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Dynamical Mean Field Theory (DMFT)

DMFT is an extension of the mean �eld theory for classical

system (e.g. Ising model) to quantum system (e.g. Hubbard

model).

DMFT takes into account local temporal quantum 
uctua-

tions while freezing spatial 
uctuations.

DMFT description of the Hubbard model results in a single-

site e�ective dynamics (embedded in a self-consistent bath)
described in terms of an imag. time action Seff at that site

The e�ective action is parameterized by G0(� � �
0), the

Weiss e�ective �eld,

corresponding to the e�ective magnetic �eld in the Ising

model:
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G0(� � �
0) e�ective amplitude for a fermion to be created on

the isolated site at time � (coming from the external bath)

and being destroyed at time � 0 (going back to the bath).



DMFT becomes exact in the limit of in�nite dimensions

(or in�nite coordination number).

In practise it works well for 3D systems with large unit cells

(as in V2O3, NiSexS2�x ...)

Some references for DMFT:

� W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324

(1989).

� A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg,

Rev. Mod. Phys. 68 13 (1996).

� R. Chitra and G. Kotliar, Phys. Rev. Lett. 83, 2386

(1999).

� G. Kotliar, S. Murthy, and M. J. Rozenberg, Phys. Rev.

Lett. 89, 046401 (2002).



Essential elements of a cluster scheme

1) Cluster degrees of freedom! impurity degrees of freedom

in a bath described by a Weiss �eld matrix function d
G0.

Solution of the cluster embedded in a medium !

- cluster Green's function matrix and

- self energy matrix.

2) Expression of the Weiss �eld in terms of the self energy

of the cluster !

self-consistency condition of the cluster scheme.

3) Connection between the cluster self energy and the self

energy of the lattice.

References on C-DMFT scheme

� G. Kotliar, S. Y. Savrasov, G. P�alsson, and G. Biroli, Phys.

Rev. Lett. 87, 186401 (2001).

� G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).



Schematic C-DMFT algorithm

Impurity Solver

Self Consistency
Ĝ0 Ĝ Σ̂ cc

Γµνρς t(k)^

Cluster to Lattice
Conversion Σlat

^



Selection of cluster variables

(real space formulation of the cluster scheme)

Original lattice ! superlattice of clusters of size
Qd
j=1Lj

Rn new translation vectors .

jRn�i wave functions (partially) localized around Rn

with � = 1; : : : ; N internal cluster index.

SRn�;i�
transformation matrix,

jRn�i = �i�ji�iS
�1
i�;Rn�

.

Creation and annihilation operators of the new basis

cRn�
= �i�SRn�;i�

fi�

and the operators that contain the "local" information that

we want to focus our attention on are

c� � c(Rn=0)� operators of the cluster at the origin.

O
mn

��
= O��(Rm �Rn) � hRm�jRn�i overlap matrix



Hamiltonian in the superlattice

Hamiltonian in terms of the new operators cRm�.

H = �
X
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H = Hc +Hcb +Hb

Hc involves only the cluster operators,

Hb contains cRn�
with Rn 6= 0 and plays the role of a "bath",

Hcb contains both cRn�
with Rn 6= 0

and the cluster operators



Partition function

Partition function represented as a functional integral over

Grassman variables,

Z =
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The e�ective action for the cluster variables c� is obtained

by integrating out all the variables cRn�
with Rn 6= 0
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Scb contains only boundary terms! the e�ects will decrease

as the size of the cluster increases.



The e�ective action is parameterized by

G0;��(� � �
0) Weiss function of the cluster

Seff = �
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where ����& = U���&(f0g).

Using Seff one can calculate the Green's functions of the

cluster
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and the cluster self energies
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The thermal average < ::: > over all con�gurations is per-

formed by QMC method using the Hirsch-Fye algorithm.

� J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521

(1986).



Self-consistency condition

Self consistent equations ! matrix equations expressing the

Weiss �eld in terms of the cluster self energy matrix
c
�c.

d
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d
O(k) is the Fourier transform of the overlap matrix,

b
t(k) is the Fourier transform of the kinetic term of H,

k is a wave-vector in the reduced Brillouin zone.

Connection to the self energy of the lattice

�lat;��0(k; !n) =
1

Natoms

X
��

~Sy
�;�
(k)�c;��(!n) ~S�;�0(k) (10)

~S is the Fourier transform of the matrix S with respect to

the original lattice indices i.

k is a given wave-vector in the original lattice



C-DMFT with a free cluster (local basis)

(i) The lattice is divided into supercells,

(ii) each supercell is a complex "site" to which one can apply

ordinary DMFT.

Rn is the supercell position,

� labels the position l of the di�erent sites within the super-

cell, and the spin �, � = (�; l),

SRn�;i�
= Æ�;�0ÆRn+l;ri

is diagonal in spin and position.

The overlap matrix results, in this case, the identity.

Local basis: 2 � 2 atoms



The 2 � 2 local basis is suitable to study both AFM and

d-wave SC order parameter on an equal footing.

� A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62,

R9283 (2000).

Lattice selfenergy:

�lat(k; !n) =
1

Natoms

(4�11(!n) + (11)

4(cos kx + cos ky)�12(!n) +

4 cos kx cos ky�13(!n))

Eq. (11) is equivalent to an expantion of the selfenergy in

the harmonic of the square lattice up to the second harmonic

(i:e: second neighbor).

