Local and Glassy Dynamics in Polymers

Trieste, June 27 2002

Stefan Kahle, Forschungszentrum Jülich, Germany

- Introduction
- Scattering Functions and Cross Section
- Partial Deuteration
- Polybutadiene
- Polyisobutylene

Relaxation Processes

Inelastic Neutron Scattering

- \bullet Dielectrics and Rheology: No spatial information about the nature of the molecularmotions
- \bullet However, inelastic neutron scattering experiments provide information in both space and time
- \bullet $\bullet \quad \Rightarrow$ we observe the geometry of the processes
- \bullet Further, neutron scattering provides information about the time evolution of the self (incoherent) and pair correlation (coherent scattering)

Scattering Functions

≡ $\equiv \frac{1}{N} \sum_{i} \langle \exp(i \vec{Q}(\vec{r}_i(t))$ *ii* $S_{\text{inc}}(\vec{Q},t) \equiv \frac{1}{N} \sum_i \langle \exp(i\vec{Q}(\vec{r}_i(t) - \vec{r}_i(0))) \rangle$ **Incoherent scattering function** *(Self correlation)*

≡ $\equiv \frac{1}{N} \sum \langle \exp(i \vec{Q}(\vec{r}_i(t))$ i,j *i* $S_{\text{coh}}(Q,t) \equiv \frac{1}{N} \sum_{i} \left(\exp(i Q(\vec{r}_i(t) - \vec{r}_j)) \right)$, $\text{coh}(\vec{Q},t) \equiv \frac{1}{N} \sum (\exp(i \vec{Q}(\vec{r}_i(t) - \vec{r}_i(0))))$ **Coherent scattering function** *(Pair correlation)*

Selected Scattering Cross Sections

Hydrogen and deuterium have extremely different scattering characteristics!

Neutron Scattering on Polymers (4 Informations)

deuterated polymer melt *collective (interchain) relaxation is observed*

protonated polymer melt

self correlation (msd) is observed

protonated polymer chain in a deuterated matrix *single chain dynamic is observed*

partial deuterated polymer melt *intrachain correlation is observed*

Glassy Dynamics in Polybutadiene

Pair Correlation (d6PB)

Glassy Dynamics in Polymers

At $\, {\mathsf Q}_{\text{max}}$ Neutrons Observe the α-relaxation

structural relaxation

⇔ **relaxation of short range order underlies mechanical relaxation(shear flow)**

What is Known?

- \bullet It is established that (at least) two relaxation processes take place in all glass-forming polymers (α process and β process)
- \bullet \bullet The α relaxation results from inter-chain correlations, while the β relaxation mainly comes from intra-chain correlations

What is Unknown?

- \bullet What is the origin of the two relaxations?
- \bullet Are both processes correlated?

Partial Deuteration

- \bullet • Deterium and hydrogen have extremely different scattering characteristics
- \bullet Otherwise the deuterated (or partially deuterated) material has the same physical and chemical properties as the protonated one
- \bullet Therefore it is possible to highlight the time evolution of a given correlation

1,4 Polybutadiene with Different Deuteration

Different Correlations are Observed

Elastic Results: Diffuse Scattering

Polymer Blend (d4h2 and d6 1,4PB)

⇒ The peak maximum of the static structure factoris at the same position for both labelings

 \Rightarrow The static experiment can not distinguish the two 3.0 different correlations

Inter-chain and intra-chain interference peak are at the same position!

Inelastic Results: Neutron Spin Echo

⇒ The pair correlation **at Qmax** scales with the viscosity (α process)

 \Rightarrow The C=C-C=C correlation **at Qmax** does not scale with theviscosity $(\beta$ process?)

In the inelastic experiment we observe two different processes in the same sample at different labeling !

Inelastic Results: Neutron Backscattering

Inelastic Results: Neutron Backscattering

The Backscattering experiment shows qualitatively the same result like theNSE experiment!

