# Is weak temperature dependence of dephasing possible?

Yuri Galperin

University of Oslo, Norway and Ioffe Institute, Russia

Collaboration: J. Bergli, V. Afonin, V. Gurevich, V. Kozub

**Discussions:** B. L. Altshuler, Y. Imry

Acknowlegdements: Norwegian Research Council, University of Princeton,

NEC Research Institute, Argonne National Laboratory

## Outline

- Motivation: Overview of weak localization and dephasing
- Dephasing due to dynamic degrees of freedom
  - Qualitative considerations
  - Results for identical dynamic defects
  - Average over different dynamic defect
- Discussion and Conclusions
- Appendices:
  - First-principle calculations
  - Model of random telegraph noise

## Weak localization

Noninteracting electron with  $p_F \ell \gg \hbar$  passing through scattering media.

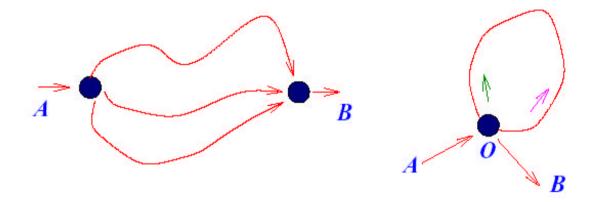


Figure 1: Feynman paths responsible for weak localization

The probability is

$$W = \left|\sum_i A_i
ight|^2 = \sum_i |A_i|^2 + \sum_{i
eq j} A_i A_j^st.$$

 $A_i$  is the propagation *amplitude* along the path *i*.

The 1st item – *classical probability*, the 2nd one – *interference* term.

#### Constructive interference

For the majority of the trajectories the phase gain,

$$\Delta \varphi = \hbar^{-1} \int_{A}^{B} \vec{p} \cdot d\vec{l} \gg 1 \,,$$

and interference term vanishes.

Special case - trajectories with self-crossings. For these parts, the phase gains are *the same*, and

$$|A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2A_1A_2^* = 4|A_1|^2$$

Thus quantum effects double the result. As a result, the total scattering probability at the scatterer at the site *O* increases.

#### Probability of self-crossing.

The "cross-section" of the site O is  $\lambda^2$  where  $\lambda \sim \hbar/p_F$  is the de Broglie electron wave length.

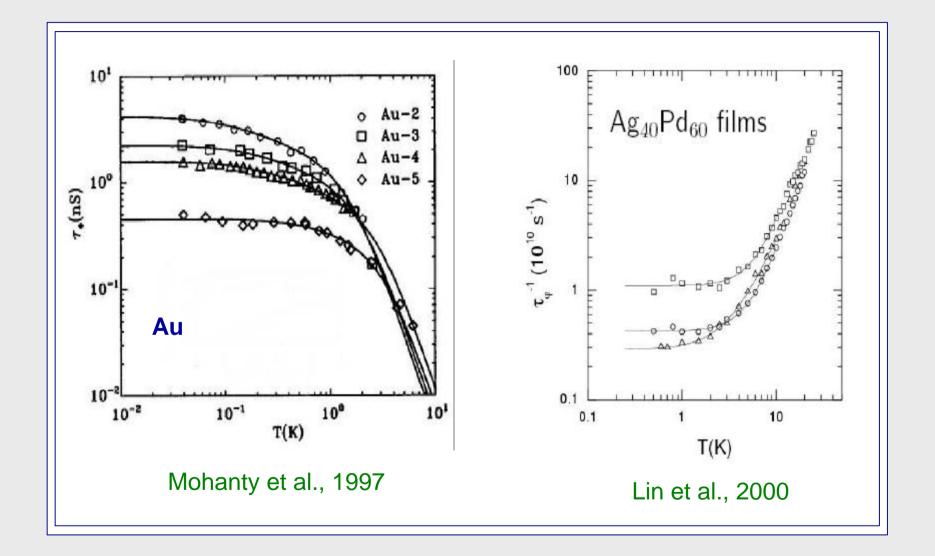
distance 
$$\sim \sqrt{Dt}$$
, volume  $b\sqrt{Dt}$ .  
probability  $\frac{v\lambda^2 dt}{bDt}$   
relative correction  
 $\frac{\Delta\sigma}{\sigma} \sim -\frac{v\lambda^2}{bD} \int_{-\tau}^{\tau_{\varphi}} \frac{dt}{t} = \frac{\Delta\sigma}{\sigma} \sim -\frac{v\lambda^2}{bD} \ln \frac{\tau_{\varphi}}{\tau}$ .

