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Introduction

These notes are an introduction to the formalism of stacks, for the con-
sumption of those who attend my lectures at the ICTP school on moduli
theory. They are still in an extremely preliminary stage, many proof, and
even parts of statements, are still missing (the missing parts are marked with
TO BE ADDED). My justification for handing out such a rough product
is that I think they might still be useful. The are also extremely dry, and are
only meant to supplement my lectures, where I try to give a more articolated
view of the subject, adding some examples. TO BE ADDED

The formal prerequisites for reading these notes are few. We make heavy
use the categorical language, so I assume that the reader is acquainted with
the notions of category, functor and natural transformation, equivalence of
categories. On the other hand, I do not use any advanced concepts, nor
do I use any real results in category theory, with one single exception: the
reader should know that a fully faithful essentially surjective functor is an
equivalence.

The reader should also recall that a groupoid is a category in which every
arrow is invertible.

Also, we will manipulate some cartesion diagrams. In particular the
reader will encounter diagrams of the type

A >B >C
we will say that this is cartesian when both squares are cartesian. This is
equivalent to saying that the right hand square and the square

A1 —> a,

A >C
obtained by composing the rows, are cartesian. There will be other state-
ments of the type "there is a cartesian diagram . . ." . These should all be
straightforward to check.





CHAPTER 1

Contravariant functors

1.1. Representable functors and the Yoneda lemma

1.1.1. Representable functors. Let us start by recalling a few basic
notions of category theory.

Let C be a category; we will always assume that C has both fiber products
and products. Consider functors from Copp to (Set). These are the objects
of a category, denoted by

Func(Copp,(Set)),

in which the arrows are the natural transformations. Prom now on we will
refer to natural transformations of contravariant functors on C as morphisms.

Let X be an object of C. There is a contravariant functor

hx :Co p p->(Set)

to the category of sets, which sends an object U of C to the set

= Romc(U,X).

If a: U' —> U is an arrow in C, then hxa: hxU -> hxU' is defined to be
composition with a.

Now, an arrow f:X-*Y yields a function h.fU: hxU —> hxU for each
object U of C, obtained by composition with / . The important fact is that
this is a morphism hx —> hy, that is, for all arrows a: U1 —> U the diagram

h y a

commutes.
Sending each object X of C to hx, and each arrow / : X -> Y of C to

h/: h x -> hy defines a functor C -> Func(Copp, (Set)).

YONEDA LEMMA (WEAK VERSION). Let X and Y be objects ofC. The
function

Homc(X, Y) —> Hom(hx,hy)

that sends f: X —> Y to hf. hx —> hy is bijective.

7



8 1. CONTRAVARIANT FUNCTORS

In other words, the functor C -> Func(Copp, (Set)) is fully faithful. It
fails to be an equivalence of categories, because in general it will not be
essentially surjective. This means that not every functor Copp —> (Set) is
isomorphic to a functor of the form hx- However, if we restrict to the full
subcategory of Func(Copp, (Set)) consisting of functors Copp -> (Set) which
are isomorphic to a functor of the form hx, we do get a category which is
equivalent to C.

DEFINITION 1.1. A representable functor on the category C is a functor

F: Copp->(Set)

which is isomorphic to a functor of the form hx for some object X of C.
If this happens, we say that F is represented by X.

Given two isomorphisms F ~ hx and F ~ hy, we have that the resulting
isomorphism hx — hy comes from a unique isomorphism X ~ Y in C,
because of the weak form of Yoneda's lemma. Hence two objects representing
the same functor are canonically isomorphic.

1.1.2. Yoneda's lemma. The condition that a functor be representable
can be given a new expression with the more general version of Yoneda's
Lemma. Let X be an object of C and F: Copp -> (Set) a functor. Given a
natural transformation r: hx -> F, one gets an element £ G FX, defined as
the image of the identity map idx G hxX via the function rx : h x ^ -> FX.
This construction defines a function Hom(hx,i?) -> FX.

Conversely, given an element £ G FX, one can define a morphism
r: hx —> F as follows. Given an object U of C, an element of hxU is
an arrow f:U->X; this arrow induces a function Ff: FX -» FU. We
define a function rU: hxU -> FU by sending / G hx*7 to Ff(£) G FU.
It is straightforward to check that the r that we have defined is in fact a
morphism. In this way we have defined functions

Hom(hx,F) —>F(X)

and
F(X) —

YONEDA LEMMA. These two functions are inverse to each other, and
therefore establish a bijective correspondence

Hom(hx,F) czFX.

The proof is easy and left to the reader. Yoneda's lemma is not a deep
fact, but its importance cannot be overestimated.

Let us see how this form of Yoneda's lemma implies the weak form above.
Suppose that F = hy: the function Hom(X, Y) = hyX —> Hom(hx,hy)
constructed here sends each arrow / : X —> Y to
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so it is exactly the function Hom(X, Y) —> Hom(hx,hy) appearing in the
weak form of the result.

One way to think about Yoneda's lemma is as follows. The weak form
says that the category C is embedded in the category Func(Copp, (Set)).
The strong version says that, given a functor F: Copp -* (Set), this can be
extended to the representable functor hp: Func(Copp, (Set)) —> (Set).

We can use Yoneda's lemma to give a very important characterization
of representable functors.

DEFINITION 1.2. Let F: Copp -> (Set) be a functor. A universal object
for F is a pair (X, £) consisting of an object X of C, and an element £ E FX,
with the property that for each object U of C and each a G FU, there is a
unique arrow f:U-^X such that Ff(£) = a G FU.

In other words: the pair (X, £) is a universal object if the morphism
hx —> F defined by £ is an isomorphism. Since every natural tranformation
hx -> F is defined by some object f G FX, we get the following.

PROPOSITION 1.3. A functor F: Copp -+ (Set) is representable if and
only if it has a universal object.

Also, if F has a universal object (X,£), then is represented by X.
Yoneda's lemma insures that the natural functor C -» Func(Copp, (Set))

which sends an object X to the functor hx is an equivalence of C with the
category of representable functors. Prom now on we will not distinguish
between an object X and the functor hx it represents. So, if X and U are
objects of C, we will write X(U) for the set hxU = Homc(C/, X) of arrows
U -> X. Furthemore, if X is an object and F: Copp -> (Set) is a functor,
we will also identify the set Hom(X, F) = Hom(hx,F) of morphisms from
hx to F with FX.

1.1.3. Examples. Here are some examples of representable functors.
(i) Consider the functor P: (Set)opp -> (Set) that sends each set S into the

set P(S) of subsets of S. If / : S -> T is a function, then P( / ) : P(T) ->
P(5) is defined by P(/)r = f~lr for all r C T.

Given a subset a C 5, there is a unique function Xo-: 5 —> {0,1}
such that Xal({l}) = G-> namely the characteristic function, defined by

( f 1 if s e a
10 if s f. a.

Hence the pair ({0,1}, {1}) is a universal obejct, and the functor P is
represented by {0,1}.

(ii) This example is similar to the previous one. Consider the category
(Top) of all topological spaces, with the arrows being given by continu-
ous functions. Define a functor F: (Top)opp -> (Set) sending each topo-
logical space S to the collection F(S) of all its closed subspaces. Endow
{0,1} with the coarsest topology in which the subset {1} C {0,1} is
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closed; the closed subsets in this topology are 0, {1} and {0,1}. A
function S —> {0,1} is continuous if and only if /~1({1}) is closed in
5, and so one sees that the pair ({0,1}, {1}) is a universal object for
this functor.

(iii) The next example may look similar, but the conclusion is very different.
Let (HausTop) be the category of all Hausdorff topological spaces, and
consider the restriction F: (HausTop) —> (Set) of the functor above. I
claim that this functor is not representable.

In fact, assume that (-X",£) is a universal object. Let S be any set,
considered with the discrete topology; by definition, there is a unique
function / : S -» X with f"1^ = 5, that is, a unique function S -> £.
This means that f can only have one element. Analogously, there is a
unique function 5 -» X \ £, so X \ £ also has a unique element. But
this means that X is a Hausdorff space with two elements, so it must
have the discrete topology; hence £ is also open in X. Hence, if S is
any topological space with a closed subset a that is not open, there is
no continuous function f:S-±X with / - 1 £ = a.

(iv) Take (Grp) to be the category of groups, and consider the functor
Sgr: (Grp)opp -> (Set) that associates to each subgroup G the set of
all its subgroups. If / : G —> H is a group homomorphism, we take
Sgr / : Sgr H —> Sgr G to be the function associating to each subgroup
of H its inverse image in G.

This is not representable: there does not exist a group F, together
with a subgroup Fi C F, with the property that for all groups G
with a subgroup G\ C G, there is a unique homomorphism / : G —>
F such that f~lY\ = G\. This can be checked in several ways; for
example, if we take the subgroup {0} C Z, there should be a unique
homomorphism / : Z —> F such that /~1Fi = {0}. But given one such
/ , then the homomorphism Z —» F defined bynH- /(2n) also has this
property, and is different, so this contradicts unicity.

(v) Here is a much more sophisticated example. Let (Hot) be the category
of all finite CW complexes, with the arrows being given by continuous
functions modulo homotopy. There is a functor Hn: (Hot) -» (Set)
that sends a CW complex S into its n th cohomology group Hn(5r, Z).
Then is a highly nontrivial fact that this functor is represented by a
CW complex, known as a Eilenberg-MacLane space, usually denoted
byK(Z,n).

But we are really interested in algebraic geometry, so let's give some
examples in this context. Let S = Speci? (this is only for simplicity of
notation, if S is not affine, nothing substantial changes).

EXAMPLE 1.4. Consider the affine line A^ over a base scheme S. We
have a functor

O: (Sch/5)opp -> (Set)
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that sends each scheme S to the ring of global sections O(S). Then x G
O(A^), and given a scheme S over 5, and an element / G 0(5), there is a
unique morphism S -> A^ such that the pullback of x to S is precisely / .
This means that the functor O is represented by A^.

More generally, the affine space A§ represents the functor On that sends
each scheme S into the ring O(S)n.

EXAMPLE 1.5. Now we look at Gm,s = A^ \ O5. Here by 0s we mean
the image of the zero-section S ~> Ag. Now, a morphism of S'-schemes
Gm,5 —> S is determined by the image of x G 0(Gm)s) in O(S); therefore
Gm,s represents the functor 0*: (Sch/opp) —> (Set) that sends each scheme
S to the group O*(S) of invertible sections of the structure sheaf.

A much more subtle example is given by projective spaces.

EXAMPLE 1.6. On the projective space Pg = Proj R[XQ, ..., xn] there is
a line bundle 0(1), with n sections x\, . . . , xn which generate it.

Suppose that S is a scheme, and consider the set of sequences (£, so, . . . , sn),
where C is an invertible sheaf on 5, so, . . . , sn sections of C that generate it.
We say that (£, so, . . . , sn) is equivalente to (£', SQ, . . . , s'n) if there exists an
isomorphism of invertible sheaves </>: C ~ C! earring each si into ŝ . Notice
that, since the S{ generate £, if </> exists than it is unique.

One can consider a function Qn: (Sch/ —>>)(Set) that associates to each
scheme S the set of sequences (£, so,. . . , sn) as above, modulo equivalence.
If / : T -» S is a morphism, and (£, so, • •. ,sn) G F(S), then there are
sections /*so, . . . , f*sn of f*C that generate it; this gives the structure of
a functor to Qn.

Another description of the functor Qn is as follows. Given a scheme
Qn and a sequence (£, so,. . . , sn) as above, the Sj define a homomorphism
0£ + 1 —> C, and the fact that the si generate is equivalent to the fact that
this homomorphism is surjective. Then two sequences are equivalent if and
only if the represent the same quotient of 0g.

It is a very well known fact (see [Har??, ???],) and, indeed, one of the
founding stones of algebraic geometry, that for any sequence (£, so, . . . , sn)
over a scheme 5, there is exists a unique morphism / : S —> P§ such that
(£,so,.. . ,sn) is equivalent to (/*0(l),/*xo,... ,/*rrn). This means pre-
cisely that Pg represents the functor Qn.

EXAMPLE 1.7. A generalization of the previous examples is given by
grassmannians. Suppose that £ is a locally free coherent sheaf on 5, and fix
a non-negative integer r. Here we are not going to assume that S is affine.
Consider the functor G(r,£): (Sch/opp) —• (Set) that sends each scheme
s: S —» S over S to the set of all locally free quotients of rank r of the
pullback s*£. If / : T -> S is a morphism from t: T -± S to s: S -± S, and
(j)\ s*£ -» Q is an object of G(r, £) (5), then
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is an object of G(r, £)(T).
If £ is the trivial locally free sheaf C?g, we denote G(r, Og) by G(r, n).

Notice that in the previous example we have that G ( l , 0 n + 1 ) is the
functor Qn represented by P§.

1.1.4. Group objects and actions. In this section, as usual, the cat-
egory C will have both finite products and fiber products; we will also assume
that it has a final object pt.

