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(Spontaneous Symmetry Breaking]

Potential V is symmetric under

eta<p

If V has degenerate vacua
(for example, V =

GOLDSTONE THEOREM applies;
implies zero-mass Nambu-Goidstone boson

Well tested Applications:
- Solid state physics (Zero modes)
- In gauge theories, with local symmetries

(get Massive Gauge Bosons)

The subject of the TALK is on an
Hypothetical Application:
- Axion (Quasi NG boson)



massiess mode

Classical modes in the scalar field with symmetry-breaking potential



[The Strong CP Problem

QCD Lagrangian
1
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9 — term

• contains dual G^ = (l/2)clJ,vp(TGaf)cr

• is Lorentz Invariant
and^Gauge Invariant =^ should be in £ Q C D

• is ~ E • B => is CP-vio!ating

quark sector

u \ M=(mu

0

If we perform C/(1)A rotation
on a quark field:

u

(chiral:

then quark mass term is NOT invariant

Anass =

Conclusion : m ^ 0 =^ NO symmetry



Naively mu = 0 =̂» symmetry. But NOT true.

Noether current

is anomalous

(ABJ anomaly,
does not survive quantum effects)

• G -> £ C F (^ - 2a)
O7T

When m = 0 f set a = 0/2 so that
0-term is rotated away

BUT, mu i=- 0 in the real world (it seems)
so CQP present in the theory

Still another possibility for not having
6 is a free parameter; put 6 = 0
One then has to face
at least two problems



Problems

1)
Presence of 6-term necessary to solve

Why ?/ is not a Nambu-Goldstone boson?

2)
There are additional contributions
from electroweak sector to CCP-
Masses from ew SSB are complex in general

Anass = —\m\et(pULUji + h.C.

To have C with real masses, use chiral rotation

so that

—|m|tl£'*fR+ h.c.

8TT

Physics depends on

5 = 0 + Arg Det

(Even if 0 = 0 , in general 0



Observational consequences of

Originates neutron edm

e mumd
— (j

Experimentally

< 0.63 x 10~25 ecm

leads to bound

JLU -'

Strong CP-problem:

Why is 0 so small?
We would have expected $QCD

 a n d A r 9 D e t ^^
not far from O( l )
3nd we have no reason to expect
such fine-tuned cancellation (unrelated origins)



Axions: A Review!

Contents:

• Strong CP-problem

We shall concentrate on the
consequences (axion)
of Peccei-Quinn solution to strong CP-problem
(not the unique solution)

• The axion and its properties
• Limits on axion parameters
• Looking for the axion
• Axion-like particles

Eduard Masso
UAB



(The Axion and its properties]

The PQ solution to the strong CP problem:
Introduce new global chiral symmetry U(1)PQ

and use the freedom to rotate 0 away.

SSB of U(1)PQ at energy ~ fa
=» NG boson: axion, a ~ fa0

Axion, as all NG bosons, couple derivatively

£D-(da)2 + c

= e,p,n, etc, Ci = O ( l ) model dependent

But, the axion is special since
it has to reproduce the anomaly
and there is a new (non-derivative) term

D
fa

At low ( A Q C D ) energies, G-G a term
1) generates potential V(0) which makes "8 --> 0
2) generates axion mass

y/mumd 107 GeV
771 n = ; = 0.6 eV

fa rnu + rrid f
mass tiny if fa is large

fa



Coupling to 2 fotons:

CD FF a = -gal EB a
fa

( important from the point of view
of possible detection )

All Ci mild model dependent
except for the electron:

Models with ce ^ 0 (DFSZ type)
Models with ce = 0 (KSVZ type)

KSVZ is "hadronic axion"
not coupled to e (at tree level)

C177 coupling:
= 0.36 (DFSZ type)
= -0.97 (KSVZ type)

8



(Limits to Axion parameters]

Find constraints to properties using:

1. Laboratory

2. Astrophysical

3. Cosmological

In fact, only one parameter to bound: fa or m
lighter <—> less interacting

a

h\



1. HIGH-ENERGY LABORATORY EXPS

Take into account processes like:

meson decays

T —> 7a

beam dump
p(e~)N -> aX; 4

nuclear deexcitation
N*-+Na; a-

Conclusion;

fa > 104 GeV

% —> 7 7 , e~

•> 77. ^+«"

ma < 1 k€

This excludes fa ^ Fermi scale
(original PQ suggestion)

