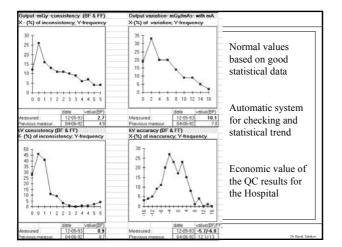
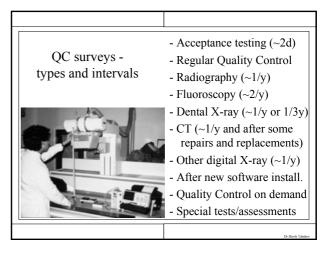
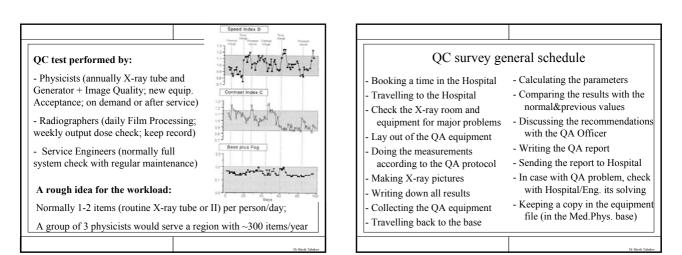


Development of QA protocol

- General aim
- Parameters to be measured
- QC Equipment necessary
- Calibration record
- Testing procedure
- Normal values
- Form of the QA protocol
- Protocol Updating procedure
- Address list (specialists/firms)


5.2 ASSESSMENT OF X-RAY TUBE TOTAL FILTRATION		
5.2.1 Task Short explanation of the task; Approx. time for performing the task 5.2.2 Competencies Addressed Understand and measure the X-ray tube beam filtration	← QA protocol with Report sheet	Automatic QA protocols with EXCEL
5.2.3 Equipment and Materials List with necessary Equipment, Materials, Arrangements		• Raw data page
5.2.4 Procedures and Measurements 5.2.4.2 For Assessment of X-ray Tube Output Total Filtration Detailed description of a method to perform the task	- strictly followed	Calculative page (hidden) Page (hidden)
Added Al Set KV Set mA Set masc Set mAs Meas.exp Exp.decr. (mm) (~80) (~20-40) (mGy) (%) +0mm Al 80 100 100 +1mm Al 80 - - +2mm Al 80 - - +3mm Al 80 - -	- system to update and renew QC - any problems	 Result page Image quality and graphics pages Statistical page
+4mm Al 80 <50	discussed/reported - follow-up check - filing: BXCT03_115.xls	 Summary and Recommendation page Additional protocols for AEC and other specific X-ray systems
	Dr Slavik Tabakov	D Sink Taker


				RATOR .						
								alstorage os	cilloscope	
	Gould 450 s	s/n 144000	56, and an	MDH electr	ometer s/n	3011 with 6	cc chamb			
								FDD(cm)=	100	
	Focus	SetkV (kV)	SetmA	SetTime	SetmAs	Meas kV (kV)	Meas T	Meas exp (mR)	Airkerma	
		(/	(mA)	(ms)	(mAs)	· · /	(ms)	· · /	(mGy)	
	В	60	200	100	20	62	101	59	0.51	
	В	80	200	100	20	83	105	98.5	0.86	
	В	100	200	100	20	104	103	151	1.31	
	В	120	200	100	20	123	103	224	1.95	
	F	50	100	200	20	50	202	46	0.40	
	F	70	100	200	20	73	205	101	0.88	
	F	90	100	200	20	88	202	167	1.45	
	F	110	100	200	20	111	204	221	1.92	
	В	80	200	100	20	82	105	104	0.90	1
	В	80	200	100	20	83	105	106	0.92	
	В	80	200	100	20	83	105	105	0.91	
	В	80	25	100	2.5	83	107	18.4	0.16	
	В	80	300	100	30	84.7	105	198	1.72	
	в	80	500	100	50	90	103	305	2.65	
	В	80	200	20	4	83	19	20.5	0.18	
	в	80	200	400	80	83	411	440	3.82	
	в	80	200	800	160	83	780	814	7.07	
			HalfVa	lue Layer M	le a s ure me	nts are sho	wn be low			
	B+0mm Al	80	200	100	20			114	0.99	
	B+0mm Al	80	200	100	20			110	0.96	
	B+1mm Al	80	200	100	20			83.5	0.73	
L	B+2mm Al	80	200	100	20			67.1	0.58	
	B+3mm Al	80	200	100	20			50.9	0.44	
	B+4mm Al	80	200	100	20				#VALUE!	r Slavik T


FDD(cm)=	100							
Me as exp	Air ke ma		Meas'		mGy/mAs		%age kV	
(mR)	(mGy)	Meas kV	kV^2	mGy/mAs	perkV^2	g ra d'	Accuracy	Accuracy
59	0.51	62	3844	0.025636	6.67E-06	5.64E-06	3.333333	
98.5	0.86	83	6889	0.042798	6.21E-06	5.81E-06	3.75	
151	1.31	104	10816	0.06561	6.07E-06	7.35E-06	4	
224	1.95	123	15129	0.097328	6.43E-06		2.5	
46	0.40	50	2500	0.019987	7.99E-06		0	
101	0.88	73	5329	0.043885	8.24E-06	8.45E-06	4.285714	
167	1.45	88	7744	0.072562	9.37E-06	1.19E-05	-2.22222	
221	1.92	111	12321	0.096025	7.79E-06	5.13E-06	0.909091	
104	0.90	82	6724	0.045188	6.72E-06			
106	0.92	83	6889	0.046057	6.69E-06			
105	0.91	83	6889	0.045623	6.62E-06			
18.4	0.16	83	6889	0.063958	9.28E-06			7
198	1.72	84.7	7174.09	0.057354	7.99E-06			5
305	2.65	90	8100	0.053009	6.54E-06			3
20.5	0.18	83	6889	0.044536	6.46E-06			-5
440	3.82	83	6889	0.047795	6.94E-06			2.75
814	7.07	83	6889	0.04421	6.42E-06			-2.5
114	0.99	IVL mm of A	% trans					#VALUE!
110	0.96	1	100					
83.5	0.73	2	74.5535714					
67.1	0.58	3	59.9107143					
50.9	0.44	4	45.4464286					
	#VALUE!	5	#VALUE!	· · · · · ·	<u> </u>			

