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Abstract

We propose a general framework for describing the evolution of heterogeneous
beliefs in dynamic settings. Taking a continuous beliefs space as a starting point,
beliefs distributions are introduced, as well as a dynamic updating rule based on
the continuous choice model. The methodology is illustrated using dynamical asset
pricing models, in which agents optimize their strategies based on past performance
measures. This approach gives rise to price dynamics in which the beliefs distribution
evolves together with realized prices. For several models, the role of the performance
measure, the class of predictor functions, and the memory parameter is examined
both analytically and numerically. By considering aggregate beliefs, conditions can
be derived under which the dynamics tends to a deterministic or a stochastic law
when the number of agents tends to infinity. In the case of stochastic dynamics,
the distributional properties of the endogenous random price fluctuations can be ex-
pressed in terms of the beliefs distribution. Finally, conditions are given under which
the dynamics are finite dimensional, and the beliefs distributions are observable from
realized prices time series.
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1 Introduction

As little as it takes one to realize that expectations about future prices are essential for
investment decisions made by market participants, as difficult it is to study the interaction
between prices and expectations empirically. Expectations, let alone the beliefs on which
they are based, are hardly ever directly observable in practice. For stock markets, for
example, one typically observes realized prices, reflecting market aggregated expectations
rather than individual expectations. We are interested in issues such as the interaction
between information available to market participants and the distribution of their beliefs,
the time evolution of the heterogeneity among agents, and the question to which extent
it is possible to extract information about the distribution of beliefs from empirical data.
The aim of this paper is to provide a framework for studying these types of questions. We
propose a methodology and illustrate it with agent-based asset pricing models, since they
are typical examples of the dynamic feedback systems we have in mind.

Until recently, the literature on agent-based asset pricing models has been mainly con-
cerned with price dynamics in settings where agents are allowed to choose among a finite
number of strategies. Brock and Hommes (1997) showed that, with a discrete choice model
for the distribution of strategies, these models give rise to deterministic price dynamics for
a continuum of agents. Brock et al. (2001) examined conditions under which similar re-
sults are obtained for models with agents that are allowed to employ strategies from a
continuum of strategies. This was done by considering a limit, in which the number of
strategies which the agents can employ tends to infinity. This approach was motivated
by the question whether an extension of the diversity of belief types leads to more com-
plex dynamics and possibly more realistic price dynamics than that observed in few type
systems.

As noted above, the motivation behind the methodology we develop here is different.
We have in mind a framework which provides insights into the way agents update their
beliefs, which can be used to study the interaction between realized prices and beliefs,
and might provide information about the beliefs distribution from observed realized prices.
Therefore, in our approach, the evolution of the probability distribution over the belief
parameter space is accounted for explicitly by a continuous choice model. The beliefs
distribution, which is updated using past realized prices, plays the role of a population dis-
tribution, rather than the actual distribution of strategies among the market participants.
It represents the probability distribution from which the strategies eventually employed by
the individual agents, are drawn.

Since the continuous choice model utilizes random components on individual utility
functions the price dynamics is stochastic if the number of agents is finite. Depending on
the details of the model, such as the performance measure used to evaluate strategies, the
price dynamics either remain stochastic or tend to a deterministic law when the number
of agents tends to infinity. This endogenous randomness is a direct consequence of the use
of a continuum of strategies. The type of randomness arising in these models is extremely
relevant for the study of deterministic price dynamics with endogenous dynamic noise, since
it allows the explicit derivation of distributional properties of the endogenous randomness



and the exact way where the noise enters the price dynamics. To the best of our knowledge,
in the literature, these type of dynamics have only been studied with random shocks with
ad-hoc distributional properties, and which were implemented as additive noise on the
price equation without further theoretical justification.

This paper is organized as follows. In section 2 the concept of a beliefs distribution in
a continuous beliefs space is introduced, as well as its form given by the continuous choice
model. Section 3 describes the the evolution of the beliefs distribution in a dynamic setting
where beliefs are updated when new information becomes publically available. This section
also describes the dynamics this implies in a standard asset pricing context. In section 5 the
mechanism by which endogenous noise arises from the dynamic continuous choice dynamics
is described. Section 6 summarizes and discusses the results.

2 Continuous choice

Agent based models represent market participants as (typically a large number of) agents,
who can select among a number of alternative strategies. If the strategies among which the
agents can choose consists of a finite set strategies, s1, ..., sx say, then agents employing
strategy s;, ¢ = 1,... ,k are said to be of type 7. McFadden (1973) derived an expression
for the fractions n; of agents employing strategy ¢ starting from the concept of random
utility functions. It is assumed that the utility function of agent j can be written as

Vi(s) = U(s) + ¢€;(s)

where U(s) is a non-stochastic “common” utility function representing the tastes of the
population, and €;(s) is stochastic and reflects the idiosyncrasies of individuals in tastes.
The individuals choose the alternative which optimizes their utility. Under the assumption
that the disturbances of the utility function follow a Gnedenko extreme value distribution,
it can be shown that this leads to the multinomial logit distribution of choices:

eIBU(si)

= SF L efUG)

where U(s;) is the utility associated with alternative j. The parameter [ is referred to as
the intensity of choice, and is related to the scale of the noise term €;(s). The larger the
value of 3, the smaller the noise, and the larger the probability that an agent chooses the
option which actually optimizes U(s). This is why 1/ is sometimes interpreted as the
propensity of agents to err, assuming they actually all wish to optimize U(s).