The lower limit is the elastic time, while  $\tau_{\varphi}$  is the dephasing time.

Introducing the conductance as  $G = \sigma b$  we get

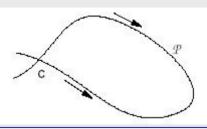
$$\Delta G \sim -rac{e^2}{\hbar} \ln rac{L arphi}{\ell}, \quad L arphi = (D au_arphi)^{1/2}.$$

#### Some experiments



#### Dephasing due to "slow" degrees of freedom





a slowly varying potential field  $U(\vec{r}, t)$  action  $S = \int ds \sqrt{2m(\mathcal{E} - U)}$ variation  $\Delta S$   $\Delta S = -\int \frac{ds}{U(r, t)} = -\int dt U(\vec{r}, t)$ 

$$\Delta S = -\int \frac{-}{v} U(s,t) = -\int dt U(s_t,t).$$

phase difference 
$$\Delta \varphi = [(\Delta \varphi)_+ - (\Delta \varphi)_-] \propto \int_0^{t_0} dt \left[ U(s_t, t) - U(s_{t_0-t}, t_0 - t) \right]$$

no spatial correlation between the scattering centers,  $\overline{U(s_t, t)U(s_{t'}, t')} \propto \delta(s_t - s_{t'})$ single-point correlation function

$$\overline{U(s,t)U(s,t')} \equiv \overline{U^2} f(t-t') \,, \ \overline{U^2} \equiv \overline{U^2(s,t)} \,, \ f(0) = 1$$

variance  $\overline{\Delta \varphi^2} \propto \sum_s \int_0^{t_0} \frac{dt}{\tau_s} \left[1 - f_s (2t - t_0)\right]$ 

The main reason for dephasing to slow down is a large correlation time comparing to the typical traversal time  $t_0$ . Then for typical times the correlation function is close to 1, and the phase variance turns out to be small.

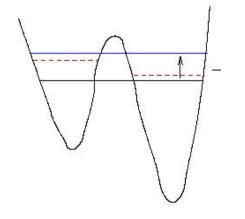
Model for a dynamic defect

$$\mathcal{H}_{\mathrm{d}} = (\Delta \, \sigma_3 - \Lambda \, \sigma_3)/2$$

 $\Delta$  is the diagonal level splitting

 $\Lambda$  is the tunneling amplitude

two-level tunneling states (TLS)



## Previous studies of TLS-induced dephasing:

Y. Imry, H. Fukyama, and P. Schwab, Europhys. Letters, 47, 608 (1999).

A. Zawadowski, Jan von Delft and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).

Kagn-Hun Ahn, P. Mohanty, Phys. Rev. B **63**, 195301 (2001)

New features:

Two mechanisms of dephasing

Phase jumps versus phase wandering (diffusion)

Role of the average procedure over different TLSs

## Two mechanisms of dephasing

1. Direct transitions between the two TLS's states accompanied by electronhole pair creation/annihilation

If the energy transfer E is large , the phase relaxation time  $\tau_{\varphi}$  is equal to the typical inelastic relaxation time  $\tau_1(E, \Delta)$ . The criterion of "large" E  $E \tau_1 >> \hbar$ .

For smaller  ${oldsymbol E}$ 

Estimate the dephasing time:

effective number of defects  $-\bar{N} \sim t/\tau_1$ ; phase factor  $-e^{\pm Et/2\hbar} \rightarrow \cos{(Et/2\hbar)}$  if  $T \gtrsim E$ ; correlation function  $-f(t) = \cos(Et/\hbar)$ ; typical phase shift  $-\bar{N}^{1/2}Et/\hbar \rightarrow \tau_{\varphi} \sim \hbar^{2/3}\tau_1^{1/3}/E^{2/3}$ .

phase diffusion or wandering

$$au_arphi^{(1)} = au_1 \, \max \left\{ 1, (\hbar/E au_1)^{2/3} 
ight\}$$

2. Apparently elastic scattering of electrons by a "breathing" scattering potential associated with the dynamic defect.

Estimate the dephasing time:

the correlation function f(t) for statistically independent defects is

 $f(t)=e^{-2\gamma |t|}$ 

where  $\gamma$  is the the defect transition rate.

