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1. Introduction

Most of the multi-agent systems that economists study feature heterogeneous agents which

interact directly – i.e., agents’ strategies are functions other agents’ actions. Ford and General Motors

compete vigorously; exchange rate traders observe each others’ bids (and respond accordingly); little

Johnny learns from his bright peers. Yet once such interaction is modeled, the implications are often

startling. Convergence rates and equilibrium sets can be dramatically altered. Upon aggregation, the

macromodels’ properties typically diverge from those of their component micromodels: phenomena

emerge at the macro level which cannot be understood from micro elements studied in isolation, “nice”

properties vanish, and responses to shocks become very complex.1 Some view this as a curse. Yet those

macro properties are often appealing, clearing up empirical puzzles or explaining (for example)

persistence or striking shifts in aggregate outcomes over space and time. For these and other reasons,

Kirman (1992, p. 119) suggests that “…the way to develop appropriate microfoundations for

macroeconomics … rests in an essential way on studying the aggregate activity resulting from direct

interaction between different individuals.”

A growing body of work explores the intriguing implications of direct interactions between

heterogeneous agents for macroeconomics, especially in finance2, fluctuations3, information or human

capital spillovers4, and technological adoption and growth.5 Yet much of this work appears to be very

                                                
1 This is true even absent direct interaction. See, e.g., Durlauf 1991, Kirman 1992, Ramsey 1996, Forni and Lippi 1997, Abadir
and Talmain 2002, and Fratantoni and Schuh 2001.
2 For investigations of herd behavior/piling-up phenomena (and hyperinflation/speculative bubble-type phenomena), see Orléan
1990, Brock 1993, Lux 1995, and Kaizoji 2001. Fat tails, excess and clustered volatility, and long memory are studied in Arthur
et al. 1997, Bak, Paczuski, and Shubik 1997, Brock 1997, Brock and Hommes 1997, 1998, 1999, Brock et al. 2001, Lux 1997,
1998, Lux and Marchesi 2000, LeBaron, Arthur and Palmer 1999, Gaunersdorfer 2000, Goeree and Hommes 2000, Kirman and
Teyssière 2000, LeBaron 2000, 2001a, Hommes 2001, and Stauffer 2001.
3 If microeconomic agents interact, macrovariables of large economies can possess significant variance even if the only shocks
are micro-level, iid shocks (Jovanovic 1987, Durlauf 1996b, Aoki 1998, Horvath 1998, 2000, Cont and Bouchaud 2000,
Verbrugge 2000c, Arenas et al. 2001). US data does not appear greatly at variance with this hypothesis, either theoretically
(Horvath 1998) or empirically (Horvath and Verbrugge 1999). This is especially interesting because a growing empirical
literature casts doubt on the hypothesis that aggregate fluctuations are caused by persistent aggregate shocks hitting
representative agents (e.g., Long and Plosser 1987, Cooper and Haltiwanger 1990, 1996). Other interactions-models of
fluctuations are Aoki (1995a, 1998, 2001), Gaffeo (1999), Manduci (1999), Aoki and Shirai (2000), Delli Gatti et al. (2001),
Aoki and Yoshikawa (2002), and Nirei (2002).
4 See Montgomery 1991, Durlauf 1996a,c, Aoki 1996, 2000, Benabou 1996a,b, Bala and Sorger 1998, 2001, and Cooper 1998.
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technical – which could “scare away” prospective researchers – and is relatively unknown outside of

particular subfields. Furthermore, much of it uses specialized assumptions tailored to specific contexts,

raising questions about the generality of the results. Gray (1986) notes that once one deviates slightly

from the small set of well-studied models, virtually all the known facts about such systems become open

questions. Thus, little is known about the generic properties of interactions models.

This paper is a focused and user-friendly introduction to the burgeoning interactive agent

literature. It presents a simple general model that is a framework for understanding and describing much

of the work in interactive agent systems. The model is widely applicable and easy to use, and allows

several key dynamic issues to be resolved with little effort. The paper gives the reader some insight about

what is going on in local interactions models, what their “typical” dynamics are like, and why these

models produce interesting results. It surveys analytical results which are general, and presents two

special case results which have broad implications. It illustrates the model in a number of simple but

suggestive examples (richer examples may be found in, e.g., Verbrugge 2000a,b). My goal is to

encourage others to further explore this fascinating area.

Four analytical results are noteworthy. First, ergodicity and stationarity are easy to determine.

Second, essentially any long run distribution of states is possible. Third, endogenous variables can

violate the law of large numbers (LLN) and/or display nonlinear behavior; in fact, the underlying

probability laws giving rise to highly volatile/nonlinear behavior are not unusual, implying that aggregate

volatility may be typical of interactive systems. Finally, aggregate shocks might have nonlinear effects on

the economy, and temporary shocks might have indefinitely-persistent effects.

The models investigated here generally feature complex dynamics; outside of special cases,

many questions cannot be resolved analytically. One noteworthy simulation result is that, though discrete

and continuous time versions of the same finite economy can behave differently, in practice they often

                                                                                                                                                            
5 For investigations of technology adoption, nonergodicity and path dependent growth, see David 1985, Katz and Shapiro 1986,
Arthur 1989, David and Foray 1992, Durlauf 1993, 1994, An and Kiefer 1995, Cowan and Miller 1998, Dalle 1998,Verbrugge
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don’t. This suggests that convenience may dictate the choice between discrete- and continuous-time

modeling.

The simulations also demonstrate that several other properties depend, in intuitive ways, upon

the dynamic specification. Systems whose agent-level dynamics are governed by linear decision (or

updating) rules have a characteristic behavior: shocks are amplified, and volatility increases in the level

of interaction, but the LLN still holds. The degree of persistence is independent of the degree of

interaction. The qualitative behavior varies smoothly with changes in parameters; thus, analytical results

which rely upon the simplifying assumption of global interaction (everyone interacts with everyone)

probably carry over to other interaction structures.

Systems with nonlinear decision rules display more complicated behavior. For particular

parameter combinations (“critical points”), they become highly variable and persistent. As such

parameter values are approached, persistence rises and the LLN is greatly postponed – variance does not

fall proportionally with 1/N. At lower levels of interaction, the economy has a unique equilibrium. At

higher levels of interaction, the economy possesses two quasi-stable equilibria or modes, each of which

acts like a trapping set in that the probability of escaping from its vicinity during any fixed period of time

∆t is miniscule. (Once “trapped”, persistence and variance fall, and LLN postponement ends.) Thus,

even though the economy is stationary and ergodic, it is effectively nonergodic and path-dependent. Such

economies possess the “small shocks, large shocks” and persistence properties highlighted by Kelly

(1994): Small aggregate shocks have transient impact on the economy, but large shocks can have long-

lasting impacts if they move the economy to a different mode. Such mode-switching increases measured

persistence. With nonlinear decision rules, small changes in interaction specifications can cause big

changes in dynamic properties. Thus, interaction must be modeled carefully; popular mean-field

approximation techniques are not always appropriate.

                                                                                                                                                            
2000a,b,c, Ardeni and Gallegati 1999, Fagiolo 1999, Arenas et al. 2001, Corradi and Ianni 2001, Cowan and Cowan 2001,
Fagiolo and Dosi 2001, and Kelly 2001.
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Naturally, there are numerous closely-related studies. Key early studies are Föllmer (1974),

Weidlich (1974), Allen (1982a,b), Weidlich and Haag (1985), Ceccatto and Huberman (1989), Blume

(1993), Brock (1993), Durlauf (1993) and Aoki (1994). The mean-field models of Brock and Durlauf

(2001a,b) are essentially static models in which interactions occur via (rational-expectations) beliefs

about the behavior of other agents in one’s reference group. These models parametrically restrict the

return function and the error term, which allows one to obtain analytic results relating to conditions for

multiple equilibria, to conduct welfare analysis, and to undertake econometric analysis.6 The models

investigated in Glaeser and Scheinkman (2001a) are also static. In these models, individuals’ interactions

are somewhat restricted, and individual choice depends on the realization (rather than the expectation) of

the choices of others (so that the system is a Markov random field). In contrast to most of the literature,

choice variables are continuous, price variables are explicitly introduced, and only weak parametric

restrictions are imposed. Glaeser and Scheinkman focus upon establishing conditions for unique Nash

equilibria and social multipliers. They extensively discuss econometric applications; see also Glaeser and

Scheinkman (2001b). The models of Kandori, Mailath and Rob (1993), Young (1993), and, especially, of

Blume (1993, 1995a, 1997) and Kelly (1994), are closer predecessors to this paper – in fact, they can be

mapped into its framework. The models are explicitly dynamic and call for repeated state revisions on the

part of each agent based upon current states of neighbors.7 Blume and Kelly both parametrically restrict

the return function and error term in order to obtain analytic results. This practice is largely the rule in

this literature, but it is not innocuous. Such restrictions can be essential; see Bergin and Lipman (1994),

Blume (1995a, 1997), and Haller and Outkin (1998). The work of Aoki (1994, 1995a,b, 1996, 1998,

2000, 2001a, 2002) is very closely related, with its focus on dynamics, Markov processes, metastable

equilibria, critical phenomena, the multiplicity of states compatible with one macro state (“degeneracy”),

                                                
6 Ioannides (2001) extends these models to richer interaction topologies; this alters some of the results. Weisbuch, Kirman and
Herreiner (2000) use the mean-field approximation in another way in a model of trading relationships.
7 Some of these papers fall into the evolutionary game literature, which typically posits Darwinian or best-response play (of
normal form games) with learning rules perturbed by noise, and generally focuses upon the limiting distribution as noise
vanishes. “Population games” feature pairwise random matching, myopia plus noise, and random arrivals of choice opportunities.
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persistence, and so on. Aoki (1996) presents analytical results and techniques applicable to continuous-

time special cases of the framework presented here; see also the more focused Aoki (2001b).8

Aside from previously-mentioned work, there are other related studies which bear mentioning

(though there are too many papers to list completely). Fagiolo (1998) is earlier, focused review that is

similar in spirit to this paper. Hors and Lordon (1997) make some of the same points as Aoki (1996) and

others, independently. Lohmann (2000) uses an interactions model to study social upheaval and regime

collapse; Irwin and Bockstael (1998) uses another to study land use patterns. There is a growing

literature building closely-related models which feature “self-organized criticality”. Economies with this

trait continually evolve to “critical” configurations where minor shocks cause large bursts of activity; and

in contrast to most local interactions models, this self-organizing behavior is fairly robust to changes in

parameter values. Volatility of aggregates in such economies can remain constant as N→∞. (See Bak et

al. 1994, Focardi et al. 1999, Arenas et al. 2001, Arenas et al. 2002, Andergassen 2001, and Bertrand

2001.) Durlauf and Young (2001) surveys some of the recent work in social dynamics. Models in the

“agent-based” literature (see, e.g., Arthur et al. 1997, Tesfatsion 2000, LeBaron 2000, 2001a,b,c)

typically posit much larger strategy spaces in very rich environments, with agents repeatedly choosing

amongst strategies based upon learning rules; they must generally be analyzed by simulation. Weisbuch

et al. (2001) model a continuous choice variable representing opinion; opinion formation is also studied

in Ianni and Corradi (2000, 2002). Other related studies include: locally interdependent preferences (Bell

1997, Cowan et al. 1998), temporally ordered interaction leading to lock-in, herd behavior, informational

cascades, and the like (see, e.g., Arthur 1990, Arthur and Lane 1993, Banerjee 1992, Bikchandani et al.

