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Abstract

Negotiations have been extensively studied theoretically through-
out the years. A well-known approach is the game-theoretic ultimatum
game, where two agents negotiate on how to split a pie or a “dollar”:
the proposer (here called the seller) makes an offer and responder (the
buyer) can choose to accept or reject. Usually the game is studied
without taking into account backup opportunities if negotiations fail.
In the real world, however, often several candidate sellers and buy-
ers exist. In this paper a natural extension of the ultimatum game is
presented, where both the sellers and the buyer can negotiate several
times before their payoff is established. This way the basics of a com-
petitive market are modelled where for instance a buyer can try several
sellers before making a purchase. The game is investigated using an
evolutionary simulation. We consider the outcomes when the agents
know each other’s number of remaining bargaining opportunities (the
perfect information case), and the game where this information is not
available (the imperfect information case). We find that the seller
has the advantage in the first case, but that the buyer obtains more
bargaining power in the latter game setting. For the perfect informa-
tion case we also provide a game-theoretic analysis and compare the
outcome with evolutionary results. Furthermore, the effects of search
costs and allowing multiple issues to be negotiated simultaneously are
investigated.

1 Introduction

In the advent of ubiquitous application of agent technology, bargaining
agents are expected to play an essential role in electronic market places.
Automated negotiations are therefore becoming an important field of re-
search [3, 2, 10, 11]. The agents in the market are self-interested and often
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equipped with the ability to autonomously search for products and services
and negotiate an agreement. Bargaining agents should also be capable of
interacting with their environment and adapting to the behaviour of other
agents.

In this paper we focus attention on the negotiation aspect and study the
strategic behaviour of adaptive agents within a market-like setting. Within
our model, the agents exchange a single good in a bilateral fashion. The
agents, however, have several bargaining opportunities before reaching a
final deal. Bilateral bargaining has been extensively researched, for instance
in game theory [5, 15, 14, 22, 17, 16] . In contrast to for instance many
applied auctions, bilateral bargaining allows for negotiations which involve
not just the price of the good, but a much wider range of attributes.

We use the one-shot ultimatum game as the basic bargaining proce-
dure for our model, a well-known approach within the field of game the-
ory. In this game, the proposer makes an offer and the responder can only
choose to accept or reject this offer. The ultimatum game has been ex-
tensively researched, both theoretically and by experiments using human
subjects [15, 17, 9, 18]. Most traditional studies of this game concern an
isolated pair of players, without taking into account the possibility of other
(i.e., outside) opportunities. In the real world, however, players often have
backup opportunities if negotiations fail.

This paper introduces an extension of the basic ultimatum game where
both the proposing and the responding agents have several bargaining oppor-
tunities. This way a market place is modelled where for instance a number
of sellers and buyers are available. Several issues can be negotiated simul-
taneously; not only the price, but also other important attributes such as
delivery time, package deals, warranty, and other product-related aspects
can be taken into account.

The market is computationally simulated by evolutionary algorithms
(EAs). EAs are increasingly used to study the dynamic process of locally
interacting, adaptive agents, as in the field of agent-based computational
economics (ACE) [4, 19]. In contrast to for instance game theory, no explicit
rationality assumptions are made in the EA; the agents are naive optimiz-
ers acting on limited information. In our simulation, the agents are also
myopic: they do not have any forward-looking ability or memory. Nonethe-
less, surprisingly rational behaviour often emerges from such “low-rational”
agents [21].

A key factor in the game is whether the agents know the number of bar-
gaining opportunities of their current opponent; although the initial number
of opportunities is set equal for buyers and sellers, two encountering agents
can have a different so-called bargaining state. We study the effect of knowl-
edge about an opponent’s situation, and show some very interesting results.
In particularly, when the number of bargaining opportunities of the oppo-
nent is hidden, results differ significantly from the ultimatum game. If the



maximum number of encounters is sufficiently high, the responder’s can ob-
tain the largest share, depending on the amount of samples to determine the
average payoff. This in contrast to the ultimatum game, where the proposer
claims the maximum amount and the responder obtains nothing.

A general game-theoretical approach to this game is very difficult when
the number of remaining bargaining opportunities of the opponent is not
known. In this paper, however, we provide a game-theoretic analysis for
the market game for a simpler case where the agents are perfectly informed.
The concept of sub-game perfect equilibrium (SPE) is used. We compare
the outcomes of the simulation with the SPE predictions using different EA
settings. A very good match can be found for smaller games such as the
one-shot game. Results can even be improved for longer games by reducing
the amount of noise in the EA.