In a similar way, we get

$$au_{arphi}^{(3)} = \max\left\{ au_3, ( au_3/\gamma)^{1/2}
ight\}\,.$$

Conclusion: Phase wandering at  $\gamma \tau_3 \ll 1$ .

#### Quantitative results

$$\delta \sigma = - rac{e^2}{2 \pi^2 \hbar} {
m ln} rac{ au_arphi}{ au}$$

where  $au_{arphi}$  is defined according to the equation

$$egin{aligned} &\lnrac{ auarphi}{ au} \ \equiv \ \int_{- au}^{\infty}\!\!rac{dt}{t}e^{-\Gamma_1(t,E,\Lambda)-\Gamma_3(t,E,\Lambda)}\,, \ &\Gamma_1(t,E,\Lambda) \ = \ rac{1}{ au_1}\left[t-rac{\sin(t\,E/\hbar)}{E au/\hbar}
ight]\,, \ &\Gamma_3(t,E,\Lambda) \ = \ rac{1}{ au_3}\left[t-rac{\hbar}{2\gamma au}(1-e^{-2\gamma t/\hbar})
ight]\,. \end{aligned}$$

Average over different dynamic defects

We need the distribution function  $\mathcal{P}(E,\gamma)$ 

 $\Delta$  is determined by the defect's neighborhood,  $\Lambda$  is determined by the distance between two metastable states. Thus  $\Delta$  and  $\Lambda$  are assumed to be uncorrelated.

Two typical model distributions:

<u>"glass-model"</u>, GM (Anderson et al., Phillips).  $\mathcal{P}_{\Lambda} \propto \Lambda^{-1}$  exponentially-broad distribution of relaxation rates. Amorphous materials, glasses "tunneling-states-model" (TM) (Kozub&Rudin)

more appropriate for crystalline materials.

tunneling integrals  $\Lambda$  are almost the same for all dynamical defects.

 $\Delta$  is determined by long-range interactions, distributed smoothly within some band.

Then

$${\cal P}_{TM}(E,\Lambda)= {\Theta(E^*-E)\over E^*} {E\over \sqrt{E^2-\Lambda_0^2}} \, \delta(\Lambda-\Lambda_0) \, .$$

In the following we will assume that the dynamical defects are characterized by  $\Lambda_0 \ll T.$ 

one has to replace  $\Gamma_{1,3}$  by the averages

$$ar{\Gamma}_i(\eta) = \int dE \, d\Lambda \, \mathcal{P}(E,\Lambda) \, \Gamma_i(\eta,E,\Lambda) \, .$$

Detailed calculations are rather tedious, and the concrete interplay between the mechanisms depends on the temperature.

The main conclusion is that there is a temperature region  $T \ge T_{\alpha}, T_{\beta}$ in which the  $\sigma_3$ -channel dominates.

In this region,

$$rac{1}{ au_{arphi}} = rac{1}{ au_{\Lambda}} \left[ \left( rac{T}{T_{lpha}} 
ight)^{1/3} + \zeta 
ight], \quad \zeta pprox 1.$$

Here  $\tau_{\Lambda} = \tau_3(E^*/\Lambda_0)$  nd  $T_{\alpha} = \hbar/\chi \tau_{\Lambda}$  depend on the properties of the defect distribution and strength of the electron-defect interaction.

At very low temperatures  $au_{arphi}^{-1}$  vanishes.

#### **Estimates**

We use numbers, obtained from experiments on zero-bias anomalies in point contacts. Based on these estimates and taking  $P_d \approx 10^{34} \text{ erg}^{-1} \text{cm}^{-3}$ ,  $\sigma_{\mathrm{in}} \approx 10^{-15} \text{ cm}^2$ ,  $v_F \approx 10^8 \text{ cm/s}$ , and  $\Lambda_0 \approx 10 \text{ mK}$  we obtain  $\tau_{\Lambda} \approx 10^{-9}$  s.

According to the estimates, at temperatures larger than  $T_{\Lambda} \approx \Lambda_0 \approx 10$  mK one expects temperature-independent contribution of resonant processes. For the relaxation channel, one obtains  $T_{\alpha} \approx T_{\beta} \approx 10$  mK. Consequently, at  $T \gtrsim T_{\alpha} \approx T_{\Lambda} \approx 10$  mK one expects that dephasing rate obeys the above equation with  $\tau_{\Lambda} \approx 10^{-9}$  s.