1992), and random linkages between agents and network formation models (Kirman 1983, Kirman,

Oddou, and Weber 1986, Ioannides 1988, 2001, Durlauf 1993, Haller and Sarangi 2000, and Bala and

                                                
8 Amongst other things, Aoki develops new aggregation procedures to help understand and analyze macro dynamics, relates
methods for computing mean first passage times, and reports large deviation techniques which are useful in characterizing
particular aspects of the distribution (e.g. predicting how frequently the economy will perform 33% poorer than average, and
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Goyal 2002). Some of the conventions literature is related, as it seeks to explain the evolution (and

possible coexistence) of conventions; see, e.g., Boyer and Orléan (1992), Young (1993), and Sugden

(1995). Morris (1997) describes an equivalence between local interaction games, random matching

games and incomplete information games, and characterizes the equilibria of binary action coordination

games with many players. Morris (2000) extends these results; working with an infinite economy with

best-response dynamics devoid of noise, he characterizes when contagion is possible for arbitrary

interaction structures.

2. A Simple model for studying interaction

2.1 Statement of the model

We model in discrete time (the extension to continuous time is in Section 5). There are N ≤ ∞

agents, each of whom must be playing one of two strategies, such as corrupt or honest. Identify each

agent with an integer i = 1, …, N. Label the states +1 and –1, and label the strategy of agent i at time t by

ηi(t). The current state of the economy is denoted �(t) := (η1(t),…, ηN(t))'.

Associated with each agent i is a “neighbor set” (or peer group), a subset of the N agents, whose

members are called the neighbors of x. If j is a neighbor of i, then agent i will take j’s state into account at

her next strategy-revision opportunity – i.e., j’s state at time t-1 is an argument in i’s decision rule at time

t. The neighbor set relations in the economy are described by a matrix W, with entry wij ≠ 0 if agent j is a

neighbor of agent i. If wik = 0, then agent k is not a neighbor of agent i, and thus her state at t-1 does not

influence agent i’s strategy choice at t. (Though k does not directly influence i, there will be a network of

interdependencies amongst all agents if neighbor sets are not disjoint.) The matrix W is normalized so

                                                                                                                                                            
bounding the probability of rare events like severe depressions). These kinds of questions may not be answerable using
simulation techniques because they may occur too rarely. Aoki and Shirai (2000) apply these to a Diamond search model-variant.
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that the absolute values of the entries in each row sum to 1 – i.e., 
1

1N
ijj

w
=

=∑ . Then

( 1): ( 1)ijji jwt tηθ − = −∑

is interpreted as the weighted-average action, in period t-1, of i’s neighbors. Interactions are restricted in

that i’s decision rule may only depend upon ( 1)i tθ − , rather than upon individual strategies of neighbors.

In particular, each agent i has a stochastic reaction function, of a threshold-type, whose only

arguments are an idiosyncratic shock and ( 1)i tθ − . Agent i’s state evolves according to

( ) ( ) ( )1( ) 1 ( 1) ( ) ( 1) : ( 1)ii i iP t t P t t G tη η θ θ== − = − = −� (1)

The function G: [-1,1]→[0,1] is the same for every agent. iθ  may be termed i’s “local field”. Typically

G(.) will derive from a maximization problem on the part of an agent, as follows. Let ( )i tε  be a random

variable which is both independent, and identically distributed, across both agents and time. Let

( ), ( 1), ( )i i iU t tη θ ε−  be the return to agent i at time t. Then define

{ }
( )*

1, 1
( ): arg max , ( 1), ( )

i

i i i it U t t
η

η η θ ε
∈ − +

= −

The solution, which is a threshold-type decision rule, immediately leads to

( ) ( )*( 1) : ( ) 1 ( 1)i i iG t P t tθ η θ− = = − .

This construction is demonstrated in Example 1 below. Whether or not G(.) derives from explicit

optimization, one can often express the behavior of agent i as

( ) ( )( )( 1) ( ) ( 1)i i iG t P t T tθ ε θ− = < − (2)

where T: [-1,1]→�, a threshold-type function which is the same across agents, describes the way an

agent is sensitive to the average behavior of his neighbors, and ( )i tε  is a random variable which is

distributed i.i.d. across both agents and time. Example 3 illustrates such a case. Note that increasing the

variance of ( )i tε  corresponds to reducing the sensitivity of G(.) to iθ (t).
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In words, the underlying dynamic (1) says that an agent’s probability of choosing strategy 1 at

period t depends upon what his neighbors were doing, on average, in period t – 1. Such dependence

could, for example, result from intertemporal interdependencies, or through an expectations-formation

process. Note that interaction is direct: each agent’s decision depends upon other agents’ actual states

(cf. Brock and Durlauf 2001a,b). Given the weights matrix W, and the initial state of the population, (1)

determines, stochastically, the time path of the economy. Since the only thing that matters for transitions

is the previous period state of the economy – G(.) is a Markov rule – the economy is a Markov chain.

(Note that conditional on �(t-1), each agent moves independently, so the joint conditional probability

measure is a product of the individual conditional probability measures (1).)

2.2 Commentary

Since the economy is a Markov chain, many of its properties follow straightforwardly from

standard Markov process theory. In particular, when N is finite, the economy is simply a finite state

Markov chain, whose transition matrix P (of dimension 2Nx 2N) is implicitly defined by G(.) and W.

Hence many theoretical results – such as the existence of a stationary distribution, and upper bounds on

the transition time to the stationary measure (if it exists) – are readily deduced. Furthermore, if a finite-

state Markov chain is irreducible, the stationary distribution is the ergodic distribution.9

The typical state space of dynamics in this type of model may be described as one or more

valleys (basins of attraction) separated by barriers of varying heights; local “metastable” equilibria (or

“modes”) are located in valley floors. The “landscape” – and hence, the dynamics – may be very

sensitive to parameter values and to the pattern of weights. Economies wander around in valleys, and, if

the barriers are not too high, occasionally jump over them and move into neighboring valleys. This mode-

switching behavior is often of interest – in financial market applications, for example, it may imply bull

vs. bear markets. (Mode-switching could also be induced by a sufficiently large aggregate shock.)
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Because the economy’s behavior is different in different valleys, a particular sequence of shocks could

well have a very different impact on the economy, depending upon which valley the economy is in. Here

is a simple example, building upon (2). Suppose T(-1) = δ and T(1) = 1-δ, with δ < ½. Consider two

different “positively interacting” economies (i.e., all weights wij nonnegative) which differ only in their

initial conditions: economy neg starts with all agents in state -1, and economy pos starts with all agents in

state 1. Now suppose all agents happen to receive the same shock, of size ½. Recall that the shock must

lie below T(θ ) in order for the agent to move to 1. In this situation, no one in either economy moves: in

economy neg, no agents move to state 1 (the shock lies above ε  for all agents); and in economy pos, no

agents move to state -1 (the shock lies below 1-ε  for all agents). Hence, both the global state -1 (all in

state -1) and the global state 1 (all in state 1) are consistent with the same realization of shocks.

If an economy has multiple equilibria, how does the economy select the one it moves to next? As

demonstrated in the pos-neg example, selection implicitly conforms to Cooper’s (1987, 1994) history

dependent selection criterion – which, roughly speaking, implies that agents expect the current

equilibrium to continue, unless it is no longer a possible equilibrium – but in this context, such dynamics

need not result from beliefs coordination.

These history-dependent dynamics can help generate substantial persistence of aggregate

variables. Infrequent shifts between modes that have different average states increases measured

persistence even more – so much so that conventional tests on aggregate measurements may have

difficulty rejecting a unit-root. Thus, there is substantial scope for interacting models to endogenously

generate sluggish aggregate movements, even though the driving forces are iid shocks.10

The framework here is quite general, both in the wide class of situations it can be applied to, and

in the nature and patterns of interaction it allows. Here are four reasons why.

                                                                                                                                                            
9 Irreducible means that with non-zero probability, every state may be eventually reached starting from any other state.
Ergodicity means that every population configuration is endlessly revisited such that the average amount of time spent in any
configuration corresponds to the stationary distribution of the Markov chain – the “time mean” coincides with the “space mean.”
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Binary restriction: The model’s binary state restriction is not as restrictive as it first appears.

Firstly, there are numerous interesting economic decisions which are effectively binary – e.g., strategy

choices (chartist or fundamentalist, remain active or withdraw from market) – in addition to situations in

which the binary variable is a literal state (e.g., informed or uninformed). Brock and Durlauf (2001a) list

a number of interesting binary choices. More generally, the binary state could refer to one of two possible

equilibria – such as collusive or competitive – if the “agents” are, for example, coalitions, industries, or

physical locations; see Verbrugge (2000c) for an example and further discussion. Secondly, for many

substantive applications, a binary state is a reasonable “first-order” approximation. Many interesting

economic situations involve optimal adjustment behavior by microeconomic units that is not continuous

or small, with decision rules that are of the threshold type; or they involve what amounts to binary states

or decisions, e.g. lumpy factor adjustment or bank runs. The framework itself should be taken as

illustrative of economic situations in which there are both interactions and nonlinear or lumpy

adjustments; see Aoki (1996) for a long list of such instances. Finally, most of the results in this paper

could be readily extended to allow a finite number of states, at the cost of expositional clarity.