Furthermore, the effect of competitiveness of the game is studied. By
allowing several issues to be negotiated at once, trade-offs can be made to
obtain win-win situations and to reduce the competitive nature of the game.
The competitiveness indicates to what extent trade-offs are beneficial for
both. We study both distributive negotiations, where only a single issue
is negotiated and various levels of integrative negotiations, where trade-offs
between issues are possible.

Finally, the paper considers the effect of search costs in the market game.
Search costs represent the amount of effort or money which is spent on
finding a new negotiation partner. This is modelled by a fixed reduction of
the payoffs each time an offer is rejected (and a new partner has to be found).
Search costs seem to have little impact on the outcomes if the agents know
the number of bargaining opportunities of their opponent. In the imperfect
information case, however, even small search costs discourage the agents to
explore further. Almost all deals are reached immediately, and agreements
are similar to the one-shot game.

The remainder of the paper is organised as follows. In Section 2 the
market game is described. Section 3 provides a game-theoretic analysis of the
game in case of common knowledge of the agents’ bargaining opportunities.
Section 4 outlines the evolutionary simulation and Section 5 discusses the
obtained results from the simulation. Lastly, Section 6 concludes.

2 Description of the Market Game

The market consists of buyers and sellers who exchange a single good through
bilateral negotiations. A buyer and a seller negotiate the terms of the agree-
ment in an ultimatum game-like setting, where the seller proposes an offer
and the buyer can reject or accept the seller’s offer. Whereas the ultima-
tum game ends after the buyer’s decision, in the market game both agents
have a number of additional bargaining opportunities if an agreement is not



reached. Each such negotiation between a pair of agents is called an en-
counter. This game models a situation where for instance consumers can go
to various sellers until a satisfactory deal is obtained (e.g. when buying a
house, car, etc.).

The Ultimatum Game. We first describe the ultimatum game played
at each encounter in more detail. The ultimatum game is frequently used
in game theory as a basic negotiation model!. The game consists of two
consecutive steps: first the seller proposes an offer, and the buyer can then
either accept or reject this offer. Often, only the price is negotiated and the
negotiable surplus consists of a single issue. Instead, in our model bargaining
can take place over multiple issues simultaneously: not only the price, but
also other value-added services such as time, quality, return policy, or other
product-related aspects can be taken into account. We use n to denote the
total number of issues in the offer.

An offer is expressed as a vector &, where the i-th component o* specifies
the share that the seller receives for issue i if the offer is accepted. Without
loss of generality, the offer for each issue is normalized between zero and one;
the value zero is most beneficial for the buyer, but still acceptable for the
seller, whereas a value of one is the seller’s favourite, and still acceptable for
the buyer. The buyer’s share is therefore 1 — o’ for each issue 7 if he accepts
offer &.

An offer ¢'is evaluated using an additive multi-attribute utility function.
The utility is calculated by the weighed sum of the share obtained for each
issue. Formally, the seller’s utility function is s - 6 = . ; w' - o', where
ws denotes the weight preferences of the seller. Similarly, the buyer’s utility
function is &, - (T — 6) = X7, wi - (1 — o), where 5, is the buyer’s weight
settings. The weights are normalized and larger then or equal to zero, i.e.,

Pawt =" wh=1and wi,w > 0. In our simulations we assume that
all sellers have the same preferences, and also that the weights of the buyers
are the same. This allows us to study the effect of multiple encounters in
isolation without additional complications.

Multiple Encounters. The market game extends the simple bilateral ne-
gotiations by allowing multiple encounters. If two negotiating agents reach
an agreement, both agents obtain a payoff equal to their utility of the of-
fer. In case of a disagreement, however, the agents can be matched again
with newly selected opponents. The matching of two agents occurs ran-
domly, and is explained below. Each agent initially has up to m bargaining

!An alternative is a finite version of the multi-round alternating-offers game [15, 14].
This game is very similar to the ultimatum game, however, if no time pressure exists; the
game-theoretic outcomes are equivalent, and also previous work using an EA simulation
showed little influence of the additional rounds [5].
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Figure 1: A two-issue negotiation game in a market with up to two bargain-
ing opportunities (n = 2,m = 2).

opportunities to reach an agreement. We refer to an agent’s number of re-
maining bargaining opportunities as the agent’s bargaining state, denoted
by os € {0,1,...,m} if the agent is a seller and o, € {0,1,...,m} if the
agent is a buyer. If an agent’s bargaining state reaches zero, he obtains a
disagreement payoff which is normalized to zero.

