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1. Introduction

Mean-variance analysis (MVA) is one of the principal models of portfolio choice in

finance. We informally describe this model as follows.1 An agent has wealth W which she

can invest in J assets. The return Rj on each asset j is a random variable. Let αj denote

the fraction of W invested in asset j, where negative αj corresponds to short selling. A

portfolio is a vector α = (α1, . . . , αJ) such that
∑J

j=1 αj = 1. The return on portfolio α is

the random variable Rα =
∑J

j=1 αjRj .

We now come to the main assumption of MVA; indeed, the assumption that gives MVA

its name: the agent only cares about mean and variance. More specifically, the expected

utility of wealth for portfolio α depends only on the mean and variance (or standard

deviation) of Rα. In contrast, in state-preference theory expected utility depends on the

complete specification of the distribution for Rα, not just a few summary statistics like

mean and standard deviation. E.g., the agent may care about the third (skewness) or

higher-order moments.

MVA can be reconciled with state-preference theory by assuming that the return Rj

on each asset is normally distributed and that the agent knows the mean and standard

deviation of Rj , as well as its covariances with all other assets.2 These assumptions imply

that Rα is normally distributed, the agent can compute its mean µα and standard deviation

σα, and the agent’s expected utility depends only on (µα, σα) since the normal distribution

is characterized by these parameters.

In this paper, we focus on two seemingly problematic aspects of MVA. First, it is a

static model in a dynamic world. Second, MVA assumes that returns are normal when it is

well-known that real-world returns are non-normal with “fat tails”. This has a theoretical

parallel in general equilibrium frameworks where the real return on any nominal asset is

endogenous3 so one cannot impose a priori restrictions on real returns such as normality.

1 E.g., see Copeland and Weston (1988).
2 MVA can also be reconciled with state-preference theory by assuming that the von Neumann-

Morgenstern utility function is quadratic in wealth but it seems perilous to base an entire theory of
portfolio choice on a single utility function. Furthermore, quadratic utility only makes sense for low
enough wealth levels and even then it exhibits increasing absolute risk aversion, which seems implausible.

3 The real return on any nominal asset must be endogenous because prices are. But returns may be
endogenous for other reasons; e.g., the return on a particular stock depends on the behavior of the firm.
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Even if agents believe that returns are normal, in general the true (equilibrium) distribution

of returns will be non-normal. Despite its status as one of the principal portfolio choice

models in finance, it would seem that MVA leads to potentially large, systematic mistakes.

In this paper, we investigate the consequences of using MVA in a dynamic general

equilibrium environment where the true cumulative distribution function (CDF) for returns

is actually non-normal. We consider the standard pure exchange overlapping generations

model with one consumption good and one asset, money.4 At each date t, the young agent

decides how much money to hold assuming that the real return on money rt+1 at t + 1 is

normally distributed on [0,∞). Furthermore, in accordance with MVA, the agent makes

correct conjectures about the mean µt and standard deviation σt of rt+1. Note that the

agent assumes that rt+1 is normally distributed rather than contemplating market-clearing

conditions for future dates and states as she would under rational expectations. The

relevant equilibrium concept is therefore that of Hicks-Grandmont temporary equilibrium

(TE): at each date t, the markets for consumption and money clear and the young agent

makes correct conjectures about µt and σt but markets need not clear at future dates

and states from the perspective of date t.5 Although rt+1 does indeed have mean µt and

standard deviation σt, it is an endogenous random variable (a function of µt, σt, and the

stochastic endowment) whose induced CDF is non-normal.

The model leads to a deterministic system of nonlinear difference equations in (µt, σt).

We use simulations to study the dynamics of the system as a certain control parameter

a (a parameter for the CDF for endowments) is varied. As in Grandmont (1985), we are

only able to compute explicit backward orbits. For low values of a, we observe convergence

to a stable node in the backward dynamics (divergence from an unstable node when the

orbits are read forwards). For higher values of a, we observe chaotic transients which

wander about chaotically in a neighborhood of the unstable node for finitely many periods

before hitting an “escape region” after which they rapidly diverge.6 The duration of these

4 One might object to a one-asset framework since MVA is a theory of portfolio choice. But in this
paper, we are more concerned about mean-variance decision-making than about portfolio composition per
se.