In the presence of a continuum of belief types it is convenient to introduce a finite
dimensional parameter space ©, containing all possible strategies that can be employed by
the agents. Each element 6 in © uniquely determines a possible strategy. We will refer to
© as the beliefs space. Note that the choice of the beliefs space is not unique, since any
one-to-one transformation of the beliefs space © into another space, ©', say, will again yield
a suitable representation of the beliefs space. In analogy with the discrete choice model,
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we wish to represent the diversity of belief types by a probability distribution function over
the beliefs space. The distribution of strategies can be obtained from the generalization of
the discrete choice model referred to as mixed discrete/continuous choice models. Let us
denote the pdf associated with the beliefs distribution by ¢(#). As in the discrete choice
setting, it is convenient to adopt a random utility approach (Hanemann, 1984; Dagsvik,
1994). The random part of the utility function of an agent will eventually determine which
strategy that particular agent considers optimal. Therefore, the strategies employed by
individual agents in a random utility framework are random variables (note that this does
not imply that individual agents perceive their own utility functions to be random, only
that they are random to the econometrician). If we let §; denote the strategy adopted by
agent ¢, then the pdf ¢(f) is the probability density function associated with the random
variables 6;. Dagsvik (1994) derived the following pdf for the 6;:

_ e/iU(H;(p(g)’ (1)

where Z is a normalization constant, given by

Z = / PV 5(9)dv.
(C]

As in the discrete choice setting, 3 represents the intensity of choice. The function () is
nonnegative, and can be used to put different weights on different parts of the beliefs space.
We refer to ¢(f) as the opportunity function. The introduction of () is not an additional
expansion of the model, but necessary for obtaining a representation that is consistent
in that it is independent of the parameterization of the beliefs space ©. Mathematically,
©(0) fixes the integration measure in the beliefs space ©. In economic applications the
opportunity function can be thought of as reflecting the a priori faith of individuals in
parameters within certain regions of the parameter space. In an asset pricing framework,
if agents have a tendency to avoid strategies in certain parts of the parameter space, for
example because extremely large or small parameter values are implausible to agents, this
will be reflected by small values of ¢(f) in those regions of the parameter space.

The beliefs distribution is independent of the parameterization of ©, provided that the
opportunity function is transformed properly when moving from one parameterization to
another, as stated in the following proposition.

Proposition 1 Under the convention that ¢(0) transforms as a density function under
one-to-one measurable coordinate transformations, g : © — ©', that is, ¢'(0') =| J;-1(0") |
©(g7(0")), where J,-1(0') is the Jacobian of g~'(-) evaluated at ¢, the beliefs representation
1s independent of the parameterization of ©.

Proof: Requiring that the pdf ¢(6) transforms as a density leads to

() =| Jp1 () | 6(g7"(9")).



From the definition of ¢(), after substituting U(g~!(#")) = U’(¢’), one obtains

IOV 0) =] Ty (8) | SO (g0,
By defining ¢'(8") =| J,-1(0") | ¢(g7'(#")) it can be easily seen that this holds for all pos-
sible utility functions U(#). O

Generally speaking, we neither need to require that ¢(f) be a pdf, nor that it is in-
tegrable in order for the distribution of beliefs ¢(f) to be well-defined. For example, if
© =R™, ¢(f) =1, and U(6) is a quadratic form in # with a single maximum, then ¢(#)
is a multivariate normal probability density function.

As stated above the distribution of beliefs does not always exist. The following propo-
sition describes the necessary and sufficient conditions for the existence of the probability
density of beliefs over ©.

Proposition 2 The beliefs distribution ¢(0) given in Eq. (1) is well-defined as a pdf if and
only if Z = [, VP p(9) 9 is positive and finite.

Proof: Since e’V and ((f) are non-negative, the function ¢(6) is nonnegative if and only
if [, €@ (9)dd is positive and finite, in which case [ ¢(J) dd equals one. O

An equivalent way of stating this proposition is that ¢(f) is well-defined if and only
if efU) is p-integrable. It is possible to give some sufficient conditions for V@ p(0) to
be integrable. For example, if either ¢ () or e#U(%) is bounded, and the other integrable,
ePU p(0) is integrable, so that Z is finite and ¢(f) is well-defined. Another sufficient
condition is U(f) to be bounded from above in © and ¢(#) to be integrable.