DEFINITION 1.8. A group object of C is an object G of C, together with a
functor Copp -> (Grp) into the category of groups, whose composition with
the forgetful functor (Grp) -» (Set) equals h^.

Equivalently: a group object is an object G, together with a group
structure on G(U) for each object U of C, so that the function /* : G(V) -»
G(U) associated with an arrow / : U —» V in C is always a homomorphism
of groups.

This can be restated using Yoneda's lemma.

PROPOSITION 1.9. To give a group scheme structure on an object GofC
is equivalent to assigning three arrows mo '• G x G —» G (the multiplication),
iG' G —> G (the inverse), and ec' pt —> G (the identity), such that the
following diagrams commute.

(i) The identity is a left and right identity:

and

G

(ii) Multiplication is associative:

GxGxG

| m G

GxG =2 >G

(iii) The inverse is a left and right inverse:

G x G and G

pt ^ - > G Pt ^ — > G

PROOF. It is immediate to check that, if C is the category of sets, the
commutativity of the diagram above gives the usual group axioms. Hence
the result follows by evaluating the diagrams above (considered as diagrams
of functors) at any object U of C. 4fc
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Thus, for example, a group object in the category of topological spaces
is simply a group, that has a structure of a topological space, such that
the multiplication map and the inverse map are continuous (of course the
identity map is automatically continuous).

One can also define an action of a group object G on an object X. There
are two ways of doing this.

DEFINITION 1.10. A left action of a group object G of a category C
on a object X consist of a left action G(U) x X(U) -> X(U), denoted by
(g,x) H-> g - x of the group G(U) on the set X(U), in such a way that for
any arrow / : U -> V in C, and g G G(V) and any x G X(V) we have

A right action is defined in the analogous way.

Again, we can reformulate this definition in terms of diagrams.

PROPOSITION 1.11. To give a left action of a group object G on an object
X is equivalent to assigning an arrow p: G xX —> X, such that the following
diagrams commute.

(i) The identity of G acts like the identity on X:

pt x X " A > G

I'
X

(ii) TTie action is associative with respect to the multiplication on G:
GxGxX-

P

GxX >X
PROOF. It is immediate to check that, if C is the category of sets, the

commutativity of the diagram above gives the usual axioms for a left action.
Hence the result follows by evaluating the diagrams above (considered as
diagrams of functors) at any object U of C. A

1.2. Relative represent ability

1.2.1. Fiber products of functors. The category Func(Copp, (Set))
has fiber products. These are defined as follows. Suppose that we are given
three functors i*\, F2 and G from Copp to (Set), together with two natural
tranformations a\: F\ -» G and #2: F2 —> G. The fiber product F\ XQ F2
sends each object U of C into the fiber product of sets F\U XQU ^W> where
of course the functions F\U -» GU and F\U —> GU are induced respectively
by ot\ and c*2. The action of F\ XQ F2 on arrows is defined in the obvious
fashion.
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Since the category Func(Copp, (Set)) has terminal object, the functor
that sends each object to a fixed set with one element, it also has products,
defined by the usual formula (Fi x F2)U = FXU x F2U.

If X\ —> Y and X2 -» Y are arrows in C, hx1 —> hy and hx2 ~> hy
are the induced morphisms, then the fiber product X\ Xy X2 represents the
fiber product hxl XhY ^x25

 s o w e c a n write X\ Xy X2 to mean either the
fiber product as an object of C or the fiber product of contravariant functors
onC.

1.2.2. Representable natural transformations.

DEFINITION 1.12. Let F and G be functors in Func(Copp, (Set)). A
morphism of functors <j): F —> G is representable if for any object Y of C
and any morphism Y —>• G, the fiber product F X G - 7 is representable.

Equivalently, the morphism r is representable if whenever H —> Y is a
morphism and i? is representable, so is F XQ H.

PROPOSITION 1.13. If r: F ^ G is a morphism of contravariant func-
tors C —> (Set) and G is representable, then r is representable if and only if
F is representable.

PROOF. Since the category C has fibered products, the fiber products of
two representable functors is representable; hence if F is representable so is
the morphism r.

Conversely, if r is representable, so is the fiber product FXQG ~ F. 4*

DEFINITION 1.14. Let P be a property of arrows in C. We say that P
is stable if whenever

X1 >X

V
Y1 >Y

is a cartesian diagram and / has P, then / ' also has P.

Examples of stable properties of continuous maps are being an embed-
ding, being injective, being surjective, being a local homeomorphism, being
open, being a covering map. Being closed, on the other hand, is not a stable
property.

Any stable property of arrows in C can be extended to a property of
representable morphisms. If P is a stable property of arrows in C, we say
that a representable morphism F -> G has P if whenever Y -> G is a
morphism, with Y an object of C, then the projection F XQY —>• Y has P.
This makes sense, because F XQ Y is representable.

Consider a functor F: Copp -> (Set); there is morphism SF- F -» F x F,
the diagonal of F, defined by sending each object U of C into the diagonal
function FU -^ FU x FU = {F x F)U.
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PROPOSITION 1.15. Let F: Copp -> (Set) be a functor. Then the follow-
ing three conditions are equivalent.

(i) The diagonal Sp: F -> F x F is representable.
(ii) If X —> F and Y —» F are morphisms, where X and Y are objects of

Cj then the fiber product X XpY is representable.
(iii) All morphisms from representable functors into F are representable.

PROOF. Parts (ii) and (iii) are equivalent by the definition of a repre-
sentable morphism.

Assume that the diagonal Sp • F —>• F x F is representable, and that
X -> F and Y -> F are morphisms from objects of C. It is a standard fact
that there is a cartesian square

X xFY >X xY ,

F —>F x F

which shows that the fiber product X Xp Y is representable. Hence (ii)
holds.

Conversely, assume that (ii) holds, and that there is given a morphism
X —>> F x F, where X is an object of C. There is another cartesian diagram

FxFxFX >X

Ux
XxpX >XxX

——>F x F

showing that F Xpxp X is representable, as required. A

1.3. Sheaves in Grothendieck topologies

1.3.1. Grothendieck topologies. Now we need the notion of a sheaf
on the category (Top). Consider a functor F: (Top)opp -+ (Set); for each
topological space X we can consider the restriction Fx to the subcategory
of (Top) whose objects are open subspaces of X, and whose arrows are the
inclusion maps; this is a presheaf on X. We say that F is a sheaf on (Top)
if Fx is a sheaf on X for all X.

For later use we are going to need the more general notion of sheaf in a
Grothendieck topology; in this section we review this theory.

In a Grothendieck topology the "open sets" of a space are maps into
this space; instead of intersections we have to look at fiber products, while
unions play no role. The axioms do not describe the "open sets", but the
coverings of a space.
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DEFINITION 1.16. Let C be a category with fiber products. A Grothendieck
topology on C is the assignement to each object U of C of a collection of sets
of arrows {Vi —> £/}, called coverings of [/, so that the following conditions
are satisfied.

(i) If V —> U is an isomorphism, then the set {V -» U} is a covering,
(ii) If {Vi -> U} is a covering and Ur -> U is any arrow, then the collection

of projections {Vi Xu U' —» U1} is a covering.
(iii) If {Vi -» 17} is a covering, and for each index i we have a covering

{Wij —> Vi} (here j varies on a set depending on i), the collection of
compositions {Wij —> Vi —> U} is a covering of J7.

A category with a Grothendieck topology is called a site.

Notice that from (ii) and (iii) it follows that if {Vi —>• U} and {Wj -» U}
are two coverings of the same object, then {Vi XJJWJ -> U} is also a covering.

REMARK 1.17. In fact what we have defined here is what is called a
pretopology in [SGA1]; a pretopology defines a topology, and very different
pretopologies can define the same topology. The point is that the sheaf
theory only depends on the topology, and not on the pretopology. So, for
example, if two pretopologies on the same category satisfy the conditions
of Proposition 1.25 below, the two induced topologies are the same, so the
conclusion follows immediately.

Despite its unquestionable technical advantages, I do not find the notion
of topology, as defined in [SGA1], very intuitive, so I prefer to avoid its use
(just a question of habit, undoubtedly).

Here are some examples.

EXAMPLE 1.18 (The site of a topological space). Let X be a fixed topo-
logical space; call Xc\ the category in which the objects are the open subsets
of X, and the arrows are given by inclusions. Then we get a Grothendieck
topology on Xc\ by associating with each open subset U C X the set of open
coverings of U.

In this case if V\ —> U and V2 —> U are arrows, the fiber product V\ XJJV2

is the intersection V\ D V2.

EXAMPLE 1.19 (The global classical topology). Here C is the category
(Top) of topological spaces. If U is a topological space, then a covering of
U will be a collection of open embeddings Vi -» U whose images cover U.

Notice here we must interpret "open embedding" as meaning an open
continuous injective map V —>> U\ if by an open embedding we mean the
inclusion of an open subspace, then condition (i) of Definition 1.16 is not
satisfied.

EXAMPLE 1.20 (The global etale topology for topological spaces). Here
C is the category (Top) of topological spaces. If U is a topological space,
then a covering of U will be a collection of local homeomorphisms Vi —> U
whose images cover U.
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Here are the basic examples in algebraic geometry. Of course, a scheme
is endowed with the Zariski topology, so it yields a site, according to Exam-
ple 1.18. Of course, if this where the only significant example, this formalism
would be useless.

EXAMPLE 1.21 (The small etale site of a scheme). Consider a scheme X.
We can form a category X^t, the full subcategory of the category (Sch/X)
whose objects are morphism U —> X that are locally of finite presentation
and etale.

A covering Ui -» U is a collection of morphisms of X-schemes whose
images cover U. Recall that if U and each of the U% is locally of finite
presentation and etale over X, then each of the morphisms V% —> U is
locally of finite presentation and etale, hence it has an open image.

EXAMPLE 1.22. Here are three topologies that one can put on the cat-
egory (Sch/5) of schemes over a fixed scheme S. Several more have been
used in different contexts.

The first is the global Zariski topology. Here a covering {Ui —> U} is a
collection of open embeddings covering U.

Then there is the global etale topology. A covering {Ui -» U} is a collec-
tion of etale maps of finite presentation whose images cover U.

Finally, there is the fppf topology, where a covering {Ui —> U} is a
collection of flat maps locally of finite presentation whose images cover U.

1.3.2. Sheaves. If X is a topological space, a presheaf of sets on X is a
functor Xci

opp —• (Set), where Xc\ is the category of open subsets of X, as in
Example 1.18. The condition that F be a sheaf can easily be generalized to
any site, provided that we substitute intersections, that do not make sense,
with fiber products.

DEFINITION 1.23. Let C be a site, F: Copp -> (Set) a functor.
(i) F is separated if, given a covering {Ui —> U} and two sections a and b

in FU whose pullbacks to each FUi coincide, it follows that a = b.
(ii) F is a sheaf if the following condition is satisfied. Suppose that we

are given a covering {Ui -> U} in C, and a set of sections â  G FUi.
Call prx: Ui XJJUJ -> Ui and pr2: U{ XuUj -> Uj the first and second
projection respectively, and assume that pr^ â  = pr£ dj G F(Ui XuUj)
for all i and j . Then there is a unique section a G FU whose pullback
to FUi is cti for all i.

If F and G are sheaves on a site C, a morphism of sheaves F —» G
is simply a natural transformation of functors.

Of course one can also define sheaves of groups, rings, and so on, as
usual: a functor from Copp to the category of groups, or rings, is a sheaf if
its composition with the forgetful functor to the category of sets is a sheaf.

The reader might find our definition of sheaf rather pedantic, and wonder
why we did not simply say "assume that the pullbacks of â  and a,j to
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Xu Uj) coincide". The reason is the following: when i = j , in the
classical case of a topological space we have Ui Xu Ui = Ui fl Ui = Ui, so
the two possible pullbacks from Ui Xu Ui —> Ui coincide; but if the map
Ui —> U is not injective, then the two projections Ui Xu Ui -^ Ui will be
different. So, for example, in the classical case coverings with one subset are
not interesting, and the sheaf condition is automatically verified for them,
while in the general case this is very far from being true.

A sheaf on a site is clearly separated.
Sometimes two different topologies on the same category define the same

sheaves.

DEFINITION 1.24. Let C be a category, {Ui -> U} a set of arrows. A
refinement {Vj -» U} is a set of arrows such that for each index j there is
some index i such that Vj —> U factors through Ui.

PROPOSITION 1.25. LetT andT' be two Grothendieck topologies on the
same category C. Suppose that every covering in T is also in Tf, and that
every covering in T' has a refinement in T. Then a functor C —> (Set) is a
sheaf in the topology T if and only if it is a sheaf on the topology T' .

In particular, the sheaves on (Top) in the classical, the etale topology
and the local fibration topology are the same.

