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Weak localization

Noninteracting electron with pgf = §L passing through scattering media.
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Ficure 1: Feynman paths responsible for weak localization
The probability is

2
W = ZAE- :Z|A,-_|3+§A,;Aj.
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A; is the propagation amplitude along the path i.

The 1st item — classical probability, the 2nd one — interference term.




Constructive interference

For the majority of the trajectories the phase gain,

B
=S h,_l/ pedl > 1,
A

and interference term vanishes.

Special case - trajectories with self-crossings. For these parts, the phase gains

are the same, and

As|? + 24, A5 = 4]|A,]°.

A4 A=A+

Thus quantum effects double the result. As a result, the total scattering prob-

ability at the scatterer at the site O increases.




Probability of self-crossing,.

The ‘“cross-section” of the site O is A* where A ~ h/pr is the de Broglie

electron wave length.

distance ~ Dt volume b/ Dt.
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The lower limit is the elastic time, while 7, is the dephasing time.

Introducing the conductance as G = ab we get

.2 L_ﬁ
AG ~ _° In—~

h !¢




In a magnetic field P—p+(e/c)A i = civl A
: h 2e 3 - 2e iz &
additional phase Apg=— P A.-dl = — curl A)-dS = 4w
¥ ch ch ( ) ‘I}”
® is the magnetic flux by = 2whe/e

The role of magnetic field is important at
H E Hu ~ “I‘H;'F{I)T_;} ~ !EHZ‘.J;ELE? :

tg <71, —
Quantum effects manifest themselves in extremely weak magnetic fields.
Conventional results
In the simplest situation 7, = 7. In clean materials 73, behaves as
1']]]1 xT?, 7.1'oT?.
In disordered materials —>» quasi-elastice —e  —> ’ﬂ";l xT.




Some experiments
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saturations of dephasing time
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Dephasing due to “slow” degrees of freedom

(Qualitative considerations

a slowly varying potential field U (7, t) action § = [ds\/2m(€ — U)

ds
variation AS AS = —/ qU(s,t) == —fdt U (5, t).

v

tp

phase difference Ap =[(Ap)y — (Ap)_] x f dt [U(ssyt) — U(sy,_¢.to — t)]

no spatial correlation between the scattering centers, Ul(sy, 1)U (s, 1) o 6(s¢ — sy)

single-point correlation function

U(s,)U (s, ) = U Ft =t , U =U?(5;1), FlB)=1
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The main reason for dephasing to slow down is a large correlation time com-
paring to the typical traversal time ty3. Then for typical times the correlation

function is close to 1, and the phase variance turns out to be small.

Model for a dynamic defect two-level tunneling states (TLS)

Hy=(Aos—Aay)/2 \ A

A is the diagonal level splitting

A is the tunneling amplitude




Previous studies of TLS-induced dephasing:

Y. lmry, H. Fukvama. and P. Schwab, Europhvs. Letters,
47, G038 (1999).

A. Zawadowski, Jan von Delft and D. C. Ralph. Phys. Rev.
Lett. 83, 2632 (1999).

Kagn-Hun Ahn, P. Mohanty, Phys. Rev. B 63, 195301
(20001

New features:

Two mechanisms of dephasing
Phase jumps versus phase wandering (diffusion)

Role of the average procedure over different TLSs




Two mechanisms of dephasing

1. Direct transitions between the two TLS's states accompanied by electron-

hole pair creation /annihilation

If the energy transfer E is large , the phase relaxation time 7, is equal to the

typical inelastic relaxation time 7 (E,A).

The criterion of “large” E ¥ T g g o

For smaller E

Estimate the dephasing time:

effective number of defects - N ~ t /7y

phase factor — etBt/2h _ cos (Et/2h) if T 2 E;

phase diffusion or wandering

correlation function — f(t) = cos(Et/h);

(1) _ {1 : \2/3
sy e 1/ T, =711 maxs 1, (hi/ET) }
typical phase shift - NY2Et /h — R hzf"r’rll-”/El“‘.
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2. Apparently elastic scattering of electrons by a “breathing” scattering poten-

tial associated with the dynamic defect.

Estimate the dephasing time:

the correlation function f(t) for statistically independent defects is
(@) = e

where -y is the the defect transition rate.