Extract Parameters for Self and Pair correlation

$$
S_{NSE}(Q, t) = I_{coh}(Q, t) - 1/3I_{inc}(Q, t)
$$

$$
S_{BS}(Q, t) = I_{coh}(Q, t) + I_{inc}(Q, t)
$$

with:
$$
S_{BS}(Q,t) = FT\{S_{BS}(Q,\omega)\}\
$$

Assumption: $I_{coh}(Q,t)$ and $I_{inc}(Q,t)$ are KWW functions

$$
I(Q,t) = A(Q,T) \exp\left[-\left(\frac{t}{\tau_{KWW}(Q,T)}\right)^{\beta}\right]
$$

<u>Activation Plot – Conclusion</u>

• The pair correlation at the first peak follow the glass transition, and at the second peak the β relaxation. • Above α – β crossover temperature, T_{cr} , the C=C–C=C–correlation shows the temperature dependence of the α relaxation, and below the temperature dependence of the β relaxation.

• The self correlation of the double bond hydrogens shows also the temperature dependence of the β rel axation.

• **Conclusion**: β process corresponds to a motion of t he doub le bond and decouple at T_{cr} from the α process

Intra-chain Potential

Polyisobutylene

Aim: Investigation of the t-t jump process

Due to the high incoherent cross section of the hydrogen atoms with the partial deuteration the motion of the methyl group is almost invisible (about 10% of the signal)

Therefore, the signal reflects the motion of the methylene hydrogens

Data where compared with results from MD simulations and a simple diffusion model

Glassy Dynamics in Polyisobutylene

Local Dynamics in Polyisobutylene

Data in frequency domain, $S(Q,\omega)$, were Fourier-transformed into the time domain with consideration of the instrument resolution $R(Q,\omega)$

Data in time domain were fitted with:

$$
S(Q,t) = A(Q) \cdot S_{Phonons}(Q,t)
$$

$$
\cdot (F_2(Q) + (1 - F_2(Q)) \cdot \exp[t/\tau_2])
$$

Fit Results: The Correlation Times

The Q- dependence of τ_2 shows clearly two regions: $\tau_2^ \sim$ const τ_2 \sim \mathbf{Q} ⁻²

Scattering Function for Diffusion on a Circle

Boundary Conditions: $P(\varphi, t = 0) = \delta(\varphi, \varphi_0), P(\varphi, t \to \infty) = \frac{1}{2\pi}$ $S(Q, t) = \frac{1}{4\pi} \int d\Omega \int d\Omega_0 P(\varphi, \varphi_0) \exp[iQ(R(\Omega) - R(\Omega_0))]$ Solution: $P(\varphi, \varphi_0, t) = \frac{1}{2\pi} \left\{ 1 + \sum_{k=1}^{\infty} \cos(k(\varphi - \varphi_0)) \exp(-D_r k^2 t) \right\}$

$$
S_{elast}(Q) = \frac{1}{2} \int_{0}^{\pi} \sin \vartheta d\vartheta \cdot J_0^2(QR\sin\vartheta)
$$

$$
S_{inel}(Q,t) = 2 \sum_{k=1}^{\infty} \exp[-\frac{D}{R^2}k^2t] \int_{0}^{\pi} \sin \vartheta d\vartheta \cdot J_k^2(QR\sin\vartheta)
$$

Comparison with Data

 \bullet At lower Q a good agreement between model and data is observed. • At higher Q the differences increase in both spectral form and elastic intensity

•We have estimated R $\approx 2.3\text{\AA}$

Relaxation Times versus Q and Relaxation Map

• Model and data shows qualitatively the same Q- dependence of the correlation times•R depends on temperature **Open Question:** Is the local relaxation a diffusion process in a spatial restricted area?

> •tt-jump process and data of the d6 P IB s a m p le sho ws alm o st t h e same correlation times •Note: tt-jump distance is much smaller than evaluated by the data

Molecular Dynamic Simulation

Polymer melt with 5 chains of 25 monomers in a cubic box with periodic boundary conditions was simulated under constant pressure and temperature conditions.

Analysing the incoherent scattering function $S(Q,t)$ three distinct processes were identified.

The slow and intermediat processes could be related to trans-trans and transgauche jumps.

K. Karatassos e.a. *MM* **35**, 1451 (2002)

Collaborators

- ⇒ B. Farago (Grenoble)
- \Rightarrow R. Faust (Lowell-Massachusetts)
- ⇒ B. Frick (Grenoble)
- ⇒ M. Koza (Grenoble)
- ⇒ M. Monkenbusch (Jülich)
- \Rightarrow D. Richter (Jülich)
- ⇒ J.P. Ryckaert (Bruxelles)
- ⇒ J.R. Stewart (Grenoble)
- ⇒ L. Willner (Jülich)

Thank you for your attention!