PROOF. Since T ' contains all the coverings of T, clearly any functor
F: Copp —> (Set) that is a sheaf in the topology T1 is also a sheaf in T. On
the other hand, assume that F: Copp —>• (Set) is a sheaf in the topology T,
and take a covering {Ui —> U} of an object U in the topology T'. There
is a refinement {Vj —> U} of {Ui -> U} in T; for each index j choose a
factorization Vj —» ULj -» U. If two section of FU coincide when pulled
back to each FUi they also coincide when pulled back to each FVj, and
therefore they coincide; hence the functor F is separated in the topology T'.

Now, assume that we are given a collection of sections {a^} G Yli FUi,
such that the pullbacks pr* ai and pr^a^/ to F(Ui Xu Uy) coincide for all
indices i and i'. For each j call bj the pullback of aLj to Vj through the arrow
Vj —> ULj. I claim that for every pair of indices j and f the pullbacks of bj
and bji to Vj Xu Vji coincide. In fact, the composition of p r t : Vj Xu Vj> ->
Vj with the arrow Vj —> ULj factors through prx: ULj x UL., —» ULj; and
analogously for the second projection. Since the pullbacks pr^ aLj and pr£ aL.,
to F(Ui XuUi') coincide, the thesis follows.

Since F is a sheaf in T, there will exist some a in FU whose pullback
to FVj is bj for all j . Now we need to show that the pullback of a to FUi is
ai for all i. For each j and i there is a commutative diagram

'ULj xu

I
- > ^ >u
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since the pullbacks of aLj and a* to F(ULj Xu Ui) coincide, this shows that
the pullbacks of a G FU and ai G FUi to F(Vj Xu Ui) are the same. But
{Vj Xu Ui -» Ui} is a covering of Ui in the topology T', and since F is
separated in the topology T ' we conclude that in fact the pullback of a to

equals a*. A

DEFINITION 1.26. A topology T on a category C is called saturated if,
whenever {C/i -» U} is a set of arrows, {Vij -> C/̂ } is a covering of J7j for
each i, and the set {Vij —» [/} of compositions is a covering, then {£/$ —> U}
is a covering.

If T is a topology of C, the saturation of T is the set T of all sets of
arrows {Ui —> U} with the property that there exists a covering {Vij -> CT̂}
for each i such that the set {Vij —>• 17} of compositions is a covering.

PROPOSITION 1.27. The saturation T of a topology T is a saturated
topology. Furthermore, a functor Copp -> (Set) is a sheaf under T if and
only if it is a sheaf under T.

P R O O F . T O B E A D D E D 4*

EXAMPLE 1.28. The global etale topology on (Top) is a saturated topol-
ogy. It is the saturation of the classical topology; hence the global etale
topology and the classical topology have the same sheaves.

In the category (Sch/S) the etale topology and the fppf topology are
both saturated. On the other hand, in the category of schemes an etale
morphism is not Zariski-locally an open embedding, hence the global etale
topology is not the saturation of the global Zariski topology.

There is also a statement saying that sometimes different sites have
equivalent categories of sheaves.

PROPOSITION 1.29. Let C be a full subcategory of a category C, closed
under taking fiber products. Let T and T' be Grothendieck topologies on C
and C respectively. Assume that the following conditions hold.

(i) A covering in T is also a covering in T' .
(ii) An object U of C has a covering {Ui —> U} in which each Ui is in C.

(iii) / / U is an object of C, any covering of U in T' has a refinement in T.

Then the restriction to C of a sheaf C/opp -> (Set) is a sheaf on C.
Furthermore, restriction induces an equivalence of the categories of sheaves
on C and on C.

In particular, for a topological space X the categories of sheaves on Xc\
and X& are equivalent.

P R O O F . Obviously condition (i) implies that the restriction of a sheaf is
a sheaf. The restriction of a natural transformation of functors C'opp —> (Set)
yields a natural transformation of functors Copp —> (Set), and this gives a
functor from the category of sheaves on C to the category of sheaves on C.
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Also, it is easy to check that the restriction of T' to C is a topology on
C, because C is closed under taking fiber products; conditions (i) and (iii),
together with Proposition 1.25, imply that the sheaves on C relative to the
restriction of T' and to T are the same. So we may assume that a covering
{Ui —> U} in T' in which both U and the Ui are in C is in T. In this case
we do not need to refer to the topology explicitly, and we will talk about a
covering referring to a covering in T or in T'.

First of all, let us check that this restriction functor is faithful. In fact, let
F' and G' be sheaves on C, a',/?': F' -» G' natural transformations which
coincide when restricted to C. For any object U of C there is a covering
{Ui -» U} in which the Ui are in C; this implies that for any x G F'U the
restrictions of ol^x and /S^x to each Ui coincide. Since G' is a sheaf, this
show that a = /3, and hence that the functor is faithful.

To show that is full, take a natural transformation a: F —» G between
the restrictions of F' and G' to C. For any object U in C we have a covering
{Ui -> U} with Ui in C; furthermore for each pair of indices i and j we fix a
covering {Uijk -> UiXjjUj} where each Uijk is in C (here k varies over a set
depending on i and j). Take an element a of .F't/, and call â  G F'C/i = FC/i
the pullback of a to Ui. Set 6̂  = a^a G GL ;̂ the restrictions of each bi and
6j to each Uijk coincide for all i and j , therefore they coincide in U{ XJJ Uj,
because G' is a sheaf. It follows that there is a unique element b G G'U
whose pullback to each G'Ui is bi. We define a function o/v: F'U -» G'U by
setting a'^a = 6.

We have to check that a' is well defined, and that it defines a natural
transformation. Take another covering {V̂  —> U} with the Vs in C, and for
each pair of indices a covering {Visk —> UiXjjVs} with the V ^ in C. Consider
the element c G G'U obtained as above from the covering {Va —> [/}; it is
easy to see that the puUbacks of b and c to Visk coincide for each triple i,
a and 5, and this implies the thesis, because {Visk —> U} is a covering. It
is easy to show that a' is a natural transformation, and this shows that the
functor is full.

We only have left to prove that every sheaf on C is the restriction of a
sheaf on C. Let F: Copp -> (Set) be a sheaf. For each object U of C choose
a covering {Ui -^ U} with Ui in C, and for each pair of indices i and j a
covering {U^k -> UiXuUj} where each Uijk is in C. For each triple of indices
i, j and k there are arrows 0 ^ : U^k -> Ui and ipijk- Uijk ~> Uj, obtained
by composing the given arrow U^k -» Ui XJJ Uj with the two projections
prx: UiXuUj -> C/i and pr2: UiXuUj -> C/2-

We define a set F'17 as the equalizer of the two functions fl^ FUi x
FUj —> Ylijk-FUijk induced by ^ijk a nd i^ijk'- in other words, F'U is the
subset of flijFUi x FUj -> YlijkFUijk consisting of elements ((a;,6j))
such that the puUbacks FfajkCLi and Fi/jijkbj in FUijk coincide. Of course
when U is an object of C, the restriction map FU —>* Yl{ FUi induces a
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bijective correspondence between FU and F'U, by definition of sheaf. TO
BE ADDED

PROPOSITION 1.30. A representable functor (Top)opp -> (Set) is a sheaf
in the classical topology.

The proof is straightforward. It is similarly easy to show that a repre-
sentable functor in the category (Sch/5) over a base scheme S is a sheaf in
the Zariski topology. On the other hand the following is not straightforward
at all.

PROPOSITION 1.31 (Grothendieck). A representable functor in (Sch/5)
is a sheaf in the fppf topology.

For the proof, see [SGA1, ???]. Prom this it follows that a representable
functor is also a sheaf in the etale topology, because every fppf covering is
also an etale covering.

DEFINITION 1.32. A topology T on a category C is called subcanonical
if every representable functor in C is a sheaf with respect to T.

A subcanonical site is a category endowed with a subcanonical topology.

There are examples of sites that are not subcanonical, but I have never
had dealings with any of them.

The name "subcanonical" comes from the fact that on a category C there
is a topology, known as the canonical topology, which is the finest topology
in which every representable functor is a sheaf. We will not be needing this
fact.

1.3.3. The sheafification of a functor. The usual construction of
the sheafification of a presheaf of sets on a topological space carries over to
this more general context.

DEFINITION 1.33. Let C be a site, F: Copp -> (Set) a functor. A sheafi-
fication of F is a sheaf F a : Copp —>• (Set), together with a natural transfor-
mation F -» F a , such that:

(i) given an object U of C and two objects £ and r) of F(U) whose images £a

and rf in Fa(i7) are isomorphic, there exists a covering {&i: U% —> U}
such that a*£ = a*rj, and

(ii) for each object U of C and each £ G Fa((7), there exists a covering
{ai: Ui->U} and elements & G F(Ui) such that ff = cr*£.

THEOREM 1.34. Let C be a site, F: Copp -> (Set) a functor.
(i) / / F a : Copp —> (Set) is a sheafification of F, any morphism from F to

a sheaf factors uniquely through F a .
(ii) There exists a sheafification F -> F a

; which is unique up to a canonical
isomorphism.
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(iii) The natural transformation F -> F a is injective if and only if F is
separated.

SKETCH OF PROOF. For part s(i), let <j>: F -> G be a natural transfor-
mation from F to a sheaf G: Copp -> (Set).

Let us prove the first part. For each object U of C, we define an equiv-
alence relation ^ on FU as follows. Given two sections a and & in FU, we
write a ~ b if there is a covering XJ% ~> C/ such that the pullbacks of a and 6
to each E/j coincide. We check easily that this is an equivalence relation, and
we define FSU = FU/ ~ . We also verify that if V -> U is an arrow in C, the
pullback FU -» FV is compatible with the equivalence relations, yielding a
pullback FSU -> FSV. This defines the functor Fs with the surjective mor-
phism F —» Fs. It is straightforward to verify that Fs is separated, and that
every natural transformation from F to a separated functor factors uniquely
through Fs.

To construct F a , we take for each object U of C the set of pairs ({Ui —>•
[/}, {a^}), where {£7̂  —> U} is a covering, and {ai} is a set of sections with
di e FsUi such that the pullback of ai and ctj to Fs(C/i Xu Uj), along the
first and second projection respectively, coincide. On this set we impose
an equivalence relation, by declaring ({Ui -» U},{ai}) to be equivalent to
({Vj —> C/}, {bj}) when the restrictions of a; and bj to Fs(UiXuVj), along the
first and second projection respectively, coincide. To verify the transitivity
of this relation we need to use the fact that the functor Fs is separated.

For each U we call F*U the set of equivalence classes. If V —> U is
an arrow, we define a function F^U -» F^V by associating with the class
of a pair ({U{ -> [/}, {ai}) in FaC/ the class of the pair ({Ui Xu V},P*ai),
where pi'. Ui XJJ V —> Ui is the projection. Once we have checked that
this is well defined, we obtain a functor F a : Copp —> (Set). There is also a
natural transformation Fs -> .Fa, obtained by sending an element a £ FSU
into ({[/ = £/},a). Then one verifies that F a is a sheaf, and that the
composition of the natural transformations F —>• Fs and F s —>> F a has the
desired universal property.

The unicity up to a canonical isomorphism follows immediately from
part (i). Part (iii) follows easily from the definition. 4fc

1.4. Equivalence relations

1.4.1. Equivalence relations as categories. The notion of category
generalizes the notion of set: a set can be thought of as a category in which
every arrow is an identity. Furthermore funtors between sets are simply
functions.

It is also possible to characterize the categories that are equivalent to a
set: these are the equivalence relations.

Suppose that R C X x X is an equivalence relation on a set X. We can
produce a category (X, R) in which X is the set of objects, R is the set of
arrows, and the source and target maps R —» X are given by the first and
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second projection. Then given x and y in X, there is precisely one arrow
(#, y) if x and y are in the same equivalence class, while there is none if they
are not. Then transitivity assures us that we can compose arrows, while
refiexivity tell us that over each object x E X there is a unique arrow (#, #),
which is the identity. Finally symmetry tells us that any arrow (#, y) has
an inverse (y,x). So, (X, R) is groupoid such that from a given object to
another there is at most one arrow.

Conversely, given a groupoid such that from a given object to another
there is at most one arrow, if we call X the set of objects and R the set of
arrows, the source and target maps induce an injective map R -» X x X,
that gives an equivalence relation on X.

So an equivalence relation can be thought of as a groupoid such that
from a given object to another there is at most one arrow. Equivalently, an
equivalence relation is a groupoid in which the only arrow from an object
to itself is the identity.

PROPOSITION 1.35. A category is equivalent to a set if and only if it is
an equivalence relation.

PROOF. If a category is equivalent to a set, it is immediate to see that
it is an equivalence relation. If (X, R) is an equivalence relation and X/R
is the set of isomorphism classes of objects, that is, the set of equivalence
classes, one checks immediately that the function X —>• X/R gives a functor
that is fully faithful and essentially surjective, so it is an equivalence. 4fc

1.4.2. Equivalence relations in a category. Recall that an arrow
X —>> Y in a category C is categorically injective, or simply injective, when
the induced function X(U) —> Y(U) is injective for all objects U of C. In
other words, X —> Y is injective if X is a subfunctor of Y. If C is the
category of topological spaces, then a continuous function is injective in
the categorical sense if and only if it is actually injective (to check that
categorical injectivity implies injectivity use maps from a point).