5 For more on TE theory, see Grandmont (1977, 1985, 1998) and the references therein.
6 The model is bounded so the divergence cannot continue forever.
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chaotic transients seems to increase exponentially with a. This “route to chaos” matches

the boundary crisis scenario developed by Grebogi, Ott, and Yorke (1982, 1983) which has

been observed in the logistic and Hénon maps as well as physical laboratory experiments

[e.g., see Hilborn (1985)]. In this scenario, the average duration of the chaotic transients

depends on the control parameter(s) and can be made arbitrarily large. Furthermore,

when the scenario is played in reverse, these chaotic transients foreshadow the sudden

appearance of a chaotic attractor.7

There are two main economic implications. First, chaotic dynamics in (µt, σt) mean

that the deviations from normality of the true CDF for returns will appear unsystematic

from the agents’ perspective. Second, we find that these deviations are small in the L1

norm along the TE dynamics. Hence, agents’ observations provide no reason for them to

be dissatisfied with the MVA decision rule, which is simpler and easier to implement than

state-preference or rational expectations decision rules. We also point out that many of

the techniques which are being used to look for chaotic behavior in financial time series

(e.g., attractor reconstruction methods, dimension calculations) can only detect chaotic

attractors and not chaotic transients.

The paper should also be of interest to macroeconomists and economic theorists inter-

ested in the literature on rational expectations and learning dynamics briefly surveyed in

Grandmont (1998). We emphasize that in this paper we do not consider learning because

MVA itself does not (it is a static model) and we wish to evaluate MVA on its own terms.

But from the perspective of that literature, the TE dynamics in this paper can be viewed

as recasting MVA as the sort of “learning equilibrium” which is the focus of much of that

literature: a non-rational expectations equilibrium in which agents make small, apparently

unsystematic mistakes.

We should emphasize what the paper is not about. One can choose the CDF for

endowments to make the true CDF for returns normal but the dynamics are trivial in this

case and it would be factually incorrect. It might be possible to finesse the beliefs to match

the true, non-normal CDF for returns but that would not be MVA. Our objective is not

7 For textbook discussions of the boundary crisis scenario, see Hilborn (2000, Chapter 7), Medio (1992,
Chapter 9), and Peitgen, Jurgens, and Saupe (1992, p. 646-650).
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to “improve” MVA by suggesting more accurate beliefs or introducing learning. Instead,

our objective is to study the consequences of using MVA in a dynamic world where the

true distribution of returns is non-normal.

The plan for the rest of the paper is as follows. In section 2 we present the model and

results. Section 3 concludes.

2. The Model and Results

We consider the standard pure exchange overlapping generations model with one

consumption good and one asset, money. At each date t ≥ 1 a single agent is born

and lives for two periods. At t = 1 there is one old agent endowed with one unit of fiat

money. We focus on the young agent at t and let ct denote her consumption at t and ct+1

her consumption at t+1. All agents are ex ante identical with von Neumann-Morgenstern

utility function

U(ct, ct+1) =
√

ct + β
√

ct+1 (1)

where 0 < β ≤ 1.

At each date t, the young agent is endowed with ωt units of the good, where ωt is an

i.i.d. random variable with beta probability density function (PDF)

g(ωt|a, b) =
1

B(a, b)
ωa−1

t (1− ωt)b−1 (2)

on the support I = [1, 5].8 The old agent is endowed with none. We chose the beta PDF

because it is computationally convenient and because it is very flexible and can assume a

wide variety of shapes. To keep notation at a minimum, throughout the paper we only

consider the case a = b.9 When a = b, the beta PDF is symmetric about its mean and

increasing a pinches the PDF in towards the mean, with less mass in the tails.