## Conclusions

- The dynamical defects can be responsible for the saturation of the temperature dependence of electron dephasing at low temperatures.
- This saturation is however terminated at =T o 0 at temperatures of the order of the defects tunneling matrix element  $\Lambda_0$ .
- Two factors responsible for the dephasing:
  - 1. direct inelastic scattering of electrons by the defects,
  - breaking of time reversal symmetry by time-dependent scattering potential.

The first channel can indeed lead to the saturation behavior while the second one still contains a temperature dependence although a weak one.

## **Appendix: First-principle calculation**

Spinless electrons which scatter against tunneling defects.

The Hamiltonian

$$\tilde{\mathcal{H}} = \tilde{\mathcal{H}}_{d} + \sum_{\vec{p}} \epsilon_{p} c_{\vec{p}}^{+} c_{\vec{p}} + \tilde{\mathcal{H}}_{int}$$
(3)

where

$$\tilde{\mathcal{H}}_{\rm d} = (\Delta \,\sigma_3 - \Lambda \,\sigma_1)/2 \tag{4}$$

$$\tilde{\mathcal{H}}_{\text{int}} = \frac{1}{2} \sum_{\vec{p}\vec{p}_1,n} \left( \hat{\mathbf{1}} \tilde{\boldsymbol{V}}_{\vec{p}\vec{p}_1}^+ + \sigma_3 \tilde{\boldsymbol{V}}_{\vec{p}\vec{p}_1}^- \right) c_{\vec{p}}^+ c_{\vec{p}_1} e^{i(\vec{p}-\vec{p}_1)\cdot\vec{r}_n/\hbar}, \qquad (5)$$

 $V^{\pm} = V_l \pm V_r$  represent components of a short-range defect potential in the "left" and "right" positions. Estimates for  $\tilde{V}^{\pm}$  were given by several authors, e. g., by J. Black and by Y. Imry.

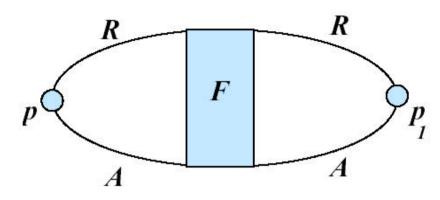
After the transform which makes  $\tilde{\mathcal{H}}_d$  diagonal we arrive at the Hamiltonian

$$\mathcal{H} = \frac{1}{2} \sum_{n} E_n \sigma_3 + \sum_{\vec{p}} \epsilon_p c_{\vec{p}}^+ c_{\vec{p}} + \frac{1}{2} \sum_{\vec{p}\vec{p}_1,n} \left\{ \hat{I} V_{\vec{p}\vec{p}_1}^+ + \left( \frac{\Lambda_n}{E_n} \sigma_1 + \frac{\Delta_n}{E_n} \sigma_3 \right) V_{\vec{p}\vec{p}_1}^- \right\} c_{\vec{p}}^+ c_{\vec{p}_1} e^{i(\vec{p} - \vec{p}') \cdot \vec{r}_n / \hbar}.$$
(6)

 $\Rightarrow$  two processes of electron-defect interaction described by the items proportional to  $\sigma_1$  and  $\sigma_3$ , respectively.

They correspond to the two mechanisms discussed above.

## Quantum contribution to conductance

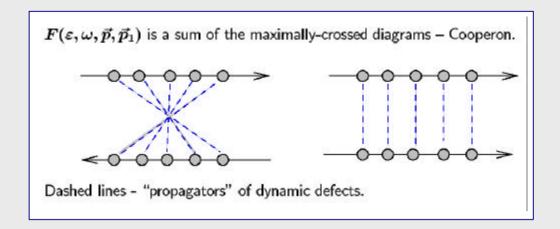


$$\delta\sigma = \frac{e^2}{2m^2} \int (dp) (dq) p^2 \int \left(-\frac{dn}{d\varepsilon}\right) d\varepsilon \int \frac{d\omega}{2\pi i} N(\omega) \\ \times G_R(\varepsilon, \vec{p}) G_A(\varepsilon, \vec{p}) F(\varepsilon, \omega, \vec{p}, \vec{q} - \vec{p}) \\ \times G_R(\varepsilon + \omega, \vec{q} - \vec{p}) G_A(\varepsilon + \omega, \vec{q} - \vec{p}).$$
(7)