Let C be a category, that we assume, as always, to have products and
fiber products.

DEFINITION 1.36. An equivalence relation in C consists of two objects
X and R, together with an injective arrow R -> X x X, such that for any
object U of C the injective function R(U) -» X(U) x X(U) makes R(U) into
an equivalence relation on X(U).

Given an equivalence relation (X, R), the source and target arrows s: R -»
X and t: R —> X are respectively the first and second projection.

Here is another way of expressing this. Suppose that p: R —> X x X
is an injective arrow; we will denote by s: R -> X and t: R —> X the first
and second projection. For any object U of C we get a relation R(U) C
X(U) x X(U) on the set X(U). This relation is reflexive if and only if
the diagonal function X(U) —> X(U) x X(U) lifts uniquely to a function
X{U) —> R{U); and if this happens this function for each U defines a natural
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transformation of functors X —> i?, hence, by Yoneda's lemma, an arrow
e: X —> R in C, with the property that its composition with the given
morphism p: R —> X x X is the diagonal X -~± X x X.

Similarly, symmetry can be expressed by saying that the involution X x
X ~ X x X that switches the two factors lifts to an involution i : R -> R.

Transitivity can also be expressed in this style, but this is a little trickier.
Consider the fiber product RxxR, where the first factor is considered as an
object over X via the arrow s: R —> X, and the second factor via t: R -» X.
For any object U of C, the set (R Xx R)(U) is the set of pairs of elements
(u, v) of R(U) such that the target of u equals the source of v\ there is a
natural function (R xx R){U) - ) ( I x X)(U) to the pair (s(v),t(u)). This
defines a natural transformation, hence an arrow, Rxx R —>• X x X. The
equivalence relation is transitive if and only if this arrow Rxx R -> X x X
lifts to an arrow m: R Xx R —t R.

Note that the definition of m may look a little strange: for example,
if X is a set and R C X x X, we are defining m((y,;z), (x,y)) = (x,z),
while it might seem more natural to switch the roles of s and t and send
((#,y),(y,2)) t o (x>z)- The reason for our choice is that if we want to
interpret an equivalence relation as a category, we think of the pair (#, y)
as an arrow from x to y, and m gives the composition of arrows with the
standard convention.

So we have the following alternate definition.

DEFINITION 1.37. An equivalence relation (X,R) in C is an injective
arrow p: R -> X x X such that:

(i) The diagonal arrow X —> X x X lifts to an arrow e: X —¥ R,
(ii) the composition of p: R -> X xX with the involution X xX ~ X xX

that switches the two factors lifts to an arrow R —> JR, and
(iii) The arrow RxxR —> X x X corresponding to the natural transforma-

tion sending each pair (u,v) G (R Xx R){U) to the pair (s(v),t(u)) G
(X x X)(U) lifts to an arrow m: R Xx R -> R.

There is an obvious notion of morphism of equivalence relations, that
makes equivalence relations into a category.

DEFINITION 1.38. A morphism / : (X,R) -> (X',R') of equivalence re-
lations is an arrow / : X ~ Xf such that the composition of R -» X x X
with f x f: X x X -± Xf x X' lifts to an arrow R -> R1.

Examples of equivalence relations are obtained from arrows in C\ an
arrow X -> Y in C yields an equivalence relation X Xy X <-* X x X.
This gives a functor from the category of arrows in C to the category of
equivalence relations in C.

More generally, one can consider a representable morphism to a functor.
The following will be very useful.

EXAMPLE 1.39. Let X be an object of C, F: Copp -> (Set) a functor,
I - ) F a representable morphism. Then fiber product R = X Xp X is
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representable, and with its natural injective arrow R —> X x X defines an
equivalence relation on X.



CHAPTER 2

Fibered categories

2.1. Fibered categories

2.1.1. Definition and first properties. In this section we will fix
a category C with products and fiber products; the topology will play no
role. We will study categories over C, that is, categories T equipped with a
functor pj?: T —> C.

We will draw several commutative diagrams involving objects of C and
T\ an arrow going from an object f of T to an object U of C will be of type
"£ !-)• Un, and will mean that pjr£ = U. Furthermore the commutativity of
the diagram

will mean that = /•

DEFINITION 2.1. Let T be a category over C. An arrow 0: f
is cartesian if for any arrow ip: ( ^ r] in J7 and any arrow /i:
with p^-0 o h = p^"05 there exists a unique arrow 6: £ —> £ with
and ^ o </> = £, as in the commutative diagram

77 of T
~^ P:F£

If f —)• ry is a cartesian arrow of ^* mapping to an arrow U
also say that ^ is a pullback of rj to U.

V of C, we

REMARK 2.2. The definition of cartesian arrow we give is more restric-
tive than the definition in [SGAl]; however, the resulting notions of fibered
category coincide.

26
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Notice that given two pullbacks (/>: £ -» rj and </>: £ -> 77 of 77 to 17, the
unique arrow 0: £ —> £ that fits into the diagram

is an isomorphism. In other words, a pullback is unique, up to a unique
isomorphism.

The following facts are easy to prove, and are left to the reader.

PROPOSITION 2.3.

(i) / / T is a category over C, the composition of cartesian arrows in T is
cartesian.

(ii) A cartesian arrow of T whose image in C is an isomorphism is also an
isomorphism.

(iii) If £ —> 7] and r] —> £ are arrows in T and rj —> £ is cartesian, then
£ —» 7] is cartesian if and only if the composition £ -> £ is cartesian.

(iv) Let p?\ T -+ C and pg: Q -> C be categories over C. If F: J7 -> Q is
a functor with pg o F = p?, £ —>• r] is an arrow in T that is cartesian
over its image F£ —> Fr] in T, and F£ —> FTJ is cartesian over its
image pg£ -> pgrj in C, then £ -± rj is cartesian over pg£ —> pgrj.

DEFINITION 2.4. A fibered category over C is a category T over C, such
that given an arrow / : U —>• V in C and an object 77 of T mapping to V,
there is a cartesian arrow </>: £ -» TJ with pf(j) = f.

If T and Q are fibered categories over C, then a morphism of fibered
categories F: T —>• ^ is a functor such that:

(i) F is base-preserving, that is, p ^ o f = p^-;
(ii) F sends cartesian arrows to cartesian arrows.

In other words, in a fibered category f - l C w e can pull back objects of
T along any arrow of C.

Notice that in the definition above the equality pg o F — pj: must be
interpreted as an actual equality. In other words, the existence of an iso-
morphism of functors between pg o F and p? is not enough.

PROPOSITION 2.5. Let p?: T -> C and pg: Q -> C be categories over C,
F: J7 -> G a functor with pg o F = p?. Assume that Q is fibered over C.

(i) If T is fibered over Q, then it also fibered over C.
(ii) If F is an equivalence of categories, then T is fibered over C.

PROOF. Part (i) follows from Proposition 2.3 (iv). Part (ii) follows from
the easy fact that if F is an equivalence then T is fibered over Q. 4*
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2.1.2. Fibered categories as lax 2-functors.

DEFINITION 2.6. Let T be a fibered category over C. Given an object
U of C, the fiber T{JJ) of T over U is the subcategory of T whose objects
are the objects £ of T with p^£ = ?/, and whose arrows are arrows cj) m F
with P;F</> = idc/.

By definition, if F: T —> £/ is a morphism of fibered categories over C
and 17 is an object of C, the functor F sends «F(i7) to £(17), so we have a
restriction functor Fv: T(U) -> Q{U).

Notice that formally we could give the same definition of a fiber for any
functor p^r: T —> C, without assuming that T is fibered over C. However, we
would end up with a useless notion. For example, it may very well happen
that we have two objects U and V of C which are isomorphic, but such that
T(U) is empty while T(V) is not. This kind of pathology does not arise for
fibered categories, and here is why.

Let T be a category fibered over C, and / : U -» V an arrow in C. For
each object 77 over V, we choose a pullback (j)^: /*r/ —> rj of 77 to U. We also
define a functor /* : T{V) —> F{U) by sending each object 77 of ^(V) to /*??,
and each arrow /3: 77 —> 7/ of ^"(f/) to the unique arrow /*/?: /*77 —> f*rjr in

making the diagram

commute.
In this way we associate with each object U of C a category ^(C/), and

to each arrow / : [ / - ) F a functor /*: ^ (V) —>• T{U). It is very tempting
to believe that in this way we have defined a functor from C to the cate-
gory of categories; however, this is not quite correct. First of all, pullbacks
id£f: T{U) -> T{U) are not necessarily identities. Of course we could just
choose all pullbacks along identites to be identities on the fiber categories:
this would certainly work, but it is not very natural, as there are often natu-
ral defined pullbacks where this does not happen (in Example 2.7 and many
others). What happens in general is that, when U is an object of C and £ an
object of F{U), we have the pullback €£/(£): id^£ —>• £ is an isomorphism,
because of Proposition 2.3 (ii), and this defines an isomorphism of functors

A more serious problem is the following. Suppose that we have two
arrows f:U-}V and g: V -> W in C, and an object £ of T over W.
Then f*g*C is a pullback of £ to U\ however, pullbacks are not unique,
so there is no reason why f*g*( should coincide with (gf)*C- However,
there is a canonical isomorphism « /^ ( ( ) : /*#*( ^ (p/)*C i n ^(U), because
both are pullbacks, and this gives an isomorphism of functors aj g: f*g* ~
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So, a fibered category almost gives a functor from C to the category of
categories, but not quite. The point is that the category of categories is not
just a category, but what is known as a 2-category; that is, its arrows are
functors, but two functors between the same two categories in turn form a
category, the arrows being natural transformations of functors. Thus there
are 1-arrows (functors) between objects (categories), but there are also 2-
arrows (natural transformations) between 1-arrows.

Analogously, a morphism of fibered category F\ T -* Q can be thought
of as a "natural tranformation" from the "functor" T to the "functor" Q.
In fact, the restriction Fy\ T{U) —>• Q{U) is a functor from the category
T{U) to the category G{U). However, given an arrow / : U -> V in C, the
diagram of functors

does not commute. In fact, since F carries cartesian arrows to cartesian ar-
rows, for each object 77 of F(V), F(f*£) = Fu(f*£) is a pullback of 77 to U\
but there is no reason why it should coincide exactly with f*{Frj). However,
since both F(f*r)) and f*(Frj) are pullbacks, there is a canonical isomor-
phism Urji F(f*Tj) ~ f*(Frj) in G{U). When we assign the isomorphism uv

to each object 77 we define an isomorphism of functors u: F\j o /* —> /* o Fy.
This means that in fact the square above is a commutative square, in the
sense of Definition 2.31.

This point of view will not be used in this notes: it is interesting, and
has many advantages, but it is technically rather involved; I will discuss it
in a later version. Only the following construction will be useful in the rest
of the notes: we are going to need the fibered category associated with an
ordinary functor Copp -> (Cat).

2.1.3. The fibered category associated with a functor to the
category of categories. Let $ : Copp —>• (Cat) be a contravariant func-
tor from the category C into the category of categories, considered as a
1-category. This means that with each object U of C we associate a cate-
gory $ [ / , and for each arrow f:U—>V gives a functor $ / : &V -+ <!>[/, in
such a way that $idf/: $U -> $U is the identity, and $(g o / ) = $ / o <frg
every time we have two composable arrows / and g in C.

To this $ we can associate a fibered category T -* C, such that for any
object U in C the fiber TfJJ) is canonically equivalent to the category QU.
An object of T is a pair (£, U) where U is an object of C and £ is an object of
T(U). An arrow (a, / ) : (£, U) -> (7?, V) in T consists of an arrow f:U->V
in C, together with an arrow £ —> $7(77).
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The composition is defined as follows: if (a, / ) : (£, U) —> (77, V) and
(6,5): (77, V) —> (£, W) are two arrows, then

(b,g) o (aj) = ($bof,gof): (£,U) -> (C,W).

There is an obvious functor T -> C that sends an object (£, 17) into U
and an arrow (a, / ) into / ; I claim that this functor makes T into a fibered
category over C. In fact, given an arrow / : U —> V in C and an object (77, V)
in ^ ( V ) , then ($/(7/), C/) is an object of F(U), and it is easy to check that
the pair (/, i d ^ ^ ) ) gives a cartesian arrow (<f>f(r]),U) -» (rj,V).

The fiber of .T7 is canonically equivalent to the category $C7: the equiv-
alence T(U) -» $E7 is obtained at the level of objects by sending (£, U) to
£, and at the level of arrows by sending (a, i&u) to a.