Since ωt+1 is random, the price pt+1 of the good at t + 1 is also random and so is the

real return on money rt+1 = 1/pt+1. To decide on her money holdings Mt at t, the young

agent must form a belief about the CDF for rt+1. In accordance with MVA, and the fact

8 The choice I = [1, 5] is arbitrary. A longer I, such as I = [1, 10], leads to larger values for µt and σt

and more prominent fluctuations in them but also increases the running time of simulations.
9 Simulations involving a 6= b produced nothing new.
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that rt+1 is nonnegative, agents assume that its CDF is given by the truncated normal

CDF on [0,∞) with PDF

ψ(rt+1|µt, σt) =
1

σt

√
2πK(µt, σt)

exp
[
− (rt+1 − µt)2

2σ2
t

]
(3)

where

K(µt, σt) =
∫ ∞

0

1
σt

√
2π

exp
[
− (rt+1 − µt)2

2σ2
t

]
drt+1 (4)

is the normalization factor. Let m(µt, σt) denote the mean and s(µt, σt) the standard

deviation of (3), which are in general not equal to µt and σt, respectively, but are instead

somewhat involved functions of those parameters.10 Also in accordance with MVA, we

assume that agents know µt and σt which implies that agents know m(µt, σt) and s(µt, σt).

The maximization problem of the young agent at t is therefore

max
√

ct + β

∫ ∞

0

√
ct+1 dψ(rt+1|µt, σt) (5)

subject to

ptct + Mt ≤ ptωt (6)

pt+1ct+1 ≤ Mt (7)

ct, ct+1,Mt ≥ 0. (8)

This simple problem has a unique interior solution where the constraints (6) and (7) hold

as equalities. We can therefore re-write the problem as

max
√

ωt − rtMt + β
√

MtΨ(µt, σt) (9)

where

Ψ(µt, σt) =
∫ ∞

0

√
rt+1 dψ(rt+1|µt, σt). (10)

The demand for money is

Mt = M(rt, ωt, µt, σt) =
ωt(βΨ(µt, σt))2

rt(rt + (βΨ(µt, σt))2)
. (11)

10 Nevertheless, for ease of reference we will often call µt and σt the “mean” and “standard deviation”,
respectively. Note that the map (µt, σt) 7→ (m(µt, σt), s(µt, σt)) is one-to-one because it is impossible for
two distinct normal PDFs to become the same truncated normal PDF after truncation at zero.
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In TE, the date t markets for consumption and money clear. By Walras’ Law, we

need only consider equilibrium in the money market. Setting supply equal to demand (the

stock of money is constant at one unit), we obtain the TE real return on money

rt = r(ωt|µt, σt) = (1/2)βΨ(µt, σt)
[√

4ωt + (βΨ(µt, σt))2 − βΨ(µt, σt)
]
. (12)

Equation (12) is invertible

ωt = r−1(rt|µt, σt) =
(

rt

βΨ(µt, σt)

)2

+ rt. (13)

Hence, the true CDF of returns is endogenous and is given by

FT (rt|µt, σt, a) = G(r−1(rt|µt, σt)|a) (14)

where G is the CDF for the beta distribution.11 The mean of FT at t + 1 is given by

Φµ(µt+1, σt+1|a) =
∫

I

r(ωt+1|µt+1, σt+1) g(ωt+1|a) dωt+1 (15)

with standard deviation

Φσ(µt+1, σt+1|a) (16)

defined similarly.

We now formally define the natural equilibrium concept in this context.

Definition. A TE at date t ≥ 1 is a price pt for the consumption good and conjectures

(µt, σt) such that the date t markets for consumption and money clear and the conjectures

(µt, σt) are correct

m(µt, σt) = Φµ(µt+1, σt+1|a)

s(µt, σt) = Φσ(µt+1, σt+1|a). (17)

In accordance with MVA, agents assume that the CDF of returns is normal and

equations (17) require that their conjectures about (µt, σt) be correct. The expressions on

11 To make FT normal, set G = FN ◦ r, where FN is the truncated normal CDF and r is defined in
(12). The resulting model is trivial and factually incorrect.
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the left-hand side of (17) are the mean and standard deviation of the truncated normal

CDF while those on the right-hand side are the mean and standard deviation of the true

CDF of returns FT in (14).12 Although the correct conjectures condition (17) ensures that

these two CDFs have the same mean and standard deviation, in general FT is non-normal.