In a similar way, we get
(¥ = max {T;h (ra/7)Y 2} :

Conclusion: Phase wandering at y13 << 1.




Quantitative results
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where T, is defined according to the equation
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Average over different dynamic defects

We need the distribution function P(E,~)

A is determined by the defect’s neighborhood,
A is determined by the distance between two metastable states.

Thus A and A are assumed to be uncorrelated.

Two typical model distributions:

“glass-model”, GM ( ).

Par ox A~1  exponentially-broad distribution of relaxation rates.

Amorphous materials, glasses




“tunneling-states-model” (TM) (! )

more appropriate for crystalline materials.

tunneling integrals A are almost the same for all dynamical defects.

A is determined by long-range interactions,
distributed smoothly within some band.

Then

o =F) & 8(A — Ao).

Pou(BA) = =g T2
0

In the following we will assume that the dynamical defects are characterized

by Ap KL T




one has to replace I'y 3 by the averages
f‘i(’q) — /dE dAP(E, A) I‘i(?}, E, A) -

Detailed calculations are rather tedious, and the concrete interplay between the
mechanisms depends on the temperature.

The main conclusion is that there is a temperature region T' > T,,, T
in which the os-channel dominates.

1 1 |/rr\Y3
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Here 74 = 73(E*/Ag) nd T, = h/x7TA depend on the properties of the

In this region,

defect distribution and strength of the electron-defect interaction.

At very low temperatures 7! vanishes.




Estimates

We use numbers, obtained from experiments on zero-bias anomalies in point
contacts. Based on these estimates and taking

Py = 10% erg~'em™, o3, & 10718 em?, vp & 10° em/s, and Ag = 10 mK

1

we obtain 74 &2 107 ? s,

According to the estimates, at temperatures larger than Ty &~ Ao &= 10 mK
one expects temperature-independent contribution of resonant processes.

For the relaxation channel, one obtains T, =~ T3 ~ 10 mK. Consequently,
at T 2> T, = T) = 10 mK one expects that dephasing rate obeys the above

equation with 74 &~ 10792 s.




Conclusions

e The dynamical defects can be responsible for the saturation of the tem-

perature dependence of electron dephasing at low temperatures.

e This saturation is however terminated at = T' — 0 at temperatures of

the order of the defects tunneling matrix element Ay.
e Two factors responsible for the dephasing:

L. direct inelastic scattering of electrons by the defects,
2. breaking of time reversal symmetry by time-dependent scattering po-

tential.

The first channel can indeed lead to the saturation behavior while the

second one still contains a temperature dependence although a weak one.




Appendix: First-principle calculation

Spinless electrons which scatter against tunneling defects.

The Hamiltonian

H= ‘ﬁd + Z epc;,ﬁcﬁ + ?ﬂimt (3)
P
where
Hy=(Aos—Aoy)/2 (4)
7 1 T i )i, SR
Hint = 5 Z (1 i VﬁﬁJ 5 <y € ERITIE, (9)
ﬁﬁl-pﬂ

V= =V, £ V, represent components of a short-range defect potential in the
= 1 == - 2 :|: ;
“left” and "right” positions. Estimates for V"~ were given by several authors,

e. g., by and by




After the transform which makes ’ﬁd diagonal we arrive at the Hamiltonian

H = ;ZETLJ;}_I_Eep ‘|‘ E{IV-H
n P

ppl-,ﬂ

Aﬂ A i i [
+ (E—C" 1+ E—C" 3) Vi } fep, eXPP) /b, (6)

=> two processes of electron-defect interaction described by the items
proportional to o1 and o3, respectively.

They correspond to the two mechanisms discussed above.




Quantum contribution to conductance

R R

bo = = [ (ap) @ar® | (—‘ff) de [ 3 N@w)

2m2
X Gr(e, P)G (e, P) F(e,w,p,d — D)

xGr(e + w,@d— pP)Gale +w,d—P). (7)

Here (dp) = d*p/(27h)>%,
n(e) is the Fermi function,

N (w) is the Planck function,




F(e,w, P, P1) is a sum of the maximally-crossed diagrams — Cooperon.
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Dashed lines - “propagators” of dynamic defects.

