂1 for the data simulated
for a specific parameters triple (ε, δ, σ2

q ). Consequently, the parameter estimates

ε̂, δ̂ and σ̂2
q are defined as the solution to the following minimization problem:

min
ε,δ,σ2

q

f =| kd − kdemp | +λ | α̂1 − α1emp | ,

where kd and α̂1 are the mean values obtained from nrep simulations of the model.
In order to make these statistics more robust we delete the first and the last 10%
of results in the tails. The scaling parameter λ was chosen equal to 15 to correct
for the different scalings of kdemp and α1emp . Algorithm 1 describes the estimation
procedure in more detail.

The criterion for selecting the successive vectors in Step 3 of Algorithm 1 is
its crucial ingredient besides an efficient simulation setup. It has to taken into
account two problems exhibited in Figure 2. The figure shows the stochastic
approximation of the objective function f against the parameters ε and δ holding
all the other parameters of the model fixed (for σ2

q = 0.04).
The left plot provides the results for nrep = 200 Monte Carlo replications. The

considerable Monte Carlo variance of the estimates of f(ε, δ, σ2
q ) is evident and

causes any standard optimization procedure to stop in a local minimum close to
the starting vector. The same holds true for the rather sophisticated Nelder–Mead
simplex direct search method (Lagarias, Reeds, Wright and E.Wright, 1999).
Although the approximations become smoother as the number of replications is
increased to nrep = 10 000 as indicated in the central panel,9 this is not sufficient
to make ordinary search techniques work well, as there is still some Monte Carlo
variance left as the plot in the right panel of Figure 2 shows, where we use a ten

8The approximations of the objective function have been computed with nrep = 500 repe-
titions and the overall computing time for the ∼ 1012 prices (500× 323 price path with 50 000
interactions) was 7 days on a Pentium III 600MHz PC.

9In fact, the Monte Carlo variance shrinks at the usual rate of 1/
√

nrep.
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Algorithm 1 Indirect estimation procedure

1: Give x(0) ∈ Rn vector of starting values of parameters to be estimated
2: while not converged do
3: Determine successive vectors x (defined by optimization algorithm)
4: for each x do
5: Initialize random variable generators
6: for i = 1 : nrep do
7: Generate random sequences for price simulation
8: Simulate price path p(i) and returns r(i)

9: Compute α̂1,i and kd,i

10: end for
11: Truncate tails (10%) of the distribution of α̂1,i and kd,i, i = 1, . . . ,nrep
12: Compute means α̂1 and kd of truncated distributions
13: Evaluate objective function f =| kd − kdemp | +λ | α̂1 − α1emp |
14: end for
15: end while
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Figure 2: Simulated values of f against ε–δ–grid. (Left panel R = 200, central
panel R = 10 000), right panel R = 10 000 with finer grid.

times finer grid to represent the objective function computed with nrep = 10 000
replications. On the other hand, computational requirements are already quite
high when using nrep = 10 000 replications.

Besides this problem caused by the fact that only a stochastic approximation
to the objective function is available, the objective function itself does not appear
to be globally convex in the parameter space. Since estimation in our implemen-
tation includes three parameters, but might include even more in the future, an
adequate optimization routine should also be able to tackle this situation.

For these two reasons, Gilli and Winker (2002) introduce a global optimiza-
tion heuristic for the indirect estimation problem based on a combination of the
Nelder–Mead simplex direct search method (Lagarias et al., 1999) and the thresh-
old accepting optimization heuristic (Dueck and Scheuer, 1990; Winker, 2001).
The Nelder–Mead search enables the algorithm to chose efficient steps for a con-
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tinuous but non differentiable objective function and the threshold accepting
strategy avoids the algorithm to be trapped in the many local minima the ob-
jective function has due to the simulation variance and because it is not globally
convex. We will not present details of the optimization algorithm in this paper,10

but present first results in the next section.

5 Results and further research

Figure 3 shows the grid plot of the objective function in the ε–δ and ε–σ2
q subspace,

while Figure 4 shows the δ–σ2
q subspace. For all three plots, the value of the third

parameter is fixed at the grid point closest to the optimum value obtained through
the application of the global optimization heuristic. This optimal parameter
values 11 are ε̂ = 0.0001, δ̂ = 0.3037 and σ̂2

q = 0.05 with f = 0.229.
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Figure 3: Approximations of the objective function in the ε–δ, (σ2
q = 0.05) and

ε–σ2
q (δ = 0.3065) grid.

Let us now turn to some analysis of this result. First, Kirman (1993) uses
Markov chain theory to demonstrate that the process will exhibit large shares
of fundamentalists and chartists, respectively, with high probability, if ε < (1 −
δ)/(n − 1). For our estimates we find ε = 0.0001 < 0.007 = (1 − 0.3037)/(100 −
1) = (1 − δ)/(n − 1). Thus, our estimates indicate that, in fact, the foreign
exchange market can be better characterized by switching moods of the investors
than by assuming that the mix of fundamentalists and chartists remains rather
stable over time.

10The paper Gilli and Winker (2002) can be obtained in electronic format from the authors
on request.