Here  $(dp)\equiv d^2p/(2\pi\hbar)^2$ ,

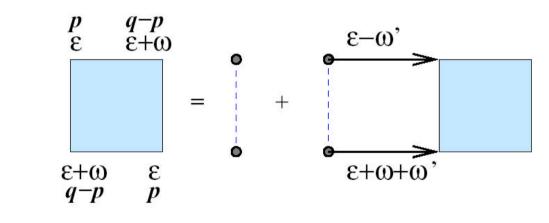
n(arepsilon) is the Fermi function,

 $N(\omega)$  is the Planck function,



The Cooperon is a sum of a ladder in the particle-particle channel.

It satisfies the following Dyson equation



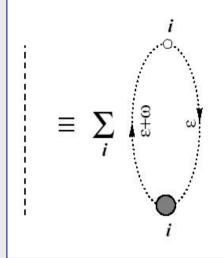
filled square - the Cooperon,

thick lines - the Green's functions averaged over the defect positions,

as well as over the states of the thermal bath,

dashed lines – propagators for electron scattering against dynamic defects.

The propagator can be expressed as a loop graph where dotted lines represent Green's functions for a dynamic defect.



Since the interaction Hamiltonian (6) contain the items of three types ( $\propto \hat{1}, \sigma_1, \sigma_3$ ), each propagator consists of a sum of three items.

Propagators are derived by the Abrikosov technique developed for the Kondo effect – a dynamic defect is interpreted as a pseudo-Fermion with the Green's function

$$g_{\pm}(\epsilon) = (\epsilon \mp E/2 - \lambda + i\delta)^{-1}, \qquad (8)$$

where  $\lambda$  is an auxiliary "chemical potential".

To remove extra unphysical states, at the initial stage  $\lambda \to \infty$ .

As a result, the retarded propagator in the  $\sigma_1$ -channel is

$$\mathcal{D}_{1}^{R}(\omega) = -\tanh\frac{E}{2T} \left(\frac{1}{\omega - E + i\delta} - \frac{1}{\omega + E + i\delta}\right), \quad \delta \to +0.$$
(9)

The propagator for the  $\sigma_3$ -channel is (cf. with Maleev's expression for glasses)

$$\mathcal{D}_3^R(\omega) = \frac{1}{T \cosh^2(E/2T)} \frac{2i\gamma}{\omega + 2i\gamma}.$$
 (10)

Here

$$\gamma(\Lambda, E) = \left(\frac{\Lambda}{E}\right)^2 \gamma_0(E), \quad \gamma_0(E) = \frac{\chi E}{\tanh E/2T}, \quad (11)$$

where  $\chi = 0.01 - 0.3$  is dimensionless constant dependent on the matrix element  $V^{(1)}$  where  $\gamma_0(E)$  has the meaning of *maximum* hopping rate for the systems with a given interlevel spacing (J. Black).

For the 1-channel we define the propagator as

$$\mathcal{D}_0^R(\omega) = \frac{\nu}{2T} \left( \frac{1}{\omega + \nu + i\delta} - \frac{1}{\omega - \nu + i\delta} \right), \quad \delta, \nu \to +0.$$
(12)

The propagators do not include the electron-defect coupling constant, hence each propagator should be multiplied by  $|W^{(i)}|^2$  where

$$W^{(0)} = V^+, \ W^{(1)} = (\Lambda/E)V^-, \ W^{(3)} = (\Delta/E)V^-.$$

Then, summation over different dynamic defects should be performed.

The resulting equation for  $F(\varepsilon, \omega, \vec{p}, \vec{q} - \vec{p}_1)$  obtained by a proper analytical continuation of the Matsubara Green's functions, has the form  $F(\varepsilon, \omega, \vec{p}, \vec{q} - \vec{p}) = \mathcal{D}(\omega) - \int \frac{(dp_1) d\omega'}{2\pi i} F(\varepsilon, \omega', \vec{p}_1, \vec{q} - \vec{p}) \mathcal{D}(\omega - \omega')$  $\times G^R(\varepsilon + \omega - \omega', \vec{p}_1') G^A(\varepsilon + \omega', \vec{q} - \vec{p}_1) [N_0(\omega') - N_0(\omega' - \omega)]$ (13) where  $\mathcal{D}(\omega) \equiv \sum_{is} |W_s^{(i)}|^2 [\mathcal{D}_i^R(\omega) - \mathcal{D}_i^A(\omega)].$ 

The above equation describes the dominant contribution provided the sum of the incoming momenta, q, is small:

 $q\ell \ll 1$ .

