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1 Introduction

Economists long ago adopted the convention that economic behavior should be modelled ‘as

if’ the economic agents were solving a formal mathematical optimization problem. While

this methodology has never been entirely uncontroversial, and in the game theory litera-

ture has recently been challenged by theories based on learning and evolutionary dynamics

(for a summary see, e.g., Young (1997) or Samuelson (1997)), mathematical optimization

remains virtually the only modelling paradigm in the literature on household consumption

and portfolio choice behavior,1 as well as in many other branches of economics outside of

game theory.2

Perhaps the central intellectual underpinning of the rational optimization approach in the

consumption literature (and often elsewhere) is Milton Friedman’s (1957) famous analogy to

the game of pool. Friedman noted that a scientist wanting to model the behavior of a pool

player would find it essential to assume the player could solve the sophisticated problems in

Newtonian physics reflected in the movements of the balls. Friedman argued that, while the

player was not solving formal mathematical problems in his head, experience could give him

adequate intuition about the relevant physics. Similarly, Friedman argued, consumers could

be expected eventually to learn the optimal solution to the repeated problem of deciding how

much of their income to consume.

When Friedman proposed his ‘learning hypothesis’ as the key underpinning for the ‘as

if’ optimization paradigm, the state of knowledge about human cognition and learning was

far too primitive to allow for any rigorous examination of the hypothesis. Today, however,

advances in mathematical techniques and computer speed, along with important develop-

ments in the game theory, evolutionary biology, cognitive science, and artificial intelligence

literatures promise to provide the tools and ideas with which we can begin to explore the

‘learning hypothesis’ rigorously. The central purpose of the research program described in

this proposal is to begin that exploration in the context of consumption, portfolio choice,

and other intertemporal choice behavior.

2 Background and Literature Summary

Unfortunately for economists, the optimal saving/consumption problem does not have an an-

alytical solution under plausible specifications of utility and uncertainty; as a substitute, until

1Thaler (1994), Shiller (1997) and others have attempted to bring insights from behavioral psychology to
bear on saving and portfolio decisions, but as yet this strategy has not caught on widely in the literature, in
part because there is not a well-defined and articulated framework underlying the often compelling individual
points these authors make.

2Learning models have also made a modest appearance in macroeconomic theory, particularly with ap-
plication to the problem of deciding among a multiplicity of rational expectations equilibria. Though these
issues are closely related to the problem of multiple equilibria in game theoretic contexts, an important dif-
ference is that there is usually no strategic element in the behavior of individuals in macroeconomic models.
See Sargent (1993) for an excellent summary of this literature.
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very recently economists usually solved versions of the model in which consumers either had

unrealistic (quadratic) preferences for which uncertainty does not affect consumption, or had

plausible (Constant Relative Risk Aversion (CRRA)) preferences but faced no uncertainty.

From the 1950s to the present, this Certainty Equivalent (CEQ) model has been tested

exhaustively. A recent summary of the literature suggests that the model fails in at least three

ways (Deaton (1992)). First, a large literature dating from the 1950s and 1960s and extending

through Hall and Mishkin (1982) and Souleles (1995), consistently estimated a marginal

propensity to consume out of transitory income greater than 0.2. Since the CEQ model

generally implies MPC’s of less than 0.05, these results were interpreted as suggesting the

presence of some consumers who are either rational but liquidity constrained or simply always

consume their income. Second, another large literature tested the CEQ model’s prediction

that the marginal propensity to consume out of human wealth is the same as the MPC out of

current wealth, and consistently found consumption and saving to be largely unresponsive to

information about future income.3 Third, a vast literature estimating Euler equations arose

from Hall (1978). A recent survey article in the Journal of Economic Literature by Browning

and Lusardi (1996) summarized over 25 studies using microeconomic data to estimate an

Euler equation derived from standard versions of the model. Most of the studies rejected

the Euler equation, usually in favor of a model in which some consumers simply blindly

set consumption equal to income. A final failure of the CEQ model is that it provides no

explanation for one of the central and robust findings from household wealth surveys: all

such surveys, from the early 1960s to the most recent (1995) triennial Survey of Consumer

Finances, have found that the median household at every age before about 50 typically holds

total non-housing net assets worth somewhere between a few weeks’ worth and a few months’

worth of income (Carroll (1997a)).

Ironically, when advances in computer technology finally permitted numerical solutions of

the optimal consumption problem under realistic assumptions about uncertainty and prefer-

ences,4 all of these empirical findings turned out to be consistent with dynamic optimization

after all! Under some plausible combinations of parameter values, optimal behavior is for

consumers to aim to hold a target buffer-stock of liquid assets equivalent to a few weeks or

months’ worth of consumption, and once the target is achieved to set consumption on aver-

age equal to average income. Even with a time preference rate as low as 0.04, the marginal

propensity to consume out of transitory income can be 40 percent or higher, the propensity

to consume out of human wealth can be close to zero, and standard Euler equation tests of

3Perhaps the commonest test of this kind has been in the context of determining the effects of Social
Security and of other defined benefit pension schemes on personal saving. See Carroll (1994, 1997a) for other
examples.

4Carroll (1996) shows that the relevant condition is RβEt(GÑt+1)−ρ < 1, where R is the interest rate, β
is the time preference factor, G is the growth rate of income, ρ is the coefficient of relative risk aversion, and
N is the mean-one multiplicative shock to permanent income. Parameter values used in Carroll (1997a) were
a time preference rate of 4 percent annually, household income growth of 3 percent, coefficient of relative
risk aversion of 3, and a real after-tax interest rate of 0 percent; results were robust to plausible variation in
these parameters.
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consumption behavior ‘fail’ in ways that can replicate the whole range of empirical failures

of the Euler equation. (See Carroll (1992, 1997a, 1997b) for details). Uncertainty and the

consequent precautionary saving motive thus turn out to profoundly modify optimal behav-

ior from that which is predicted by the model that was taken by economists to embody

“rationality” from the 1950s through the late 1980s.