3 Continuous choice dynamics

In this section we introduce updating of the beliefs distribution in a continuous choice
framework. The methodology is illustrated within a standard asset pricing context, but
applicable to any dynamic setting in which beliefs distributions are dynamically updated.
As noted in the introduction, few belief types systems were among the first dynamic asset
pricing models. In reality we would expect a high degree of heterogeneity to be present in
the population of market participants, and a small number of belief types will probably be
insufficient to model the rich behavior of price fluctuations observed in real life. Typical
questions we have in mind are the following. What is the role of the performance measure
used to evaluate strategies? How does the heterogeneity among agents’ beliefs evolve with
realized prices? Under which conditions will a small subset of the initial set of belief types
eventually attract most of the population of traders? The latter questions are particularly
interesting since they provide insight in the behavior of economic agents, in particular their
expectation formation.



We denote the information available to agents at time ¢ by F;, = {p; 1,0t 2,...}. In
an asset pricing context, for example, p, can stand for the price at time ¢, so that the
information set consists of a historic record of prices ps; up to and including the price at
time ¢ — 1. The price p; at time ¢ will be determined by the market equilibrium equation
which depends on the agents’ expectations, at time ¢, about the price the next time they
can sell the asset again, £ + 1. The possible strategies from which the agent can choose to
predict future prices are represented by a function of past observables, parameterized by
6, which we shall denote by fy(p;_1,pi_2,-..). For example, the class of d-th order linear
predictors consists of all predictors of the form

fo(Pt—1, -y D1—a) = 0o + O1p1—1 + ... + 0api_a,

in which case the beliefs are represented in R4*! and the beliefs distribution is a probability
distribution over this space. Generally speaking, the function fyp(pi—1,pi—2,...) is referred
to as the predictor function. The prediction of agent 7 using strategy ¢, at time ¢, for
a given price history F;, will be denoted by pf,.; = fo,,(pi—1,Pt—2,...). That is, pf,
represents the agent’s prediction, at time ¢, of p;.1, conditional on the information set at
time .

Let n denote the number of agents. The aggregated expectations are defined as the
mean expectation

B 1 1
D1 = n szﬁ—l 0 Z for,(Pt—1, P12, .. .).
i=1 i=1

This definition of average predictions requires the predictions to be representable in a space
where averages are well defined, such as R?, or a convex subset thereof. Note that, more
generally, one could examine agents predicting some function of the observables instead of
the observable p;,; itself, but this is possibility is not examined further here.

We consider a context in which the price realized today is a function of aggregate
expectations of agents about future prices, that is, the price at time ¢ is given by

pe=nh (ﬁ%,t+1) ) (2)

where h is a time independent and continuous function.

Once p; becomes part of the public information set, the beliefs distribution is updated.
This is where the continuous choice framework is incorporated in the model. The common
(nonrandom) part of the utility function, conditioned upon information available at time
t, is denoted by U;(0) = U(0; F;). Typically, U(6; F;) will be based on a fitness measure of
strategies #, such as the last net ex post profits or squared prediction errors. More generally,
one might introduce dependence on the further past performances by introducing memory
in the model. The evolution of the fitness measure for predictor f, can for example be
modeled as:

U,(0) = alU,_1(0) + m(6),



where « € [0, 1) is a memory parameter. The fitness measure U;(6) then becomes a geomet-
rically weighted sum of ex post performances of predictor fy. Given a new observation p,
Ui (0) can be updated, and the pdf of the belief distribution is determined by the continuous
beliefs model:

Py (9)
)= ———=.
¢:(0) 7
After this, the updating process of prices and the beliefs distribution can be started all

over again.

Since we have described how a new price and a new beliefs distribution can be obtained
from the previous beliefs distribution and the price history, the feedback loop is closed. At
first glance it might seem that given the beliefs space ©, the utility function U(6|F), and
the function g, the model is fully specified by the equations for prices in terms of average
expectations, and the evolution of the distribution of beliefs (or equivalently, strategies, or
predictors). The model is not complete, however, without specifying how, given the beliefs
distribution, the strategies actually used by the agents are drawn from this distribution.
There are many beliefs selection mechanisms compatible with a given beliefs distribution,
differing in dependence among strategies used among agents and over time. Dependence
among traders can arise for example by the exchange of private information. It is also
possible that although the idiosyncratic noise of each agent changes only slowly over time,
giving rise to temporal dependence of the idiosyncrasies. In many cases, however, the
following simplifying assumption is not very restrictive:

Assumption 1 (Independent agents) The strategies ;1 employed by agent i at time t, for
each fixed time t are independent random variables, distributed according to the population
distribution of beliefs at time t, ¢4(0).

