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Residual quasi-particle thermal conductivity
as a linear term in the ballistic regime (κph∝T3)



A TALE OF TWO VELOCITIES!
(Durst , Lee ’99)

Excitation spectrum in

 the vicinity of a node: 
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•Compound 00/T vF/v2

•Y123 (Tc=91K) 0.12 14±3
•La-214(Tc=38K 0.16 12±3
•Bi-2212(Tc=90K) 0.15 19 ±4 (ARPES:20)
•Bi-2201(Tc=9K) 0.12 8±2
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Residual quasi-particle conductivity in optimally-
doped cuprates

In the balistic regime
κ = aT+bT3



As theoretically predicted, the magnitude of the linear term is
insensitive to the introduction of defects!

Sr2RuO4, another unconventional superconductor, displays a universal
residual qp thermal conductivity (Suzuki et al. PRL88, 227004(2002))

See Taillefer et
al., PRL79,
489(1997) for
Zn-doped YBCO



The residual quasi-particle conductivity is absent or
dramatically reduced in  underdoped cuprates!
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See also Takeya, Ando et al. (prl
’02 ) for a detailed study of
doping dependence!
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This contradicts the expected vF/v2

behavior suggested by ARPES
(Mesot et al.  ‘01)



The Wiedemann-Franz law

• Relates the conduction of heat to conduction of charge
in an electronic system:

κρ / T = L0 = π2/3 ( kB / e)2

• A fundamental property of any Fermi liquid at T=0.
Theoretically robust in presence of strong correlations.

• Experimentally checked in a variety of strongly-
correlated electron systems (Heavy fermions, organic
superconductors, Sr2RuO4…) .

•  Would break down in case of electron fractionalization.



The violation of WF law in PCCO (Hill, Taillefer et al., Nature
414, 711 (2001)

Two distinct violations: i) An excess of electronic heat
conductivity above 0.3K  ii)  sudden vanishing below 0.3K



Recent theoretical scenarios for the violation of WF law in
various contexts

• Mei-Rong Li & E. Orignac, cond-mat/0201291(2002)
(disordered Luttinger liquid)

• Guo-Zhu Liu, Cond-mat/0203048 (2002) (chiral symmetry
breaking)

• Wonkee Kim & J. P. Carbotte, Cond-mat/0202514(2002) (d-
desnsity wave)

• Houghton, Lee  Marston, PRB 65, 220503 (2002) (t-j model)

Additional degrees of
freedom leads to L/L0

exceeding 1.



The validity of WF law in overdoped Tl-2201
(Proust, Boaknin, Hill, Taillefer, Mackenzie, cond-mat/ 0202101)

At H=13T, superconductivity
is [apparently] destroyed and
the magnitude of the linear
term becomes identical  with
what is expected by the WF
law !



Measuring subkelvin thermal conductivity in a Bitter
magnet (producing H >20T)

Non-exhaustive list of difficulties

•Reduced space

•Restricted time

•Vibrations due to water cooling

•Low-temperature field-
insensitive thermometers
required (no field-free zone available)

Solution:  Coulomb blockade thermometry
using an array of single-electron tunnel
junctions (Nanoway, Finaland)



Checking the WF law in optimally-doped Bi-2201
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Even at optimal doping, the linear term  at high fields
 is very close to the magnitude expected by the WF law!
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The amazing case of non-superconducting heavily-
overdoped LSCO
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The collapse of linear term  below 0.3K remains
unexplained (reminiscent of PCCO!)

• Losing connection to electron thermal bath?
• A hidden, very small energy scale?
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In underdoped cuprates the product of of κ00/T and of ρ0 exceeds L0

κ00/T = 0.12 mW/K2 cm

& ρ0 =600 µΩcm

ρ0 κ00/T ~ 3 L0
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slightly underdoped Bi-2201

A similar result reported for  undedoped
LSCO by Takeya, Ando  et al., prl’02

For the WF law to be obeyed an
unusual reduction  of 00/T with
magnetic field is expected!