Equations (17) govern the TE dynamics of the model. Note that this system is

deterministic and bound to be highly nonlinear. Furthermore, the system only determines

the dynamics for (µt, σt) implicitly. If we substitute an initial condition into the functions

on the left-hand side of (17) and we are then able to solve for (µt+1, σt+1) uniquely on

the right-hand side, then this determines a forward dynamic with which we can compute

forward orbits for various initial conditions. Due to the complexity of the functions Φµ,

Φσ we have not been able to compute forward orbits nor can we ascertain whether or not

a forward dynamic exists; i.e., whether the map (µt, σt) 7→ (µt+1, σt+1) implicitly defined

by (17) is actually a function.13 On the other hand, if we substitute (µt+1, σt+1) into the

functions on the right-hand side and we are then able to solve for (µt, σt) uniquely on the

left-hand side, then this determines a backward dynamic Σ

(µt+1, σt+1) 7→Σ (µt, σt) (18)

with which we can compute backward orbits.14 This we were able to do. A system such

as the Hénon map which has both forward and backward dynamics is called invertible.

This is a useful property because one can use the forward dynamic to map out attractors

and the backward dynamic to detect repellors, which can have an important influence on

the dynamics. Obviously, any backward orbit read forward will satisfy (17) and in that

sense represents the forward evolution of the system. For lack of alternatives, we will often

12 The functions m(µt, σt) and s(µt, σt) have closed-form expressions. We do not have closed-form
expressions for Φµ and Φσ but we can compute their values precisely given numerical values for their
arguments since the Integrate routine in Mathematica is able to calculate the relevant indefinite integrals
in (15) and (16) symbolically. Hence, working with system (17) does not involve any extraordinary round-
off or other machine errors. In contrast, the NIntegrate routine introduces an artificial smoothing of the
integrands and produces erroneous results.
13 We tried several different combinations of utility functions and CDFs for endowments in an attempt

to get a forward dynamic but were unsuccessful because the t + 1 variables are deeply embedded in the
complicated integrals in (15) and (16).
14 Recall that in Grandmont (1985) the dynamics are explicitly backward dynamics but he uses these

to construct what he calls the “true” dynamics. In this paper, we only analyze the explicit backward
dynamics.
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use the terms “forward orbit” and “forward dynamics” in this sense, but formally this is

incorrect since it is an open question as to whether a forward dynamic actually exists. For

a discussion of these issues in the context of Grandmont (1985), see Medio (1992, p. 223).

We now come to a trivial but important point. From (17), it is clear that if the true

CDF for returns were truncated normal then the dynamics would be trivial since in that

case Φµ = m and Φσ = s. So the positive observation that MVA assumes normality when

in fact real-world returns are non-normal is a crucial one for this model. In particular,

any deviation from normality, no matter how small, produces a qualitative change in the

dynamics.

We now turn to the simulations since we cannot study the system (17) analytically.15

We set β = 1 for all simulations. Figure 1 below depicts a typical backward orbit for the

case a = 8.

Figure 1 Goes Here

The initial conditions are µ0 = 0.8 and σ0 = 0.15. In the top panel, we plot µt and in the

bottom panel σt, both against time t. Although the orbits were computed backward, we

depict them as moving forward. Hence, the fixed point in Figure 1 is unstable.

In fact, it is an unstable node. This can be seen by applying the backward dynamic

Σ to the set of initial conditions enclosed by the rectangle in Figure 2 below.

Figure 2 Goes Here

The image of the rectangle under Σ is the one-dimensional curve within the rectangle.