Assuming independence over agents seems reasonable, since it is always possible to consider
expectations of groups of correlated agents as expectations of a single agent representative
of this group. The effect of dependence then is merely a reduction in the effective number
of agents. A stronger assumption is made if one additionally assumes independence of the
idiosyncratic noise of each agent over time:

Assumption 2 (Independent agents with temporal independence of idiosyncrasies) The
strategies 0;; employed by agent i at time t, conditionally on F, are jointly independent
random variables, distributed according to the population distribution of beliefs at time t,

¢4(0)-

This assumption, which is not essential for the main results derived in this section, and
will be used only in the example models, is reasonable if the time interval corresponding
to one time step in the model is large compared to the time scale on which idiosyncratic
preferences of single agents change over time. The conditioning on the information available
at time ¢ is necessary to allow for temporal dependence in strategies arising through the
price dynamics.

The following lemma is is concerned with the almost sure behavior of the model in the
limit where the number of agents tends to infinity. Again we use the short-hand notation
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P51 = foi,(Pr—1,Di—2, - .- ) for the expectation, at time ¢, of agent 4 with parameter 6; about
the information z;,, that will become known at time ¢ + 1. Eg, ).

Lemma 1 Under Assumption 1, and given F;, if the number of traders, n, tends to infin-
ity, the aggregate expectation P, ., = %Z:’l:l fo:,(Pt—1,Dt—2, .. .) converges almost surely
to pfry = Elfo,,(pt—1,Pt—2,--.)|Fel, if and only if E[fo,,(Pt—1,Pt—2, - - )| F] < 0.

Proof: By Assumption 1, the strategies 6;; are IID random variables in ©, which
implies that the predictions E|fs, , (pi—1, pi—2, . - . )| Fi] of agents are IID random variables.
The result is immediate from Kolmogorov’s strong law of large numbers for the random
variables fy, ,(ps—1,Pt—2,...), given F; (see e.g. Resnick, 1998, p. 220). a

Note that E|[fy, ,(pi—1,Pt—2, - - - )| Fi] = Ep§ 1| Fi] = [o fo(Pe—1, D=2, - - - )$¢(9)dV). Lemma 1
states that, given the information public at time ¢, a sufficient and necessary condition for
the aggregate expectation about x;11 to to converge a.s. to the mean expectation over the
beliefs distribution, is the existence of this mean. This result is used to prove the following
theorem about the continuous choice dynamics.

Theorem 1 (Functionally deterministic dynamics) Under Assumption 1 the price p; is a
deterministic functional of the information F, available at time t if Eg,g)[pf,,|Ft] < 00.

Proof: According to Lemma 1, with probability one, p; ,,; converges in probability to
Eg.0) P51 F), if and only if Ey,g)[pf,,|F:] < co. Since h was assumed to be continuous,
the right hand side of Eq. (2) which gives the dynamic equation for the observable z;, then
converges in probability to h (g:). O

We coin the term functional determinism here to make a distinction between the concept
of determinism we describe here and the usual definition of determinism for time series
processes. The term determinism is usually reserved for deterministic processes of finite
order, the reason being that without this restriction any observed time series would allow
a deterministic explanation. That is, functionally deterministic processes can still be non-
deterministic from an empirical point of view, if there is dependence on the infinite past.
We will study conditions for the price dynamics to be of finite order later. For the moment,
we note only that functional determinism is a necessary, but insufficient condition for the
price dynamics to be deterministic.

The discrete choice model can be seen as a special case in which agents can only choose
among a finite number of alternative strategies. Provided that the expected future prices of
these strategies are all finite, the average expected price is well-defined, so that the strong
law of large numbers applies, and the dynamics converges to a deterministic dynamical
system with probability one as the number of traders tends to infinity.

Now let us consider the case where Lemma 1 does not apply. If Ey,g)[pf,|F] is not
finite, two alternative possibilities remain. Either the aggregate expectation py, ;, given F,
diverges with non-zero probability, or it tends in distribution to a stochastic variable with



a well defined limit distribution. This observation is interesting, as it allows the dynamics
to remain random, even in the limit of an infinite number of agents. One can easily
find examples where the mean expectation Eg, ) [pf,;|F:] is not finite, but the aggregate
expectation pf, ,,|F; has a non-degenerate limit distribution. This happens, for example,
when the predictions pj, , | F; have a Cauchy type distribution. The existence of the mean of

the predictions is neither implied by nor implies the existence of the mean of the parameters
0; ¢

4 Dynamic asset pricing

In this section we consider continuous choice dynamics in an asset pricing context, in which
agents may employ predictor functions parameterized by 6. In each trading period agents
can invest in two different assets: a risky asset and a risk free asset. The risk free asset
yields a guaranteed return on investment . Whereas, investing in the risky asset, quoted at
price p; and paying a stochastic dividend ¥, yields an uncertain return on investment. In
order to find, in their objective, an optimal allocation between the two different assets, the
investors have to form expectations about the risk (variance) and return of an investment
that includes the risky asset.