In a way, the recent findings can be interpreted as a potential vindication of Friedman’s

argument that people can grasp the solution to a difficult mathematical problem even with-

out mathematical training. The embarrassment is that economists for so long failed to see

what consumers apparently implicitly know:5 that buffer-stock saving behavior works rea-

sonably well. But these findings also raise rather urgently the question of how ordinary

consumers appear to be able to solve, even approximately, problems that even now, and

even in versions much simpler than the actual problems people face, continue to strain the

capabilities powerful modern computers.6 One possible answer is that people may have a

powerful inbuilt intuition about the solution to dynamic optimization problems. But this

explanation founders on the observation that economists are people too. If anything, inbuilt

mathematical intuitions ought to be stronger for economists than for average consumers,

since economists are much better mathematicians; yet economists did not discover the op-

timality of buffer-stock behavior until fast computers made it possible to solve the problem

numerically. Friedman’s ‘learning hypothesis’ seems to be the natural alternative explana-

tion, but it is an explanation whose credibility would be considerably greater if it had ever

been seriously examined and tested – as this project proposes to do.

3 Buffer-Stock Saving: An Approximation

One of the attractive features of the buffer-stock theory of saving is that optimal behavior

can be articulated in very simple and intuitive terms: Consumers have a target level of liquid

assets which they use to smooth consumption in the face of an uncertain income stream. If

their buffer stock of precautionary assets falls below the target, they will consume less than

their expected income and liquid assets will rise, while if they have assets in excess of their

target they will spend freely and assets will fall.

Despite its heuristic simplicity, the exact mathematical specification of optimal behavior

is given by a thoroughly nonlinear consumption rule for which there is no analytical formula.

While certain analytical characteristics of the rule can be proven,7 it is hard to see how a

consumer without a supercomputer and a Ph.D. could be expected to determine the exact

5Perhaps from personal finance books. See Carroll (1997a) for a typical reference from a personal finance
book.

6Hubbard, Skinner, and Zeldes (1994, 1995) had to use a supercomputer to solve the optimal life cycle
problem when it was enhanced to incorporate a modest degree of realism about health and mortality risk
and the structure of social insurance programs.

7For example, the limiting MPC as wealth goes to infinity or zero can be calculated (see Carroll (1996)),
and Carroll and Kimball (1996) prove that the consumption rule is strictly concave.
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shape of the nonlinear and nonanalytical decision rule.

Fortunately for consumers, it turns out not to matter much whether they get the fine

details of the rule right: Simulation experiments show that simple and intuitive approxima-

tions to the optimal rule can generate utility streams that are only modestly less than the

utility yielded by the exact and fully nonlinear solution. For example, consider a consumer

in the following circumstances. Utility is derived entirely from consumption and is CRRA,

u(c) = c1−ρ/(1− ρ), with ρ = 3.8 Income is stochastic with a 3-point distribution (.7, 1, 1.3)

with probabilities (.2, .6, .2), a process chosen to (very roughly) match empirical evidence on

the amount of transitory variation in annual household income observed in the PSID (see,

e.g., Carroll (1992)). The consumer cannot borrow, but can save at an interest rate of zero.

Finally, the consumer geometrically discounts future utility at the rate β = .95. The tradi-

tional approach to modelling consumer behavior is to suppose that the consumer solves the

problem:

max
{Cs}

Et

∞∑
s=t

βs−tu(Cs)

s.t. Xs+1 = Xs − Cs + Ỹs+1 (1)

Xs ≥ 0 ∀ s

where Xs is total resources available for consumption (henceforth, following Deaton (1991),

‘cash-on-hand’). Of course, as is well known, this problem can be rewritten in the recursive

form:

V (Xt) = max
{Cs}

u(Cs) + βV (Xt+1) (2)

where V (Xt) is the value function reflecting the expected discounted utility that will result

if the consumer behaves optimally now and in all future periods.

As noted above, one interesting feature of the solution to this problem is that there will

exist a target level of cash-on-hand X∗. Formally, Carroll (1996) shows that if the parameters

of the problem satisfy a certain ‘impatience’ condition9 then an X∗ will exist such that if

Xt > X∗ then EtXt+1 < Xt and if Xt < X∗ then EtXt+1 > Xt. Furthermore, because

expected income is 1 (and Xt+1 includes Yt+1), if consumption is less than 1 we know that

EtXt+1 > Xt and if consumption is greater than 1 we know that EtXt+1 < Xt. Assuming

X∗ ≥ 1, the optimal consumption rule can be rewritten, without loss of generality, as:

C∗(X) = 1 + f(X − X∗). (3)

Using the fact that EtỸt+1 = 1 we know that EtXt+1 = Xt −Ct + 1. But at the point where

X = X∗ we have EtXt+1 = Xt which implies that Xt − Ct + 1 = Xt which implies that

8In order to prevent the Inada condition from unduly influencing outcomes, we also assume that con-
sumption never falls below ten percent of permanent income. For simplicity we leave this constraint out of
the treatment in the text.

9See footnote 3 for the condition.
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Ct = 1. Hence we know that f(0) = 0. Calling γ = f ′(0), a first-order Taylor expansion of

equation (3) around the point X = X∗ is therefore

C̃(X) ≈ 1 + γ(X − X∗). (4)

To capture the liquidity constraint, suppose actual consumption is given by:

Ĉ(X) =

{
C̃(X) if C̃(X) ≤ X,

X if C̃(X) ≥ X.

The attraction of this rule, in comparison with the exact nonlinear solution C∗(X), is that it

produces a complete plan of behavior that is characterized by only two parameter values, X∗

and γ. This kind of simple rule seems at least roughly consistent with the wisdom from the

experimental game theory literature about the nature of the behaviors people appear capable

of learning (Roth and Erev (1995)) – especially since they are learning about parameters that

can be given highly intuitive interpretations: X∗ is how much target wealth to try to have

on hand, and γ indicates how quickly you try to return to that level of wealth when you are

away from it.