Matching procedure. There are two groups of agents: sellers and buyers.
In each period, a pair of agents is randomly selected to negotiate. The agents
are then first returned before a new pair is selected in the next period. We
model market situation where the number of participants remains constant
over time, also called a steady-state market in [14]. Therefore, if the pair
reaches an agreement, their bargaining states are reset to the initial value
and the agents can participate anew in the market. The same occurs if an
agent’s bargaining state reaches zero bargaining opportunities.

Each time an agent participates in a multiple-encounter game, he obtains
a payoff value (either through agreement or by a disagreement in the final
bargaining state). The payoff obtained in different multiple-encounter game
can fluctuate due to variations in the bargaining states and the strategies
of the randomly matched opponents. To obtain a more stable measure
and a better indication of the “expected payoff”, each agent plays at least
r multiple-encounter games, and the final payoff is the average obtained
in these r games. To maintain a steady state market, agents continue to
participate until all agents have played r multiple-encounter games, even if
the their final payoff has already been determined.

Example. An example of a game with n = 2, m = 2 is visualised in Fig. 1
from a buyer agent’s perspective. The buyer, whose initial bargaining state
is op = 2, first encounters a seller, seller 1, with bargaining state o, = 1.
The seller proposes (0.5,0.5)7 and the buyer refuses this offer. The seller
has no more bargaining opportunities and obtains a utility us of zero. The
buyer, on the other hand, can continue bargaining in a new encounter when



matched with another opponent, seller 2. In the example this opponent has
os = 2 and offers (0.6,0.6)7. The buyer now accepts. Note that the matched
agents can have different bargaining states, which is an important aspect of
the market game. Furthermore, in the example the buyer finally accepts an
offer which is worse than the first offer. Once an offer is rejected, agents
cannot go back to a previous offer?.

Note. It is important to note that in this paper both buyers and sellers
initially have an equal number of bargaining opportunities. This way we can
investigate the effect of the additional bargaining opportunities and abstract
away from any other influences. This in contrast to the work in e.g. [14],
where markets are studied with unequal number of buyers and sellers.

3 Game-Theoretical approach

Although the focus of this paper lies on evolutionary dynamics using compu-
tational simulations, it is also useful to derive theoretical results for perfectly
rational agents and to compare these outcomes with the boundedly rational
approach. Game theory has been extensively used to analyse bilateral nego-
tiations and market situations. Game-theoretic outcomes are determined by
the notion of equilibrium. A well-known equilibrium concept which is often
applied for multi-stage games is the sub-game perfect equilibrium (SPE).
SPE requires that a Nash equilibrium is reached in each sub game. We will
apply this concept to the market game, being also a multi-stage game.

A general theoretic analysis of the above market game seems extremely
difficult, and beyond the scope of this paper. We will therefore analyse a
slightly simpler version by making some additional assumptions. First of all,
we assume that an agent uses the same strategy in each multiple-encounter
game. Note, however, that in each encounter the strategy may differ. Fur-
thermore, we assume all agents of a specific type (i.e., buyer or seller) apply
the same strategy. This assumption seems realistic for rational agents since
all agents of the same type also have homogeneous preferences. Finally, and
most importantly, the agents’ bargaining states are common knowledge. A
game-theoretical analysis seems to be very difficult if the agents have imper-
fect information on their opponent’s bargaining state. This is even the case
if the distribution of bargaining states is known and the maximum number
of encounters is as small as two. We will, however, drop the second assump-
tion in the evolutionary simulation (Section 4) and consider market games
both with and without common knowledge of the bargaining states.

The Ultimatum Game. First we analyse the basic component of the
market game: the one-shot ultimatum game for multiple issues. The ulti-

% Agents are said to have no recall [22].



matum game has been extensively studied in the past, see for instance [15,
17, 9]. It has a unique SPE where the seller claims the total share for each
issue, and the buyer accepts this take-it-or-leave-it deal. This result can be
obtained by applying backward induction. Intuitively, a rational buyer will
accept any positive amount, which is always better than obtaining the zero
payoff in case of a disagreement. The SPE is precisely the point where the
buyer is indifferent between accepting and refusing.

Multiple encounters. We argue that the SPE for the game with multiple
encounters and perfect information has the same outcome as for a single
encounter (i.e., the ultimatum game): the seller obtains the whole share,
and the buyer receives nothing. Rather than providing a detailed proof, we
will show this intuitively by a simple example.

We take the simplest case where the maximum number of bargaining op-
portunities equals two. Consider an encounter where the bargaining states
of the matched agents are o0, = 1 and g5 = 1 for the seller and the buyer
respectively, i.e., both agents only have a single bargaining opportunity re-
maining. This situation is identical to the ultimatum game, where the SPE
assigns the total surplus for each issue to the seller and zero to the buyer.