G(.) Flexibility: The form of G(.) is determined by the economics of the situation. In the

literature (e.g. Blume 1993), G(.) is often a best-response strategy rule in a game-theoretic situation. Such

rules may be justified in several ways, depending upon the context. Interacting agent economies often

feature complex dynamics, and it may be unreasonable to suppose that agents can fully solve the dynamic

games they are playing. In other game-theoretic applications, G(.) can describe “mixing” over strategies,

or it can describe “trembling” – a setup in which agents sometimes make “mistakes” and choose the

wrong strategy with some probability. G(.) can incorporate forward-looking behavior (see, e.g., Blume

1995b) as well as boundedly-rational behavior. However, the framework is not restricted to strategic

situations. For example, agents’ states might not be choice variables – e.g., the state might be “infected”

or “not infected” – with G(.) determining the evolution of those state variables (see Carroll 2002). Or, as

                                                                                                                                                            
10 See Durlauf (1991), Kelly (1994), Verbrugge (2000c) and Kirman and Teyssière (2000) on this point.
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noted above, each “agent” might be an entity such as an industry, and G(.) might describe transitions

between one of two possible equilibria, such as price slashing or colluding. The only restriction is that (1)

must hold: “agent” transition probabilities must depend upon the current (or just prior) weighted-average

state of neighbors. (Note that optimal responses to Markovian rules are often themselves Markovian;

Bhaskar and Vega-Redondo 2000 provide a theoretical justification for the use of Markov strategies in

repeated games.) Modest extensions would make the framework even more flexible; besides a larger

strategy set, G(.) could differ across agents, or have other arguments, such as multiple “fields” or

aggregate variables like prices (Glaeser and Scheinkman, 2001a). Additionally, one could make the

function G(.) depend upon an agent’s state, which is one way to model “stickiness” (another being to

weight one’s own state heavily).

In fact, many of the models in the literature feature a G(.) which varies with the state agent x is in

– i.e., [ ( ) 1| ( 1)] [ ( ) 1| ( 1), ( )]i i i iP t t P t t tη η η θ= − = = −� . (Most commonly used is the “log-linear response

model”, which assumes that (.)[ ( ) 1| ( 1), ( )] U
i i iP t t t eβη η θ= − = , where U(.) is a return function, and β is a

“sensitivity parameter” in that larger values of β imply stronger interaction.) Thus, the probability that

agent x moves from state -1 to state 1, given a particular value of θi(t-1), is given by G-1(θi(t-1)); while the

probability that x stays in state 1, given the same θi(t-1), is given by G1(θi(t-1)) � G-1(θi(t-1)). Since this

alternative assumption is so common, I will note which analytic results still follow when it is imposed.

G(.) functions which are constant imply that agents behave independently. G(.) functions which

lie below the line y = ½ for values of θ < 0, and conversely for θ > 0, imply something like strategic

complementarity – a tendency to conform to the average play of one’s neighbors. The greater the slope,

the stronger the interaction – the more likely is the agent to conform to the majority (as measured by the

weighted average θ ). It will become evident below that in most contexts, something like this is required
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for multiple modes to exist. However, one can generate multiple modes by careful selection of

neighborhoods combined with strategic substitutability – see Glaeser and Scheinkman (2001a).

Neighbor sets: The framework also allows a fair amount of flexibility in neighborhoods. For

instance, one can readily model the common interaction patterns used in the literature. In studying local

interactions, researchers have often defined neighbor sets by placing agents on a line, a two-dimensional

grid, or some higher-dimensional lattice, then positing the neighbors of x as those agents immediately

adjacent to x (e.g., in two dimensions, the agents at the points directly north, south, east, and west.) To

ensure symmetric neighborhoods, typically the “edges” of lattices are folded over to meet the far side –

thus, a line becomes a circle, a two-dimensional grid becomes a torus (doughnut), etc.11 Usually, all

neighbors are weighted equally (wij = wik ∀j,k, ∀i); this is termed “uniform local interaction.” The other

interaction pattern which receives wide use in the literature is “uniform global interaction” (UGI), which

simply implies that every agent’s field (θ ) is the economy-wide average. “Global interaction” implies that

all elements of W are positive, i.e. wij > 0  ∀i, ∀j. For such economies, particularly those with uniform

global interaction, more analytic techniques and results are available; see Aoki (1996) and Lux (1997).

Independent agents may be modeled by setting wij = 0  i≠j, ∀i, or by setting G(.) to a constant.

But this framework allows much more flexibility in determining interaction patterns. Neighbor-

relations need not be symmetric, reflexive, or similar across agents; even “negative” interactions between

agents are allowed by choosing negative weights. Such flexibility is important. The specific pattern of

interaction (or “topology of interaction”) can matter a great deal (see below and, e.g., Ellison 1993,

Ioannides 2001, and Page 2001). We would like to be able to investigate implications of stochastic

                                                
11 Systems with neighborhood structures tied to d-dimensional lattices are stochastic (or probabilistic) cellular automata,
developed by Ulam and von Neumann in the 1940's (see von Neumann 1966); systems with more general neighborhood
structures (which are allowed here) may be interpreted as neural networks (see Haller and Outkin 1998). A handful of prior
studies have modeled particular economic applications using cellular automata (or their stochastic analogues); see Albin (1975),
Schelling (1969, 1971), Bhargava and Mukherjee (1994), Hegselmann (1996), and Page (1997) for their use in economic
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neighborhoods – in which the wij are random variables (for discussion and some results, see Föllmer

1974, Kirman 1983, Kirman, Oddou, and Weber 1986, Ioannides 1990, and Haller 1990) – as well as

“leader-follower” or “upstream-downstream” relationships. Such hierarchical relationships may help

generate self-organized criticality. Randomly-evolving neighborhoods (see Schelling 1971, Haller 1990,

David and Foray 1992, Kirman 1997) might facilitate its generation (see Stauffer and Sornette, 1999).

In Sections 3 and 5, I derive some general analytical results about the behavior of such systems,

most of which follow from standard Markov process theory. However, these results do not encompass all

the relevant questions in any given situation. An economist studying corruption might wish to know

whether persistence is a typical feature of such models; a growth theorist might want to know how

transition times relate to scale; and so on. Without some general feel about how such models typically

behave, the theorist might be reluctant to embark upon the modeling endeavor. Since many such

questions are not answerable analytically for the general case, a number of these issues are investigated

via an extensive simulation study in Section 6.

3. Analytic results

3.1 Multiple equilibria and path dependence

Stationarity and ergodicity are properties which are of central interest in many models (e.g.,

Durlauf 1993, Verbrugge 2000a,b). If the Markov process describing the economy’s dynamics is ergodic

and stationary, then the economy has a unique stationary equilibrium to which it converges regardless of

the initial conditions. This is often interpreted to mean that “history does not matter.” Alternatively, if

there are multiple trapping sets (multiple “infinitely deep valleys”), and initial conditions combined with

the sample path of shocks determine which outcome eventually transpires, this is often taken to mean that

“history matters.” A necessary condition for such “path-dependence” to hold is that the Markov process

have multiple trapping sets – i.e., that it is nonergodic. Lemma 1 shows how to easily determine if a finite

                                                                                                                                                            
contexts. Keenan and O'Brien (1993) and Föllmer (1994) are closer predecessors to this paper, in that they explicitly avoid the
common practice of simply positing behavioral functions and payoffs, then exploring their implications.
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economy is stationary and ergodic; both properties hold if G(.) lies strictly between 0 and 1. Lemma 2 is

a partial converse: it presents conditions on G(.) under which finite economies are not ergodic.

Lemma 1: Sufficient conditions for ergodicity

Suppose N < ∞. If 0 < G(θ ) < 1 ∀θ, then the Markov chain is aperiodic, ergodic and stationary.

The invariant distribution will be attained in the limit, regardless of the initial distribution of the

process, and convergence to this distribution is at an exponential rate.

The proof can be sketched as follows. Since G(.) is never 0 nor 1, there is always non-zero

probability that any configuration can be attained in one step from any other configuration. Hence the

chain is irreducible and aperiodic; since the economy is finite, the chain is positive recurrent. Hence the

Markov chain has a unique stationary distribution, it is ergodic, and the convergence rate is

exponential.�

There are three points to note. First, this result will still hold when G-1(.) � G1(.), as long as

0<Gi(.)<1 for i=-1,1 and for all θ, using essentially the same proof. Second, there is no assumption about

the neighborhood structure. Third, Lemma 1 can be strengthened – it is not absolutely necessary that G(.)

lie between zero and one everywhere. As long as any state can be reached in a finite number of

transitions from any other state (i.e., the chain is irreducible), and there is some state which leads back to

itself with some positive probability, the result will still follow.

Lemma 2 gives the simplest sufficient conditions for the existence of multiple trapping sets.

Lemma 2: Sufficient conditions for nonergodicity

Suppose N < ∞. If wij ≥ 0  ∀j, ∀i, G(-1) = 0, and G(1) = 1, then the economy possesses multiple

trapping sets and is nonergodic.

A proof may be sketched as follows. If G(-1) = 0 and all wij are nonnegative, then the global state

-1 (i.e., all agents in state -1) is a trapping set – if it is ever attained, there is no chance of any agent ever
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changing her mind – since, as all wij  are nonnegative, θi = -1 for all i. Similarly, if G(1) = 1 and all wij are

nonnegative, then the global state 1 (i.e., all agents in state 1) is a trapping set. �

There are three points to note. First, Lemma 2 will still hold as long as G-1(-1) = 0 and G1(1) = 1;

the same proof, with the obvious substitutions, would apply. Second, if the economy is nonergodic, the

economy’s eventual equilibrium will at least partly depend upon the initial conditions. But whether or not

it is path-dependent depends upon whether there exist initial conditions such that the ensuing history of

shocks determine that eventual equilibrium. The economy will not be path-dependent if, for example,

there are two trapping sets, but one of them can only be attained if the economy starts there.