The better this approximation is in utility terms, the more plausible it is that consumers

would settle for such an approximation rather than attempting a more exact solution. One

way to measure approximation quality is to ask how much consumers who do know how

to solve the full optimization problem would be willing to sacrifice to avoid being forced to

switch permanently to the best possible approximate rule.10 The answer turns out to be

that a set of consumers behaving according to the optimal rule would on average be willing

to sacrifice an amount equal to less than 1/2 percent of their average consumption to avoid

being switched over to the optimal approximate rule (henceforth for brevity we will refer to

the amount that optimal consumers would pay to avoid being switched to an approximate

consumption rule as the ‘sacrifice value’ associated with that approximate rule).11 Hence,

the two-parameter piecewise linear approximation can allow shrewd consumers to do nearly

as well as the full model, and so it seems plausible to model the consumer’s problem as being

that of ‘learning’ the optimal values of γ and X∗.

4 Buffer-Stock Saving and Individual Learning

With these preliminaries out of the way, we can now turn to the central question, which is how

to model the consumer’s learning process. Several previous authors in the macroeconomics

10Because consumers at different levels of X would be willing to pay different amounts to avoid being
switched, the answer will depend on an assumption about how consumers are distributed across different
levels of cash-on-hand. Fortunately, there is a uniquely appropriate distribution to use: the ergodic distribu-
tion toward which any arbitrary initial cash-on-hand distribution will converge. (See Carroll (1997b) for a
description of the methodology for calculating the ergodic distribution).

11This calculation was performed essentially by numerically searching for the (γ, X∗) combination that
minimizes the sacrifice value. This function is single-peaked and well-behaved. The approximate rule with
the lowest sacrifice value is (γ, X∗) = (.236, 1.24) with a sacrifice value of 0.004.
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literature have assumed that consumers understand dynamic stochastic optimization theory

and that their ‘learning problem’ is to discover the properties of the stochastic processes that

impinge on their optimization problem (see, e.g., Sargent (1993), pp. 93-107, and Marcet

and Sargent (1991)). The game theory literature has explored a wider array of assumptions

about learning processes, but many of the ideas explored in that literature are adapted to

learning about strategic interactions with other agents, which is not relevant in the current

context. Our initial approach is minimalist: we assume that our consumers observe only

the stream of income and utility realizations that result when they pursue a given policy;

they know neither the stochastic structure of the shocks nor how to solve dynamic stochastic

optimization problems. A crude statement of the initial question to be answered is whether

such consumers can find a good approximation to the optimal rule simply by ‘trying out’ a

variety of potential rules and then choosing those that perform best. This methodology is

related to the literature on reinforcement learning in which agents experiment with various

behaviors and then increasingly recur to those behaviors which have yielded high payoffs

in the past (see Arthur (1993) for an argument that this is a good description of actual

human behavior, and Roth and Erev (1995) for supportive evidence). However, our agents

are somewhat more purposive than reinforcement learners often are: we assume that agents

systematically explore the entire space of possible behaviors and then adopt the best strategy

among those examined.

4.1 Estimating the Value of Alternative Rules

Suppose that the consumer wishes to compare a set of potential consumption rules Θ individ-

ually designated θi where in principle the θi could index alternative consumption rules of any

kind (though in practice we will later take the θi to reflect alternative combinations of γ and

X∗). Suppose further that, for any initial level of cash-on-hand Xt, the consumer has some

method by which she can make an exactly correct assessment of the expected discounted

utility each rule would yield, if used; call this value V θi(Xt) (we will relax this assumption

of perfect observability of V θi(Xt) momentarily). Then for any possible Xt the consumer’s

problem would simply be to pick the θi for which V θi(Xt) is greatest.

An immediate problem with this procedure is the evident possibility that the optimal

θi could be different for different starting values Xt. If so, how would the consumer choose

between two rules θj and θk, if, say, rule j performs better than rule k if Xt = 2 but rule k

outperforms rule j if Xt = 3? Note, however, that if one of the rules indexed by θi is the

exactly optimal rule, the expected value yielded by that rule will exceed the expected value

yielded by any other rule for any initial value of Xt, and so the truly optimal rule would

always be picked regardless of the starting Xt. Of course, if the rules indexed by θi do not

include the exactly optimal rule, the kinds of reversals just outlined would be possible. Below

we will implicitly examine the importance of this problem by having our consumers search

for the optimal θi for several possible initial Xt.
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Holding initial Xt fixed for the time being, we are now in position to set forth our model

of the consumer’s process for estimating the value associated with any particular θi. Imagine

that for each θi the consumer forms an estimate of V θi(Xt) by living through the experience of

using that rule for n periods. That is, designating the consumption rule associated with θi as

Ĉθi(X), in period t the consumer spends Ct = Cθi(Xt), leaving Xt−Ct in savings for the next

period and generating period-t utility ut = u(Ct); in period t+1 the consumer draws a random

income shock Ỹt+1 from the distribution outlined above, constructs Xt+1 = (Xt −Ct) + Ỹt+1,

and consumes Ĉθi(Xt+1), generating period t + 1 utility ut+1. This process is repeated

until period t + n is reached. As she goes, the consumer updates her estimate of the value

generated by this program Ṽ θi(Xt) by cumulating and discounting the period-utility functions

appropriately. Of course, if n < ∞ the value constructed in this manner will be missing a

term that reflects Etβ
n+1V θi(Xt+n+1), but for n sufficiently large the omitted term should be

relatively small. One purpose of our simulations is to determine the meaning of ‘sufficiently

large’ in this context.

The most naive model of the individual search process would be simply to have consumers

execute the foregoing procedure for a variety of potential θi’s and pick the one with the highest

experienced value Ṽ θi(Xt). However, this procedure would produce a very noisy estimate of

the true value of each possible rule, because the actual value experienced will be heavily

influenced by the particular sequence of stochastic income draws the consumer receives early

in her experience with each rule. Even if we let n approach infinity, the consumers’ estimates

of the value associated with each rule do not converge to the true values because utility from

the additional later periods is discounted at an ever-higher rate and cannot overcome the

initial impression made by early experience.