If agents are matched with s = 2 and o, = 1 (i.e., the seller now has
two bargaining opportunities), the situation is similar to above and an SPE
exists where the buyer accepts a zero share for each issue. Note that the
SPE always assigns a zero payoff to the buyer if o, = 1. Using backward
induction, we can therefore replace the disagreement payoff for o, = 2 by
zero. The situation for o, = 2 is now identical to o, = 1: the buyer is
indifferent between accepting and refusing a value of zero and in SPE the
buyer accepts this deal, independent of os.

This way we have shown that the SPE in case of two bargaining oppor-
tunities equals the outcome for the ultimatum game. This analysis can be
extended for longer games.

4 Evolutionary approach

Evolutionary algorithms (EAs) are powerful search algorithms based on Dar-
win’s theory of natural selection. The evolutionary approach has taken up
an enormous interest in different fields and applications. EAs have for in-
stance been extensively used in the field of optimisation for hard problems.
In recent years, more and more the evolutionary approach has been applied
within the field of computational economics as a model for both social and
individual decision making.

We apply an EA to the above market game and evolve the negotiation
strategies of the agents. A number of related papers have demonstrated
that, using an EA, artificial agents can learn effective negotiation strategies
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in similar negotiation games [5, 20]. In [20], a comparison is also made with
game-theoretical solutions to validate the EA. An important advantage of
EAs is that they do not make any explicit assumptions or use of rational-
ity. Basically, the fitness (i.e., quality) of the individual agents is used to
determine whether a strategy will be used in future situations.

The implementation of the evolutionary system is outlined below. The
evolutionary algorithm is first explained in Subsection 4.1. Subsection 4.2
describes how the negotiation strategies are encoded within the agents and
Subsection 4.3 explains in detail the mutation operator used within the EA.

4.1 Evolutionary Algorithm

The sellers and buyers are grouped into separate populations. The system
starts with randomly initialised “parental” populations of bargaining agents,
having random bidding strategies. The EA is subsequently executed for a
number of iterations or “generations”. An iteration of the EA is depicted
in Fig. 2 and consists of three stages: reproduction, fitness evaluation, and
selection.

e Reproduction. At the beginning of each iteration, “offspring” agents
are created by reproduction, see Fig. 2. An offspring agent is generated
by first (randomly, with replacement) selecting an agent in the parental
population, and then mutate its strategy to create a new offspring. The
mutation operator is explained in more detail below.

e Fitness evaluation. In the second stage, the market game is exe-
cuted to assess the quality or “fitness” of the agents. The parental
and offspring populations are combined to form the group of sellers
and the group of buyers. The fitness of an agent is his average payoff
obtained in r multiple-encounter games. The market game continues
until the fitness of all agents has been established (see also Section 2).



Because all agents of both populations start with their first encounter,
in the first periods of the market game the opponent’s bargaining
states do not represent an ongoing bargaining society. To prevent so-
called initiatory effects and to model an on-going bargaining society,
the agent’s fitness is only measured after his first multiple-encounter
game (each agent thus plays at least r + 1 games).

e Selection. In the third and final stage (see Fig. 2), the fittest agents
from each group are selected as the new parents for the next iteration.
This selection scheme is also known as (u+2\)-selection for evolutionary
strategies (ES) [1], where p is the number of parents and A is the
number of generated offspring. In our simulation, we take u = A. The
selection step completes one iteration (or “generation”) of the EA.

4.2 Strategy Encoding

An agent’s strategy is encoded on the so-called chromosome of the agent.
The implementation of the EA is based on “evolution strategies” (ES) [1],
using real-encoding of the chromosome3. In a game-theoretic context, a
strategy is a plan which specifies an action for each history. In our model, an
agent’s strategy specifies either an offer ¢ or a threshold ¢ for each bargaining
state, depending on his type (i.e., seller or buyer). The threshold determines
whether an offer of the opponent is accepted or rejected: if the utility of the
offer falls below the threshold the offer is refused; otherwise an agreement is
reached. A similar approach has been used in [20, 17, 13].

In our simulation we distinguish between two different settings: (1) the
market game with perfect information of the bargaining states, and (2) the
market game where the opponent’s bargaining state is unknown. In the first
case, the offers and thresholds of the agents are conditional on the opponent’s
bargaining state. The strategy representation for this game is depicted in
Fig. 3. In the latter case, the offers and thresholds are determined by the
agent’s own bargaining state only.