The Cooperon is a sum of a ladder in the particle-particle channel.

It satisfies the following Dyson equation

P q—p ;
€ e+m e~
(o] 9 —
= |+
o e =
e+ e eE+m+m’
q—p P

filled square — the Cooperon,
thick lines — the Green’s functions averaged over the defect positions,
as well as over the states of the thermal bath,

dashed lines — propagators for electron scattering against dynamic defects.




The propagator can be expressed as a loop graph where dotted lines represent

Green's functions for a dynamic defect.

i

: 0.,
| Since the interaction Hamiltonian (6) contain the
1 : 8 &

= X ia ¥ items of three types (x 1, o1, 03), each propaga-
| i

! tor consists of a sum of three items.

i

Propagators are derived by the Abrikosov technique developed for the Kondo
effect — a dynamic defect is interpreted as a pseudo-Fermion with the Green's

function
9:(€) = (e FE/2—X+id)~, (8)
where A is an auxiliary “chemical potential”.

To remove extra unphysical states, at the initial stage A — o0o.




As a result, the retarded propagator in the o1-channel is

( ! = ) d — +0. (9)
w—E+1i16 w+E+1i)’ '

FE
D (w) = —tanh
1 (w) oT

The propagator for the oz-channel is (cf. with expression for glasses)
1 29y
DI (w) = ; 10
3 (@) T cosh?®(E/2T) w + 2i~ (10
Here )
A xFE
ANE)=|—= E FE) = 11
1A E) = () B, wE)= X @

where ¥ = 0.01 — 0.3 is dimensionless constant dependent on the matrix
element V(1) where ~o(E) has the meaning of maximum hopping rate for the

systems with a given interlevel spacing ( )

For the 1-channel we define the propagator as

1 1
DR =1'( — ) 5 0. (12
o W=orl T w_vtw) OVt 12)




The propagators do not include the electron-defect coupling constant, hence

each propagator should be multiplied by |[W (®|2 where

WO =v+t, wi =(A/E)V-, WO =(A/E)V".

Then, summation over different dynamic defects should be performed.

The resulting equation for F'(e,w, P, @ — P1) obtained by a proper analytical

continuation of the Matsubara Green's functions, has the form

F(eyw,p,§—P) =D(w) — f %F(e, W'y P1,§ — P)D(w — ')
XxG(e +w— ', 7)) GAe + s @ — P1) [No(w') — No(w' — w)] (13)

where  D(w) = ¥, [WE 2 [DEw) — DA (w)]-

The above equation describes the dominant contribution provided the sum of

the incoming momenta, g, is small: i
Te - elastic rate

eL1. B _
1+ = 2mwpna(A/E) |V P /R,

Here £ = vpt is the electron mean free path, while 7 is the electron life time, 1'3_1 = 2mpna(A/ E)gl vy |2 /h.

~1_ -1 -1 -1
T =7, +7 +75 -




We transform (13) to the form of the diffusion equation. Using the inequalities

PFffﬁ > 11 Tuw <K T

and expressing results in terms of a new function

F(e,w,P,qd— P)

Flodw) = 0 a9

(14)

we obtain the equation
P(w)

(1+ D¢’ 1) F (e, q,w) = -

d(.-'.’f
—T
,[ (27e)(w — 2w’ +i/27)
Here D = vpf/2 is the diffusion constant, while &(w) = D(w)/w. In the

F(eyqyw)®(w—w). (15)

time representation with respect to w we obtain

(e, t boodt |
1+Dq*1)F(e,q,t) = 25_ ,_I’,; + f ?ef*’-ﬂ/‘rf(s, q,t)®(e, 2t—t"),
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The above equation can be solved exactly. The results have the simplest form

at Te <K 71, T3y h/4, and what we need is F (0, q),

_ [ d o e
F(0,q) = — 3(t) "),

—o0
t sin(Et/k) t

— Da2 Ll s s s ! e Wyt/h .
0 DQH[T Eﬁ/ﬁ]+[f3 3 (@ =1 1< 0
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The final result can be formulated as

2
e To
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do =

where 1, is defined according to the equation
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where 17 = t /7. This equation is obtained by the integration over q.

(16)