The only way the consumer can form a consistent estimator of the true value associated

with each rule starting at Xt is to live through the experience of using each rule starting

from the same Xt multiple times. That is, if the estimated value obtained the first time the

consumer runs through the foregoing procedure is Ṽ θi
1 (Xt) the consumer will need to begin

again with the same initial Xt and form a second Ṽ θi
2 (Xt) and so forth. We assume that

the consumer runs through this experience m times and estimates the true value of policy θi

starting from Xt as the average of the m experiences, V̂ θi(Xt) = (1/m)
∑n

j=1 Ṽ θi
j (Xt).

It is easy to show that as m and n jointly go to infinity, the foregoing procedure will yield

an arbitrarily accurate estimate of the true value function V θi(Xt) for any given Xt.
12 The

question that can be answered only by simulations is how large m and n need to be for the

consumer to be able to have a reasonably high degree of confidence in the accuracy of her

estimate V̂ θi(Xt). The answer to that question, of course, depends on the metric used to

evaluate V̂ ’s accuracy. In this context, the logical metric is whether the V̂ ’s generated by

a given (m, n) combination will reliably lead the consumer to choose a good consumption

12We have verified that the estimates of the value obtained for very large values of m and n are extremely
close to the estimates obtained through our completely independent theoretical exercise of constructing the
value function directly.
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rule from among the candidate rules indexed by θi. Before that question can be answered,

however, we need to specify the process by which the set of possible rules θi is constructed.

4.2 Choosing a Set of Rules to Evaluate

Our initial assumption is that the θi simply enumerate the nodes in a grid determined jointly

by the set of potentially ‘reasonable’ values of γ and X∗. For the marginal propensity to

consume, the natural space of possible values is γ ∈ [0, 1]. Since X includes current income

and the expected value of income is 1, a lower bound for X∗ is 1. The range of ‘reasonable’

maximum values for X∗ is less obvious. Our preliminary and admittedly arbitrary decision

was to choose X∗ ∈ [1, 3]. The final assumption we need to make is about the fineness of the

grid. We choose the interval between grid points for γ to be 0.05, and the interval for grid

points of X∗ to be 0.1, for a total of 20x20=400 combinations of rules.13 The best of these

rules is (γ, X∗) = (.25, 1.2) for which the sacrifice value is 0.008.

4.3 Very Preliminary Results

We are now (finally) in position to specify how we will evaluate the effectiveness of various

choices of m and n. We construct a population of 100 consumers each of whom enters the

first period of simulation with the same initial level of savings St−1 (for technical reasons

this is slightly easier than starting out all consumers with the same initial values of Xt as

exposited above). For each combination of m and n we simulate the experience of each of the

100 consumers executing the alogrithm described above and calculating their own estimated

value of V̂ θi for each of the 400 possible θi, and at the end of the simulations each consumer

picks the rule with the maximum estimated value V̂ θi(Xt) among the rules he has tried.

Table 1 presents the results. The table is divided into three panels corresponding to

different assumptions about the initial resources with which the consumers begin the simula-

tions, S0 = [0, 1, 2]. For each (m, n) combination, three statistics are tabulated: the average

sacrifice value of the rules picked by our 100 consumers, the fraction of the consumers who

picked a ‘good’ θi, defined as a rule with a sacrifice value of less than 5 percent,14 and the

total number of model simulation periods each consumer has lived through in the course of

searching for the rule (which will be 400mn).

The overwhelming conclusion from this table is that, while it is possible for this ‘learning

by experience’ method to reliably identify good consumption rules, the amount of experi-

ence required is staggering. The only (m, n) combinations that can identify a good rule at

least 80 percent of the time is (m = 200, n = 50) which implies a serch time of 4 million

(=200*50*400)! Even if the criterion is merely that the (m, n) pair should produce rules with

13We exclude the value γ = 0 from the set under consideration because all rules with γ = 0 are identical
regardless of the value of X∗. This is why there are 20 rather than 21 possible values of γ. In order to obtain
20 rather than 21 values of X∗ we exclude X∗ = 3.0 from the list.

14Out of a total of 400 rules, there were 17 for which the sacrifice value was less than 5 percent.
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Individual Search Results

m = 1 m = 10 m = 50 m = 200

St−1 = 0
n = 10 Mean Sacrifice: 0.275 0.194 0.152 0.1388

Success Rate: 0.07 0.12 0.14 0.16
Total Periods: 4000 40000 200000 800000

n = 20 Mean Sacrifice: 0.212 0.103 0.081 0.0546
Success Rate: 0.18 0.36 0.42 0.52
Total Periods: 8000 80000 400000 1600000

n = 50 Mean Sacrifice: 0.166 0.077 0.051 0.0304
Success Rate: 0.25 0.39 0.62 0.83
Total Periods: 20000 200000 1.00E+06 4.00E+06

St−1 = 1
n = 10 Mean Sacrifice: 0.297 0.115 0.099 N/A†

Success Rate: 0.08 0.22 0.23 N/A†

Total Periods: 4000 40000 200000 N/A†

n = 20 Mean Sacrifice: 0.231 0.063 0.064 N/A†

Success Rate: 0.14 0.55 0.43 N/A†

Total Periods: 8000 80000 400000 N/A†

n = 50 Mean Sacrifice: 0.198 0.07 0.045 N/A†

Success Rate: 0.29 0.45 0.66 N/A†

Total Periods: 20000 200000 1.00E+06 N/A†

St−1 = 2
n = 10 Mean Sacrifice: 0.177 0.081 0.09 N/A†

Success Rate: 0.23 0.42 0.24 N/A†

Total Periods: 4000 40000 200000 N/A†

n = 20 Mean Sacrifice: 0.161 0.059 0.052 N/A†

Success Rate: 0.27 0.53 0.58 N/A†

Total Periods: 8000 80000 400000 N/A†

n = 50 Mean Sacrifice: 0.177 0.045 0.037 N/A†

Success Rate: 0.28 0.67 0.73 N/A†

Total Periods: 20000 200000 1.00E+06 N/A†

n is the number periods the consumer uses a rule for each trial.
m is the number of trials
‘Success’ is defined as finding a rule with sacrifice value < 0.05.
† We were unable to complete the simulations for m = 200
and St−1 = (1, 2) in time for inclusion in this table.