Seller [G(1[1) | 6(1[2) | ... | a(m) | 62[1) | ... | o(m|m) |

Buyer | t(1]1) [ t(1]2) | ... | t(1]m) | ¢(2]1) | ... | t(m|m) |

Figure 3: The strategies of a seller and a buyer for the market game with per-
fect information about the opponent’s bargaining state. The offers o(os|op)
and thresholds t(op|os) are conditional on the bargaining state of the oppo-
nent, where 05,05 € {1,...,m}.

3The widely-used genetic algorithms (GAs) are more tailored toward binary-coded
search spaces [8, 12, 6].



4.3 Mutation Operator

The mutation operator produces random changes in a chromosome in the
following way. Fach real value x; on the chromosome position 7 is mutated
by adding a zero-mean Gaussian variable with a standard deviation o; [1].
Formally, z; := x; + 0;N;(0,1). All resulting values larger than unity (or
smaller than zero) are set to unity (respectively zero).

We experiment with several mutation models, including (1) mutation
with fixed standard deviations, (2) mutation with exponential decay of the
standard deviations and (3) self-adaptive control of the standard deviations.
In (1) the standard deviations are initially set to ¢ and remain constant
over time. In (2) the standard deviations gradually diminish such that
every t generations their value is reduced to half the size. We call ¢ the
half-life parameter. The third mutation model has self-adaptive control of
the standard deviations; both the strategy and the corresponding standard
deviations evolve at the same time. A detailed description of the latter
mutation model can be found in [1, pp.71-73],[20, 5].

We mainly report results using (2) in this paper, showing a closest match
with game-theoretic predictions. We briefly mention some of the results
using the first and the third model.

EA Parental population size (u) 30
settings Offspring population size () 30
Mutation model exponential decay
Initial standard deviations (o) 0.1
Standard deviation half-life (¢) 400
Number of generations 4000
Number of runs per experiment 30
Game  Maximum number of encounters (m) 5
settings Number multiple-encounter games for final payoff (r) 5
Number of issues (n) 1
Compititiveness for n = 2 («) 0.2

Table 1: Default settings of the evolutionary simulation.

5 Evolutionary Simulation Results

This section discusses the results from the evolutionary simulation. Since
the outcomes often depend on random factors, the results are averaged over
30 runs using the same settings. All default settings which are used in
the experiments are listed in Table 1. Deviations from these values are
mentioned in the text and in the captions.

10
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Figure 4: Development of the mean fitness of the seller and buyer popula-
tions for m = 1,m = 2 and m = 5 and using a fixed mutation model with
o = 0.1. Other settings are shown in Table 1. Results are averaged over 15
runs and the error bars show the standard deviations.

The results are organised as follows. First, the game with common
knowledge of the agent’s bargaining state is studied in Subsection 5.1 and the
results are compared to the game-theoretic predictions. In Subsection 5.2
introduces a measure of competitiveness for the negotiations and compares
results for different levels of integrative negotiations. In Subsection 5.3 the
assumption of common knowledge is dropped. Subsection 5.4 considers the
effects of fixed search costs in the market game. Results with perfect and
imperfect knowledge are compared. A summary of the results is given in
Subsection 5.5.

5.1 Perfectly Informed Agents and Game-Theoretic Valida-
tion

We first consider a distributive (i.e., single-issue) scenario with perfect in-
formation. Figure 4 shows the simulation results for different values of m
(maximum bargaining opportunities) and using a fixed mutation scheme
with 0 = 0.1. For m = 1, the results are close to SPE outcomes: the seller
obtains almost the entire surplus. However, as m increases, the deviation
from SPE outcomes becomes more pronounced.

The explanations for the disagreement with game-theoretic results are
two-fold. First of all, longer games (i.e. with more encounters) require a
longer chromosome, and the optimization problem therefore becomes more
complex. I.e., the space of possible solutions increases. Another factor which
depreciates the results is the noise introduced by the mutation operator.
The noise affects longer games more than shorter ones. In longer games, an

11
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Figure 5: Development of the mean fitness of the seller and buyer popu-
lations for m = 1,m = 2 and m = 5 and using exponential decay of the
mutation standard deviations. Results are averaged over 15 runs of the
same experiment.

agent has a higher probability of encountering an opponent with suboptimal
behaviour. Buyers, for instance, will learn not to accept extreme deals, but
to try their luck in the next encounter. In the long-term, this also affects the
offers made by the sellers, and the effect carries on to the buyer’s thresholds
in earlier encounters.