2.1.4. Examples of fibered categories.

EXAMPLE 2.7. Let T be the category of arrows in C\ the objects are the
arrows in C, while an arrow from f:S—>U to g: T -^ V is a commutative
diagram

5 >T .

U >V
The functor pj?: T —> C sends each arrow S —> U to its codomain £/, and
each commutative diagram to its bottom row.

I claim that T is a fibered category over C. In fact, it easy to check that
the cartesian diagrams are precisely the cartesian squares, so the statement
follows from the fact that C has fibered products.

EXAMPLE 2.8. As a variant of the example above, consider a stable
property (Definition 1.14) P of arrows in C. We can consider the category
whose objects are arrows in C having the property P , where the arrows are
given by commutative squares as above. This a category fibered over C.

EXAMPLE 2.9. Let G a topological group. The classifying stack of G is
the fibered category BG —>• (Top) over the category of topological spaces,
whose objects are principal G bundles P —> 5, and whose arrows (0, / ) from
P —> U to Q —> V are commutative diagrams

where the function (j) is G-equivariant. The functor BG —> (Top) sends a
principal bundle P —> U into the topological space [/, and an arrow (0, / )
into / .

Contrary to the usual convention, in a principal G-bundle P —> S we
will write the action of G on the left.
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It is important to notice that any such diagram is cartesian; so BG —>-
(Top) has the property that each of its arrows is cartesian.

2.2. Categories fibered in groupoids

DEFINITION 2.10. A category fibered in groupoids over C is a category
T fibered over C, such that the category T{U) is a groupoid for any object
U oiC.

In the literature one often finds a different definition of a category fibered
in groupoids.

PROPOSITION 2.11. Let T be a category over C. Then T is fibered in
groupoids over C if and only if the following two conditions hold.

(i) Every arrow in T is cartesian.
(ii) Given an object rj of T and an arrow / : [ / - » pTr\ of C, there exists

an arrow (/>: £ —> r\ of T with p^c/) = f.

P R O O F . Suppose that these two conditions hold. Then it is immediate
to see that T is fibered over C. Also, if <f>\ £ —> rj is an arrow of F(U) for
some object U of C, then we see from condition 2.11 (i) that there exists
an arrow i/>: r] —> £ with pfip = idu and fyty — id^; that is, every arrow in
T(U) has a right inverse. But this right inverse V also must also have a
right inverse, and then the right inverse of i/> must be <j>. This proves that
every arrow in ^(U) is invertible.

Conversely, assume that T is fibered over C, and each T{U) is a groupoid.
Condition (ii) is trivially verified. To check condition (i), let (f>: £ —> r) be
an arrow in C mapping to / : U —>• V in C. Choose a pullback <j>': £' —> rj
of 7] to U] by definition there will be an arrow a: £ —> £' in ^(U) such that
(j)'a = c/>. Since T(U) is a a groupoid, a will be an isomorphism, and this
implies that <f> is cartesian. 4fc

COROLLARY 2.12. Any base preserving functor from a fibered category
to a category fibered in groupoids is a morphism.

P R O O F . This is clear, since every arrow in a category fibered in groupoids
is cartesian. A

Of the examples of Section 2.1, 2.7 and 2.8 are not in general fibered in
groupoids, while the classifying stack of a topological group introduced in
2.9 is always fibered in groupoids.

Give a fibered category T -» C, the subcategory T^x, whose objects are
the same as the objects of T, but the arrows are the cartesian arrows, is
fibered in groupoids. Any morphism Q —> T of fibered categories, where Q
is fibered in groupoids, factors uniquely through
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2.3. Functors and categories fibered in sets

As we remarked at the beginning of Section 1.4, categories are gener-
alizations of sets: sets are categories in which all the arrows are identities.
Similarly, fibered categories are generalizations of functors.

DEFINITION 2.13. A category fibered in sets over C is a category T fibered
over C, such that for any object JJ of C the category T{U) is a set.

Here is an useful characterization of categories fibered in sets.

PROPOSITION 2.14. Let T be a category over C. Then T is fibered in
sets if and only if for any object r) of T and any arrow / : [ /—> p̂ -ry of C,
there is a unique arrow §\ £ —» rj of T with p ^ = /•

PROOF. Suppose that T is fibered in sets. Given rj and f:U-> pj?r] as
above, pick a cartesian arrow £ —» rj over / . If £' -> 77 is any other arrow over
/ , by definition there exists an arrow £' —> £ in T{U) making the diagram

\ /

v
commutative. Since F(U) is a set, it follows that this arrow £' —> £ is the
identity, so the two arrows £ —> rj and £' -> 77 coincide.

Conversely, assume that the condition holds. Given a diagram

the condition implies that the only arrow 6: £ —> £ over h makes the diagram
commutative; so the category T is fibered.

It is obvious that the condition implies that T{U) is a set for all U. 4fc

So, for categories fibered in sets the pullback of an object of T along an
arrow of C is strictly unique. It follows from this that when T is fibered in
sets over C and / : U -» V is an arrow in C, the pullback map /* : F(V) -»
F(U) is uniquely defined, and the composition rule f*g* = (gf)* holds.
Also for any object U of C we have that id^: T(U) -> T{U) is the identity.
This means that we have defined a functor $ ^ : Copp —> (Set) by sending
each object U of C to ^(f / ) , and each arrow / : U —> V of C to the function

:

Furthermore, if F: T —> Q is a morphism of categories fibered in sets,
because of the condition that pg o F = p^-, then every arrow in ^(U),
for some object U of C, will be send to T{U) itself. So we get a function
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Fu: T(U) -> G{U). It is immediate to check that this gives a natural
tranformation (j)p: Q? —> Qg.

There is a category of categories fibered in sets over C, where the arrows
are morphisms of fibered categories; the construction above gives a functor
from this category to the category of functors Copp -» (Set).

PROPOSITION 2.15. This is an equivalence of the category of categories
fibered in sets over C and the category of functors Copp -» (Set).

P R O O F . The inverse functor is obtained by the construction of 2.1.3. If
$ : Copp -> (Set) is a functor, we construct a category fibered in sets T§ as
follows. The objects of T<& will be pairs ([/, £), where U is an object of C,
and £ G &U. An arrow from (J7, £) to (V, 77) is an an arrow / : U —> V of C
with the property that Qfrj = £. It follows from Proposition 2.14 that T<$>
is fibered in sets over C.

To each natural transformation of functors (j): <l> —» $ ' we associate a
morphism F^: T$ -> ^ $ / . An object (17, £) of ^ will be sent to (U,(j)uQ>
If / : ([/, £) -> (V, 77) is an arrow in ^ $ , then / is simply an arrow f:U^V
in C, with the property that ^/(r/) = £. This implies that ^'
<t>u$(f){w) — <Pv€i s o the same / will yield an arrow / : ([/, <t>uQ

We leave it the reader to check that this defines a functor from the
category of functors to the category of categories fibered in sets. 4*

So, any functor Copp —> (Set) will give an example of a fibered category
over C.

In particular, given an object X of C, we have the representable functor
hx: Copp -» (Set), defined on objects by the rule hxU = Homc((7,X).
The category in sets over C associated with this functor is the category
(C/X), whose objects are arrows U —> X, and whose arrows are commutative
diagrams

U >V .
\ S

X
So the situation is the following. Prom Yoneda's lemma we see that the

category C is embedded into the category of functors Copp -> (Set), while
the category of functors is embedded into the category of fibered categories.

Prom now we will identify a functor F: Copp -> (Set) with the corre-
sponding category fibered in sets over C, and we will (inconsistently) call a
category fibered in sets simply "a functor".

2.3.1. Categories fibered over an object.

PROPOSITION 2.16. Let Q be a category fibered in sets over C, T another
category, F: T —> Q a functor. Then T is fibered over Q if and only if it is
fibered over C via the composition pg o F: jF —» C.

Furthermore, T is fibered in groupoids over Q if and only if it fibered in
groupoids over C, and is fibered in sets over Q if and only if it fibered in sets
over C.
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PROOF. sOne sees immediately that an arrow of Q is cartesian over its
image in T if and only if it is cartesian over its image in C, and the first
statement follows from this.

Furthermore, one sees that the fiber of T over an object U of C is the
disjoint union, as a category, of the fibers of T over all the objects of Q over
U\ if these fiber are groupoids, or sets, so is their disjoint union. 4

This is going to be used as follows. Suppose that 5 is an object of
C, and consider the category fibered in sets {C/S) -> C, corresponding to
the representable functor hs: Copp —> (Set). By Proposition 2.16, a fibered
category T —> {C/S) is the same as a fibered category T —>> C, together with
a morphism T -> C.

It is interesting to describe this process for functors. Given a functor
F: (C/S)opp -> (Set), this corresponds to a category fibered in sets F -»
(C/S); this can be composed with the forgetful functor (C/S) -> C to get
a category fibered in sets F —> C, which in turn corresponds to a functor
Ff: Copp -> (Set). What is this functor? One minute's thought will convince
you that it can be described as follows: F'(U) is the disjont union of the
F(U A S) for all the arrows u: U -» S in C. The action of F' on arrows is
the obvious one.

2.4. Equivalences of fibered categories

2.4.1. Natural transformations of functors. The fact that fibered
categories are categories, and not functors, has strong implications, and
does cause difficulties. As usual, the main problem is that functors between
categories can be isomorphic without being equal; in other words, functors
between two fixed categories form a category, the arrows being given by
natural transformations.

DEFINITION 2.17. Let T and Q be two categories fibered over C, F,
G: T —>• Q two morphisms. A base-preserving natural transformation a: F —>
G is a natural transformation such that for any object £ of T, the arrow
ae: Fi -> Gi is in Q(U), where U d- p ^ = pg(FZ) = pg{G£).

An isomorphism of F with G is a base-preserving natural transformation
F —» G which is an isomorphism of functors.

It is immediate to check that the inverse of a base-preserving isomor-
phism is also base-preserving.

There is a category whose objects are the morphism from a T to £,
and the arrows are base-preserving natural transformations; we denote it by
Home OF, Q).

2.4.2. Equivalences.

DEFINITION 2.18. Let T and Q be two fibered categories over C. An
equivalence, or isomorphism, of T with Q is a morphism F: T —» Q, such
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that there exists another morphism G: Q —» T, together with isomorphisms
of G o F with id^- and of F o G with i&g.

We call G simply an inverse to F.

PROPOSITION 2.19. Suppose that T, F1, Q and Q1 are categories fibered
over C. Suppose that F: T1 —> T and G: Q —> Q' are equivalences. Then
there an equivalence of categories

Home[T,Q) —> H o m c ( ^ , G')

that sends each <fr: T —>• Q into the composition

G o $ o f : F ->G'.

PROOF. TO BE ADDED 4

The following is the basic criterion for checking whether a morphism of
fibered categories is an equivalence.

PROPOSITION 2.20. Let F: T-» Q be a morphism of fibered categories.
Then F is an equivalence if and only if the restriction FJJ : F(U) —» G(U) is
an equivalence of categories for any object U of C.

P R O O F . Suppose that G: Q —> T is an inverse to F\ the two isomor-
phisms F o G ~ idg and G o F ~ id^- restrict to isomorphisms Fu o G\j ^
idg(U) a n ( i @u ° Fu — idjr(c/), s o Gu is a n inverse to Fu>

Conversely, we assume that Fu: F{U) ~> G{U) is an equivalence of
categories for any object U of C, and construct an inverse G: G -> T. Here
is the main fact that we are going to need.

LEMMA 2.21. Let F\ T -* G a morphism of fibered categories such that
every restriction Fu: F(U) —> G(U) is fully faithful. Then the functor F is
fully faithful.

P R O O F . We need to show that, given two objects £' and rjf of T and an
arrow (j>: F£' —> Frf in G, there is a unique arrow $: £' —> rj1 in T with
F(j)f = (j). Set £ = Ft! and r\ = Frf. Let rfx -> rf be a pullback of rf to
[/, TJI = Ffi[. Then the image r/i -» 77 of r/5. ~^ v' ls cartesian, so every
morphism ^ —>• rj factors uniquely as £ —>• 771 —> 77, where the arrow £ -> £1
is in G(U). Analogously all arrows £' —>• 7/ factor uniquely through through
771; since every arrow £ -» 771 in (?(E/) lifts uniquely to an arrow £' -» 77̂  in

), we have proved the Lemma. 4

For any object £ of G pick an object G£ of T(U), where U =
together with an isomorphism a^: £ a F(G£) in G(U)\ these G£ and a^
exist because Fu: F(U) —> &(f) is an equivalence of categories.

Now, if (f>: £ —»• 77 is an arrow in ^, by the Lemma there is a unique
arrow G</>: G£ -> G77 such that F{G<t>) = a^ o ̂ o a^"1, that is, such that the
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diagram

commutes.
These operations define a functor G: Q —>• T. It is immediate to check

that by sending each object £ to the isomorphism a^: £ ~ F(G£) we define
an isomorphism of functors id^ ~ F o G: G -+ Q.