Table 1: Search Success Rate and Number of Periods
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an average sacrifice value of 0.05 or less, the minimum number of simulation periods required

is roughly a million. Interpreting the model period as a year (the appropriate interpretation

for the calibration β = .95), it takes a million years of experience to reliably identify reason-

ably good consumption rule by personal experience!15 Even reinterpreting the model period

as a two-week pay-period rather than a year (a reinterpretation that is problematic for rea-

sons detailed below) leaves the required time to find a good rule absurdly long. Conclusions

are roughly the same regardless of the starting values for S.

Of course, it is possible that we have not endowed our agents with enough intelligence. For

instance, rather than blindly searching every point on the (γ, X∗) grid, intelligent consumers

could do an ordered search in which they choose a very coarse initial grid (say, two possible

choices for (γ, X∗), pick the best of the four choices, then center a new search grid around

this optimum, and so on. Alternatively, we could assume that consumers are smart enough

to immediately rule out the most extreme values of γ and X∗ that we now allow them

to consider. We intend to explore each of these possibilities, and others, as the project

progresses. But even if the grid search could be reduced to, say, 4 binary choices, it would

still be necessary to use values of (m, n) large enough to distinguish good rules from bad.

Given that the minimum (m, n) combination that appears capable of producing the necessary

accuracy is (50, 50), even such a highly efficient grid search could not reduce the number of

periods required to less than 40000 = 50 ∗ 50 ∗ 24.

Hence, rather than alleviating the mystery of how ordinary consumers seem to have

managed to learn nearly optimal consumption behavior, our exploration of the possibility of

learning by experience has only deepened that mystery. Returning to Friedman’s example

of the pool player, what seems glaringly obvious in retrospect is that the pool player can

practice hundreds of shots, and observe thousands of interactions of balls, in the course of a

single day of practice. Consumers, by contrast, only experience major income shocks on an

occasional basis. If consumers were able to accumulate as much experience with their problem

as the pool player can accumulate with his, then they might similarly be expected to be able

to learn the approximately correct answers by experience. But with large income shocks

as infrequent as they are in reality, prospects of learning optimal consumption behavior by

personal experience seem dim.

Personal experience, however, is not the only kind of information that consumers might

be able to bring to bear: It seems reasonable to suppose that consumers may exchange

information on their experiences with friends, family, colleagues, and others. This raises the

question of whether, by combining the communicated experience of others with their own

experience, consumers might be able to find good consumption rules much more quickly than

they could on their own.

15Note that this assumes that consumers do not need to explore alternative starting values for St−1. If
we were to assume that they search over three values of St−1 as presented in the table, search times would
triple.
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5 Buffer Stock Saving and Social Learning

No man is an island - John Donne, Devotions upon Emergent Occasions, no.

17 (1624).

If it takes an individual agent a million periods of experience to reliably find a good

consumption rule, a population of a million consumers scattered across the (γ, X∗) landscape

should collectively obtain essentially the same amount of information in a single period. If

there were a mechanism by which all of that information could be efficiently combined, then

the search time for finding the optimal rule could surely be radically reduced.

The obvious mechanism to accomplish this purpose is ‘social learning’ in which individuals

encounter each other and communicate the results of their own experience to others. Even

if the social learning process is far less than perfectly efficient it still seems plausible that it

might lead a population of consumers to converge on the social optimum relatively quickly.

Our model of social learning is related to several strands of work in the game theory

literature, most notably work on imitation dynamics in Binmore and Samuelson (1997) and

the work summarized by Weibull (1995). Our model also draws directly on the extensive

literature on ‘genetic algorithms’ pioneered by evolutionary biologists and computer scien-

tists. This literature studies the evolution of populations of artificial agents scattered across a

‘fitness landscape’ which stochastically maps the agents’ inherent characteristics (their ‘geno-

type’) into a probability of reproductive success or failure. In our reinterpretation, the various

possible consumption rules Θ constitute the analogy to a collection of genotypes, and the

tendency of successful rules to be transmitted to new consumers and unsuccessful ones to be

discarded corresponds to the differential ‘reproductive success’ of different genotypes/rules.

We will discuss other relationships to the literature on genetic algorithms and broader topics

in the concluding section.

5.1 Implementation

Consider a consumer j arriving in period s who began using his current rule in period t < s.

This consumer draws a random income shock Ỹj,s from the distribution described above; this

income combines with preexisting savings to yield Xj,s which, from the consumer’s location

in (γ, X∗) space, determines consumption Cj,s (and therefore utility Uj,s).

In order to be able to compare the performance of his rule with the performance of others’

rules, the consumer needs to keep a running estimate of how well his rule has worked. If he

were to encounter only consumers who had been using their rules exactly as long as he has

been using his, the obvious method of tabluation would work: the consumer could simply

keep track of a variable we will call ‘partial value’

Wj,s = Wj,s−1 + βs−tUj,s, (5)
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which would cumulate to

Wj,s = Uj,t + βUj,t+1 + β2Uj,t+2 + . . . + βs−tUj,s (6)

=

s∑
q=t

βq−tUj,q.

Note that, if the consumer expected to live with the current rule forever, the expectation as

of time t of Wj,s as s → ∞ would be equal to the value function V θi(Xt).

Of course, for any useful social learning to take place, consumers must evaluate and com-

pare their rules before s = ∞. Suppose for discussion that all consumers use their rules for

exactly n periods before comparing their rules with those of others. In this case, the expec-

tation as of time t of ‘partial value’ is EtWj,t+n = V θj (Xt)− βnEtV
θj(Xt+n). Truncating the

consumer’s experience at n periods is thus equivalent to giving the consumer a discontinuous

discounting function in which the future more than n periods away is discounted at a 100

percent rate. Intuitively, this implies that, compared to the optimum rule, there is likely to

be some rule that results in higher consumption over the next n periods but lower consump-

tion thereafter whose expected partial value will be greater than the expected partial value

of the optimal rule. In other words, cutting off the consumer’s experience after n periods

will tend to bias upward the consumer’s estimate of the value of relatively ‘impatient’ rules.