Here  $\ell = v_F \tau$  is the electron mean free path, while  $\tau$  is the electron life time,

$$au^{-1} = au_e^{-1} + au_1^{-1} + au_3^{-1}$$
 .

$$egin{aligned} & au_e^{-1} & - ext{ elastic rate} \ & au_1^{-1} &= 2\pi
ho n_d (\Lambda/E)^2 |V_d^-|^2/\hbar \,, \ & au_3^{-1} &= 2\pi
ho n_d (\Delta/E)^2 |V_d^-|^2/\hbar \,. \end{aligned}$$

We transform (13) to the form of the diffusion equation. Using the inequalities

$$p_F \ell/\hbar \gg 1, \ \hbar\omega \ll T$$

and expressing results in terms of a new function

$$\mathcal{F}(\varepsilon, \vec{q}, \omega) \equiv \frac{F(\varepsilon, \omega, \vec{p}, \vec{q} - \vec{p})}{\omega(1 - i\tau \vec{q} \cdot \vec{v})}$$
(14)

we obtain the equation

$$(1 + Dq^{2}\tau)\mathcal{F}(\varepsilon, q, \omega) = \frac{\Phi(\omega)}{4\pi\rho}$$
$$-T\int \frac{d\omega'}{(2\pi i)(\omega - 2\omega' + i/2\tau)}\mathcal{F}(\varepsilon, q, \omega')\Phi(\omega - \omega'). \quad (15)$$

Here  $D = v_F \ell/2$  is the diffusion constant, while  $\Phi(\omega) \equiv \mathcal{D}(\omega)/\omega$ . In the time representation with respect to  $\omega$  we obtain

$$\begin{split} 1 + Dq^2 \tau) \mathcal{F}(\varepsilon, q, t) &= \frac{\Phi(\varepsilon, t)}{2\tau T \rho} + \int_{-\infty}^t \frac{dt'}{\tau} e^{(t'-t)/\tau} \mathcal{F}(\varepsilon, q, t') \Phi(\varepsilon, 2t - t') \,, \\ \Phi(\varepsilon, t) &\equiv \frac{\tau}{\tau_e} + \frac{\tau}{\tau_1} \cos \frac{Et}{\hbar} + \frac{\tau}{\tau_3} e^{-2\gamma t/\hbar} \,. \end{split}$$

The above equation can be solved exactly. The results have the simplest form at  $au_e \ll au_1, au_3, \hbar/\gamma$ , and what we need is  $\mathcal{F}(0,q)$ ,

$$egin{split} \mathcal{F}(0,q) &= \int_{-\infty}^0 rac{dt'}{ au} \, \Phi(t') \, e^{artheta(t')} \, , \ artheta(t) &= Dq^2t + \left[rac{t}{ au_1} - rac{\sin(Et/\hbar)}{E au_1/\hbar}
ight] + \left[rac{t}{ au_3} - rac{\hbar}{2\gamma au_3}(e^{2\gamma t/\hbar} - 1)
ight], \ t < 0 \, . \end{split}$$

The final result can be formulated as

$$\delta \sigma = -rac{e^2}{2\pi^2 \hbar} {
m ln} rac{ au_arphi}{ au}$$

where  $au_{arphi}$  is defined according to the equation

$$\ln \frac{\tau_{\varphi}}{\tau} \equiv \int_{1}^{\infty} \frac{d\eta}{\eta} e^{-\Gamma_{1}(\eta, E, \Lambda) - \Gamma_{3}(\eta, E, \Lambda)}, \qquad (16)$$

$$\Gamma_{1}(\eta, E, \Lambda) = \frac{\tau}{\tau_{1}} \left[ \eta - \frac{\sin(\eta E\tau/\hbar)}{E\tau/\hbar} \right],$$

$$\Gamma_{3}(\eta, E, \Lambda) = \frac{\tau}{\tau_{3}} \left[ \eta - \frac{\hbar}{2\gamma\tau} (1 - e^{-2\eta\gamma\tau/\hbar}) \right],$$

where  $\eta = t/\tau$ . This equation is obtained by the integration over q.