Third, Lemma 2 does not state that the economy can only converge to one of the states -1 and 1;

depending on the structure of interaction, other long run distributions may be possible. In fact, a

necessary condition for -1 and 1 to be the only trapping sets – see Lemma 3 below – is that the

neighborhood structure “fully communicates”, i.e. each agent directly or indirectly (via an extended chain

of interactions of neighbors with neighbors) interacts with every other agent. This rules out “coalitions”

which are not influenced by outsiders – since each such coalition would form its own little independent

economy, which itself could converge to -1 and 1 independent of the rest of the economy. Furthermore,

whether the total number of agents is even or odd can also influence the number and type of trapping

sets. For example, suppose agents are arranged on a two-dimensional lattice embedded on a torus, as

described in Section 2, and the conditions in Lemma 2 hold. If the number of agents is even, there is an

equilibrium in which an oscillating “checkerboard” pattern of strategies is played – at even dates, red

square players (for example) play strategy -1, and black square players play strategy 1; and at odd dates,

all players reverse their strategies. (Since the economy returns to its original starting point after two

periods, this is called a two-cycle.) However, this trapping set does not exist when there are an odd

number of players. This dependence upon the pattern of interaction is a hint that oft-advocated mean-
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field approximations (which, among other things, assume a particular pattern of interactions) could well

be inappropriate whenever the economy is nonergodic – or even effectively nonergodic (see Section 6).

When the economy is stationary and ergodic, is history truly irrelevant? Not necessarily. Even

given exponential convergence to a unique stationary equilibrium, it may still take so long for the process

to make its way from one “valley” to another that, for all practical purposes, this transition will never

occur. Thus, the stationary distribution may be economically irrelevant (see Blume 1997). In this case,

history – i.e., the path of shocks, which selects the initial valley the process moves to – will still matter. (I

term this “effective nonergodicity.”) Even the expected first passage times between modes may tell us

little about the sample path behavior (again, see Blume 1997). Likewise, nonergodicity may be

economically irrelevant: transient states may lie in a “deep” valley. Numerical methods may be required

to study such issues adequately. See Section 6 and the conclusion for further discussion.

Previous discussion notwithstanding, Lemma 2 is useful: see Verbrugge (2000b) – which studies

how ex-ante identical regions can diverge in levels of political corruption – and the following Example 1.

Example 1 – Trapping or Take Off (inspired by Durlauf 1993 and by Aoki 1995a,b, 1996)

At any time, there are N firms. Each exists for one period, and is subsequently replaced the next

period. Each of the N firms produces a unique perishable good, and faces a demand schedule which is

given by  pt = ayt
-b  a ≥ 0, 1 ≥ b ≥ 0. At the beginning of the period, each firm must decide whether to use

technology B (which is nonstochastic), or pay a fixed cost of C and use technology A (which has a

random return). Technology B is given by yt = Lt, where Lt is the labor input. Technology A is given by

yt = γ (θt-1)Lt, where γ (.), the productivity of labor, is a random variable observed at the beginning of the

period. θt-1 is related to the fraction k of firms who used technology 1 last period; in particular, θ = 2k-1.

(This function maps [0,1] into [-1,1].) Wage is the numeraire. The optimal profit associated with using

technology A is π1( 1tθ −

) = κ 1( )t
α

γ θ
−

– C (where 1 (1 ): (1 )b b ba b bκ
−

= − ), while the optimal profit
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associated with using technology B is κ; hence, technology A is more profitable if (1 )
1( ) b b

tγ θ −

−

> 1+ C
κ

.

The distribution of γ is given by ( )1
1

(1 )
2( 1 sin) tC

t
b bP

κ

πθ
γ θ −

−

−

> + = 
 

. This distribution captures the idea

that prior use of technology A, via a learning by experience mechanism, makes more productive draws

more likely. Since ( ) ( ) ( )( 1)
2( 1) : ( ) ( 1) sin t

i i iG t P t A t πθθ η θ −

− = = − = , so that G(-1) = 0 and G(1) = 1,

Lemma 2 implies that the economy has two potential limit sets: all firms forever using technology A, or

all firms forever using technology B. If the economy starts with random initial conditions, the sample

path of shocks will determine the long run level of output in the economy: the economy is path-

dependent. If many firms draw high productivities early on, the economy could converge to the good

equilibrium (“take off”); but this outcome is far from certain.

Lemma 3 restricts the types of trapping sets in finite, nonergodic, globally interacting economies.

Interestingly enough, this result does not hold in infinite economies – see Proposition 1.

Lemma 3: Limit configurations

Suppose N < ∞, G(-1) = 0, G(1) = 1, and G(θ ) ∈ (0, 1)  ∀θ ∈ (-1, 1). If wij  > 0 ∀j, ∀i, then the only

trapping sets are the configurations -1 and 1.

A proof may be sketched as follows. Suppose the contrary, i.e. suppose that there is a trapping

set in which a group of agents is in state 1, while the rest of the economy is in state -1. Since wij  > 0 ∀j,

∀i, then θi ∈ (-1, 1) ∀i. Since G(θ ) ∈ (0, 1) ∀θ ∈ (-1, 1), 0 < G(θi ) < 1 for each agent x – meaning that (for

example) there is positive probability that every agent will move to state 1 next period. Hence the

original configuration cannot have been a trapping set. Conversely, consider the configuration -1. Here,

θi = -1 for every agent … and since G(-1) = 0, every agent will stay in -1 next period. Sooner or later a
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jump to this extreme (or the other extreme) will occur. This result will still hold when G-1(-1) = 0, G1(1) =

1 and Gi(θ )∈(0,1) ∀θ ∈ (-1,1) for i = 1,-1, using the same proof (with the obvious substitutions). �

This lemma could be strengthened – again, what is necessary is that there are no subpopulations

which are disconnected and who could thus find opposite extremes. However, one could get other

trappings sets if, for some values of θ other than -1 and 1, G(.) “hit” 0 and 1. For example, consider 4

agents (labeled 1,2,3, and 4), such that odd agents weight the current state of each odd agent at 1/3 (and

each even agent at 1/6), while even agents weight the current state of each even agent at 1/3 (and each

odd at 1/6). Suppose 1 and 3 are in state -1, and 2 and 4 are in state 1. θ1 and θ3 both equal -1/3, while θ2

and θ4 both equal 1/3. If G(-1/3) = 0 and G(1/3) = 1, this configuration is a trapping set.

3.2 Limit behavior as N approaches infinity

It is commonly believed that idiosyncratic shocks will have minimal effects on aggregate

dynamics in big economies, due to the LLN. Lemma 4 below presents one set of conditions under which

such averaging out of shocks will occur. It states that the economy-wide average ( )tη  must converge to a

constant as N → ∞ in economies devoid of interaction (wij = 0 ∀j≠i, ∀i). It thus emphasizes that LLN

arguments about the aggregate unimportance of idiosyncratic shocks (see Lucas 1977) rely upon

sufficient independence across agents.12 Interactions models typically feature strong, nonlinear

dependence across agents. Hence, in such models one cannot assume that laws of large numbers will

generally hold – see Proposition 1 below.

Lemma 4: Lucas averaging-out case

If W = I, the identity matrix, then ,( ) t Ntη
→∞ →∞

→K with probability 1, where K ∈ [-1,1].

                                                
12 For non-interacting linear models, Forni and Lippi (1997) present conditions under which idiosyncratic shocks – which may
be partially dependent – cancel in the large-economy limit.
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A proof may be sketched as follows. Each agent's behavior is now an independent two-state

Markov chain, even if G-1(.) ≠ G1(.), since ( 1)i i tθ η= − . As t goes to infinity, this chain must converge

to a stationary, possibly degenerate, distribution. As each agent’s state is an independent bounded

random variable, the strong law of large numbers implies that the average state converges to a constant as

N → ∞.�

Proposition 1 below, a statement about the dynamic properties of infinite UGI economies,

demonstrates that such averaging out need not hold in interacting economies. Moreover, the proof of this

result yields valuable intuition about the dynamic properties of these models in general. The key insight

is that in infinite UGI economies, despite the uncertainty at the micro level, the fraction of agents who

move to state 1 is deterministic – namely ( )( )G tη . Hence, the aggregate moves deterministically:

( )( 1) ½ ( ) 1t G tη η+ =  +
 

, a simple difference equation. Many dynamic properties can thus be deduced by

the shape of G(.); Proposition 1 spells out some implications.

Proposition 1: Steady states and dynamics in infinite globally-interacting economies

Consider an economy with N = ∞ such that ( ) ( )i t tθ η=  ∀i. The average ( )tη  evolves according

to the difference equation ( )( 1) ½ ( ) 1t G tη η+ =  +
 

. Every 'η  which satisfies G( 'η ) = ½( 'η + 1)

is a fixed point or steady state for the economy. Initial conditions will determine the limit to

which η  converges. The stability condition for any fixed point 'η  is ( ) ½'G η <′ . If G(.) is

monotonically increasing, the economy will converge to a fixed point. If G(.) is not monotonic,

nonlinear behavior, cycles and/or chaotic behavior can occur.

This result is not new; the physics literature has been aware of it for some time (see, e.g.,

Grinstein et al. 1985), and it has been previously reported (in part) by Föllmer (1994) and Aoki (2001).

One can use an analogue to the 45º line technique (with the line y = (θ  + 1)/2 playing the role of the 45º
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line) to prove this proposition and to deduce many important properties of the dynamics. Figure 1 below,

and the ensuing discussion, illustrates the use of this technique.

(Figure 1 goes here)

To trace out the dynamics of η , proceed as follows. Start from an arbitrary point ( )tη = x. Then

( 1)tη +  is given by [ ]( 1) ½ ( ) 1t G xη + = + , found graphically by moving from G(x) horizontally to the

line y = (x + 1)/2. (If G(x) > (x + 1)/2, one moves to the right, and if G(x) < (x + 1)/2, one moves to the left.)

One can trace out the orbit of x by iterating on this procedure. Fixed points 'η  lie at the intersection of

G(.) and the line y = (θ  +1)/2. A trapping set is a set T such that if ( )tη  is in T, then its orbit is in T. An

attracting set A is a trapping set with the property that there is some open trapping set U ⊂ A such that

orbits beginning in U approach A as t→∞. An attractor is a set to which “typical” orbits approach.13 The

basin of attraction of an attracting set A is the set of all points which approach A as t→∞.