The magnitude of any such bias can be examined by simulating the model for a variety of

values of n.

Now consider relaxing the constraint that all consumers who encounter each other must

have lived exactly n periods with their respective rules; instead, we want to allow consumers

to compare and swap rules with each other so long as both consumers have had at least

n periods of experience with their rules. But how should two consumers who have been

using their rules for different durations compare their experiences? Our assumption is that

the consumers each renormalize their W ’s in a way that puts the two partial values on a

common footing. Specifically, a consumer who has lived with his current rule for n periods

would have a scaled measure (denoted by the lower-case letter)

wj,s =
Wj,s

1 + β + β2 + . . . + βn
. (7)

In effect, the w that results from this rescaling is a weighted average of the level of utility

experienced by consumer j since he began using his current rule, where the weight for each

period’s utility corresponds to its geometric discounting factor relative to the period in which

the rule was adopted.

Now consider the encounter between consumer j and consumer k, each of whom has been

using his current rule for at least n periods. From the vantage point of either consumer,

there are two kinds of possible errors: adopting the other consumer’s rule when it is actually

inferior to one’s own, or failing to adopt the other’s rule when it is actually superior. If the

expected value of every rule could be observed or calculated directly, consumers would make

12



neither of these mistakes and convergence of the population to the optimal rule would be

very rapid. However, given that wj,s and wk,s are imperfect measures of the value of j and k’s

respective rules, it is important to think through the set of circumstances in which consumers

are likely to err, and the consequences of those errors.

Suppose for discussion that wj,s > wk,s, and consider k’s decision whether to adopt j’s

rule. There are at least two obvious ways in which wj,s could exceed wk,s even if j’s rule

is actually inferior to k’s: j might have started out with a higher level of initial resources,

or might have drawn a higher level of random income shocks. Our baseline adoption rule is

therefore that k adopts j’s rule only if j’s average weighted income16 and initial resources

are both less than or equal to k’s.

Even with these restrictions, there remains at least one way in which wj,s could be greater

than wk,s even if k’s rule is ex ante superior: consumer j might have been luckier than k

not in the mean level of income but in the volatility of income, given its weighted mean

level. Income volatility will partially translate into consumption volatility, giving k a lower

value of wk,s than would have obtained had k drawn j’s shocks. This set of circumstances is

potentially problematic because it can lead to a downward bias in the socially learned value

of X∗. To see why, note that a relatively imprudent rule under which the consumer spends

down his wealth leaving little or no buffer stock will yield higher w than a more prudent rule

so long as the bad shocks do not occur. Thus the consumers who are imprudent but lucky

will have a higher value of w than those who are prudent but lucky, and so the imprudent

rules may spread more than they should.

In this same encounter, by assumption j will not adopt k’s rule because wj,s > wk,s. Yet

this could also be an error on j’s part, because j’s higher utility could just reflect better luck on

j’s part in the early period following adoption of his rule (recall that the discounting of utility

makes experiences increasingly irrelevant as the distance from rule adoption date increases).

We found in preliminary simulations that a small number of agents with objectively bad

(imprudent) rules but who drew an exceptionally lucky string of early income shocks were

essentially immovable from their bad rules. To deal with this problem, we adopt a somewhat

ad-hoc solution: any consumer who reaches his 200th period using the same rule is arbitrarily

assigned some other rule drawn randomly from the population of rules in use at that time.

We intend to experiment with other ways of dealing with this problem, but have not had

time to do so.

5.2 Very Preliminary Results

As in the individual learning simulations, we again divide the (γ, X∗) landscape into a grid

with 20 distinct values of γ ∈ [0.05, 0.10, . . . 1.00] and X∗ ∈ [1.0, 1.1, . . . , 2.9]. We begin

our simulation in period 1 with a population of consumers distributed evenly across this

landscape, with 10 consumers initially residing at each possible rule. Table 2 reports a

16The weighting is identical to that in equation (7) for W .
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variety of statistics that summarize the state of affairs in our population as the simulation

evolves. First, we report the population average values of (γ, X∗). Second, as a more precise

measure of how close the population as a whole is to optimal behavior, we calculate the

sample mean of the sacrifice value (the pattern is largely the same for medians). Third, we

report the proportion of the 400 original rules that remain in use by at least one member of

the population.

In comparison with the individual learning case, these results confirm the intuition that

social learning can greatly speed the process of finding a reasonably good solution: for n = 20,

within about 500 simulation periods the average consumer is using a rule that has a sacrifice

value of only about 4 percent. As expected, there is some tradeoff between n, the number of

periods of experience required before social interchange is allowed, and bias in the socially

learned solution: Requiring greater experience slows convergence but improves the accuracy

of the final solution. After 10,000 periods of simulation, for example, the average sacrifice

value for the n = 20 case is only 0.0127, compared to 0.0198 for n = 10. However, increasing

n beyond 20 periods does not result in further improvement in the eventual solution; the

sacrifice value after 10,000 periods in the n = 50 case is essentially identical to the sacrifice

value in the n = 20 case after the same number of periods, and the value of X∗ is only

trivially higher. Interestingly, however, the n = 10 case produces better results than n = 20

or n = 50 for the first 100 periods of simulation, simply because the n = 10 case is able to

eliminate the worst rules more quickly.

While the speed with which good rules are identified is greatly improved over the individ-

ual learning case, even the swiftest of the social learning configurations must run over four

hundred periods (not reported in the table) before the average sacrifice value drops below

our threshhold value of 5 percent. If the model period is interpreted as a year, this is still

unrealistically slow.