We only have left to check that G o F: J7 -± J7 is isomorphic to the
identity id^-.

Fix an object £' of T over an object U of C; we have a canonical isomor-
phism aF^: Ft! - F(G{F£')) in £([/)• Since F*/ is fully faithful there is a
unique isomorphism /?£/: £' ~ G(F£f) in ^(C/) such that F/3^/ = ap?', one
checks easily that this defines an isomorphism of functors /3: GoF ~ idg. 4fc

2.4.3. Quasifunctors. A category can be equivalent to a set without
being one: the categories equivalent to sets are precisely the equivalence
relations. There is an analogous result for fibered categories.

DEFINITION 2.22. A category T over C is a quasifunctor, or that it is
fibered in equivalence relations if it is fibered, and each fiber T{U) is an
equivalence relation.

We have the following characterization of quasifunctors.

PROPOSITION 2.23. A category T over C is a quasifunctor if and only if
the following two conditions hold.

(i) Given an object rj of T and an arrow f:U-t pjrrj of C, there exists
an arrow <f>: £ -» 77 of T with pjrcj) = f.

(ii) Given two objects £ and rj of T and an arrow f: PJF£ —> PTV of C,
there exists at most one arrow £ -> 77 over f.

The easy proof is left to the reader.

PROPOSITION 2.24. A fibered category over C is a quasifunctor if and
only if it is equivalent to a functor.

PROOF. This is an application of Proposition 2.20.
Suppose that a fibered category T is equivalent to a functor <fr; then every

category T(U) is equivalent to the set $[ / , so T is fibered in equivalence
relations over C by Proposition 1.35.

Conversely, assume that T is fibered in equivalence relations. In partic-
ular it is fibered in groupoid, so every arrow in T is cartesian, by Proposi-
tion 2.11. For each object U of C choose a set of representatives &U for the
isomorphism classes of objects in F{U). For each arrow / : U —» V and each
object r) of $[ / , choose a pullback f*r] —> r] of rj to U; we may assume that
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f*r) is in $[/. Any two pullbacks are isomorphic in F(U), so in fact f*rj
is unique (the arrow f*rj —> rj might not be, though). We define a functor
$: Copp —> (Set) by sending each object U to $[/, and associating with each
arrow f:U^V the function /*: $ F -> $[/. If we think of $ as a category
fibered in sets, then by construction $ is a subcategory of T\ the embedding
$ C f induces an equivalence of each sets $£/ with the equivalence relation
T{U), so by Proposition 2.20 it is an equivalence. 4*

Here are a few useful facts.

PROPOSITION 2.25.

(i) If Q is groupoid, then so is Horned,Q).
(ii) If Q is a quasifunctor, then Horned,Q) is an equivalence relation.

(iii) If Q is a functor, then Horned, Q) is a set.

We leave the easy proofs to the reader.
In 2-categorical terms, part (iii) says that the 2-category of categories

fibered in sets is in fact just a 1-category, while part (ii) says that the 2-
category of quasisets is equivalent to a 1-category.

2.5. Objects as fibered categories and the 2-Yoneda lemma

2.5.1. Representable fibered categories. In 1.1 we have seen how
we can embed a category C into the functor category Func(Copp, (Set)), while
in 2.3 we have seen how to embed the category Func(Copp, (Set)) into the
2-category of fibered categories over C. By composing these embeddings we
have embedded C into the 2-category of fibered categories: an object X of C
is sent to the fibered category (C/X) —> C. Furthermore, an arrow f:X-*Y
goes to the morphism of fibered categories (C/f): (C/X) —> (C/Y) that

sends an object U -> X of (C/X) to the composition U -> X A Y. The
functor (C/f) sends an arrow

of (C/X) to the commutative diagram obtained by composing both sides
wi th / : X-> Y.

This is the 2-categorical version of the weak Yoneda lemma.

THE WEAK 2-YONEDA LEMMA. The function that sends each arrow
f: X -+Y to the functor (C/f): (C/X) -> (C/Y) is a bisection.

DEFINITION 2.26. A fibered category over C is representable if it is equiv-
alent to a category of the form (C/X).

So a representable category is necessarily a quasifunctor, by Proposi-
tion 2.24. However, we should be careful: if T and Q are fibered categories,
equivalent to (C/X) and (C/Y) for two objects X and Y of C, then

Hom(X,y) = Hom((C/X),(C/y)),
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and according to Proposition 2.19 we have an equivalence of categories

Hom((C/X), (C/Y)) ~ Homcp7, G);

but Homc(J-*, G) need not be a set, it could very well be an equivalence
relation.

2.5.2. The 2-categorical Yoneda lemma. As in the case of func-
tors, we have a stronger version of the 2-categorical Yoneda lemma. Suppose
that T is a category fibered over C, and that X is an object of C. Suppose
that we are given a morphism F: (C/X) —> T\ to this we can associate
an object F(\dx) € F(X). Also, to each base-preserving natural transfor-
mation a: F —> G of functors F,G: (C/X) —> T we associate the arrow
a^x : F(idx) -> G(idx)- This defines a functor

Home ((C/X), JF) —>p(x).

Conversely, given an object £ G (̂-X") we get a functor F^: (C/X) -> J7

as follows. Given an object (f)\ U —> X of (C/X), we define F^((f)) = <f>*£ G
T(U); to an arrow

in (C/X) we associate the only arrow 0: </>*£ —> V**? in T{U) making the
diagram

U ^

commutative. We leave it to the reader to check that F^ is indeed a functor.

2-YONEDA LEMMA. The two functors above define an equivalence of
categories

PROOF. TO check that the composition

T{X) - + Homc{(C/X),T) —

is isomorphic to the identity, notice that for any object £ G F(X), the com-
position applied to £ yields i^(£) = id^£, which is canonically isomorphic
to £. It is easy to check that this defines an isomorphism of functors.

For the composition

Homc((C/X),^) —>T{X) —+ Home ((C/X), ?)

take a morphism F: (C/X) -> T and set £ = F(idx)- We need to produce a
base-preserving isomorphism of functors of F with Ff. The identity idx is a
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terminal object in the category (C/X), hence for any object (/>: U -> X there
is a unique arrow (j)\ idx, which is clearly cartesian. Hence it will remain
cartesian after applying F, because F is a functor: this means that F(<f>) is a
pullback of £ = F(\&x) along </>: [/ -> X, so there is a canonical isomorphism
F^((/)) = 0*^ ~ ir(</>) in F(U). It is easy to check that this defines a base-
preserving isomorphism of funtors, and this ends the proof. 4fc

We have identified an object X with the functor h^ : Copp -> (Set) it
represents, and we have identified the functor hx with the corresponding
category (C/X): so, to be consistent, we have to identify X and (C/X). So,
we will write X for (C/X).

As for functors, the strong form of the 2-Yoneda lemma can be used
to reformulate the condition of representability. A morphism (C/X) ->
T corresponds to an object £ G T(X), which in turn defines the functor
F': (C/X) —> T described above; this is isomorphic to the original functor
F. Then F' is an equivalence if and only if for each object U of C the
restriction

F{j: Uomc(U,X) = (C/X)(U) —> T(U)
that sends each f:U->Xto the pullback /*£ G F(U), is an equivalence
of categories. Since Homc([/, X) is a set, this is equivalent to saying that
T(U) is a groupoid, and each object of T(U) is isomorphic to the image
of a unique element of Homc(£/, X) via a unique isomorphism. Since the
isomorphisms p ~ /*£ in U correspond to cartesian arrows p —> £, and in a
groupoid all arrows are cartesian, this means that T is fibered in groupoids,
and for each p G T{U) there exists a unique arrow p -> £. We have proved
the following.

PROPOSITION 2.27. A category fibered in groupoids T in C is repre-
sentable if and only if T is fibered in groupoids, and there is an object X of
C and an object £ of T(U), such that for any object p of T there exists a
unique arrow p —> £ in J7.

2.6. Fiber products of fibered categories

In this section all categories will be fibered over a fixed category C, and
all functors will be morphisms of fibered categories.

The notion of fiber product of fibered categories is a little subtle. There
is an obvious definition, which is as follows.

DEFINITION 2.28. Let T\, T2 and Q be fibered categories over C, F\: T\ -»
naive

Q and F2: T2 —>• Q morphisms. The naive fiber product T\ x QT<I is the sub-
category of the product T\ x T2 consisting of those pairs of objects (£1, £2)
with Fifi = ^2^2, and those arrows (0i,^>2)' (£1^2) -> (^1?%) with

Fi(f>i = F2(j)2 e Home(Fi£i,Fi771) = H o m ^ k , ^ ) .

This fiber product may seem like the right one. First of all, there is a
naive

functor T\ x QT2 -» C, sending each object (£1,^2) into p^£ i = p^2^25 this
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naive

makes T\ x gT2 into a fibered category over C, in which the cartesian arrows
are the pair (fa, fa) in which each fa is cartesian in T%. Also, the naive fiber
product has the following universal property. There are two morphisms, the

naive naive

projections prx: T\ x g T2 —> T\ and pr2: T\ x g T2 -^ F2-> such that,
if A* is a category, H\\ X -^t T\ and Hz'- X -± T2 are morphisms with

naive

F o H = G o L, there a unique morphism (#1, H2)'. X -* T\ x g ^2 with
priCffi.ffa) = Hx and W2o{HuH2) = H2.

However, the naive fiber product behaves very badly with respect to
naive

natural transformations. For example, if we take the fiber product Q x gG->
where both functors Q -» Q are the indentity, we get a category that is
canonically isomorphic to G-> as we should; but if one functor is the identity,
while the other one is a functor F: Q —> Q that is only isomorphic to the
identity, but is such that the image F£ of each object £ of £, despite being
isomorphic to £, is always different from £, we get that the fiber product

naive

G x g Q is the empty category. This should not be surprising: after all,
two functors are rarely literally the same, they are usually only canonically
isomorphic; this means that the equality of objects that intervenes in the
notion of naive fiber product is often inappropriate.

Our first attempt to fix the definition might be to take as objects of the
"correct" fiber product T\ Xg T2 the pairs (£1,̂ 2) lying over some object
U of C, such that JFi£i is isomorphic to ^£2 in C(U). However, then we
do not know how to define arrows: if i*\£i is isomorphic to ^£2 and Fir]i
is isomorphic to ^2^25 this does not give us the bijective correspondence
between Hom^(Fi£i,Firji) and Hom^(Fi£1,^2^/2) that we need to compare
arrows £1 -> 771 with arrows £2 -* V2- To get this bijective correspondence we
need to have a fixed isomorphism between F\£i and l 7 ^ ; and this suggests
the following definition.

DEFINITION 2.29. Let T\, T2 and Q be categories fibered over a fixed
category C, F\: T\ —>• Q and F2: T2 —> G morphisms. The fiber product
F\ Xg T2 is the category whose objects are triples (£i,£2,^), where £1 and
£2 are objects of T\ and T2 respectively, mapping to the same object U of
C, u is an isomorphism between i*\£i and ^2^2 in G{U). An arrow

is a pair of arrows fa: £1 -> 771 in ^(C/) and fa: & -^ V2 in ^2(^)5 where
^ — P^i^i = P^2^2 and V = p^rji = Pf2r]2i such that the diagram

commutes.
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Notice if we apply pg to the commutative diagram above we get the
equality of arrows

inC.
There is an obvious functor

sending an object (fi,&5u) into pjr^i = p^26-
Here we collect various properties of fiber products that we are going to

need.

PROPOSITION 2.30. In the situation of Definition 2.29, we have the fol-
lowing.

(i) The category T\ Xg T2 is fibered over C.
(ii) If T\ and T2 are fibered in groupoids over C, so is T\ Xg ^2-

(iii) // T\ and T2 are functors over C, then T\ Xg T2 is also a functor,
canonically isomorphic to the fiber product of functors defined in 1.2.1.

We also have two projections prx \ T\XgT2^ T\ and pr2'- T\XgT2^
T2, defined by sending an object (^1,^2,^) to £1 and £2 respectively, and an
arrow (</>i, fa) to (j)\ and fa respectively. The compositions F\ o prx \ T\Xg
?2 -> Q and F2 o pr2: T\ Xg T2 -> Q are not equal; however, there is
a tautological isomorphism of functors between them. In fact, given an
object (£1,62, u) of T\ xg T2, we have Fx o p r i ^ i , ^ , ^ ) = ^16 and F2 o
pr2(£i,^25^) — 2̂̂ 2? and u is an isomorphism of Fi£i with 1^2 in G-

This requires a change in the definition of the universal property for fiber
products, and even of the notion of commutative diagram.

DEFINITION 2.31. A commutative square of categories

consists of four categories and four functors as in the diagram, together with
an isomorphism a: F\ o H\ ~ F2 o H2 of functors % —> Q.

In the definition above, the isomorphism is part of the data that define
the commutative square.