It is easily deduced upon inspection of Figure 1 that if G(.) is continuous, a sufficient condition

for multiple steady states is that the slope of G(.) exceeds ½ at some steady state.14 There are five steady-

state equilibria in Figure 1: a, b, c, d, and 1. Not all of these are stable. Assume G´(a) > - ½. Then a is

stable, and is an attractor. (In other words, a lies at the bottom of a “valley.”) Because G´(a) < 0, orbits

converging to a will be oscillatory: if ( )tη < a and ( )tη ∈ A, then ( 1)tη + > a, ( 2)tη + < a, and so on.

Steady states b, and 1, are unstable; neither would be attained unless η  started there. Point c, a steady

state which is neither stable nor unstable, will attract orbits which begin in the set (b, c]. Point d is

unstable, since G´(d) < - ½. However, note that (c, 1) is a trapping set; this set will likely possess a subset

which is an attracting set. Dynamics in (c, 1) will involve oscillations around d and orbits could well be

                                                
13 It is relatively difficult to give a mathematically precise definition of an attractor; see Ruelle (1981).
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periodic15 or chaotic. If this is the case, the variance of the aggregate does not fall to zero – the micro

shocks are not “canceling out”, even though they are independent and subject to the LLN.

Thus, interesting dynamics accompany nonmonotonic G(.) functions – but are such functions

reasonable? Certainly. Recall that when G(θ ) lies above ½ for θ > 0 (and below ½ for θ < 0), one may

loosely interpret this as a form of “strategic complementarity” – a tendency to conform to the average

behavior of one’s neighbors. A nonmonotonic G(θ ) function, then, is nothing extraordinary: the strength

of the “strategic complementarity” simply declines over some θ. For example, there may be coexisting

(and competing) positive and negative externalities – increasing returns of some sort, in conjunction with

congestion externalities – with the negative externality gaining in dominance for extreme values of θ .

If G-1(.) � G1(.), Proposition 1 still follows, but the proof is slightly altered. The process still

moves deterministically: Given θ, the fraction of “1” agents which remain in state 1 is deterministic, as is

the fraction of “-1” agents who move to state 1. Hence, one could map a new function H(.) which could

be used (as above) to determine the system’s evolution.

There are three important things we can learn about more general cases from this special-case

proposition. First, the orbits of the infinite case will be a respectable approximation to the sample paths

of large economies which feature sufficient interaction. For example, in large economies with a dense

network of interdependencies and with the G(.) function depicted in Figure 1, we would expect the

stationary distribution of η  to have a great deal of mass in the vicinity of d (corresponding to long run

average behavior in the attracting set), a small peak at a, and perhaps a very small peak at point c (with a

precipice on the right). We would not expect the peaks to be dirac delta functions (spikes), since random

fluctuations would constantly move the economy away from steady states – though the larger the

                                                                                                                                                            
14 Recall the condition for multiple symmetric Nash equilibria with strategic complementarity given in Cooper and John (1988).
15 Point y has a periodic orbit (with period z) if, starting from y, the economy will return to y after z time periods.
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economy, and the more closely it approximates uniform global interaction, the more concentrated would

be the distribution. Second, the proof yields intuition about what generates persistence in these models.

When G(.) lies near the line y = (θ  + 1)/2, even in finite systems and even absent aggregate interaction,

( 1)tη +  is unlikely to differ much from ( )tη . (When G(.) lies on the line, of course, there is a continuum

of equilibria, and no natural tendency for the economy to move in a particular direction.) Lastly, the

proof makes clear that economy’s response to an aggregate shock might be highly nonlinear. How? An

aggregate shock would likely shift or alter the G(.) function, which could dramatically alter dynamics in

an attracting set – or even eliminate it. A temporary shift of G(.), even a small one, could have profound

effects on the economy, sending it to another region of the state space where completely different

behavior might be typical. This is the “small shocks, large shocks” property highlighted by Kelly (1994).

It is worth re-emphasizing the fact that, under conditions which generate cycles and/or chaos, the

aggregate level of activity is fluctuating. This implies that in such economies, the variance of aggregate

variables will not converge to 0 as N goes to infinity … despite the fact that each individual agent

receives an independent disturbance. Thus, the endogenous data will not obey the law of large numbers,

though the only driving forces are iid infinitesimal shocks. Put differently, idiosyncratic shocks will not

be canceled out by aggregation as N goes to infinity (cf. Forni and Lippi 1997). In Example 2 below, I

apply this result to a modification of Gale’s (1996) delay and cycles model to produce a model of

aggregate fluctuations without aggregate shocks.

4. Example 2: business cycles without aggregate shocks

Numerous studies have been undertaken investigating the importance of delay in amplifying the

effects of cycles in economic activity. The prominent study of Gale (1996) demonstrated how

endogenous delay in investment could amplify “the natural cyclical tendencies of the economy”. In his

paper, agents with innovations may use an innovation for only one period, and the key problem is

deciding when one should begin this utilization.
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A feature of Gale's model – shared by the vast majority of business cycle models – is that it must

rely upon aggregate shocks to generate aggregate volatility. However, some minor modifications of

Gale’s framework give rise to an environment in which aggregate fluctuations will arise in infinite

economies, even though the only driving forces are infinitesimal, idiosyncratic shocks. Following Gale,

the modified model features interactions which are intertemporal (ruling out the possibility of perfect

coordination and self-generating bursts of activity), and global (in the sense that each agent interacts with

all previously active agents, rather than a subset of them).

In the model, time is discrete. At each date, a countable infinity of agents enters the economy and

lives for two periods. The utility function of agent i born at date t is given by Ui(ci,t, ci,t+1) = ci,t+1. While

young, agents have the option to search for innovations which may be converted, next period, into

profitable investment opportunities. Search is costless, so all young agents search; each discovers an

innovation with probability one. Innovations are not equally profitable; the gross return ri,t on the

innovation discovered by agent i is a random variable, distributed iid across agents and uniform on [0, 1].

Following the full depreciation case in Gale (1996), entrepreneurs benefit from innovations for

only one period. Here, entrepreneurs with innovations in hand have no incentive to delay. Instead, they

decide whether to exploit the opportunity (“invest”), or forgo it (and earn a rate of return zero). The

profitability of production is a function both of the gross return on the innovation and, following Gale, of

the general level of prior investment in the economy.16 Let mt denote the fraction of agents who invested

in period t. Then πi,t+1, the date t+1profit accruing to innovator i who exploits his opportunity, is given by

πi,t+1 = rit – C(mt)

where C(.) is a continuous cost function that lies between 0 and 1. C(mt) is assumed to be “low” if many

agents invested last period, and “high” if few agents invested last period. More precisely, C(.) is assumed

                                                
16 This crucial assumption may be justified on both empirical and theoretical grounds. Cooper and Johri (1997) locate evidence
for such intertemporal strategic complementarities in the US economy. Several recent studies have highlighted intertemporal
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to lie below ½ for m∈ (0, ½), and to lie above ½ for m∈ (½, 1). Hence, there is a weak form of strategic

complementarity present: if the majority of agents invested last period, costs are “low” and more projects

are profitable this period, and the reverse holds if only a minority invested last period.

This setup maps into the framework above, with θ (t) = 2mt – 1 and G(θ ) = rit – C([θ (t)+1]/2).

Proposition 1 demonstrates that this economy will display deterministic dynamics: despite the micro-

level uncertainty, there is no macro uncertainty, since the fraction of agents which receive innovations

whose return exceeds C(mt) is given (with probability 1) by (1 – C(mt)), which in turn determines mt+1. If

G(.) intersects the line y = (θ  + 1)/2 several times, the economy will possess multiple steady states, and

initial conditions will determine the limit. Aggregate fluctuations are possible, despite the absence of

aggregate shocks, if C(.) is not monotonic. For example, if C(.) has a minimum at fraction ½ < m’ < 1 and

rises sharply enough after that (reflecting, say, intertemporal congestion effects such as increasing costs

in the construction industry), this economy may exhibit nonlinear (possibly chaotic) behavior. Hence, the

LLN need not apply, in the sense that the economy is composed of an infinite number of agents – each

receiving independent shocks – yet the aggregate is volatile.

5. Continuous time economies – Markov jump processes

The discrete time economies described above have continuous time analogues, which differ in

the timing of agents’ strategy revision opportunities. In discrete time, all agents move simultaneously at

each integer time t. However, in the continuous time case agents move asynchronously. Agents may only

update their choices at random times, whose occurrences are governed by identical but independent

Poisson processes. (Thus, the stochastically independent times between agent i's kth and k-1st strategy

revision opportunities are distributed exponentially.) Given this independence, the probability that two or

                                                                                                                                                            
strategic complementarities related to investment (Acemoglu and Scott 1997, Gale 1996, and Ruiz 1998); those authors (and
others) suggest numerous sources for such complementarities, such as R&D spillovers or various forms of learning by doing.
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more agents will be updating simultaneously is zero. Aside from this asynchronous updating, the

determinants of i’s movements are essentially the same; i moves according to (1’):

( ) ( )Prob 1( ) ( ) ( )i i it t G tη θ θ
− −

= = (1’)

where ( ): ( )i j ij jt w tθ η
− −

=Σ , and ( )i tη
−

 refers to j’s state just before agent i gets to move at time t. Note

that agent i's strategy is now “locked in” until her next random update time. The process described is a

Markov jump process (see Lamperti 1977) – in fact, a birth-death process. Thus, many properties of these

systems are readily deduced. Stochastic Ising models17 are examples of these processes.

Continuous-time modeling poses advantages in some contexts. For instance, it may make it easier

to solve dynamic programming/forward-looking problems (see Blume 1995b). Or, the economics of the

situation might suggest that a continuous time formulation is more natural, in that the particular neighbor

strategies that agent i is “reacting to” remain in place after i moves. Furthermore, some results (e.g.,

Proposition 2 below) are much easier to prove in continuous time, because the continuous time

economies are birth-death processes. (Aoki 1996 collects a number of results related to such economies.)

Lemmas 1 through 4 above can be extended to continuous-time – of particular importance, the conditions

for ergodicity and nonergodicity are unchanged.