I.e., for any initial condition in the rectangle, the first iteration in the backward dynamic

involves a large “jump” to this curve. The fact that the curve lies within the rectangle

suggests convergence in the backward dynamic and, indeed, further iterations compress

the curve lengthwise. Hence, in a neighborhood of the fixed point, all orbits approach it

from a certain direction [c.f. Figure 2.12a in Medio (1992, p. 52)] which indicates that

15 The simulations were performed using Mathematica Version 4 on an Apple Cube G4 500 MHz
computer. In our case, Mathematica is a powerful tool since we have relied on it to calculate several
complicated closed-form expressions symbolically.
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the fixed point is indeed a node. Since these are mean-variance dynamics, backward orbits

must approach the node from the southwest and northeast since an increase (decrease)

in µt must be accompanied by an increase (decrease) in σt if the agent is to be content

holding the one unit of money.

In Figure 3, a = 9 and the initial conditions are µ0 = 1.5 and σ0 = 0.14.16

Figure 3 Goes Here

We now include the phase (or state) space in the top panel, where the node is indicated

by the larger dot singled out by the arrow. Once again, we observe divergence from the

unstable node but now the orbit fluctuates irregularly and briefly (for about 20 periods)

in a neighborhood of the node before diverging off.

In Figure 4, a = 10 and the initial conditions are µ0 = 1.5 and σ0 = 0.15.

Figure 4 Goes Here

The orbit fluctuates in “chaotic” fashion for about 450 periods before diverging off. Note

that the unstable node is now close to the southeastern edge of the irregular activity.

In Figure 5, a = 11 and the initial conditions are again µ0 = 1.5 and σ0 = 0.15.

Figure 5 Goes Here

Now the irregular fluctuations persist in the backward dynamics for close to 1,000 periods

without reaching the node. The pictures for a = 12 with the same initial conditions are

similar.17 For a = 13, the backward dynamics become explosive and we could not find any

backward orbits of significant length. The problem does not appear to be computational,

but rather the non-existence of such orbits.

To determine if the orbits in Figures 4 and 5 are indeed chaotic, we compute the

Lyapunov exponents.18 Note that since these orbits are not on an attractor, the appropriate

16 We cannot consider values 8 < a < 9 since Mathematica can only compute orbits for integer values
of a.
17 For a = 11, 12 we did not compute orbits much longer than 1,000 periods because the computations

were so slow due to the complexity of the system (17) (e.g., it took about two days to generate Figure 5).
We were thus unable to locate the node when a = 11, 12.
18 For discussions on Lyapunov exponents, see Hilborn (2000), Medio (1992), and Peitgen, Jurgens, and

Saupe (1992).
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definition of “chaos” reduces to sensitive dependence on initial conditions. There are

several procedures available for computing Lyapunov exponents, but many of these require

a closed-form expression for the Jacobian of the system. In our case, this is unavailable

and we must treat the computed orbits as two-dimensional experimental time series. The

Lyapunov exponents were computed using a program based on the procedure in Eckmann,

Kamphorst, Ruelle, and Ciliberto (1986) which uses the available time series to essentially

estimate the Jacobian of the system using ordinary least-squares.19 This procedure seems

to be the “state of the art” and is believed to compute both exponents (not just the

dominant one) reliably. The results are reported in Table 1 below.

Table 1 Goes Here

The dominant exponent λ1 is positive in all cases, indicating expansion in at least one

direction along the orbit and therefore chaos. For a = 10, λ2 is negative, indicating

contraction in one direction, which is picking up the fact that the backward orbit in

Figure 4 is convergent. When a = 11, 12, λ2 is also positive, indicating expansion in both

directions and no sign of convergence for these orbits.