To test whether the noise indeed influences the long-term fitness of the
agents, we apply the exponential decay mutation model, where the mutation
rate is slowly diminished. The results in Fig. 5 show a much better match
with game-theoretic SPE expectations. Furthermore, lowering the number
of random perturbations stabilises the long-term results. We also ran simu-
lations with lower fixed standard deviation o, and we used the model with
self-adaptive control of the standard deviations. The model with exponen-
tial decay, however, showed a much better match with SPE outcomes, also
when varying other settings (e.g. the number of issues). In what follows, we
therefore use this mutation model as the default setting.

Although a better match is found by optimizing EA parameters such
as the mutation model, increasing m still results in less extreme deals. We
also tried different population sizes p and A and various values for . Only
minor improvements were found, however. The outcomes of the EA are
therefore quite robust. The evolutionary approach has lately been proposed
as an explanation for the discrepancy between game-theoretic outcomes and
laboratory experiments with human subjects, for instance in [17]. The evo-
lutionary results could be considered more “fair” and closer to real-world
outcomes, where for instance an extreme split of the surplus is usually not
found [17, 9].

12
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Figure 6: Fitness outcomes after 4000 generations for the seller and the
buyer populations for n = 2 and different levels of competitiveness a.

Interestingly, in [17] a less extreme outcome is also found for the one-shot
ultimatum game using an evolutionary simulation, even though the setup is
very similar. In [17] “proposers do not play a sub-game perfect strategy but
instead ‘learn’ to make offers of about 20 to 25 % of the total amount to
their opponents”. The main distinction is the selection scheme used; in [17]
selection and reproduction of a strategy depends on a probability equal to
the relative fitness. In our case, reproduction occurs randomly and selection
is deterministic (see Section 4.1). Previous experiments [20] also showed
inferior matching results when fitness proportional selection was used.

5.2 Perfect Information and Integrative Negotiations

Negotiations are called integrative when mutually beneficial solutions are
available [7]. In the simulation we use a simple model with two issues where
the buyers and sellers have opposing weight settings. More formally, the
weight settings can be described as w, = (0.5 — @,0.5 + a)T and w, =
(0.5 4+, 0.5 — )T for the seller and buyer respectively, where o € [0.0, 0.5]
is the degree of competitiveness. When the parameter « is set equal to
0, negotiations are purely distributive (and equivalent to a single issue); if
a = 0.5 there is no competition at all. We use a = 0.2 as the default value.
Note that the maximum social welfare, i.e. the maximum total utility that
a seller and a buyer can achieve together equals 2 - (0.5 + «), where each
agent obtains (0.5 + «).

Results for m = 5 and different values of o are shown in Figure 6. It
is interesting to see that, in case of mutually beneficial opportunities, the

13
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Figure 7: Average long-term fitness outcomes after 4000 generations for dif-
ferent values of m (the maximum number of encounters). Both distributive
(n = 1) and integrative (n = 2, = 0.2) negotiation results are shown.

boundedly rational agents find win-win situations. The buyer particularly
benefits from this integrative setting.

5.3 Imperfect information

In this section we examine the results when the agents do not share the
knowledge of their opponents’ bargaining states; the agents only know their
own bargaining state. The agents do implicitly learn the distribution of
bargaining states in the opponent’s population. However, this distribution
is endogenously determined by the strategies of the agents. The strategies,
in turn, adapt to the to the distribution of the bargaining states. This cyclic
behaviour is one reason why theoretical analysis is difficult.

Long-term results for distributive and integrative experiments with vary-
ing m and r = 5 are shown in Fig. 7. Notice the large dissimilarity with
the imperfect information case (Fig. 5): outcomes are now symmetric if
m = 5. When negotiations are integrative, symmetric (win-win) outcomes
are reached even for m = 3. Furthermore, results are much more stable
(i.e., the standard deviations are smaller) in case of integrative negotiations.
We note that these results are obtained even though the chromosome in the
imperfect information case is much shorter and the search space is reduced.

We also experiment with other values of r, i.e., the number of outcomes
or “samples” used to determine the final payoff. If r is small, the seller
obtains the largest payoff, see Fig. 8. If r becomes larger, however, the
buyer has the advantage. By increasing r the stochasticity of fitness value
is reduced and the fitness becomes a more accurate measure of the expected

14
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Figure 8: Experimental results after 4000 generations for different values of
r (the number of times an agent participates in the market game). Results
for a distributive setting are shown (n = 1) as well as an integrative setting
(n = 2,a = 0.2). Notice that the average buyer fitness becomes higher as r
increases.

payoff (see Section 2). Figure 8 shows the results for various r, both for
a distributive and integrative negotiation setting where m = 5. As in the
game with perfect information, an extreme result is again observed if r
becomes large. Now the buyer obtains the largest share. This occurs both
for distributive and integrative negotiations, although r has less influence in
the latter case®.