Summary
of what has been observed regarding the WF law in cuprates

• Validity of WF law in the high-field « normal »
state (overdoped Tl-2201 and optimally-doped Bi-2201)

• Unexpected downward deviation from the Wiedemann-
Franz law, (heavily-overdoped LSCO, and electron-doped
PCCO)

• A large linear  term κ00/T in the superconducting state
compared to the residual resitivity of the normal state
(underdoped Bi-2201 and La-214)



Nernst effect in the vortex state
A transverse voltage produced by a longitudinal thermal

gradient : Sxy= Ey/∆xT

• Force on the vortex due to
the thermal  gradient:
F=Sφ  T

• The vortex moves: F =η v
• The movement leads to a

transverse voltage:
Ey=vBz

A vortex is:
• A quantum of magnetic

flux
• An entropy reservoir Sφ

• A topological defect in
a phase coherent
environment
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Nernst coefficient in metals

Jq, T

J=0
Hot carriers

Cold carriers
H

Hot electrons

Hot holes

Metal with a single type of charge
carriers:
Absence of longitudinal charge
current leads to the cancellation of
Hall-like transverse voltage
(Sodhemier ’48), See also Wang et
al., PRB ‘02

This is not true for a metal with
several type of carriers!

J=  E + /T T

Jq= E +  T

In a Boltzmann picture:    ∝ ∂ /∂εε=εF
(Thus, a possible finite Nernst signal due to an energy-dependent scattering rate)



Nernst effect in optimally-doped cuprates
(Ri, Heubner  et al. 1994)



In underdoped cuprates Nernst coefficient remains
finite for T>Tc

Vortex-like excitations in the  Tc<T<T* window ? (First reported by Xu,
Ong et al. Nature 406,486(2000))
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A word of caution: the case of 2H-NbSe2

Complicated Fermi surface may lead to a
sizeable qp Nernst signal of both signs!
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Field-dependence of the Nernst coefficient is highly
non-linear!

A finite Nernst signal persists at high fields even when
resistivity displays localisation!
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Two contrasting pictures of the destruction of
superconductivity in a magnetic field!
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Field-induced superconductor-insulator
transition and the Nernst effect
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Evolution with increase in doping
level at H=12T
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Transport entropy of vortices

For a thermal force :

Fth=Sφ  T =η v &  Ey= vB

N= Ey /  T = Sφ B/ η

For a Lorenz force:

FL=J Φ0 =η v &  Ex= vB

ρ = Ex/J =Φ0B/ η
Therefore: Sφ =NΦ0/ ρ
is the excess of entropy associated with
a single vortex (Assuming that is
only due to flux flow!)

In the extereme underdoped case, Sφ c is a fraction of kB.
Two orders of magnitude smaller than in conventional superconductors!

Sφ = Sn-Ss= kB(lnΩn-Ωs)= kBln(Ωn/Ωs)  (Ωn/Ωs) is not much larger than unity!
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Recent scenarios proposed to for a Nernst signal in an
extended region of the (H,T) phase diagram

•Tesanavic, Vafek & Franz, PRB 65, 180511 (2002), Chiral symmetry breaking

•Weng & Muthukumur, cond-mat/ 0202079, Spontaneous vortices in RVB picture

•Ussishkin, Sondhi & Huse, cond-mat/0204484, Superconducting Gauusian
fluctuations

•Kontani, cond-mat/0204193, AF fluctuations (No vortices)

•Ikeda, cond-mat/0203221, Quantum fluctuations due near the field-induced
Superconductor-insulator Quantum Critical Point

Address the question of discrepancy between
 (H,T ) and N(H,T)!

Fisher ‘90



Summary

• In underdoped cuprates, a Nernst signal
persists in an extended domain of the (H,T)
plane

•Superconductivity seems to survive at high
fields even in presence of a non-metallic
resistivity

• The magnitude of extracted transport entropy
in the underdoped regime is particularly small
compared with conventional superconductors