It is assumed that each investor is a mean variance optimizer, maximizing the expected
risk adjusted return on investment. The information publically available at time ¢ consist-
ing of past prices up to time ¢t — 1: F; = {p1_1,Pt—2, - - - }- Let Ep4[-] denote the subjective
conditional expectation of investors who use the strategy with parameter 6 at time ¢. It
is assumed that the dividend process is IID with a mean  known to all traders, so that
expected future dividend pay-offs are identical among trader types: Eg; [y:4+1] = y. Given
the belief type 6, expectations about future price are given by a function of past prices and
dividends:

Bt [pre1 + V1] = fo(Pi—1,Pt—2,---) + U,
where fyo(ps 1,pt 2,...) is the predictor employed by traders with belief parameter 6 at
time t¢.

During period ¢, ranging from time ¢ — 1 up to time ¢, traders are allowed to submit
their demand as a function of the new price p; to be quoted at time ¢. At that time the
market maker will run through the order book in order to obtain the aggregate demand for
the risky asset. Consequently, the equilibrium price is quoted, after which a new trading
round starts. Without loss of generality we assume that the number of risky assets is
constant over time i.e. there is no supply of outside shares. Under the assumption that
risk aversion is constant and equal among traders the equilibrium equation for a market
with n traders who, at time ¢, each select a strategy 6;, is given by:

1O _
(L+r)p = ﬁZf@i,t(pt—lapt—m---)+y- (3)
i=1

This market clearing equation thus states that today’s price is the sum of the expected
future price and dividend, discounted by the risk free interest rate.



4.1 Asset pricing with continuous AR(1) predictors

In this section we discuss a well-known class of belief types, namely that of linear predic-
tors, within the continuous beliefs framework. It will be shown that in such simple cases
analytical expressions for the distribution of the belief parameter can easily be obtained.
The dynamics of the beliefs distribution can be described by formulating the dynamical
system in terms of a finite number of realized prices and the time-varying moments of
the distribution of the belief parameter. We will focus on a simple case where all agents
have first order linear autoregressive (AR) beliefs. For simplicity the constant term of this
first order AR process will be held fixed in this example. Furthermore, we take ¢(6) = 1,
providing a case for which an LTL approach would not be possible.

We follow () and assume that the dividends are generated by the following simple
stochastic process:

Y =Y+ &

where ¢, is IID with zero mean. Since all traders are assumed to have rational expectations
about future dividend pay-offs, we have E; [y;41] = § Vt.

Let us consider the case of AR(1) predictors now. That is, the traders believe in
extrapolating linear trends:

Ee,t [pt+1] = ft (pt—l |9) =0pi_1.

Once today’s price is observed, traders evaluate the performances of their predictor by
considering squared prediction errors, that is, the utility function associated with belief
type 0 is given by:

Ui(0) = aU;_1(0) + m(6),

where

7Tt(9) = - (Ee,t—l [pt] - pt)2 = - (ept—2 - pt)2 ) (4)

and o denotes the memory parameter, which satisfies 0 < o < 1. The case a = 0
corresponds to the case without memory.

After observation of the established price p;, the distribution of beliefs is updated
according to the continuous choice model. As is derived in the previous section, the new
distribution characterizing the dispersion of belief types is then given by:

_ exp[BU(0)]  [#s—1]* exp [Bm(0)] .

¢t (0) Zt Ztl

After substituting the expression in Eqn. 4 for 7;(f) one obtains:

_ [¢t—1(9)]a exp [—5 (ept—2 - pt)2]

6:(0) P @

Since the exponent contains only up to second order forms in # with a negative coeffi-
cient for the quadratic term in 6, the distribution of beliefs in each period can be described
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by a normal distribution. This shows that the integral [ ¢; 1 () Ip;_1dd exists, and hence
that the updated price p; is a deterministic function of the past price p;_; and the past
beliefs distribution ¢;_;, which is itself determined by the price history. This result de-
pends on the functional form of the predictors (linear) and on the choice of taking squared
prediction error as fitness. The latter, however, is equivalent to risk adjusted profits, see
the Appendix.

Inserting linear beliefs in terms of prices and rational beliefs about dividends into the
equilibrium equation (3) yields:

(14+7)p = /¢t1 (9)Ip_1d9 + 7

Rearranging terms gives us the following expression for today’s price:

Mi—1Pt—1 + Y
=— (6)

pi 1+7r

where p;—; denotes the first moment of the distribution ¢;_; of the belief parameter 6.
Note that the price only depends on the beliefs distribution through its mean value, or
the ‘average belief’. The other moments of the distribution have no effect on the price
dynamics.

If we denote the mean and variance of this distribution by p; and o7 respectively, we
have

1 1 )
f) = exp |———= (0 — ) 7
00) = o exp =Ly (0 )’ )
If we define
Dt
my = ——
Pi—2
and
s = 71
t Q/Bp%_zi
Eq. (5) gives
«a 2 1 2
¢1(0) ox exp —203_1 (0 —pp 1) — 2_32(0 —my)| . (8)

By comparing the coefficients of #* and 6 in the exponents in Eqgs. (7) and (8), the mean
w; and variance o7 can be seen to become

2 2
o lop

t
Mt = Q13— +Mi—3 (9)
‘71:2—1 57
1 o 1
= = 5+ (10)
o opy s}



The remaining terms independent of # will be absorbed by the normalization factor Z;.
After introducing the auxiliary state variables v; = 1/0? and ¢, = p; ; the dynamics
become (in terms of past state variables):

P = (—1p—1 +9)/(1+7)

9 = Di-1
1 V1 <Mt1pt1 + g) 28q;1
QUy_1 ;l— 287, 1+7 o1 +28¢7,
v o= v+ 26q; 4.