This can be explained as follows. Recall from Section 3 the game-
theoretic analysis using backward induction. In the buyer’s final encounter,
a rational buyer will accept any offer. The seller can anticipate the buyer’s
behaviour in the buyer’s last encounter if he knows his bargaining state; the
seller will then ask the maximum amount. He cannot know what the buyer
will do, however, if the bargaining state is unknown. Because the first step
of the induction cannot be made, the outcome in earlier encounters cannot
be derived either. In the simulation we observe in the beginning of a run
that the buyer accepts any deal in his last encounter. However, this no
longer affects the behaviour in earlier encounters.

With imperfect information, a buyer will no longer accept a bad deal
because there is a good chance of getting a better deal in the next encounter.
Consider a seller in his last encounter. The seller will not propose a bad offer,
since a buyer is likely to refuse it. To prevent a disagreement, the seller will

“Note that the average distribution of bargaining states could also change due to an in-
creased 7, which could also cause the observed results. However, experiments where several
outcomes are omitted before the final payoff is measured show no significant deviations.
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Figure 9: Average long-term population fitnesses for different search costs.
Here, n = 2 and » = 10. In experiments (1) the agents have perfect in-
formation of their opponent’s bargaining opportunities, whereas in (2) the
bargaining states are not common knowledge.

propose a higher share to the buyer in his last encounter. A similar offer
is then made in earlier encounters. In the process of evolution, these offers
slowly increase until the buyer obtains the entire share.

It is interesting to see that if r is around 5 the agents agree on an even
split on average. This “fair” division remains if other parameters of the EA
(such as the mutation scheme) are varied. In game theory, the payoff is
based on the expected outcome, i.e., the average outcome when the game
is repeated infinitely. In reality, however, learning is based on a limited
number of samples. As is shown here, the number of samples has a large
impact on the outcome when strategies are based on imperfect information.

5.4 Search costs

In the experiments discussed so far, there is no pressure for the agents to
reach an early agreement; as long as bargaining opportunities are abundant,
a disagreement has no direct impact on an agent’s payoff. In this section we
introduce search or negotiation costs into the market game. For each time
an offer is rejected, the final payoff of both agents is reduced with a fixed
amount 5. We consider the case where both agents have equal search costs.

Perfect information. If search costs are excessive, e.g. larger or equal
to one, the game is effectively the single-encounter game; the seller claims
the whole surplus by a take-it-or-leave-it deal in very the first encounter. A
similar outcome, however, is already obtained for much smaller search costs.
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Figure 9 shows the fitness results after 4000 generations for different search
costs, where m = 5 and n = 2 with default competitiveness (o = 0.2). The
fitness of the two agents gradually grows apart as the search costs increase.
Notice that search costs below 0.10 hardly have any impact on the division
of the surplus in this case.

It is interesting to note that, even though most agreements are reached
immediately, some agreements are still reached in later encounters. The
agents keep exploring other opportunities. These later encounters play an
important role in the division of payoffs if search costs are low. The buyer,
for instance, still obtains a considerable share of the surplus in the first
encounter if the maximum number of bargaining opportunities m is equal
to five. This share increases if m > 5.

Imperfect information. Figure 9 shows a much larger impact of the
search costs if the bargaining state of the opponent is unknown. Whereas
with zero search costs the buyer has the advantage, the sellers claims the
largest share even if search costs are very small (e.g. 0.01) and equal for
both agents. Results are robust for different settings of the EA.

With zero search costs, a buyer has nothing to lose by waiting for a bet-
ter payoff in the next encounter. In the simulation we observe that agree-
ments are distributed over the various encounters. Both buyers and sellers,
however, are stimulated to reach agreements early in case of search costs.
The final encounter of the seller is therefore almost never reached, removing
the advantage for the buyer. During the course of a run, agreements are
steadily reached in earlier encounters and at the same time the seller’s share
increases. Whereas in the perfect information case the additional bargaining
opportunities still play an important role, these no longer affect the payoff
in case of imperfectly informed agents.

5.5 Summary of results

Results are sensitive to a number of parameter settings of the EA such as the
mutation model and the selection scheme. Game-theoretic SPE outcomes
are used as a benchmark and to tune the EA in order to obtain a best match.
In particularly we find that deviations from SPE are mainly caused by noise
due to exploration of new strategies. If we slowly reduce the noise by an
exponential decay of the mutation standard deviation, in the long term a
good match can be found for smaller games.