Given a square as above, we get a functor (ffi, #2, OL) : H -» T\ XgT2 by
sending each object £ of % to the triple (i?i£, # 2 ^ «$), and each arrow (/> of
H to the arrow (i?i</>, i?2^)- Conversely, given a functor H: H -> T\ Xg JF2

we get a commutative diagram as above by defining Hi = pr̂  oH: H -^ T{,
while the isomorphism H\^ ~ H2%, giving the isomorphism of functors H\ ~

is the third component of the triple
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2.7. The diagonal of a fibered category and its functors of arrows

2.7.1. The functors of arrows of a fibered category. Suppose that
T -» C is a fibered category; if U is an object in C and £, 77 are objects of
F(U), we denote by Hom[/(£,77) the set of arrow from £ to 77 in F(U).

Let £ and 77 be two objects of T over the same object S of C. Let
u\: U\ —> S and U2: E/2 -> S be arrows in C; these are objects of the category
(C/S). Suppose that f$ -> £ and 77; —>> 77 are pullbacks along i^: Ui -> S for
i = 1, 2. For each arrow f: U\ ^ U2 in (C/S), by definition of pullback
there are two arrows, each unique, a^: £1 —» £2 and /?/: 771 — 7̂72, such that
and the two diagrams

and

commute. By Proposition 2.3 (iii) the arrows OLJ and (3f are cartesian; we
define a pullback function

in which f*(j> is defined as the only arrow /*</>: ^1 —> rji in T(U\) making
the diagram

commute. If we are given a third arrow g: U2 -> Us in (C/S) with pullbacks
£3 -> ^ and 773 -> 7/, we have arrows ag: £2 —> £3 and ^ : 772 -> %; it is
immediate to check that

^ o a / : C i ^ 6 and £ p / = /3p o f3f:

and this implies that

Now, assume that for each arrow f:U-±V and each object 77 of
we have chosen a pullback f*r] -> r] along / . In many cases there is a
naturally given pullback; but in any case the axiom of choice insures that
we can do this. Then we can define a functor

by sending each object u: U -> S into the set Romu(u*£, u*rj) of arrows in
the category F(U). An arrow / : U\ —> U2 from ^ i : U\ —>• S to U2: U2 ~* S
yields a function

and this defines the effect of Hom5(£,7y) on arrows.
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It is easy to check that the functor Honigff,^) is independent of the
choice of pullbacks /*£, in the sense that different choices of pullbacks give
canonically isomorphic functors. Suppose that we have chosen for each
f:U->V and each object £ in T{V) another pullback / v £ -> £: then there
is a canonical isomorphism u*r] ~ uyr) in T{U) for each arrow u: U —> 5,
and this gives a bijective correspondence

Homtf(u*f, 14*77) — Homs(uv£,uV77),

yielding an isomorphism of the functors of arrows defined by the two pull-
backs.

In fact, Homs(£,??) can be more naturally defined as a quasifunctor
'Hom>s(€irl) ~* (C/S); ^ i s does not require any choice of pullbacks.

Prom this point of view, the objects of %oras(£, 77) over some object
u: U -> S of (C/S) are triples

where & —> £ and rji —> rj are cartesian arrows of J7 over u: U —> 5, and
>̂: ^1 —>• 771 is an arrow in T(U). An arrow from (£1 —» £,771 —> 77, </>i)

over u\\ U\ ^ S and (£2 -> £5??2 —>• 7̂, ^2) over t^: U2 —> S is an arrow
/ : Ui -> C/2 in (C/5) such that /*</>2 = 0i.

Prom Proposition 2.23 we see that ^07715( ,̂77) is a quasifunctor over C,
and therefore, by Proposition 2.24, it is equivalent to a functor: of course
this is the functor H.oms(£iT)) obtained by the previous construction.

This can be proved as follows: the objects of Hom5(£,77), thought of
as a category fibered in sets over (C/S) are pairs (fau: U —> 5), where
u: U —> S is an object of (C/S) and 0: u*£ -» 1̂*77 is an arrow in T(U)\
this also gives an object (u*£ -> £,u*r] -> 77,^) of T-toms^^r]) over U. The
arrows between objects of Horn?(£,77) to another are precisely the arrows
between the corresponding objects of %oms(£, 77), so we have an embedding

^, 77) into T-Lomsd^ 77). But every object of l-loms^, TJ) is isomorphic
to an object of Homg(£,77), hence the two fibered categories are equivalent.

2.7.2. The diagonal of a fibered category. These functors of arrows
are linked with the diagonal functor T -> T x T as follows.

Let S be an object of C, £ and 77 two objects of ^ ( 5 ) . By the 2-Yoneda
lemma, these two objects correspond to a morphism S —> T x T, and we
can consider the fiber product T y^TxT S.

PROPOSITION 2.32. The fiber product T *TXT S is equivalent to the
functor Homg (£, 77).

PROOF. TO BE ADDED A

PROPOSITION 2.33. For a fibered category T -> C, the following condi-
tions are equivalent.

(i) For any object S of C and any two objects £ and 77 of F(S), the functor



44 2. FIBERED CATEGORIES

is represent able.
(ii) The diagonal 5: T —> T x T is representable.

(iii) For any two object X and Y of C, and any two morphisms X —» T
and Y —> T, the fiber product X XjrY is representable.

PROOF. The equivalence of (i) and (ii) follows from Proposition 2.32.
From Proposition 2.34 below we see that (ii) implies (iii). 4*

PROPOSITION 2.34. Let T" -* C be a fibered category, X and Y objects of
C, X -> T and Y -» T two arrows corresponding to objects £ G T(X) and
rj e T{Y). Then the fiber product X Xjr Y -> C is equivalent to the func-
tor HomX xy(pr^,p4r/) : (C/X x y)o p p -> (Set), thought of as a fibered
category over C.

The way to consider HornXyY(pr^ f, prf r/) as a fibered category over
(Top) is to compose with the forgetful functor (Top/5) -» (Top), as ex-
plained in 2.3.1.

PROOF. TO BE ADDED A



CHAPTER 3

Stacks

3.1. Descent of objects of fibered categories

Descent theory has a somewhat formidable and totally undeserved rep-
utation among algebraic geometers. In fact, it simply says that under cer-
tain conditions morphisms between objects can be glued together in some
Grothendieck topology, while objects can be constructed locally and then
glued together via isomorphisms that satisfy a cocycle condition.

3.1.1. Glueing continuous maps and topological spaces. The fol-
lowing is the archaetypical example of descent. Take (Cont) to be the cate-
gory of continuous maps (that is, the category of arrows in (Top), as in Ex-
ample 2.7); this category is fibered on (Top) via the functor P(cont): (Cont) —>
(Top) sending each continuous map to its codomain. Now, suppose that
f:X—>U and g: Y —>> U are two objects of (Cont) mapping to the same
object U in (Top); we want to construct a continuous map </>: X —> Y over
[7, that is, an arrow in (Cont) (U) = (Top/C7). Suppose that we are given
an open covering {Ui} of £/, and continuous maps fa: f~lUi —> g~lUi over
Ui\ assume furthermore that the restriction of fa and (j)j to f~1{Ui D Uj) —>
g~1(Ui fl Uj) coincide. Then there is a unique continuous map (/>: X —>• Y
over U whose restriction to each f~lUi coincides with f{.

This can be written as follows. The category (Cont) is fibered over (Top),
and if / : V —> U is a continuos map, X —> U an object of (Cont) (U) =
(Top/{7), then a pullback of X —> U to V is given by the projection V XJJ
X -> V. The functor /* : (Cont)(C7) -> (Cont)(V) sends each object X -» U
to V XJJ X -» V, and each arrow in (Top/C/), given by continuous function
<f>: X -> Y over [/, to the continuous function /*</> = idy Xu f: V Xu X -±
VxvY.

Suppose that we are given two topological spaces X and Y with contin-
uous maps X -> S and Y —> S. Consider the functor

X y ) : (Top/S) -+ (Set)

from the category of topological spaces over 5, defined in Section 2.7. This
sends each arrow U —> 5 to the set of continuous maps Homu{U XsX,U x$
Y) over U. The actions on arrows is obtained as follows: Given a continuous
function / : V -» £/, we send each continuous function <j>\ U XsX -» U :
to the function

45
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Then the fact that continuous functions can be constructed locally and
then glued together can be expressed by saying that the functor

Hom5(X,y): (Top/5)opp -> (Set)

is a sheaf in the classical topology of (Top).
But there is more: not only we can construct continuous functions lo-

cally: we can also do this for spaces, altough this is more complicated.

PROPOSITION 3.1. Suppose that we are given a topological space U with
an open covering {Ui}; for each triple of indices i, j and k set Uij = Uif) Uj
and Uijk — Uif\ Uj fl Uk- Assume that for each i we have a continuous map
Ui'. X{ -» Ui, and that for each pair of indices i and j we have a homeomor-
phism (j)ij\ uJlUij ~ u~[lUij over Uij, satifying the cocycle condition

<l>ik = <l>ij ° <t>jk: u^Uijk -> WJlUijk -> u~lUijk.

Then there exists a continuous map u: X —> U, together with isomorphisms
</>i: u~xUi ~ Xi, such that fcj = ^ o (f)jl: ujxUij -> u~lUij -> uiUij for all
i and j .

PROOF. Consider the disjoint union U' of the Ui] the fiber product U'xu
U' is the disjoint union of the Uij. The disjoint union X' of the X^ maps to
U'\ consider the subset R C X' x X' consising of pairs (x^Xj) G Xi x Xj C
X' x X' such that Xi = <f>ijXj. I claim that R is an equivalence relation in X1.
Notice that the cocycle condition <j>a — cfraofai implies that (/>a is the identity
on Xi, and this show that the equivalence relation is reflexive. The fact that
(j)^ = (j)- o (f)ji, and therefore <frji = (f^}, prove that it is symmetric; and
transitivity follows directly from the general cocycle condition. We define
X to be the quotient X'/R.

If two points of X' are equivalent, then their images in U coincide; so
there is an induced continuous map u: X —> U. The restriction to Xi C X'
of the projection X' —> X gives a continuous map <^: Xi —>> u~lUi, that's
easily checked to be a homeomorphism. One also sees that <f>ij = ^o^>"1 ,
and this completes the proof. 4fc

The facts that we can glue continuous maps and topological spaces say
that (Cont) is a stack over (Top).

3.1.2. Descent in arbitrary sites and stacks. Let C be a site. We
have seen that a fibered category over C should be thought of as a con-
travariant functor from C to the category of categories, that is, presheaves
of categories over C. A stack is, morally, a sheaf of categories over C.

Let J7 be a category fibered over C. Prom now on we will always assume
that for each object £ of T and each arrow f:U-> p^ of (C/X), we have
chosen a cartesian arrow /*£ -> £. This can be avoided, and everything
can be written in terms of cartesian arrows; in this way one would have
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treatment which is more elegant and more precise, but, in my opinion, less
transparent.

Given a covering {a: U{ -> £/}, set Uij = Ui Xu Uj and Uijk = U% XJJ
Uj XJJ Uk for each triple of indices i, j and k.

DEFINITION 3.2. Let U = {^: Ui ->• U} be a covering in C. An object
with descent data {{&}, {<f>ij}) on ZY, is a collection of objects £z- G T{Ui),
together with isomorphisms (j>ij\ p r ^ j — p r j ^ in T(JJ{ X\j C/j), such that
the following cocycle condition is satisfied.

For any triple of indices i, j and A;, we have the equality

where the prab and pra are projections on the a th and 6th factor, or the a th

factor respectively.

In understanding the definition above it may be useful to contemplate
the cube

Pr23

in which all arrows are given by projections, and every face is cartesian.
We will denote the category of objects with descent data on the fibered

category T by ?{U) = F{{Ui -> U}).
For each object £ of T{U) we can construct an object with descent data

on a covering {&i: Ui -> U} as follows. The objects are the pullbacks cr*£;
the isomorphisms fcj: pr^ °]£ — prj cr*£ are the isomorphisms that come
from the fact that both pr^cr^ and prj a*£ are pullbacks of £ to Uij. If
we identify pr£ crj£ with prj cr*£, as is commonly done, then the faj are
identities.

Given an arrow a: £ -> rj in F{U), we get arrows a*: cr*£ —> a*77,
yielding an arrow from the object with descent associated with £ to the
associated with 77. This gives a functor T(U) —> ^({t/i -» ?7}).

DEFINITION 3.3. Let T -> C be a fibered category on a site C.

(i) J7 is a prestack over C if for each covering {L^ —> i7} in C, the functor
T(U) -+ T({Ui -> U}) is fully faithful,

(ii) T is a ŝ acA; over C if for each covering {Ui —> U} in C, the functor
T{JJ) ->• F{{Ui -> 17}) is an equivalence of categories.
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This condition can be restated.
The category (C/S) inherits a Grothendieck topology from the given

Grothendieck topology on C; simply, a covering of an object U —> S of
(C/S) is a collection of arrows

such that the collection {fi: U{ —> U} is a covering in C. In other words, the
coverings of U -> S are simply the coverings of U.