(We assume that all the symmetries of the original lattice

are preserved. We don't plug these symmetries in the self-

consistency loop, we use them to check the convergency of

the C-DMFT algorithm.)



Mott transition and AFM in cuprates

Tight-binding dispersion for La2�xSrxCuO4

(�t to ARPES at large doping)

�(k) = �2t(cos kx + cos ky) + (12)

4t0 cos kx cos ky � �

Phase diagram for t0 = 0: Neel temperature TN as function

of U at half �lling.

2 � 2 cluster is able to take into account AFM correlations

without the sublattice construction used in standard DMFT.

TN(U) is evaluted �nding the temperature where the stag-

gered magnetization n" � n# starts to be non zero.

t = 0:25eV and t
0 = 0:15t, L = 64 time slices, 2 � 2-sites

cluster, � = �0:13eV (0:02eV above the van Hove singular-

ity).

Momentum dependent selfenergy.
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High temperature limit (T � U):

DMFT is valid ! we have veri�ed that the o�-diagonal el-

ements of the cluster selfenergy are zero and the resulting

lattice selfenergy is wave-vector independent.

Low temperature limit (T < t
2
=U):

o�-diagonal selfenergies are �nite and the lattice selfenergy

is wave-vector dependent: C-DMFT is able to capture short-

range correlations (such as AFM correlations) and the wave-

vector dependence of the band structure and Fermi surface,

going beyond DMFT.



Mott transition in 2D k-organics

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

K
y/

a

Kx/a

Fermi surface for kappa organics; n=0.93

’fs.k’

Tight-binding dispersion for 2D-�-organics

� K. Kuroki and H. Aoki, Phys. Rev. B 60, 3060 (1999).

�(k) = �2t(cos kx + cos ky) + (13)

2t01 cos(kx + ky) + 2t02 cos(kx � ky)� �

The next-nearest-neighbor hopping is strongly anisotropic.

Typical values here considered:

t = 1eV, t01 = 0:7t, t02 = �0:11t

2 � 2 cluster to include AFM correlations
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Conclusions

� 2 � 2 sites cluster.

� AFM and Mott transition in cuprates: phase diagram.

� Wave-vector dependence in the self-energy.

� DOS and Mott transition in �-organics.

DMFT has produced a wealth of information in problems

where the physics is local. Cluster methods promise to

be equally fruitful in more complex problems where corre-

lations between more sites and orbitals need to be

taken into account. All the techniques which have been used

for the solution of the single site DMFT are applicable to

this cluster extension.



A1. Connection to impurity models

As in single site DMFT, it is very convenient to view the

cluster action as arising from a Hamiltonian,

Himp =
X
�&

d
E�&c

+
�
c& +

X
���&

����&c
+
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c
+
�
c�c&

+
X
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X
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�
Vk�;�a

+
k�
c� + h:c:

�
: (14)

�k� is the dispersion of the auxiliary band,

Vk�;� are the hybridization matrix elements describing the

e�ect of the medium on the impurity.

When the band degrees of freedom are integrated out, the

e�ect of the medium is parameterized by a

hybridization function

���(i!n)[�k�; Vk�] =
X
k�

V
�
k�;�

Vk�;�

i!n � �k�
: (15)

The hybridization function is related to the Weiss �eld func-

tion by expanding Eq. 9 in high frequencies:

d
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�O �
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�(i!n) (16)

�O =
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k

d
O
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��1
is the overlap matrix indicating that the

impurity model has been written in a non-orthogonal local

basis.



A2. Other examples of C-DMFT approach

a) Multiorbital DMFT in a non-orthogonal basis: An-

other important special case of our general construction is

the implementation of single-site DMFT in a non-orthogonal

basis. In this case the supercell is a single site, but the wave

functions de�ning the cluster operators are chosen so that

they are very localized in real space.

In fact, an implementation of this method, has resulted in

new advances in the theory of Plutonium. Here the 
exibility

in the choice of basis is crucial for the success of the DMFT

program.

b) Partial localized bases: This method would allow its for-

mulation in terms of wave functions which are partially local-

ized in real and momentum space such as wavelet functions.

This 
exibility is most appealing for treating problems such

as the Mott transition where both the particle-like and the

wave-like aspect of the electron need to be taken into account

requiring a simultaneous consideration of real and momen-

tum space.



A3. C-DMFT vs DCA

Cluster de�ned in real space and

the self energy matrices could be taken to be cyclic in the

cluster indices so that the matrix equations could be diago-

nalized in a cluster momentum basis,

Eq. (9) for C-DMFT would reduce to the DCA equation.

However, in the DMFT construction, the clusters have free

and not periodic boundary conditions, and we treat a more

complicated problem requiring additional matrix inversions.

A comparison can be found in

G. Biroli and G. Kotliar, Phys. Rev. B 65, 155112 (2002).

References on DCA

� C. Huscroft et al., cond-mat/9910226;

� H. Hettler, M. Mukherjee, M. Jarrell and H. R. Krishna-

murthy, cond-mat/9903273;

� T. Maier, M. Jarrell, T. Pruschke, J. Keller, Eur. Phys. J.

B 13, 613 (2000);

� M. H. Hettler et al., Phys, Rev. B 58, R7475 (1998).


