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Abstract 
 
This paper summarises the analysis of 29 out of 30 tick-by-tick time series of stocks included in the 
Dow Jones Industrial Average (DJIA) and traded in October 1999. This study was performed to test 
a phenomenological model of high-frequency market dynamics based on continuous-time random 
walks. 
 
Introduction 
 
In financial markets, not only prices vary at random, but also waiting-times between two 
consecutive trades [1]. It is therefore possible to model the high-frequency market dynamics by 
means of continuous-time random walks (CTRWs) [2-6]. 
 
To this purpose, let x(t) represent the log-price at time t; let ξi denote the log-return x(ti+1)-x(ti) and 
τi the waiting time ti+1-ti. The evolution equation for p(x,t), the probability of finding the log-price x 
at time t, assuming the initial condition p(x,0) = δ(x), is the following master equation: 
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where ( )tΨ  is the survival probability and ( )τξϕ ,  is the joint probability density of jumps and of 
waiting times.  
 
Two marginal probability densities can be defined: 
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If jumps and waiting-times are independent, the joint probability density can be factorised: 
( ) ( ) ( )τψξλ=τξϕ , . 

 
In its turn, the survival probability is given by: 
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In principle, if the joint probability density function is known, it is possible to generate a realisation 
of the CTRW, for instance by means of a Monte Carlo simulation. 
 
The purpose of this paper is to present some relevant empirical statistical properties of Dow Jones 
Industrial Average stocks, based on the above outlined theory. In particular results will be presented 
on the following points: 
• The independence between log-returns and waiting-times; 
• The autocorrelation of log-returns and its scaling properties; 
• The autocorrelation of waiting times and the presence of seasonalities; 
• The survival probability. 
 
In the following, the analysis of 29 stocks of the Dow Jones Industrial Average (DJIA) is 
performed. In fig. 1, a histogram is shown with the number of trades for each stock. The total 
number of trades analysed is 762,044. 

 
Fig. 1. Number of trades N for each stock. 



Test of independence between log-returns and waiting times 
 
In fig. 2, waiting times t i are plotted as a function of the corresponding log-returns ?i.  
 

 

Fig. 2 Waiting times as a function of the corresponding log-returns. 

The independence of the two random variables can be studied by means of the contingency table 
method. A direct inspection of the above figure indicates a possible correlation. Actually, a 
hypothesis test performed on the empirical joint frequency density function for the 29 stocks shows 
that the independence hypothesis can be rejected. As an example, in tab. 1 a contingency table is 
shown for GE stocks and a particular choice of intervals. The value of the reduced chi-square is 
27.2, yielding the rejection of the null hypothesis. 



 
τi  

0 ÷ 10 10 ÷ 20  > 20 
< -0.002 25 (38.9) 21 (10.1) 9 (6.0) 
-0.002 ÷ -0.001 516 (613.6) 230 (159.5) 122 (94.9) 
-0.001÷ 0 6641 (7114.3) 2085 (1849.1) 1338 (1100.6) 
0 ÷ 0.001 31661 (31008.0) 7683 (8059.2) 4520 (4797.0) 
0.001 ÷ 0.002 398 (464.4) 179 (120.7) 80 (71.9) 

 
 
ξi 

> 0.002 34 (36.1) 10 (9.4) 7 (5.6) 
 
Tab. 1. Contingency table for log-returns and waiting times. Every cell contains the observed 
frequency as well as (in brackets) the theoretical frequency computed under the null hypothesis of 
independence. 
 
In fig. 3, as a further example, the value of the reduced chi-square is shown for three more stocks 
and as a function of the number of degrees of freedom. The values of chi-square decrease as the 
number of degrees of freedom increases due to a different choice of intervals in the contingency 
table. However, they are well above the values for the acceptance of the null hypothesis. For all the 
29 time series, the two stochastic variables are not independent. 

 
Fig. 3. Chi-square as a function of degrees of freedom for three stocks. 



 
Autocorrelation of log-returns and waiting times 
 
In fig. 4, the autocorrelation function is plotted for the absolute value of the log-returns of General 
Electric stocks. The following estimator was used: 
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where ξ  is the average value of the random variable iξ . 
Due to scale persistence, the autocorrelation exhibits a power-law decay and reaches the noise level 
after a 16-tick lag, corresponding to about 3 minutes. A similar behaviour is found for the other 
stocks, whose autocorrelations reach the noise level for times between 2 and 20 minutes. Indeed this 
is a well-known stylised fact in high-frequency financial time series [7-9]. However, due to a 
possible unreliability of autocorrelation estimators for heavy-tailed distribution, caution is necessary 
to correctly interpret these results [10-12]. 
 

 
Fig. 4. Autocorrelation of absolute log-returns. The original time series is in the inset. The straight 
lines are different fits of the power-law decay. The solid line only takes into account points above 
the noise level. 



 
In fig. 5, the autocorrelation function for waiting times is shown. A one-day periodicity emerges, by 
direct inspection, by the analysis of the autocorrelation function as well as by means of Fourier 
analysis (not discussed here). Such a periodicity corresponds to the daily stock-market activity [13]. 
The waiting-time autocorrelations of other stocks exhibit a similar behaviour, but, sometimes, the 
daily seasonality is less evident. 
 

 
Fig. 5. Autocorrelation of waiting times. As in fig. 4, the original time series is shown in the inset. 
 
The survival probability 
 
In a previous paper, the Mittag-Leffler function has been suggested as a suitable model for the 
empirical survival probability [4]. Such a hypothesis was tested for bond future prices in refs. [4,6]. 
For small waiting times, the Mittag-Leffler function is well approximated by a stretched exponential 
of the following form: 
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In fig. 6, a fit of the empirical survival probability is shown using a stretched exponential. In fig. 7 
and fig 8, plots of ? and its inverse, the time scale 1/? are presented for the 29 stocks. It turns out 
that 1/? varies linearly with the number of trades N. On the other side, the exponent ß fluctuates 
around the average value of 0.81 with a standard deviation of 0.05. It is worth noting that the stocks 
with the larger number of trades (here called liquid stocks for the sake of simplicity) exhibit values 
of ß systematically greater than the average value. 
 



These findings suggest the possibility of a scaling transformation of the time variable 
( ( ) ( )βγτ β +Γ= 1u ) leading to the collapse of all the 29 survival probability into the single curve 
shown in fig. 9. 

 
Fig. 6. γ as a function of the number of trades. 



 
 
Fig. 7. 1/γ as a function of the number of trades. 
 



 
 
Fig. 8. β as a function of the number of trades. 
 
 



 
Fig. 9. Scaling of the waiting-time survival distributions. 
 
Summary and conclusions 
 
In the present paper, some statistical properties of 29 out of 30 time series of DJIA stocks traded in 
October 1999 were investigated. The purpose was to assess the limits of validity of the continuous-
time random walk phenomenological model of tick-by-tick dynamics in financial markets. 
It turns out that the two basic random variables of the model, log-returns and waiting times cannot 
be considered independent from each other. In particular, large log-returns are almost never 
associated to long waiting times. 
The autocorrelation of log-returns exhibits a power-law behaviour with non-universal exponent. It 
reaches the noise level for times between 2 and 20 minutes. On the other hand, the autocorrelation 
of waiting times has a one-day period, corresponding to the daily market activity. 
The complementary distribution function for waiting times, that is the survival probability, is well 
fitted by a stretched exponential function with two parameters. This leads to a simple scaling 
transformation after which all the 29 survival probabilities collapse into a single curve. These 
results seem to corroborate a previous theoretical prediction of the authors. 
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