Is the choice between discrete and continuous time innocuous? Continuous time models can

behave quite differently than their discrete time analogues. For example, infinite UGI continuous-time

economies will typically not display cycles or chaos; to obtain such behavior in infinite (or even large)

economies, one would need a higher-dimensional state space, or a shifting G(.) function.18 Furthermore,

one cannot presuppose that in ergodic cases, discrete- and continuous-time analogues have the same

invariant distribution. To see why, consider the embedded chain of the continuous time process η (t),

                                                
17 The infinitesimal transition rates of stochastic Ising model are specifically chosen to generate equilibria which are Gibbs
states. Most of what is known about this dynamic model derives from known properties of such states. As noted above, little is
known about such models once one deviates from the small set of appropriate transition rates (see Gray 1986).
18 See Lux (1995, 1997, 1998). In these financial market studies, agents respond both to other agents’ actions and to a price
variable; the latter, in effect, shifts G(.) around. This amplifies interactions. The economy can exhibit nonlinear behavior.
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which is constructed as follows. Let τk denote the time of the kth jump of η (t). Then η (τk), a discrete

time Markov chain, is the embedded chain of η (t), and shares its invariant distribution. However, the

discrete-time analogue η′ (t) of η (t) does not have the same transition matrix as η (τk), as the transition

matrix of η (τk) implies that only one agent can move at each time period (the matrix has a lot of zeros).

A relevant question is thus: do continuous- and discrete-time analogues generally behave

similarly? The simulations in Section 6 below indicate that they often do.

The following is an example of a continuous-time model built using this framework.

Example 3 – Bank runs (or, thick market externalities)19

The economy consists of N risk-neutral agents and evolves in continuous time. Each agent owns

one unit of capital, which can neither grow nor shrink. This capital may either be used in a home

investment project, or deposited in a financial institution. The decision is irreversible: once tied up in an

investment, capital yields a constant flow of returns but cannot be withdrawn until the project expires.

Project duration times are random variables. The distribution of these period lengths is known to be

exponential (independent across agents and projects) with parameter λ.

Suppose agent i's project expires at date t. Then he must decide whether to lend his asset to the

financial institution, or use it at home. Each agent is risk-neutral, so his choice depends solely on

expected returns. The rate of return on agent i's home production process at t is governed by a random

variable vit  that is distributed iid and uniform [0,1] across agents, and revealed at t. The rate of return on

loans to the bank is also stochastic, but unknown at t. However, its expected return depends positively

upon the current aggregate amount of capital the bank has available at t, as follows. Define ρt to be the

                                                
19 Blume (1997) presents a related model. See also Iori and Jafarey (2001) and Aleksiejuk et al. (2002).
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fraction of the economy's capital which is on deposit at time t in the financial institution. Then the

expected return to a new deposit in the institution is given by ½ + (α – ½)(2ρt – 1)1/3 with ½  ≤ α  ≤.1.

Agent i does not observe the aggregate fraction ρt directly. However, each agent does observe the

behavior of a subset of the agents, i.e. i can observe the current asset decisions of ni < N other agents in

the economy. These are i’s neighbors. Agent i does not know who his neighbors’ neighbors are; in

particular, he does not know if his neighbors observe him. Agent i forms his expectations about the return

of the bank loan on the basis of his maximum likelihood estimate of ρt. Letting ψit denote the fraction of

i’s neighbors whose deposits are currently in the financial intermediary, his estimate of ρt is ψit.

(Figure 2 goes here)

Optimal behavior on the part of agent i can be summarized by Figure 2. The vertical axis

represents vit, the random home productivity shock. On the horizontal axis is ψit – i’s estimate of ρt. If

(ψit, vit) lies below the dark curved line, the optimal decision on the part of the agent is to invest in the

financial institution. For example, consider the pair 3
4

1
2,b g . The return on the home production

technology is moderate, but the expected return on investing in the financial institution is high, hence it is

optimal to invest in the financial institution.

Dynamics of this economy are investigated by simulation in Section 6. (The mapping into the

framework is accomplished by setting θi(t) = 2ψit – 1.) For appropriately-chosen α , this economy will

spend long periods of time during which most agents invest their funds in the financial institution,

interspersed with long periods of time during which the majority of agents have pulled their funds out of

the financial institution (bank runs). Given this “mean-switching” behavior, conventional tests for long

memory in the time series of ρ will likely not reject it (see Hiemstra and Jones, 1997). Positing the high-
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intermediation case to be Pareto-superior, the economy features dynamic coordination failure, and spends

long periods of time in a Pareto-inferior state. If α = 1, this economy is nonergodic: with probability one,

the economy will converge to one of two potential long run (stochastic) equilibria, one in which all

agents always lend their assets to the financial institution, and the other in which none ever do.

Proposition 2 below, reminiscent of a theorem in Jovanovic (1987), is a statement about the

flexibility of these models. Suppose a researcher requires a particular distribution µ to be the economy’s

stationary distribution – for example, she has a desired long run distribution of play she wishes to

generate, or requires a fat-tailed distribution of asset returns. Is there a G(.) which would generate this

distribution? Subject to some restrictions, yes. For any appropriate stationary distribution µ, there exists a

G(.) function such that the stationary distribution of a UGI continuous time economy with this G(.) will

be µ. In fact, there is a continuum of appropriate G(.) functions, any member of which generates µ.

Induced dynamics will differ along other dimensions, e.g. average times between mode switches.

This result is not general: it is a proposition about the steady-state distribution (and not about

dynamics within that steady state), it restricts the class of distributions µ, and applies to UGI continuous

time economies. However, it does indicate the substantial scope for interacting systems which are driven

purely by idiosyncratic noise to display economically interesting behavior – and to match up to data.

Since an infinity of G(.) functions will generate the desired stationary distribution, there is some scope to

choose G(.) both to match µ and to accomplish other goals – such as matching additional data

characteristics (such as the dynamics, i.e. the conditional predictive distribution, see Gallant, Rossi and

Tauchen 1993), or satisfying theoretical considerations (e.g., finding the smallest externality necessary to

generate the required distribution). Finally, the result is more general than it appears at first blush;
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Section 6 suggests that economies with less interaction or evolving in discrete time could well have

similar properties.

To prove the proposition, it is convenient to keep track of a different state variable, the number k

of agents who are in state 1. Similarly, the domain of G(.) will be k
N , the fraction of agents in state 1. In

UGI economies, k completely characterizes the state, so analytics are greatly simplified (see Aoki 1996).

With k as the state, the dynamic evolution of the process obeys the following transition function:

(3) ( )

( ) ( )

( ) ( ) ( )
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1 1

1 1
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1 1
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k k k k
N N N N
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where 0 < G( k
N ) < 1 ∀k, which ensures that the Markov process is stationary and ergodic (see Lemma 1).

Does transition function (3) make sense? Consider the case where k might rise by one step. This

can happen only if an agent currently in state -1 moves to state 1. The probability that an agent in state -1

is chosen (i.e., that a “-1” agent’s alarm goes off) is given by (1 – 
k
N ). The probability that this agent will

go to state one is given by G( k
N ). Similarly, for k to remain constant, chance must either: select a “-1”

agent and cause the agent to stay at -1, or select a “1” agent and cause the agent to stay at 1. For k to fall,

a “1” agent must be selected, and that agent must go to -1.

Since univariate birth-death processes are reversible, the equilibrium distribution kµ  satisfies

(4) ( ) ( ), ,k lQ k l Q l kλ µ λ µ=

It follows that
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The Proposition is given below.

Proposition 2

Let N <∞ , and let wij = 1/N ∀i,j. Let µ  be any distribution with kµ ε>  ∀k for some ε > 0 such

that 
1

1k

k

k
N k

µ

µ
−

+
≤

−
 for k = 0,…,N-1. Then there exists a probability transition law � �k

NG  with

0 < G(.) <1 ∀k  such that the continuous time UGI process with transition law G(.) has the

stationary distribution µ. The G(.) is constructed as follows. Set G( N
N ) = G(1) arbitrarily

between 0 and 1. Then let ( ) ( ) ( )( )1 1 11k

k

k k
N k N

k
N GG µ

µ

+ + +

−
= −  for k = 0, …, N-1.

Proof

See Appendix 1.

Intuitively, why does this proposition work? Any distribution ( 0 1, , ..., Nµ µ µ ) is a collection of

N+1 numbers, and we get to pick N+1 numbers 0 1( ), ( ),..., ( )N
N N NG G G . It turns out that this is a problem of

N equations in N+1 unknowns, and one can readily show that it has a continuum of solutions. (Note that

by using (4) and the fact that Σiµi = 1, one can easily compute the equilibrium distribution of a globally

interactive continuous time process (with finite N), once a particular G(.) is specified.)

Numerical example: Let N = 3, and suppose the desired stationary distribution is ( )3 31 1
8 8 8 8, , ,  –

that is, on average, 1
8  of the time all 3 agents will be in the -1 state, 3

8  of the time exactly one of

the 3 agents will be in the one state, and so on. Let G(1) = 0.9. Then G( 2
3 ) =  0.1, G( 1

3 ) = 0.9, and



32

G(0) = 0.1. This G(.) generates the distribution ( )3 31 1
8 8 8 8, , , . (Another G(.) which generates the

same distribution is G(1) = 0, G( 2
3 ) = 

1
3 , G( 1

3 ) = 
2
3 , G(0) = 1.)

Whenever detailed balance (4) holds (and the process is irreducible), the equilibrium distribution

µ is of the Gibbs-Boltzmann form. In some contexts, this fact might be useful for deriving other results

(see Aoki 1996, Blume 1997 and Haller and Outkin 1998). For those systems whose neighborhood

structures are associated with d-dimensional lattices, the class of G(.) which generate detailed balance

can be characterized; see Grinstein et al. (1985) for details.

In the next section, some of the interesting (but analytically intractable) open questions alluded to

in the introduction are addressed via simulation. The simulations also serve to give the reader some

intuition about how these economies typically behave.

6. Further results on locally interactive systems based upon simulation

Relatively little is known about “generic” properties of interacting systems. Once one moves

away from the handful of particular processes for which analytic results are readily obtainable, one

cannot really say much about the details of the dynamical behavior. This is obviously problematic for

applied users, who wish to know if such models are likely to be useful in their work. Such users might,

for example, wish to know if dynamics are likely to hinge critically on the choice of discrete versus

continuous time, or if they should expect their model to possess high persistence, or if they are relatively

safe in assuming mean-field or global interaction. This section of the paper attempts to rectify this

deficiency in the literature by investigating via simulation the “typical” behavior of such models. (Of

course, simulation evidence is merely suggestive, not definitive.)

For the simulation study, two particular G(.) functions are considered, both parameterized by α

which satisfies ½ < α ≤ 1. The first G(.) function is linear20: G(θ ) = ½ + (α – ½)θ. The second G(.)