11Computing time is less than 1 hour on a Pentium III 600MHz PC.
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Figure 4: Approximations of the objective function in the δ–σ2
q (ε = 0.0001) grid.

Second, we are also interested to what extent the price and return series gener-
ated from the agent based model using these optimal parameter values resemble
actual market data. For this purpose, we rerun the simulation using a series
derived from the theory of purchasing power parity12 instead of a constant fun-
damental value, and σ2

s = 0.003 in order to obtain similar orders of magnitude.
Figure 5 shows the daily logarithmic returns of the US–$/DM exchange rate in
the upper panel and a typical simulated returns series in the lower panel.

A first look indicates that both series exhibit volatility clustering to a relevant
extent. For the real data, the estimated ARCH(1)–effect amounts to 0.130, while
it is 0.111 for the simulated series. The frequency of large changes is also high for
both series leading to a kurtosis of 4.98 for the actual data and 4.39 for the sim-
ulated series, i.e. both return series have heavy tails. While a close resemblance
of ARCH(1)–effect and kurtosis should have been expected given that these mo-
ments have been used for estimating some crucial parameters of the agent based
models, it is interesting to see that the heavy tails tend to disappear under time
aggregation not only for the actual data, but for the simulated data where kurto-
sis for weekly returns is 3.86 (4.11 for the actual data), and for monthly returns
it amounts to 3.19 (3.25).

While this property of the simulated returns looks promising, a closer look
at the whole distribution of returns draws a slightly different picture. Figure 6
provides a QQ–plot of the actual returns against the simulated returns. If the
distribution of the simulated returns mimics the distribution of actual returns one

12This series was generated from the terms of trade series published by the Deutsche Bun-
desbank.
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Figure 5: Daily Returns DM/US–$ (upper panel) and Simulated Returns (lower
panel)

to one, a straight line should result. From the plot it becomes obvious that this
requirement is met basically for “normal” returns in the range of -1% to 1%, but
that the tail behaviour differs. However, it should be noted that the frequency of
returns exceeding 1% in absolute terms is around 0.6% for the actual data sample.
Nevertheless, some improvement in matching the unconditional distribution of
returns might result from replacing the kurtosis in the objective function by a
measure based on the QQ–plot, i.e. on the whole distribution function.

A further departure of the simulated time series from actual data can be
detected by looking at the price levels or, alternatively, at the conditional distri-
bution of returns given past returns. Here, the estimated ARCH–model provides
a first hint with an estimated AR–term of -0.43 for the simulated data as com-
pared to the -0.05 for actual data. This strong negative autocorrelation of the
simulated returns becomes apparent in the upper right panel of Figure 7, which
shows a scatter plot of the simulated daily returns against the simulated daily
returns lagged one day. The negative autocorrelation is clearly visible, while a
similar plot for the actual return data in the upper left panel does not exhibit
such a relationship. The lower panel provides information on fifth order auto-
correlation, which does not appear to be substantial both for the actual and the
simulated data. Finally, these plots also allow to detect the tendency for volatility
clustering.
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Figure 6: QQ–Plot of Daily Returns DM/US–$ and Simulated Returns

Summarizing the findings for a single realization of the price series resulting
from the agent based models using estimated values for three parameters, it
can be stated that the moments, which have been integrated in the objective
function, are matched quite well as expected. Some further characteristics of
the actual data are also reflected in the simulated ones, e.g. the disappearance
of excess kurtosis under time aggregation. However, the simulated data exhibit
some features in marked contrast to the actual data, e.g. the strong negative
autocorrelation.

These findings also define the next step of our analysis. First, we will replace
the ad hoc chosen objective function by a new one taking into account the whole
(conditional) distribution(s) of returns. Second, we will increase the efficiency
of the global optimization heuristic used for the indirect estimation approach
to allow for the estimation of all central parameters of the agent based model.
Third, based on the new results obtained we can suggest changes of the model and
compare its performance with other types of agent based models of the foreign
exchange market.

6 Conclusion

Previous research using different kinds of agent based models indicated that em-
pirical features of financial market data, which appear difficult to motivate using
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Figure 7: Conditional Distributions of Daily Returns DM/US–$ and Simulated
Returns
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standard efficient market models, can be replicated within this setting. How-
ever, to our knowledge, a thorough validation of these models has not yet been
undertaken (LeBaron, 2002).

Using a classic agent based model of the foreign exchange market, this paper
demonstrates how the estimation of parameters, in principle, can be performed
using indirect simulation methods. However, the non convexity of the objective
function used for this purpose precludes the efficient use of standard optimization
tools. The global optimization heuristic introduced in our companion paper Gilli
and Winker (2002) allows to tackle this problem. We find that the model with
some estimated parameters is able to replicate the moments of the data which
have been integrated in the objective function, but behaves quite differently, in
particular, with regard to a strong negative autocorrelation of returns.

Therefore, our next steps will consist in choosing a more comprehensive ob-
jective, and applying the technique presented in this paper to a larger set of
model parameters. Furthermore, we will extend our analysis to different kinds of
agent based models. We expect, that using a large enough number of empirical
moments, a discrimination between agent based models should become possible.
However, citing again LeBaron (2002): “this field is only in its infancy, and much
remains to be done.”
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