Parameters		Expected	Me a s u re d	Assessmen
Radiography Mode				
Radiography Mode		+		
Be a m/LBD Aligne me r	dir pla camant (cm)	<1	<1	Accept
Bucky centering	displacement (cm)		<	Accept
Focus size (mm)	Broad Focus-(BF)	1	1X1	Accept
	Fine Focus-(FF)	0.6	0.6x0.6	Accept
	I	<u> </u>		
O'put cons is te ncy(BF)		<5	3.2	Normal
O'put va r'n with mA(BI) (%) va ria tion	<10	9.49	Normal
O'put va r'n with kV (BF) Lima a site (9/)	++	42	Normal
Specific O'put-80kV(B		+	42 42 74	Normal
Lin.Grad.with kV^2(BF		++	6.27E-06 15	Nonnai
	1 1	<u> </u>		
O'put var'n with kV (FF) Line a rity (%)	++	8.4	Normal
Specific O'put-80kV(F	(uGy/mAs) @ 1m	1	57.47	Normal
Lin.Grad.with kV^2(FF	(mGy/mAs/kV^2)	I	8.48E-06 40	
L	(%) inconsist	<		
kVp consistency (BF)	(%) inconsist (%) ina ccura cv	-10 <a<10< td=""><td>0.6</td><td>Good</td></a<10<>	0.6	Good
kVp accuracy (BF) kVp accuracy (FF)	(%) ina ccura cy (%) ina ccura cy	-10 <a<10< td=""><td>0.7</td><td>Good</td></a<10<>	0.7	Good
k vp accuracy (FF)	(%) inaccuracy Stdey.	-10 <a<10< td=""><td>2.31</td><td>Good</td></a<10<>	2.31	Good
	oracv.		2.01	
kVp var'n with mA (BF	(%) va ria tion	<10	4.25	Good
Ripple at~100 kV(BF)		1	5	Accept
Time r cons is te ncy (BI		<5	0.00	Good
Time r accuracy (BF)	(%) ina ccura cy	-10 <a<10< td=""><td>-1.58</td><td>Good</td></a<10<>	-1.58	Good
	St.dev	++	3.96	
First Half Value Layer	(mm = f Al = = 1)	+	27	Accept
Inferred Total Filtration		>2.5	2.6	Accept
inc ne a Total Plaa dol	(mm or areq)		2.0	Accept
Labelling	· · · · · · · · · · · · · · · · · · ·			Accept
S ta te d filtra tion	(mm of Al e q')	2.5		
S ta te d To ta l Filtra tion	(mm of Al e q')	1		
	1 1 1	1 1		
Calcul max leakage	(mGy/h)@1m	<1		Accept

Radiolog	ical Pro	o te c tio n	and O	u a litv A	ssuran	ce Rep	ort		
	T	1	1	1		1		1	
				· · · ·		· · · · ·			
Hospital/Clinic:	Brook Ho	spital		Unit type		Overcouch		-	
	1	1		_ · · · ·					
Department :	X-m y	1	1	Ge ne ra t	o r/Ma nuf.				
					Type:	DR3T/500			
Room/Unit:	3b		L		/ Type:	SRO 25 50		-	
					Ser.No.	675449			
Date of QA survey:	22/3/93		· · · · · · ·	Re fe re n	cc no.:	BNOB3B.03	3	-	
			-					-	
								-	
						1		U	
1 1	C TIMON								
	SUMM	ARY ANI	D RECO	MME.ND	I	1			
The X-my generat However, the X-my direction. We would routine visit.	or and tube be am is a	perform we bout Iem di	splaced fo	m the light	beam of L	BD in long itu			
However, the X-my direction. We would	or and tube be am is a	perform we bout Iem di	splaced fo	m the light	beam of L	BD in long itu			
However, the X-my direction. We would	or and tube be am is a	perform we bout Iem di	splaced fo	m the light	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout I em di ou the bring 1	splaced fo	m the light	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	splaced fo	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			
However, the X-my direction. We would	orand tube beam is a I advise yo	perform we bout 1 cm di su the bring t	II. splaced flo this to the a	m the light tention of	beam of L	BD in long itu			

How is QC appreciated (most usual pattern) by:

- The public assuring the safety of the examination;
- Hospital administration activity required by the law;
- Radiologists necessary (assures the level of image quality);
- Radiographers important for their routine work;
- Service engineers not interested (have their own tests);
- Medical Physicists essential for the job, but boring ...;
- Scientists not suitable for research;
- Students enjoyed as the practical part of their learning
- Professional Organisations very important

Image Quality / Patient Dose

is the main contradiction in Diagnostic Radiology

due to this reason finding the proper balance between them is the <u>major goal of QC</u>

To ensure:

continuing production of diagnostic images with optimum quality,

using minimum necessary dose to the patient

Slavik Tabakov