A distinct difference between the outcomes of the market game using
perfectly informed and imperfectly informed agents is observed in the sim-
ulation. If the agents know one another’s bargaining opportunities, the
outcomes resemble the SPE predictions when m is small: the seller obtains
almost all of the surplus. As m becomes larger, the space of possible deals
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becomes too large to be fully explored. The results are then much less ex-
treme and the division of surplus can be considered more “fair”. These
outcomes are quite robust to different EA setting. Less extreme deals are
also made if negotiations are integrative. The EA results can be considered
more realistic for boundedly rational agents with only limited computational
capacity.

If the bargaining state is not known, on the other hand, the seller can
no longer anticipate the buyer’s behaviour and the buyer acquires the ad-
vantage; he can reject unpropitious offer of the seller and wait for a better
offer in the next encounter. The seller gives in to avoid a disagreement in
the final round.

In case of imperfect information, the outcomes are much more sensitive
to the number of samples used to determine the final payoff. If an agent’s
final payoff is averaged over many outcomes, the buyer obtains almost the
entire surplus (when m is at least 5). If the number of samples around 5,
on the other hand, the agents reach an equal fitness on average. With even
less samples, the seller obtains the largest share.

The effects of fixed search costs per encounter have also been investi-
gated. The search costs stimulate both buyers and sellers to reach an early
agreement. In case of perfectly informed agents, the results gradually move
towards the outcome for the single-encounter game. If search costs are small,
the agents keep exploring other opportunities. In case of imperfect knowl-
edge even small search costs cause an extreme split of the surplus as before,
where the seller obtains the entire partition. The remaining opportunities
no longer affect the outcome.

6 Conclusion

We study the evolutionary dynamics of a market-like game, where a seller
sells a single good and has several opportunities to do so. At the same time,
a buyer wishes to buy an item by trying several sellers. The terms of an
agreement are negotiated using an ultimatum-like game, where the seller
proposes an offer and the buyer can choose to accept or reject the offer. The
game is extended to allow for multiple opportunities for both the seller and
the buyer if the deal is rejected. This way a competitive market is modelled.
To investigate the effect of multiple encounters only, settings such as the
maximum number of encounters and the population sizes are set equal for
both buyers and sellers.

The game-theoretic outcome using sub-game perfect equilibrium (SPE)
for the one-shot ultimatum game predicts an extreme splits of the surplus:
the seller obtains the whole surplus whereas the buyer obtains his disagree-
ment payoff. We extended the analysis for multiple encounters with perfect
information of the opponent’s number of bargaining opportunities and found
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the same outcome. A theoretical analysis seems to be very difficult, however,
if the bargaining states of the agents are not common knowledge.

We first compared the evolutionary results with the game-theoretical
outcomes for the perfect information game. If the maximum number of
bargaining opportunities is small, both approaches yield very similar results.
In larger games or when the negotiations become less competitive, the EA
shows deviating outcomes due to the limited computational capacity of the
agents; the payoffs of the buyer and the seller become less extreme and can
be considered more fair and realistic than the game-theoretic outcomes.

A large impact of the additional bargaining opportunities is found if the
agents have no information on their opponent’s number of bargaining oppor-
tunities, even though both buyer and seller initially have equal opportunities
available. In that case, the seller cannot predict the buyer’s response and
gives in to avoid a disagreement.

The outcomes are however sensitive to the number of samples avail-
able to determine an agent’s final payoff. If the multiple-encounter game is
played more often, an agent’s average payoff more accurately represents the
expected payoff. If that case, the buyer obtains almost the entire surplus
for each issue. If the number of samples is very low, on the other hand, the
seller obtains the largest share. A “fair division, where both agents obtain
the same payoff, can also be obtained, in particularly when negotiation are
integrative. These results are quite robust to different settings of the EA.

The influence of search costs also varies depending on the information
available to the players. Small search costs have little influence on perfectly
informed agents. In the incomplete information case, the effect is much
more present: even small search costs result in extreme splits, similar to the
one-shot ultimatum game.

We observe a large impact of the additional opportunities, particularly if
the agents are uninformed about their opponent’s number of future oppor-
tunities. In situations where multiple sellers and buyers are available, and
the agents have no search costs, the outcomes of the ultimatum game there-
fore do not seem to hold. If agents endure even small search costs, however,
results seem to indicate a similar outcome to the one-shot ultimatum game.
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