10



2. ASTROPHYSICAL LIMITS
are able to push (very much) terrestial limits

"Too" efficient
energy drain
would be
inconsistent
with observation

^ > afatf^

Horizontal branch stars in Globular Clusters

main production
is from
Primakov

g<n < 0.6 x 1 0 " 1 0 GeV =» fa > 107 GeV

rule out interval:

0.4 eV < ma < 200 keV

(ma > 200 keV is too heavy to be produced)

i i



When ce ~ 1 (DSVZ axion)

main production ^ \ ' '
is from
Compton

9cu-\ =
m e < 2.5 X 10- 1 3

a

which enlarges forbidden region:

0.01 eV < ma < 200 keV

SN 1987A main production
is from K) I
Axion Bremsstrahlung . '

Duration of v signal in Earth detectors forbids:

3 x l O " 1 0 < gan = en— < 3 x 10~7 GeV
la

orr in terms of masses, excludes

0.01 eV < rria < 10 eV

(upper limit: trapping in the SN)

Axion
luminosity:

12



3. COSMOLOGICAL CONSTRAINTS

put lower limits to ma

Axion (cosmological) history

Start at high temperatures T > fa

1 at T~ fa

SSB of U(1)PQ , all < a > equally likely,
but naturally expect < a >~ fa.

initial angle : 0\ ^ — r — ~ 1

/a

2 at T - 1 GeV

QCD effects turn on => potential V(6)
And V(9) forces 0 —> 0 (CP-conserving value)
0 angle was "misaligned":
start with 9 = 0! ~ 1, and will relax to 0 -> 0

Field oscillations contribute to

cosmic energy density

10

(F takes into account anharmonic effects).
13



u
Vacuum Misalignment Mechanism:
Axion is born

1. non-thermal
2. non-relativistic

Interesting range for cosmology is

Q.h2 ~ 1 - 0.1 => ma ~ 10~3 - 10~6 eV

Axion could be CDM

If F(6i)0\ ~ l get lower bound to mass

10~6eV < nia

BUT
for smaller values of initial $i, looser bound

(Apart from value of Oi, there are
other cosmological uncertainties)

14-



Other axion source: String-produced axions

Unless inflation occurs at T < fa ,
axion strings survive and decay into axions

Debate on the importance of string mechanism
Two "scools"

• ^string ~ ^misalign

• ^string ~ 1 0 ^misalign

Domain Walls?

Thermal Axions

1) For fa < 1.2 x 1012 GeV
there is thermal density but small:

na(today) ~ 7.5 cm" 3

2) Thermalization range:

15
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Figure 12. Astrophysical and cosmological ex-
clusion regions (hatched) for the axion mass ma

or equivalently, the Peccei-Quinn scale fa. An
"open end" of an exclusion bar means that it rep-
resents a rough estimate; its exact location has
not been established or it depends on detailed
model assumptions. The globular cluster limit
depends on the axion-photon coupling; it was as-
sumed that E/N = 8/3 as in GUT models or the
DFSZ model. The SN1987A limits depend on the
axion-nucleon couplings; the shown case corre-
sponds to the KSVZ model and approximately to
the DFSZ model. The dotted "inclusion regions"
indicate where axions could plausibly be the cos-
mic dark matter. Most of the allowed range in the
inflation scenario requires fine-tuned initial con-
ditions. In the string scenario the plausible dark-
matter range is controversial as indicated by the
step in the low-mass end of the "inclusion bar."
Also shown is the projected sensitivity range for
the galactic dark-matter search experiments.



[Looking for the Axion)

Crucial observation (Sikivie):
Axion-photon mixing
in B-field cu ^
(Ca-yy = —ga^EBa) >r
Contribution:

=> transverse external By [| polarization E

Another observation:
Interaction States ^ Propagation States

\a! > = cos<p\a> - sincp[7 >
; > = sin (p \a > + cos ̂  [7 >

Probability of transition P ~
enhanced when a — 7 conversion is coherent :

L
|fcy-fca/|L<27T

(Valid when ^ 7 ^ < ^ a n d ™a/2E

2



The Search:

1. Conversion of

Galactic Halo axions

2. Conversion of Solar axions

3. Production and detection in

Laboratory experiments

Sometimes interesting to "decouple
fa from ma relation (more later)

17



1. HALOSCOPE:
SEARCH OF HALO AXIONS

would produce /x-wave fotons (1 GHz = 4 /xeV)
with very small dispersion

B ~ icr3= E~ ma(l

There are already second-generation exps:

A US large scale experiment
sensitive in the range

2.9 < >ma < 3.3 /xeV

already excludes KSVZ axions as
constituting the whole of CDM

p = 7.5 x 10~25 g c m " 3

Near future: 1 < ma < 10/xeV

A Kyoto exp. (CARRACK)
Under development, will use Rydberg atoms
technique to detect /x-wave fotons

is



i<r14

1 O r l 6

l O T ^

la-**

10-20

^

SB

Kyoto:
Rydberg
(future)

SQUIDs (future) DFSZ
•mm &®%&i

10"6
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Figure 2: Exclusion region from the microwave cavity
experiments," where the plot is flattened by present-
i®& {9Ai/mA)2 v s- rnA- The first-generation experi-
ments (Rochester-BNE-FNAL, "RBF'Vp]; University
of Florida, aUF" [10]) and the US large-scale exper-
iment in progress ("US" [11]) are all HEMT-based.
Shown also is the full mass range to be covered
by the latter experiment (shaded line), and the im-
proved sensitivity when upgraded with DC SQUID
amplifiers [12] (shaded dashed line). The expected
performance of the Kyoto experiment based on a Ry-
dberg atom single-quantum receiyier (dotted line) is;
also shown [13].
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FIG. 2. Differential solar axion dux at the Earth. We assume
that axions are only produced by the Primakoff conversion of
blackbody photons in the solar interior ("hadronic axions"), and
we assume a standard solar model (Ref. 26). The axion-photon
coupling strength M is defined in Eq. (3). The solid Hne arises
from a numerical integration over the Sun, the dashed line is an
analytical approximation to this result as given in Eql (9).
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broadset), and in the laboratory frame in December are shown.



2. HELIOSCOPE:
SEARCH FOR SOLAR AXION CONVERSION

• note is independent of DM hypothesis
• 7 energies E ~ a few keV (X-rays)

/ /
2.A Magnetic -

Search

No signal seen. Limit (Tokyo):

gal < 6 X 1 0 " 1 0 GeV" 1 rria < 0.03 eV

Improved recently up to 0.05 < ma < 0.26 eV

[Use gas to enhance possible signal

Future: CAST at CERN

2.B Crystal Search ^ Cz) -
(Bragg-Primakov) ^

V
V ,

Coherent a -> 7
conversion in a crystal
when angle of incidence satisfies Bragg cond

Limit (Cosme-II, SOLAX)

7 < 2.7 x 10~9 GeV"1 ma < 1 keV
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3. LABORATORY SEARCHES

• Independent of DM AND solar hypothesis

3.A Light shining through a wall

TIT
'gaj < 6.7 x 10~1 0 GeV- 1 ma < 0.03 eV

3.B Laser polarization experiments
Since E^ affected but not E^
there are physical consequences:
rotation of plane of polarization, birefrigence

PVLAS experiment
PRELIMINARY: they get a signal.

Working hard to see if it is from New Physics.

Would correspond to

2 x 1 0 " 7 GeV"1 ma ~ 10~2 - 10~3eV

Also interesting for "conventional physics
Should in the future "see"
QED light-light box-diagram

2Q



(Axion-like particles)

(1) NG bosons (massless) from SSB
example: family symmetry => fa mi Ions
(Who ordered the mtion? - Rabi)
example: Lepton-number sym. => majorons

there could be other examples
perhaps with mass (quasi-NG)

(2) Contibutions to axion mass
from (more) exotic sources
Consequence: ma - /« relation broken

Then
Interesting to analyze experimental constraints
with two free parameters: mass and coupling.

Take coupling -> boson-7-7
since it is the one that leads to exp. signals
(If exp. signal ever seen in "axion experiment",
it could be a boson different from axion)

Boson tp with mass m and coupling g



log 1/g (GeV)

SN1987A
(y-burst)

He burning stars

log Gl

SN1987A
(E loss)

neV meV eV keV MeV GeV



-from SN

V



• Still many questions, for example:

familons:
coupling to 3rd family
very poorly constrained
(Feng et al, PR D57,1998)

• and unexpected possibilities, for exampiie:

"Dimming Supernovae Without Cosmic
Acceleration" (Csakietal, PRL88,161302,2002)

Axion-like particle with

10~ 1 6 eV

- ~ 4 x 1011 GeV
9

20-30% of photons from SNe
oscillate into <p
in presence of a extra-galactic B ~ i o ~ 9 G



CONCLUSIONS

AXION is

• theoretically motivated

(elegant solution to strong CP problem)

• quite precise properties
(only one free parameter)

• lab + astr + cosmo
constrain properties

• upcoming experiments
may find it
or exclude it

axion-like bosons
interesting physics
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