Mt = Oplg—

Next we would like to examine the stability around the fixed point locally. The solution
of pp = ¢ = p*, i = p* is given by v, = v* is p* = y/r, p* = 1, v* = 28(p*)?/(1 — a).
Throughout we assume that the parameters satisfy the following conditions: « € [0, 1),
r € [0,00) and g € [0, 00). The following proposition gives the local stability conditions.

Proposition 3 For a € [0,1) and r € [0,00) and § € [0,00) the system is locally stable
around the fized point if g(«, ) > 0, where

g(a,7) = =2+71"+3a—a®+71(2 - 2a+a?).

Proof: The Jacobian matrix evaluated at the equilibrium is

*

1
T 0 w0
1 0 0 0
J = l—a 11—« l1—a
Gor p T 0
48p* 0 o}

and the corresponding characteristic equation is
(4N =2+ar)+ar+1—a](A—a) =0.

Since « is an eigenvalue, a necessary condition for stability is | @ |< 1. This condition
is satisfied by the assumption that o € [0,1). Application of the conditions for stability
derived in Jury (1974) for the characteristic equation

1+ -2+ar)+ar+1—a=0 (11)
of the remaining eigenvalues, gives the three conditions
r(l1— «)

>
C+r(l+a)/(l+r) >
2471 +3a—-a?+7r(2-2a+a? >

oo o
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The first two conditions are satisfied by the assumptions 0 < o < 1 and r > 0. The third
condition is stated in the proposition. a

Note that the equilibrium price p* = g/ and the switching parameter 5 do not affect
local stability. From the dynamics it can be easily seen that the parameter 5 determines
the scale of v, but has no effect on u; and hence p;, since the scale of v; cancels in the
expressions for y; and p;.

The condition g(a,r) = 0, for @ € [0,1) and r > 0, gives an explicit solution of the
critical value r.(a) of r given a:

—1+(1-a)?)+/0+1-a)?)?+41-a)(2—q)
> .

re(a) =

because the function r.(c) is monotonically decreasing on [0, 1), and since 7.(0) = v/3 — 1,
for r € [0,4/3 — 1], this relation can be inverted to give a critical value a.(r) of « given r:

1—/1+4r(1—1?)

—1
ac(r) =1+ 2 2r

-

©coooooo0
P N W b~ 01O N

0.2 0.4 0.6 0.8 1 ¢

Figure 1: Bifurcation curve in the (o, r)-plane. The system is locally stable for parameter values
above (right) of this curve, and unstable for parameter values below (left) of it.

Figure 1 shows the line g(«, ) = 0 where the bifurcation occurs. The dynamics is locally
stable around the fixed point for parameter values above and right of this bifurcation curve,
and unstable for parameter values below or left of the bifurcation curve. Figure 2 shows
some cross-sections of the basin of attraction of the fixed point in the (po, p_1)-plane, for
parameter values where the dynamics are locally stable around the fixed point. The initial
values for p1; and o were set to their fixed-point values. The figure shows one cross-section
for » = 0.05 and three cross-sections for r = 0.10, with increasing values of a. It can
be observed that the fixed point is only locally stable, not globally. It can be observed
that the basin of attraction grows when the memory parameter is increased, as one would
intuitively expect from the stabilizing effect of the memory parameter.
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Figure 2: Cross-sections of the basin of attraction of the fixed point. Shown are the regions
[0,100] x [0,100] in the (py,qo)-plane (qy = p_1), while the initial values py and o3 were set
to their fixed-point values. for parameter values (upper left) r = 0.05, « = 0.98, (upper left)
r = 0.10, « = 0.90, (lower left) r = 0.10, « = 0.95 and (lower right) r = 0.10, a = 0.99. The
fixed points are located at (p*,p*) where p* = 1/r (we used y = 1).

Although we derived the local stability conditions, we have not yet examined the type of
bifurcation leading to instability. The following proposition states that this is a Neimark-
Sacker bifurcation.

Proposition 4 Fora € [0,1) andr € [0, 00), the bifurcation curve g(a, ) = 0 corresponds
to a Neimark-Sacker curve.