One factor that inevitably slows convergence is our assumption that consumers simply

ignore any information coming from anyone who was luckier in either initial endowment or

income draws. Any individual consumer, especially one who was unlucky in Y draws or

initial X, can go for years without running into a useful interlocutor (one who has been at

least as unlucky). One way to ameliorate this problem is to suppose that each consumer

communicates with several others each period, so that there is a greater chance of encounter-

ing someone at least as lucky as oneself. The right-hand panel of the table presents results

when consumers are assumed to interact with 12 other consumers per period (corresponding

to monthly interactions if the model period is a year).

As expected, convergence is greatly speeded up in this case: for the n = 20 case the

average sacrifice value after 100 periods of simulation is half of its value in the baseline

model. However, for simulation lengths greater than 500 periods we find that the high-

interaction model performs worse than the one with fewer interactions. Note that the nature

of the bias is that X∗ is too low. This presumably reflects the fact that the downward biases

in X∗ identified in our discussion above are much more problematic in the case with much
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Population Statistics by Periods of Simulation Time

One Interaction/Period 12 Interactions/Period
n = 10 n = 20 n = 50 n = 10 n = 20 n = 50

Period 1
Avg γ: 0.525 0.525 0.525 0.525 0.525 0.525

Avg X∗: 1.950 1.950 1.950 1.950 1.950 1.950
Avg Sacrifice: 1.059 1.059 1.059 1.059 1.059 1.059

Remaining Rules: 1.000 1.000 1.000 1.000 1.000 1.000

Period 100
Avg γ: 0.268 0.274 0.346 0.263 0.231 0.295

Avg X∗: 1.259 1.315 1.541 1.129 1.213 1.404
Avg Sacrifice: 0.107 0.132 0.308 0.076 0.067 0.186

Remaining Rules: 0.442 0.495 0.865 0.152 0.255 0.637

Period 500
Avg γ: 0.221 0.220 0.225 0.250 0.224 0.212

Avg X∗: 1.169 1.189 1.222 1.108 1.146 1.192
Avg Sacrifice: 0.042 0.039 0.049 0.060 0.039 0.034

Remaining Rules: 0.125 0.137 0.198 0.058 0.070 0.135

Period 2000
Avg γ: 0.226 0.237 0.228 0.246 0.233 0.223

Avg X∗: 1.172 1.197 1.198 1.099 1.152 1.179
Avg Sacrifice: 0.024 0.019 0.019 0.061 0.029 0.019

Remaining Rules: 0.045 0.050 0.050 0.027 0.027 0.032

Period 10000
Avg γ: 0.227 0.228 0.216 N/A† N/A† N/A†

Avg X∗: 1.174 1.196 1.215 N/A N/A N/A
Avg Sacrifice: 0.020 0.013 0.013 N/A N/A N/A

Remaining Rules: 0.018 0.020 0.020 N/A N/A N/A
n is the number of periods before social interaction is allowed.
† Because of computer speed limitations, we were unable to simulate
10,000 periods in the multiple-interactions case.

Table 2: Social Learning Simulation Results
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more social contact. In particular, rules belonging to imprudent individuals who happen to

be lucky in drawing a smooth income stream have a much greater ability to spread widely in

the population when such lucky individuals have the chance to encounter a larger number of

other consumers. Still, the magnitude of the bias is relatively small: after 2000 periods for

the n = 20 case, the average sacrifice value is only 0.01 higher in the high-interaction case.17

6 What Next?

The work described thus far in this proposal is very preliminary and needs to be extended

in a variety of ways.

A simple first step will be to examine the sensitivity of the model’s results to variation in

model parameters like the time preference rate, the coefficient of relative risk aversion, and

the characterization of uncertainty. Particularly interesting will be the relationship between

the degree of uncertainty and the speed of convergence. Preliminary exploration suggests

that convergence is much faster if uncertainty is minimal.

An appealing next step would seem to be to reparameterize the model so that the model’s

‘period’ corresponds to something less than a year. The natural choice would be for the

period to correspond to paycheck frequency (24 times per year) or a monthly frequency.

Unfortunately, however, at frequencies greater than a year our simple characterization of the

process for labor income uncertainty (which roughly matches household-level fluctuations in

annual income calculated from the PSID) is probably inappropriate. The most important

source of transitory income uncertainty for working consumers is probably the risk of an

unemployment spell. Unemployment spells typically last 3-6 months, with typically about

50 percent replacement of earnings via unemployment insurance. The best way to model

unemployment spells is probably via a set of unemployment/reemployment hazards, but this

introduces another state variable into the problem (employment status), and optimal values

for γ and X∗ will certainly be different for employed versus unemployed consumers. Thus,

moving to a paycheck or monthly frequency introduces considerable complication, along with

two more parameters for consumers to learn about; while this extension is probably worth

pursuing, is not entirely clear that convergence will be faster (measured in years), given the

extra parameters that consumers need to learn.

Another potentially interesting idea is to investigate whether the presence of ‘experts’

can significantly speed or alter the convergence process. In the Introduction, we mentioned

that personal finance books often recommend that people maintain a buffer stock of liquid

assets to draw upon in emergencies, and one could interpret the personal finance book as

reflecting the experience of agents defined as personal finance ‘experts’ who seek to have

much more than the average amount of social communication with others on the subject of

17We have been unable to explore the effects of simulating a larger number of periods for the multiple-
interactions case because the computer facilities at our disposal are too slow. For any given value of n, 10000
periods of simulation would take nearly a week.
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consumption/saving behavior. It seems possible that if we were to introduce a small number

of such highly social agents into the population their presence might (or might not) greatly

speed convergence. Eventually one could even imagine these agents charging a fee for their

services, though the modelling complications of setting up such a market might prove to be

greater than the benefits.

Introducing improvements in the intelligence of our (currently very stupid) artificial agents

is inherently appealing, and would almost certainly substantially speed convergence times.

One particularly simple idea is to suppose that consumers can engage in a limited form of

‘reflection’ by which they are able to assess how their current-period utility would have dif-

fered if the current-period income shock had taken on any of its possible alternative values.18

Another idea is to endow consumers with the ability to perform simple counterfactual calcu-

lations, so that they can, for example, estimate roughly how much higher their utility might

have been had they earned an average income stream as high as that of a luckier interlocutor.