                                                
20 A linear function is not as natural as one might think. To obtain such a model on the basis of (5), for example, one must posit
a particular distribution of shocks tailored to T(.). With a linear T(.), one must assume that shocks are uniformly distributed.
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considered is nonlinear: G(θ ) = ½ + (α – ½) 1 3
θ . I refer to the latter function as the “effectively

nonergodic” (ENE) G(.) function, because ergodic systems with this law may behave nonergodically over

shorter time scales. These G(.) functions are depicted in Figure 3. In both cases, higher values of α

increase the degree of dependence across agents. From Lemmas 1 and 2, when α < 1, both yield ergodic

processes, and when α = 1, both yield nonergodic processes. Note that the neighborhood size restricts the

relevant domain of G(.) – e.g., for neighborhods of size four, θi can potentially take on only five values.

(Figure 3 goes here)

Ten independent simulation runs are conducted for every parameter set (though 50 runs are

conducted when the standard deviation across runs is large). Each begins with random initial conditions.

Then the process is run for 400 time periods to shed the effects of initial conditions. After that,

measurements on the process are recorded for the next 1000 time periods. For each simulation run, the

variance of the mean, the variance of first differences of the mean, and the sample 1st autocorrelation of

the mean are computed; furthermore, the histogram of the sample is constructed. The “parameter” set

consists of N, α, the temporal structure (discrete vs. continuous time), and the neighborhood structure.

Two neighborhood structures are studied. A lattice neighborhood structure associates each agent

i with a unique lattice point on a d-dimensional integer lattice on a torus (as described in Section 2). Her

neighbors are those agents that are a distance 1 away, with wij = 1/2d ∀ij. Stochastic neighborhood

structures are constructed as follows. For each agent j, a random draw from an exponential distribution

(truncated at min{N, 40}) selects the number nj of neighbor agents. Then the nj neighbors are selected by

drawing from a uniform distribution over the set of all agents. Each neighbor gets a weight wjk = 1/nj.

Selection is with replacement: if x is selected s times to be j’s neighbor, wjx = s/nj. In this structure, being
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a neighbor is not reflexive: b might be a’s neighbor, but not vice versa.21 Further, in this structure there is

positive probability that the economy (or “network”) is not fully connected: there may be sets of agents

such that each neighbor of each member of the set lies within the set. In such cases, each group’s

behavior is independent of the rest of the economy.

I illustrate the results in a representative series of graphs; discussion will be mostly informal.

Each data point on each figure is an average over 10 simulation runs, except as otherwise noted.

6.1 Systems with a linear G(.) function

When α < 1, systems with the linear G(.) have a characteristic behavior that varies smoothly as N

or neighborhood size or temporal structure changes. Figures 4-7 depict results on discrete time processes;

discrete and continuous time analogues are compared in Figure 8. Figure 4 illustrates how the variance,

the variance of first differences, and first autocorrelation of this process change as one increases the

number of agents N, holding both the neighborhood structure and the parameter α fixed. To better

illustrate how variance measures change as N rises, the first two panels in Figure 4 plot the product

kN 2
Nσ , where 2

Nσ  refers either to the variance (first panel), or variance of first differences (second panel),

N is the number of agents, and k is a constant that is chosen so that the initial value is 1. This

transformation, used only here and in Figures 15 and 16, makes it easy to see at a glance whether or not

the system “obeys the LLN”, i.e. whether its variance is inversely proportional to N. The graph of an

“LLN-obedient” system will have zero slope, the graph of a system with LLN postponement will have

positive slope, and the graph of a system with LLN failure will have a slope greater than or equal to one.

The first two panels in Figure 4 illustrate that systems with a linear G(.) obey the LLN. Though

interaction generally implies amplification (which reduces k), this does not imply LLN postponement.

Figure 4’s final panel indicates that persistence does not change with N. Even large UGI systems display

                                                
21 Such neighborhood patterns might well give rise to quite different behavior (see, e.g., Page 2001). See also Evstigneev and
Taksar (2001), who extend the theory of random fields on directed graphs and apply it to economics.
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high autocorrelation, in stark contrast to non-interactive systems. The intuition: In finite systems, it is

always possible for the system to move away from ½. After it has done so, it will not immediately jump

back to ½; instead – given the closeness of the G(.) function to the 45º line – it will move back gradually.

A non-interactive system always tends to jump back to ½ immediately, regardless of its prior position.

For discrete-time systems with a linear G(.), Figures 5-7 illustrate how the variance, variance of

first differences, and first autocorrelation vary, for fixed N, as the number of neighbors changes. Some

figures include one standard deviation bands. Figure 5: For systems with nonstochastic neighborhood

structures, variance typically increases as neighborhood size increases – which represents amplification

relative to the iid case of zero neighbors. Increasing α unambiguously increases volatility. In stochastic

neighborhood systems, average variance does not appear to be systematically affected by changing the

average number of neighbors. Figure 6: The variance of first-differences is maximized in non-interactive

systems, there being no tendency for agents to synchronize over time. For systems with nonstochastic

neighborhoods, it is minimized in systems with minimal interaction (one neighbor). Figure 7: First

autocorrelation is apparently unaffected by varying the number of neighbors, once even minimal

interaction occurs. Persistence is a robust consequence of positive interaction.

A key finding is that, for this class of models, the behaviors of the discrete-time and continuous-

time processes appear surprisingly similar;22 however, the continuous time processes are generally more

volatile.

The first panel in figure 9 depicts histograms of the mean of two continuous time UGI linear G(.)

processes (α  = 0.95 and α  = 0.995). The histograms cover 10,000 iterations; histogram bins are intervals

of size 0.05. These linear processes are both ergodic and effectively ergodic. However, the α  = 0.995

                                                
22 Of course, this is not a proof of a general statement! Behavior in some game-theoretic models is very different under
simultaneous (discrete-time) versus asynchronous (continuous time) updating; see, e.g., Huberman and Glance (1993). However,
results here suggest that in many contexts, continuous time economies will behave similarly to discrete time analogues.
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process ranges much more widely. The second panel in Figure 9 depicts the corresponding stationary

distributions of these systems; these are virtually identical to the measured distributions, which suggests

that these systems converge to their stationary distributions rapidly.

When α  increases from 0.99 to 1.0, the process becomes nonergodic. Is it economically

relevant? Yes. Even for N = 1024, such nonergodic processes will quickly converge to either 1 or -1.

However, Figure 9 makes it clear that there exist G(.) functions such that nonergodicity would be

effectively irrelevant. Consider, for example, a G(.) of the following form:

[ ]
[ ]

5 5 .9, 1
( ) 5 4 .9,1

.5 else
G

θ θ

θ θ θ

 + ∈ − −
= − ∈




Even after 10,000 time units, such a process would be unlikely to converge to either 1 or -1.

(Figures 4-9 about here)

Thus, we have a reasonably complete picture of the qualitative behavior of these linear-G(.)

systems. The behavior of the system with the nonlinear ENE G(.) is significantly different, however.

6.2 Systems with an ENE G(.) function

Proposition 1 implies that infinite UGI economies with the ENE G(.) would possess two stable

steady states (which are attractors); I will refer to these points as I-UGI attractors. Their existence

suggests that in sufficiently interdependent large economies, the I-UGI attractors would correspond to

metastable states – whose basins of attraction would be observationally equivalent, over finite time

scales, to trapping sets. Hence one might expect that the ENE G(.) will give rise to qualitatively different

behavior than the linear G(.), such as the appearance of effective nonergodicity.

Indeed, this is the case. Even small systems can be effectively nonergodic. The qualitative

change in behavior is apparent upon comparison of the graphs of the variance and persistence of ENE

processes – shown in Figures 10 and 12 – with those of the linear processes shown in Figures 5 and 7.

Figures 10 and 12 illustrate that ENE systems have “critical points” – specific combinations of N, α, and
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neighborhood size at which the behavior of the system changes markedly, exhibiting substantially more

variance and persistence. At these parameter settings, strategic complementarities begin overpowering

the idiosyncratic shocks, inducing more synchronization and drawing the average level of activity in the

economy towards I-UGI attractors. Upon further increasing the level of interaction (more neighbors or

larger α), these systems then behave effectively nonergodic: they become “trapped” in either a relatively

high, or low, activity mode. The N = 81 and α = 0.8 case, depicted in the first panel in Figure 10,

illustrates this. This economy’s variance is maximized in the 4-dimensional case (8 neighbors);

increasing the level of interaction moves the economy to a metastable mode with lower variance. In

contrast, for α = 0.7, variance (and persistence, see Figure 12’s first panel) is maximized in the UGI case.

Figure 10 also indicates that continuous- and discrete-time analogues behave in a basically similar

fashion for this G(.) as well – though the continuous time processes are more volatile, and their critical

points may differ slightly under random neighborhood structures.23

Interestingly, behavior is not completely simple to describe; details of the interaction structure

matter (see also, e.g., Blume 1997, Ioannides 2001, Page 2001). For example, the N = 729 case in Figure

10 demonstrates that variance graphs can have more than one local maximum; on some runs, the system

jumps from the I-UGI attractor basin to a different attractor basin nearby. Indeed, different interaction

topologies admit different attracting sets. For instance, consider the N = 256, α = 0.9, two-dimensional

case (undepicted). On some runs, the system average η  stays far from zero, “trapped” in either a high- or

low-activity mode. But on other runs – despite the identical and high level of interaction –η  stays close

to zero, seemingly untrapped. What accounts for the difference? The existence of the even-N

“checkerboard” mode mentioned in Section 3; η  will remain close to zero when a system is trapped in

this mode. No attempt was made to exhaustively study this or any other particular case, since the point of

this study is to examine general behavior.

                                                
23 The processes may differ in other ways as well. For example, the secondary variance “hump” exhibited by Figure 10's
continuous time N=729 case occurs at 10 neighbors; the secondary variance hump in the corresponding discrete time case occurs
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One obtains further intuition about critical behavior upon examining histograms of ENE systems

as neighborhood size changes, for fixed N and α – see Figure 13. Each run covers 10,000 time periods.

As the neighborhood size grows, the mean of the system ranges more and more widely. However, past

the critical threshold level of interaction (4 dimensions), the system begins to behave nonergodically,

“trapped” (here) in a high-activity state. Figure 14 depicts the stationary distributions of two globally-

interactive continuous time processes; this tells the same story.