Proof: The characteristic equation (Eq. 11) corresponds to a dynamical system at marginal
stability if at least one eigenvalue A passes through the unit circle. This happens when a
pair of complex conjugate eigenvalues passes through the unit circle and/or at least one
eigenvalue passes through either plus or minus one. To show that all points on the line
g(a,r) = 0 correspond to a Neimark-Sacker bifurcation, it suffices to show that there no
eigenvalues can equal +1 on the bifurcation curve. Imposing that A = —1 be a solution
of Eqn. (11) leads to the (economically irrelevant) condition r = —1. Similarly, A = 1 can
only occur for » = 0, or a = 1. These conditions nowhere coincide with the bifurcation
curve, whence it follows that g(«,r) = 0, for « € [0,1) and 7 € [0, 0), is a Neimark-Sacker
curve. a

Propositions 3 and 4 imply that for fixed values of the memory parameter «, the system
is locally stable for sufficiently large values of the interest rate r. When the interest rate
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decreases the system becomes locally unstable and (quasi-)periodic behavior occurs via a
Neimark-Sacker bifurcation.
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Figure 3: Bifurcation diagram for r = 0.05. The critical value for this interest rate is o (0.05) ~
0.949886.

For a fixed interest rate r > 7.(0) = v/3—1 the system is locally stable for all o € [0, 1).
For 0 < r < r.(0) the system can be locally stable or unstable depending on the memory
parameter «. For sufficiently large values of o the system is locally stable. Lowering the
memory parameter leads to (quasi-)periodic behavior via a Neimark-Sacker bifurcation.
Figure 3 shows a bifurcation diagram as a function of « for r = 0.05. This diagram suggest
that after the fixed point solution, also the quasi-periodic solutions become unstable if the
memory parameter is decreased. The quasi-periodic solution becomes unstable and only
bubble solutions appear to exist. A similar type of behavior was observed for other values
of r. Note the increase of the scale just before break-up. The scale of the quasi-periodic
solutions appears to tend to infinity just before a reaches the point where they become
unstable.

Figure 4 shows some typical time series near the bifurcation curve and close before
break-up of the quasi-periodic solutions for » = 0.05. Note that some asymmetry can
be observed between the speed with which the price increases and decreases, especially
just before the quasi-periodic motion becomes unstable (o = 0.94895). The decreases are
slightly faster. Also the sharp increase of the scale of the fluctuations just before break-up
of the quasi-periodic motion is clearly visible. Finally, an increase can be observed in the
typical time scale of the fluctuations just before break-up.
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Figure 4: Time series for r = 0.05, and o = 0.95 (a), a = 0.9450 (b) and o = 0.94895 (c)
respectively. The mean dividend § is taken to be 1, so that the fundamental price is p* = §/r = 20.

5 Endogenous sources of randomness

Traditionally, randomness in asset pricing has always been associated with exogenous
shocks, for example due to news that affects a company’s future earnings, or fluctuations of
the interest rate. The continuous choice framework provides at least three possible endoge-
nous sources of randomness. Firstly, a finite number of traders gives rise to stochasticity,
because traders are assigned a belief 6;; at random from the beliefs distribution ¢;(¢), so
that the aggregate expectation py, ,,; for finite n is a stochastic random variable unless all
predictions are identical with probability one. Secondly, for certain combinations of the
utility function and the predictor function f,, the law of large numbers may not apply
because the expectations pf,,; do not have a mean. In those situations, the limiting price
dynamics might either become undefined, or the system can tend to a stochastic dynamical
system, in the limit where the number of agents tends to infinity. Thirdly, so far, we have
implicitly assumed that no agents have a dominant market impact. This might not be the
case, for example, if the wealth distribution among agents is fat-tailed. In that case market
impact of the wealthiest agents might not disappear when the number of traders tends to
infinity. In those cases the law of large numbers can not be applied, providing yet another
possible source of endogenous randomness.

In this section we will concentrate on the first two sources of randomness, the finite
number of traders, and the inherent randomness due to the nonexistence of the mean
of fo,,(Pt—1,P¢2,...). Although interesting, we consider the study of endogenous wealth
effects beyond the scope of this paper and leave it for future research. The reason is
that it is far from straightforward to incorporate the effects of the wealth distribution,
since it evolves endogenously with the price dynamics, depending on the agent’s strategy
records. Note that in practice, an agent’s wealth evolution will also depend on a number
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of exogenous factors, such as income and consumption.

5.1 Endogenous noise from a finite number of traders

Theorem 1 implies that when E|[fy, , (ps—1, pi—2, - - - )] exists, the market equilibrium equation
gives a unique price p; in the limit of an infinite number of traders. For a finite number of
traders, however, the price equation becomes dependent on the choices of individual agents
and the price equation based on the mean of the expectations, E|fs, ,(p;—1,P¢2,---)], can
at best be a first order approximation. By examining how the actual mean prediction
%E?:l fo;,(Pt—1,P1—2,...) is distributed if the number of traders is finite, we obtain a
natural description of this endogenous randomness.

Consider a system with a finite number, n, of agents. The simplest assumption that
can be made about the beliefs used by the agents to predict future prices, is that at each
time step they independently choose one predictor from ¢#). This amounts to assuming
that Assumption 2 holds. The price equation then becomes

1< _
(1 —+ T)pt = ﬁ Z fai,t(ptflapth: .- ) + 9,
=1

where the f(6;;) are independent and identically distributed. Assuming the conditional
mean fi;_; and variance o2 ; of fo;..(Pt—1, P1—2, . . . ) to exist, the average by the central limit
theorem is asymptotically N(u;_1,07 ;/n) distributed.