In this case we could relax the assumption that all socially communicated information from

luckier consumers must be discarded.

Perhaps the most glaring defect in the intelligence of our agents, however, is their almost

total lack of memory, either of their own past experience before adopting their current con-

sumption rule, or of the information other agents have communicated to them over time.

The most attractive way to remedy this defect would be to build a simple neural network

which each consumer could use to keep track both of his own experiences and of any wisdom

gleaned from others. We have begun preliminary efforts to construct such neural nets but

have concluded that the computational resources required to give each consumer his own

individual memory are beyond the capabilities of the computer resources currently available

to us.

Given the strong resemblance between the evolution of the population of rules in our

model and biological evolution as modelled using genetic algorithms, another avenue we in-

tend to explore is the relationship between our results and comparable work in the literature

on genetic algorithms. Our model lacks two of the forces that propel the evolution of genetic

algorithms: mutation and genetic recombination. Furthermore, in contrast with the typical

approach with genetic algorithms, our model begins with a population that is evenly dis-

tributed over the entire ‘fitness landscape’ defined by γ and X∗. Despite these differences,

the progress toward convergence in our model can be interpreted very naturally in terms

of the differential ‘reproductive success’ of the various consumption rules in the population,

with social contacts between individuals playing the role of reproductive opportunities for

rules. One interesting question to ask is how convergence speed would change if we were

to add plausible forms of ‘mutation’ (spontaneous changes in the rules individuals use) and

‘genetic recombination’ (rather than adopting someone else’s rule entirely, an agent might

adopt a rule intermediate between his own and that of his communicant, or might, say, adopt

18The term ‘reflection’ comes from the literature on genetic algorithms in which evolving agents are some-
times allowed to engage in precisely this kind of behavior.
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the other person’s X∗ but not γ.) We could also investigate how robust our findings are to

alternative initial distributions of consumers across the fitness landscape. Incorporating some

kind of mutation or randomness in the model would clearly be important in addressing the

issue of how the population responds to changes in the environment that change the optimal

rule. In the extreme case, if there were no mutation or randomness of rules and the entire

population had converged to the rule that was optimal in one environment, our current setup

would provide no way for the population to migrate to the new rule that is optimal in the

new environment.

When we have identified a social learning framework with which we are more fully satis-

fied, we intend to explore the implications of that framework for empirical work on consump-

tion behavior. A particularly interesting set of questions is the extent to which an individual

agent’s behavior should be influenced by the recent negative experiences of people with whom

the agent has been in social communication. We hope to be able to formulate hypotheses

which can be tested with data from the PSID on the assumption that individuals are in so-

cial communication with their relatives (siblings interactions will be particularly interesting

because the conceptual difficulties posed by bequests may make parent/child interactions

difficult to interpret).

7 Future Projects

In part, the exploration of the optimal consumption problem outlined thus far in this proposal

is meant as an example of a more general research methodology that we intend to apply in

a variety of other contexts.

A first followup project will be to apply our methodology to study consumers’ portfolio

allocation choices. Our intuition is that optimal portfolio allocation will prove to be even more

difficult to divine through personal experience than optimal consumption choice because the

uncertainty in stock returns is even greater than that in earnings, and hence social learning

is likely to be even more important in this context. While the idea that some investors may

base expectations of future returns on past performance is far from new, to our knowledge

there has been very little investigation of these issues using social learning/genetic algorithm

frameworks. A recent paper by Arthur et. al. (1997) does investigate the behavior of a

population of forecasting rules evolving via a genetic algorithm, but that paper does not

investigate the question of individuals’ portfolio allocations between a safe and a risky asset,

which is the heart of the microeconomic manifestation of the equity premium puzzle, and

which would be the principal focus of our efforts.

More broadly, there are many spheres in which rational responses of economic agents

to changes in the environment appear to have emerged, but only with extremely long lags

(Lindbeck (1995); Lindbeck, Nyberg, and Weibull(1997); and references therein for exam-

ples). While these authors have explained the delays as the result of a gradual erosion of

social norms, social learning seems to be a plausible alternative explanation. Our intended
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first application of the social learning framework to such an issue will be with respect to

the evolution of the personal bankruptcy rate in the United States. In a series of recent

papers, Michelle White (1998) has shown that current US bankruptcy laws are so generous

that approximately 15 percent of US households could immediately increase their net worth

by declaring bankruptcy, and almost 50 percent could benefit from bankruptcy if they first

engaged in a modest amount of bankruptcy planning. From this perspective, the mystery is

not why the personal bankruptcy rate has been increasing at an annual rate of 30 percent over

the last few years despite magnificent economic conditions, but rather why the bankruptcy

rate remained so low so long. Bankruptcy lawyers’ lobbying groups have argued that the

generosity of the bankruptcy law has nothing to do with the increase in bankruptcy rates,

because the law has remained largely unchanged since 1978, when the current debtor-friendly

law replaced a much more punitive bankruptcy system. While the uptrend in bankruptcy

rates appears to have begun shortly after the change in bankruptcy law (dating the begin-

ning of the uptrend is a bit difficult because of interference from the 1980-82 recessions),

it is true that the standard economic theory of bankruptcy implies that there should have

been an immediate avalanche of bankruptcies in 1979 rather than a gradual uptrend. White

and others who believe that the fundamental cause of high bankruptcies is the generosity of

the bankruptcy law have argued that the delay is attributable to the gradual erosion of an

ill-defined ‘social stigma’ associated with bankruptcy. An alternative explanation is that the

evolution of bankruptcy rates reflects a gradual process of social learning about the increased

generosity of the bankruptcy law, and this a natural next application of our framework.

The scope for other applications of frameworks like the one described in this proposal

is vast, even outside of the game theory literature where similar ideas are already gaining

ground. We intend to encourage further development of such work by making the computer

software used to solve and simulate our model publicly available when the projects are done,

and available on request even before then. In anticipation of such future uses, we have tried

to keep the structure our programs as flexible and general-purpose as possible.
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