As a check, in the top two panels of Figure 6 we depict the power spectra (actually the

periodograms) for µt and σt for the orbit with initial conditions µ0 = 1.5 and σ0 = 0.15

when a = 12.20

Figure 6 Goes Here

For purposes of comparison, in the bottom panel we depict the spectrum for an orbit

generated by the random number generator on our computer which was calibrated to

produce “random” values similar to those of σt. Chaotic data typically have spectra with

a small number of sharp peaks with a broad-band “noise floor” in between. This is the

case for all of the spectra in Figure 6. Indeed, the orbit for µt appears “noisier” than the

orbit generated by the random number generator.

19 The Mathematica program is available from the authors upon request.
20 To remove the spike at zero and improve the view at higher frequencies, both orbits have been

normalized by subtracting their means. For a nice discussion on power spectra and their uses, see Medio
(1992, Chapter 5).
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The orbits in Figures 4 and 5 therefore appear to be chaotic. There are several

known “routes to chaos” including the well-known period-doubling scenario. One of these,

the boundary crisis scenario (also known as a “blue sky catastrophe”), was developed by

Grebogi, Ott, and Yorke (1982, 1983) and has been observed in the logistic and Hénon maps

as well as in physical laboratory experiments [e.g., Hilborn (1985)]. This scenario involves

an unstable fixed point or periodic cycle and a chaotic attractor. As a parameter a of the

system is reduced, the two move closer together and eventually collide when a = ac.21 This

collision destroys the attractor and it suddenly (discontinuously) disappears. For values of

a below ac, the attractor is gone but nearby orbits nevertheless rapidly move towards where

it used to be and remain there, mapping out the old attractor, for finitely many periods

before hitting an “escape region” and diverging off. These are called chaotic transients

because the behavior of the orbits on the “ghost” of the old attractor appear chaotic. If

we reverse the process, increasing a towards ac from below, the duration of these chaotic

transients increases without bound; i.e., their duration can be made arbitrarily long by

choosing a close enough to ac. Furthermore, the increase in the duration of the chaotic

transients foreshadows the sudden appearance of the attractor. This is precisely what

we seem to be observing in Figures 1 and 3-5. In particular, for a = 11 both Lyapunov

exponents are positive and there is no sign of convergence after 1,000 periods.

Unlike Grebogi, Ott, and Yorke (1983), who were working with the invertible Hénon

map, we are unable to present pictures of the unstable node colliding or about to collide

with a chaotic attractor. First of all, since we only have the backward dynamic, we cannot

observe any attractors (even presuming that a forward dynamic exists). Even with just

the backward dynamic, we might still hope to obtain a picture of the node just after the

collision, burrowing its way into the ghost of the old attractor. E.g., in the case of the

Hénon map, for values of the control parameter just after the boundary crisis value (and

holding the value of the other parameter fixed), the chaotic transients continue to map out

the old attractor with much of the fractal structure still evident. In Figure 7, we track the

movement of the unstable node as a is reduced from 10 to 5.

21 Compared with the usual textbook discussion, we are reversing the order of the movement in a to
conform with our system.
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Figure 7 Goes Here

The node moves in the northwesterly direction as indicated by the arrow. Returning to

Figure 4, we observe that for a = 10 the node appears to have made substantial progress

inside the southeastern edge of what may be the ghost of the old attractor, although no

fractal features are present. In Figure 3, for a = 9 the node appears to have moved to

a more central position with respect to the irregular fluctuations but it is difficult to be

certain since very little of the old attractor remains. Recall that we were unable to locate

the node for a = 11, 12 so we are unable to observe the scene closer to the supposed

collision. Note that for a = 11, 12 the ghost of the old attractor is still a formless mass,

which may indicate that a = 12 is not yet close to the boundary crisis value. Although we

have not been able to present conclusive evidence for a collision, Figures 3 and 4 do show

that the chaotic transients occur in a neighborhood of the unstable node.