For the class of linear AR(1) predictor functions discussed before, expectations were
normally distributed so that normality is obtained for finite n. The price equation becomes

o4
(1 +7)pt = pe—1pe—1 + 9 + %pt—ﬁt, (12)

with € ~ N(0,1). In cases without memory o = 0, we have 02 ; = 1/p? 5, and the noise
term can be written as p;_1p;—3€;/+/n. This example shows that a simple assumption about
the distribution of beliefs among a finite number of traders already gives rise to a stylized
fact such as conditional heteroskedasticity. In practice the mechanisms by which agents
choose their beliefs may be dependent, for example because agents communicate about
their choices. Local interaction among agents, for example on a trading floor, can give
rise to positive correlation between their strategy choice. This can be dealt with in the
model simply by replacing the n agents in the model by a smaller number of independent
clusters of agents. This increases the variance of the noise term in Eq. (12). Allowing for
temporal dependence on the idiosyncrasies of the agent’s preferences (Assumption 1), also
leads to the price dynamics as given in Eq. (12). However, the noise terms ¢, in that case
can become temporally dependent as a result of the slowly changing preferences of agents.

5.2 Inherently random dynamics

Next we consider an example of the dynamics in a case where fj, ,|F; does not have a mean,
but aggregate expectations > ; fo, |7 has a limit distribution when n tends to infinity.
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The starting point is an the asset pricing model with agents that choose among constant
predictors: pf, = 6;. For simplicity we put o = 0 (no memory). For the utility function
we take

Uy(0) = —log(1 + (0 — p1)°)

which, like the squared prediction error, is maximal for predictions # that are equal to
realized prices. For the beliefs distribution this gives

$(0) = =1+ (0 — p—1)*) 7%,

from which it follows that,

V28 =1 (0 —p) ~ (28 - 1).

Thus, B is distributed symmetrically around # = p;_;, and for g < % the mean does not
exist.

For § =1, 6 — p, given F; is Cauchy(0,1) distributed. Since this distribution is closed
under averaging, this gives p§ ., = LS 0y — pp ~ Cauchy(0,1). The price equation
becomes

(I+7)pe=psr 1+ 7+ m,

where 7, is a Cauchy(0,1) distributed random variable, the pdf of which is f,,(z) =
(m(1 4 2?))~L. The price dynamics is stochastic, and the distribution of the noise term is
independent of the number of agents.

The contributions from agents with extreme beliefs are not negligible in the limit where
the number of traders tends to infinity. The result after aggregation is a price equation
with a fat-tailed noise term. The price dynamics is stochastic, and the distribution of the
noise term is independent of the number of agents.

6 Concluding remarks

We have proposed a new methodology for modeling the evolution of a heterogeneous be-
liefs distribution in a dynamic setting. The updating of beliefs takes place according to
the continuous choice model, each time new information becomes publically available. De-
pending on the beliefs space and the beliefs distribution, aggregate expectations are either
a deterministic or a stochastic functional of publically available information. This leaves
open the possibility of both deterministic and stochastic evolution laws in dynamic feed-
back settings. The approach is illustrated using asset pricing models as a typical example.
Explicit dynamic price equations are derived in this context, and the stability and long-
term behavior of the dynamics examined. Examples of stochasticity as a result of the
finite number of traders, as well as inherent stochasticity are examined in the asset pricing
framework. Conditions are given under which the dynamics are of finite AR order, and it
is shown that the model is observable from empirically observed prices.
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Some remarks related to the large type limit approach developed in Brock et al. (2001)
are in order here. There the market is approximated by a large, but finite, number of belief
types randomly drawn from a fixed distribution. The authors then give conditions under
which the aggregate behavior of all traders tends to a finite dimensional dynamical system.
Our approach leads to the same dynamics in the deterministic case, when the opportunity
distribution in the model is taken to be the distribution from which the strategies are
drawn in the large type limit approach. Although the approaches give the same results in
those cases, there are differences that are important from a methodological point of view.
Apart from being more suitable for examining the evolution of beliefs distributions, the
continuous choice framework is less restrictive than the large type limit approach, since it
neither requires the opportunity function to be a probability density function, not does it
exclude the possibility of stochastic dynamics.

The methodology developed here is general and can be applied in any context where ag-
gregate expectations determine future states, while expectations themselves are determined
by the beliefs distribution, which is adapted when new information becomes available. We
consider the framework developed here as a first step towards describing continuous be-
liefs evolutions, the empirical implications of which are of potential use in a wide range
of expectations based feedback models. The continuous choice approach enables one to
obtain insights into ways in which endogenous randomness arises in agent models. This
aspect is extremely relevant for obtaining meaningful model specifications for empirical
data analysis.
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