Figures 15-17 illustrate how volatility and first autocorrelation change as N increases, holding α

and the neighborhood structure fixed. As in Figure 2, to illustrate how variance (or variance of first

differences) change with N, Figures 15 and 16 plot the value kN 2
Nσ , where 2

Nσ  refers to variance or to

variance of first differences, and k is a constant chosen in each case to make the initial value 1.

The systems depicted in Figure 15 all display some “LLN postponement” – variance does not fall

proportionally with N. The impact of an increase in N is, however, not straightforwardly described. First

consider economies whose neighborhood size and structure are fixed. In such economies, the average

distance between agents, as measured by the number of intermediate neighbors separating two agents,

grows with N. Ceteris paribus, longer extended chains of neighbor relations imply less dependence – to

influence m, i must first influence j, who must then influence k, and so on. Thus, as N grows, one might

expect diminishing dependence between agents – and hence one would expect the economy to

increasingly resemble a non-interacting economy. However, this is mitigated by the nature of the

interactions. Agents’ behaviors are highly synchronized locally, analogous to a situation in which agents

are placed on small islands – the average behavior of which is itself dependent on the average behavior of

nearby islands. Furthermore, dependence between agents does not fall rapidly because, while average

distance between neighbors rises, the number of extended neighborhood relations by which i can

indirectly influence m also grows with N.

                                                                                                                                                            
at 8 neighbors (undepicted). The autocorrelation pattern in the N=729 panel in Figure 12 indicates this discrepancy as well.
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Next consider UGI economies. There, neighborhoods implicitly change as N rises: the weight on

each particular agent falls, while the number of neighbors grows. It is unclear a priori how average

dependence will be affected. In the case studied here, dependence rises: increases in N increase

synchronization. Past a critical point at N = 128, the system behaves nonergodically.

The behavior of the other measurements as N rises is straightforward. Variance of first

differences falls at rate N regardless – see Figure 16. The first autocorrelation of these processes is

related to critical points – see Figure 17. At such points, autocorrelation is high, but if economies become

effectively nonergodic, autocorrelation can diminish.

As parameters approach critical points, the interesting changes in the dynamics of ENE systems

result from significant alterations in the state space “landscape”. For weak levels of interaction,

idiosyncratic shocks dominate the behavior of each agent, and the process average is constantly “thrown

back” to zero. As α  or the number of neighbors increases, ceteris paribus, the resultant increase in inter-

agent dependency generates and deepens “valleys,” thereby inducing systems toward effectively

nonergodic and path-dependent behavior. The relationship between increases in N and changes in the

landscape is much less obvious, as noted above; inter-agent dependence has a complicated relationship to

changes in N. Uniform global interaction is an interesting special case. There, the dynamics of the system

average become more closely tied to G(.) as N rises – LLN’s can actually aid the system average in

moving away from zero, as in Proposition 1. Ultimately, the network of inter-agent interactions

determines how system dynamics change as N rises, and these simulations provide another demonstration

of the principle that “network structure matters” (Page 2001). An implication is that simplifying

assumptions regarding interaction patterns, such as mean-field approximations, must be used with great

caution when studying systems with critical points – precisely those systems whose dynamics are most

interesting.

The qualitative behavior of the ENE processes noted above – e.g., growth in variance as the

process approaches a critical point, and effective “trapping” of the process once past this point – is
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consistent with special-case analytic results in the literature. For example, Lux (1997) demonstrates much

of this analytically for a specific process;24 and it is known that the two-dimensional infinite Ising model

displays infinite variance exactly at its critical point. Hence, a fairly safe conjecture is that the variance of

interactions processes is maximized “on the edge” of effective nonergodicity. Indeed, LLN failure is

likely attainable in other versions of the model than those considered in Proposition 1, if one makes the

strength of interaction a function of N (see Jovanovic 1987). This is not unrealistic: Marshall (1890, book

4, ch. 8) asserts that as the economy grows, specialization and interdependence both increase.

(Figures 10-17 about here)

7. Conclusion

Aggregation and interaction are key issues in macroeconomics, and a number of recent studies

have demonstrated their critical implications for aggregate dynamics. However, a wide range of questions

and issues have remained largely unexplored, in some part due both to the intractability of current tools

and to uncertainty about the generality of known results. This paper introduces a tractable and intuitive

framework for studying economic interaction, and summarizes some key analytical and numerical results.

Perhaps most importantly, it presents valuable intuition about the behavior of these models, and

demonstrates the potential of such models to generate economically interesting behavior, including:

persistence; high volatility generated by small independent shocks – including the possibility of LLN

failure; nonergodicity; existence of “critical” points; attainability of any equilibrium distribution; and

multiple equilibria and nonlinear behavior. In addition, it highlights the underlying model structure

(degree of interaction, form of probability law, neighborhood type) that are necessary to generate this.

The simulations in this study provide some intuition about the dynamic properties of interactions

models. They suggest that persistence is typical, and reveal the extent to which interaction amplifies

shocks and postpones the LLN. Somewhat surprisingly, they suggest that the choice of discrete versus

                                                
24 Unfortunately, the power-series approximation method outlined there, as well as the approximation of Kubo – both outlined in
Aoki 1996 – are intractable for general processes, given the size of the state space. Indeed, both break down near critical points.
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continuous time is unlikely to matter much in many contexts. But they also inform that details can matter.

The probability law that summarizes micro interaction, the neighborhood structure, and the number of

agents can all have a profound influence upon aggregate dynamics. Thus, a theorist must choose them

with care. Interacting agent economies with linear probability laws have behavior that varies smoothly

with changes in parameters, number of neighbors, or N; but economies with nonlinear probability laws

often possess critical points, which implies that behavior can change markedly given relatively small

changes in interaction strength or neighborhood.

While the tools were applied to a small number of examples, specifically “take-off” to

development, business cycles, and bank runs, a large number of other topics can be addressed using this

methodology, such as nonergodic economic growth, peer effects on crime, stock price fluctuations,

corruption, regional economic activity, nonlinear aggregate responses to economic policy, local thick

market externalities … the list goes on and on.25 Indeed, it is probably safe to say that the research

agenda advocated by Kirman (1992) will – indeed, must – receive an increasing amount of attention by

macroeconomists, and thus that the sorts of models studied here will become increasingly important.

Since the class of models for which analytical results are readily obtained is rather small, a good

deal of this research will likely rely in part upon simulation studies – a practice which is routine in other

scientific fields, such as physics and mathematical biology. Ideally, there should be a give-and-take

relationship between simulation and analytical investigation. Both forms of analysis are open to the

criticism that conclusions are not general, but each is limited along different dimensions: Analytical

results often hinge on functional forms or sharp assumptions. The assumptions necessary to obtain

analytical results may omit essential aspects of the economic situation, and tractable special cases need

not be representative of the general theory. Furthermore, a weakness of theoretical analysis is that

identifying what is important, and what is not, can be difficult (see Judd 1998) – for example, one cannot

generally know if one’s result is quantitatively (i.e., economically) important, or if it is robust. Finally,
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theory must often limit its investigation to unicausal analysis, a limitation in the complex environments

macroeconomists are usually interested in, for which the whole is not the sum of its parts (again, see Judd

1998). Computational analysis allows one to relax assumptions and study richer and more realistic

environments, along with wider classes of functions. (Such analysis is essential in real-world

applications such as the conduct of monetary policy, where one cannot afford to investigate only one

interesting feature of economic interaction in isolation.) Numerical studies can also allow one to assess

quantitative importance, and to yield evidence about relevant time scales of analytical results.

Furthermore, simulations can reveal patterns which hint at the existence of general theories. However,

such studies are in turn limited in that only a finite number of parameterizations can be investigated26,

exceedingly rare but interesting events may never be observed, and the underlying causes of various

occurrences may be more difficult to determine (though careful and thorough simulation studies which

include sensitivity analyses are quite helpful in this regard.)

                                                                                                                                                            
25 Verbrugge (2000a, b) are two direct applications of this framework; see also Kelly (1994).
26 A constraint which becomes less binding as increased computational power enables wider searches.
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Appendix 1: Proof of Proposition 2

(4) implies

( ) ( ), ,k lQ k l Q l kµ µ=

Writing this out (denoting gk ( ): k
NG=  to save on notation), one obtains
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Given the N+1 numbers 0 1, , ..., Nµ µ µ , this is a system of N equations, but there are N+1 unknowns –

namely, the gi. The N equations imply N relations of the form
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1
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N k
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µ
+

+
≤

−
, the product of the first two terms on the right-hand side of the equation is at most 1

(and greater than 0) - hence, gk lies between 0 and 1 as long as gk+l does. Hence, Ng  may be chosen

arbitrarily between 0 and 1, and the remaining gk may be chosen by iterating on the above equation.

By construction, the resulting set of gk will give rise to µ  as the stationary distribution. This is a

standard result in birth-death chains, and verifying this is a bit tedious, but a sketch of how it is done goes

as follows. Note that 
( )

0

1 01 1
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gNµ µ
−

= , that 
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, and so on. A final

restriction is Σiµi = 1. Substituting into this final restriction, one can then solve for 0µ , and the rest of the

probabilities follow. �
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Figure 4: Linear G (.) does not postpone LLN
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Figure 15: ENE G (.) Postpones LLN on Variance
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Figure 16: ENE G (.) Does Not Postpone LLN on 1st-Differences Variance
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Figure 17: First Autocorrelation Scaling with ENE G (.)
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Figure 5: Variance with Linear G (.)
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Figure 6: Variance of 1st Differences with Linear G (.)
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Figure 7: 1st Autocorrelation with Linear G (.)
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Figure 8: With Linear G (.), Discrete and Continuous Time Similar

Variance: N  = 729, α = .9 
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Figure 9: Histograms and Stationary Distributions, Linear G (.)

Histograms of UGI linear processes, N = 1024
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Figure 10: Variance with ENE G (.)
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first line

vari of first diffs

Figure 11: Variance of 1st Differences with ENE G (.)
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first line

Figure 12: 1st Autocorrelation with ENE G (.)
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Figure 13: Histograms: Effective Nonergodicity as Interaction Increases

Figure 14: Stationary Distributions of UGI Systems

Histograms: N  = 729, �  = .85
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