For the Hénon map, Grebogi, Ott, and Yorke (1983) show that the boundary crisis

is accompanied by the appearance of horseshoe-like objects. If these were present for our

system, repeated iteration of the backward dynamic Σ starting from a rectangle of initial

conditions as in Figure 2 should produce an increasing number of ever-thinning horizontal

strips.22 The fact that we have not observed this should not be too surprising since the

boundary crisis for the Hénon map involves a saddle fixed point rather than an unstable

node and the horseshoe-like objects are caused by the development of complex relationships

between the stable and unstable manifolds of the saddle.

We conclude that the above evidence is consistent with the boundary crisis scenario

and none other. We observe chaotic transients always in the immediate vicinity of the

unstable node. These chaotic transients are always followed by divergence and not a

return to regular behavior (as would be the case for intermittency). Finally, the duration

of the chaotic transients seems to increase exponentially with a.

We now turn to the economic implications of these results. First, from (12), we

see that r(ωt|µt, σt) has a deterministic component (µt, σt) as well as a purely stochastic

component ωt. If the deterministic component followed some simple orbit then agents

22 E.g., see the discussion in Hilborn (2000, p. 199).
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would make systematic mistakes. E.g., for a fixed point the true CDF for returns would be

constant and non-normal all along the orbit. In contrast, when the orbit is chaotic these

mistakes would appear unsystematic from the agents’ perspective.

We are also interested in the size of the mistakes that agents are making. Let

FN (r|µt, σt) denote the normal CDF on [0,∞). The average error on [0, R] is

(1/R)
∫ R

0

|FN (r|µt, σt)− FT (r|µt, σt, a)| dr (19)

which is essentially the L1 norm. In Table 2 below we give the average error for selected

points along the orbit for a = 12 with initial conditions µ0 = 1.5 and σ0 = 0.15.23

Table 2 Goes Here

The largest average error in the table is approximately 0.004. To interpret this, randomly

select a point x in the support of both CDFs. Then on average, the difference in the

probability assigned to the event [0, x] by the two CDFs will be less than half a percent.

So agents in this model make very small mistakes in the TE dynamics.

Finally, when a = 13 the backward dynamics become explosive and we are unable to

compute backward orbits of any significant length. This raises the tantalizing possibility

that the chaotic attractor (assuming the existence of the forward dynamic) has reappeared

at a = 13. If so, then nearby initial conditions would move towards the attractor and if

convergence were reasonably strong, lengthy backward orbits would not exist.

3. Conclusions

Despite its status as one of the principal portfolio choice models in finance, MVA

seems to suffer from two major theoretical problems. First, it is a static model in a

dynamic world. Second, it crucially assumes that asset returns are normally distributed

23 We did not compute the average error all along the orbit for the following technical reasons. The
procedure was as follows. For a selected period t, we first plotted the integrand in (19). Since the CDFs
typically cross two or more times, this introduces singularities into the integrand which need to be taken
into account in order to accurately compute the integral in (19). In each case, R was chosen as the
point where the normal CDF became 1. Although the normal PDF is positive on the entire real line, it
asymptotes to the horizontal axis exponentially so at some point R the normal CDF becomes 1 in machine
terms.
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when, in fact, real-world returns are non-normal. It would therefore seem that MVA leads

to potentially large, systematic mistakes.

In this paper, we embedded MVA in the standard OLG model with one consumption

good, stochastic i.i.d. endowments, and one asset, money. In accordance with MVA,

agents assume that the distribution for the real return on money is (truncated) normal

and make conjectures about its mean and standard deviation. In temporary equilibrium,

the current markets for consumption and money clear and these conjectures are correct.

Although agents make correct conjectures about its mean and standard deviation, the true

distribution of returns is non-normal. It is precisely this deviation from normality which

opens the door to potentially interesting dynamics. The model leads to a deterministic

system of nonlinear difference equations in the mean and standard deviation. Simulations

revealed the presence of chaotic transients seemingly produced by a boundary crisis. As

a result, deviations from normality of the true distribution of returns will appear to be

unsystematic. We also found that they are typically small. Hence, agents’ observations

provide no reason for them to be dissatisfied with MVA decision rules, which are simpler

and easier to implement than state-preference or rational expectations decision rules.
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