Finally, we have the following definition.

DEFINITION 3.4. An object with descent data ({&},{&j}) in F({Ui ->
U}) is effective if it is isomorphic to the image of an object of F(U).

PROPOSITION 3.5. Let T he a fibered category over a site C.

(i) T is a prestack if and only if for any object S of C and any two objects
£ and 77 in T(S), the functor Hom5(£,77): (C/S) —>• (Set) is a sheaf.

(ii) T is a stack if and only if it is a prestack, and all objects with descent
data in T are effective.

EXAMPLE 3.6. If G is a topological group, the fibered category BG —>•
(Top) is a stack.

PROPOSITION 3.7. Let T\ and T2 be fibered categories over a site C.
(i) If T\ and T2 are equivalent and T\ is a stack, then T2 is also a stack.

(ii) If T\ and T2 are stacks overC, then the fiber product T\ Xc^2 is also
a stack.

Prom a stack we get a stack in groupoids.

PROPOSITION 3.8. If T -> C, the associated stack in groupoids J^art -± C
is a stack.

PROOF. TO BE ADDED 4b

Stacks are the correct generalization of sheaves. This may not be obvious
now, but at least we should prove the following statement.

PROPOSITION 3.9. Let C be a site, F: Copp -> (Set) a functor; we can
also consider it as a category fibered in sets F -> C.

(i) F is a prestack if and only if it is a separated functor.
(ii) F is stack if and only if it is a sheaf.

PROOF. Consider a covering {Ui —> U}. The fiber of the category F —> C
over U is precisely the set F(U), while the category F({U{ —>• U}) is the set of
elements (&) G n* Ftyi) s u c h that the pullbacks of & and £j to F(UiXjjUj),
via the first and second projections Ui XJJ Uj -> Ui and Ui XJJ Uj -» [/;,
coincide. The functor F(U) -> F({Ui —> U}) is the function that sends each
element f G F(U) to the collection of restrictions (£ \u{)-
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Now, to say that a function, thought of as a functor between categories,
is fully faithful is equivalent to saying that it is injective; while to say that
it is an equivalence it is like saying that it is a bijection. Prom this both
statements follow. 4fc

3.2. The stackification of a fibered category

In this section we describe a procedure, analogous to the sheafification
of a functor described in Section 1.3.

DEFINITION 3.10. Let T -» C be a fibered category over a site C. A
stackification of T is a stack T*1 —> C with a morphism T —> T* such that:

(i) given an object U of C and two arrows </>, ij): £ -> 77 in F{U), if the two
images 0 a : £a -> if and V>a • £a —>• ??a in ^ are equal, then there is a
covering {cr̂ : U% -> C/} such that a*</> = a?ip: <j*£ —>• cr*7? for all E/i;

(ii) given two objects £ and 77 of ^"(J7) and an arrow <j>: £a -» r/a in ^(U),
there exists a covering {cr̂ : Ui -> U} and arrows ^ : cr*£ —>• a*77 such
that the diagram TO BE ADDED_

(iii) Given an object U of C and an object £ of -̂*a(C7), there exists a covering
{aii Ui -> U} and objects & of T(Ui) such that cr^ G ^(£7;) is
isomorphic to £a.

REMARK 3.11. Conditions (i) and (ii) are equivalent to saying that the
functor

is the sheafification of the functor

for any object S of C and any two objects £ and 77 of ^(S). Hence, if we
find a stack T* —>• C and a fully faithful morphism T -> ^ a satisfying (iii),
where J7* is a stack, then J7 is a prestack, and T* is a stackification of T.

THEOREM 3.12. Let T —> C be a fibered category over a site C.

(i) There exists a stackification T —>• T*1 of T.
(ii) If P:\F —> J-*a z*5 a stackification, then for each stack Q —» C and

each morphism of fibered categories F: T —>> Q, there is a morphism
F&: Q —> C together with an isomorphism u: F a o P ~ F of base-
preserving transformations. Furthermore, if G: T^ —> G is any other
morphism, and v: G o P ~ F is an isomorphism of base-preserving
functors, then there is a unique isomorphism w: G ~ F a such that for
any object £ of T we have v% = u^ o wp^: GP£ -> F a P £ -> F£.

(iii) The stackfication of T is unique up to an equivalence; the equivalence
is unique up a unique isomorphism.

(iv) The stackifications of two equivalent fibered categories are equivalent.
(v) The functor T —> T*1 is fully faithful if and only if T is a prestack.

(vi) If T is fibered in groupoids, then the stackification T*1 is also fibered in
groupoids.
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(vii) If T is a functor, then T* is naturally equivalent to the sheafification
of T as a functor.

(viii) T is fibered in groupoids if and only if T*1 is fibered in groupoids.

PROOF. First of all we are going to define a prestack F* with a morphism
T -> Ts which is universal for morphisms into prestacks.

The category J7** will have the same objects as T. The arrows are defined
as follows.

Suppose that we have TO BE ADDED *

3.2.1. The stack of sheaves. Let C be a site, and call T its topology.
For each object X of C there is an induced topology Tx on the category
(C/X), in which a set of arrows

is a covering if and only if the set {Ui —» U} is a covering in C. We will
refer to a sheaf in the site (C/X) as a sheaf on X, and denote the category
of sheaves on X by ShX.

If / : X -> Y is an arrow in C, there is a corresponding restriction functor
/*: Shy -> ShX, defined as follows.

If G is a sheaf on Y and U -> X is an object of (C/X), we define
f*G(U -> Y) = G{U -± y), where U -> Y is the composition of U -> X
with / .

If U -> X and V —> X are objects of {C/X) and <j>: U -> V is an arrow
in (C/X), then </> is also an arrow from U->YtoV-*Y, hence it induces
a function 0*: F*(V -> X) = F(U -+Y) -> F(V -> Y) = f*F(V -> X).
This gives f*F the structure of a functor (C/X)opp -> (Set). One checks
immediately that f*F is a sheaf on (C/X).

If <f>\ F —> G is a natural transformation of sheaves on (C/Y), there is
an induces natural transformation /*</>: /*F —> f*G of sheaves on (C/X),
defined in the obvious way. This defines a functor /*: (C/Y) —> (C/X).

It is immediate to check that, if / : X -> Y and g: y —> Z are arrows
in C, we have an equality of functors (gf)* = f*g*: (C/Z) -» (C/X). This
means that we have defined a functor from C to the category of categories,
sending an object X into the category of categories. According to the result
of 2.1.3, this yields a category (Sh/C) -> C, whose fiber over X is ShX.

3.3. Groupoids in a category

A groupoid is a set of objects X, a set of arrows i?, together with the
following data:

(i) source and target maps s, t: R -> X, sending each arrow to its domain
and codomain, respectively;

(ii) an identity map e: X —>• i?, sending each object into the corresponding
identity arrow;



3.3. GROUPOIDS IN A CATEGORY 51

(iii) a composition map m: Rxx R-> R, where in R Xx R the first factor
is considered as a set over X via the source map, the second one via
the target map, that sends a pair of arrows (#, / ) with sg = t / to the
composition #/, and finally

(iv) the inverse map i: R —> i?, that sends an arrow to its inverse.

Equivalence relations are groupoids; a groupoid is an equivalence relation
if and only if the function

(s,t): R-^XxX

is injective.
Now we can define a groupoid in a category like we have defined an

equivalence relation. As usual, we will assume that our category C has
products and fiber products.

DEFINITION 3.13. A groupoid R =3 X in a category C is pair of objects
R and X, together with arrows s, t: R —> X, e: X -» i?, LR -» R and
m: R Xx R —> R, where in R Xx R the first factor is considered as a set over
X via s and the second one via t, such that for any object U of C the sets
X(U) and R(U), with the maps induced by s, t, e, m and i, is a groupoid.

In fact, we could observe that the functions ejj'- X(U) -> R(U) and
iu'- R(U) —>• R(U) are determined by the other functions Sf/, tu and m /̂, so,
by Yoneda's lemma, e and i are determined by s, t and m.

The conditions that define a gropoid can be also expressed in diagramatic
terms.

PROPOSITION 3.14. Let R and X be objects of a category C, with arrows
s,t: R -> X, e: X -> R, i: R -+ R and m: R xx R -> R, where in Rxx R
the first factor is considered as a set over X via s and the second one via
t. Then these data define a groupoid in C if and only if all of the following
diagrams commute.

(i) The source and target of the identity on an object are the object itself:

and

The commutativity of these two diagrams implies that the two arrows
idft x (soe): R-± Rx R and (toe) x id#: R-+ Rx R factor through
R xx R.
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(ii) The identity is a right and left identity:

and

R R

(iii) Multiplication is associative:

Rxx R*x R "AAAU*> Rxx R

RxxR

(iv) The source and target of the inverse of an arrow are the target and
source of the arrow:

R —!-> R and R —^ R

X X

The commutativity of these two diagrams imply that the two arrows
id# x i: R -> R x R and i x id#: i? -> Rx R factor through R Xx R>

(v) The inverse of an arrow is a right and left inverse:

and R R > R Xx R

>R X

PROOF. R =$ X is a groupoid in C if and only if each of the diagrams
above becomes commutative when all the arrows are evaluated at all the
objects of C. The thesis follows by Yoneda's lemma. 4*

An equivalence relation in a category gives a groupoid in a category, be-
cause of the discussion in Section 1.4. A groupoid is an equivalence relation
if and only if the arrow (s, t): R -> X x X is injective.

Furthermore, if X is a final object in the category C, then a groupoid
R=$X is a groups object (see 1.1.4). Thus group objects are groupoids: the
following shows, that more generally, actions give rise to groupoids.

Other very important examples are obtained from group actions.

EXAMPLE 3.15. If a group object G acts on a set X, we get a groupoid
GxX =4X, in which t: GxX -> X is the second projection, s: GxX -^ X
is the action. The other arrows are best described as natural transformations
of functors.
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(i) m: (G x X) xx (G x X) —>- G x X sends a pair

((/*,y), (g,x)) e {(G x x) xx (G x x))(U)

with gx = y into

(hg,x)€(GxX)(U),

(ii) e: X -> G x X sends x G X{U) into (l,z) G (G x X)(U), and
(iii) i: GxX ->GxX sends (g,x) G (GxX)([/) into (i0,0z) G (Gxl)([ / ) .

Suppose that (X, i?) is an equivalence relation in the category of sets.
Then the equivalence relation, thought of as a category, is equivalent to the
set X/R (see the proof of Proposition 1.35). This is not true of groupoids
in general; we can still consider the quotient X/R, which will be the set
of isomorphism classes in the category (X, i2), but this is equivalent to the
groupoid precisely when this is an equivalence relation.

We have seen how an equivalence relation (X, R) in C determines a
functor [X|i?|: Copp -> (Set) that sends an object U of C into the quotient
X(U)/R(U)', we could also have defined a quasifunctor whose fiber over U
is the equivalence category (X(£/),.R([/)). This would have been equivalent
to the functor above.

When we are dealing with a groupoid R =4 X in C, we can still consider
a functor that sends each object U of C into the set X(U)/R(U) of isomor-
phism classes in the groupoid R(U) =4 X{U), but this will often carry very
little information. For example, if G is a topological group, and we let G
act on a point pt, the quotient pt(U)/G(U) has only one element, so the
functor tells us nothing about G.

The right thing to do is to construct a fibered category [X\R] whose fiber
over U is equivalent to the groupoid R(U) =4 X(U), using the construction
of 2.1.3. The point is that if / : [ / - » V is an arrow in C, we get a functor
from R(V) =4 X(V) to R(U) =4 X(U) by sending each object rj'.V-^Xoi
X(V) into its pullback f*r] = rj o f: U —> X, and each arrow a: V —> R of
R(V) into f*a = a o / G R(U). So we get a functor from C to the category
of categories. According to 2.1.3, we can construct the desired category by
taking the objects of [X\R] to be pairs (£, [/), where U is an object of C and
£: U -> X is an element of X(U), while an arrow (a , / ) : (£, U) —>• (77, V)
consists of an arrow / : U —> V in C, while a: U -» R is an element of R(U)
with source £ and target f*rj.

The composition is defined as follows: given £ G X({7), 77 G X(V) and
C G X(W0, arrows (/,a): £ -» 7? and (3,6): 7/ -* (, the element b G i2(V)
has source 7/ and target g*(, therefore f*b will have source f*rj and target
/*£*£ == (#/)*(. Consider the function m^: R(U) xX(u)R(U) -> i2(C/) that
sends two arrows in R(U) into their composition; it can be applied to the
pair (/*&, a) to yield an element of R(U) whose target is (gf/)*C- We define

(g,b)o(f,a) = {gf,mu(f*b,a)).
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Then, according to 2.1.3, the category [X\R] is fibered in groupoids over
C, and its fiber over an object U of C is canonically equivalent to the groupoid
R(U)=tX(U).
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