High Resolution Neutron Scattering Spectroscopy

Trieste, June 27 2002

Stefan Kahle, Forschungszentrum Jülich, Germany

- •Overview
- •Principle of Inelastic Neutron Scattering
- •Neutron Backscattering Spectroscopy
- •Neutron Spin Echo Spectroscopy
- •Resumé

The Inelastic Neutron Scattering Window

Principle of Inelastic Neutron Scattering

The Experiment: a) choose $\{\vec{k}, \vec{k'}\}$ b) record scattering probability or neutron counts (I ~ S(\vec{Q}, E))

Questions

- •What is the relation between counts I and $S(\overline{Q}, E)$?
- How does one select the average values of (k) and (k'), respectively ?
 How does one optimize the shape of their
- variances $\delta \vec{k}$ and $\delta \vec{k}$?

Relation Between Neutron Counts I and S(Q,E)

Make factors *A(k)* and *t_{eff}N* large Relax 'sharpness' without loosing information on S(Q,E)

How to "Measure" (or Select) the Energy of a Neutron

•Measure the time of flight (velocity)

$$E_n = \frac{m_n}{2} v_n^2$$

→ Time of Flight Instruments

•Using the Bragg condition (wavelength)

$$E_n = \frac{h^2}{2m_n\lambda_n^2}$$

Neutron Backscattering Spectroscopy

Neutron Guide

Select Neutrons

Detune of Neutron Energy; The Doppler Effect

Move Monochromator Crystal:

Bragg is modified:

 $G^2/2 = \vec{G}(\vec{k} + \vec{k}_{\vec{v}}) \quad G^2/2 = (\vec{G} + \vec{G}_{\vec{v}})\vec{k}$

Alternative: Change Lattice Vector

By Heating the Monochromator

 $\vec{G} = \vec{G}(T) \quad 1\% \text{ in } 100\text{K}$ $\vec{G}^2 / 2 = \vec{G}(T)\vec{k}$

The Analysis of the Neutron Energy

Use Perfect Crystals as Analyzer:

Only the neutrons which fulfill the Bragg condition a second time (at the analyzers) are detected!

Profit: Energy resolution is given by the monochromator and analyzer quality (in order of μeV)

Handicap: About 10^5 n/s at the sample but 0.1..1 n/s in each detector, only

More Intensity: Increase Solid Angle

More Intensity: Phase Space Transformator

Convert Energy Spread to Beam Divergence

The Energy Resolution of the Instrument

Example

Relaxation Processes in Polybutadiene

Neutron Spin Echo Spectroscopy

The Neutron Spin Echo Instrument at FRJ2

Neutron Spin Echo – The Main Idea

Is there any information the neutron carries with itself? — Yes! \rightarrow Spin Direction

Spin (Lamor) precession in a magnetic field:

Principle of the Neutron Spin Echo Spectrometer

What is the Origin of the Echo?

The Elastic Case

The NSE Signal (where is the information?)

Select Neutrons

Use a Rotating Turbine $\Delta E / E = 10..20\%$

The Spin Flippers

Mezei coil

Backscattering Spectrometer Resume

⇒ Dynamic Range $10ps \le t \le 3ns$ ⇒ ω Space Spectrometer $S(Q,\omega)$ ⇒ Resolution Correction $I(Q,\omega)=S(Q,\omega)*R(Q,\omega)$ ⇒ High Resolution but low Intensity ⇒ Highly Sensitive for Background Neutrons

Neutron Spin Echo Spectrometer Resume

- \Rightarrow Highest Resolution and Intensity
- \Rightarrow Direct measurement of velocity differences
- \Rightarrow Fourier Spectrometer
- \Rightarrow Resolution Correction
- \Rightarrow Dynamic Range

$$\begin{split} &\mathbf{S}(\mathbf{Q},t)\\ &\mathbf{I}(\mathbf{Q},t)=\mathbf{S}(\mathbf{Q},t)\cdot\mathbf{R}(\mathbf{Q},t)\\ &\mathbf{2ps}\leq t\leq 200 \mathbf{ns} \end{split}$$

Thanks for the Support

- \Rightarrow H. Grimm \Rightarrow O. Kirstein \Rightarrow M. Monkenbusch \Rightarrow D. Richter
- \Rightarrow R. Zorn

Jülich Neutrons for Europe

