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Lectures on moduli spaces of hyperkahler manifolds

and mirror symmetry

Daniel Huybrechts

September 13, 2002

In these notes we will try to explain certain aspects of the theory of moduli spaces of
compact hyperkahler manifolds. After recalling the main definitions and facts concerning the
complex and metric structure of these manifolds in Section 1 we will soon turn to the global
aspects of their moduli spaces. In Sections 2 and 3 we introduce these moduli spaces as well
as the corresponding period domains. The geometric moduli spaces are studied via maps
into the period domains. This will be explained in Section 4. Some of the main results about
compact hyperkahler manifolds can be translated into global aspects of these maps.

Compared to other texts (e.g. [1]) on moduli spaces of K3 surfaces we will try to develop
the theory as far as possible for compact hyperkahler manifolds of arbitrary dimension. The
second main difference is that we also treat the less classical moduli spaces of certain CFTs.
This will be done from a purely mathematical point of view by considering hyperkahler mani-
folds which are enriched by a B-field, i.e. an additional real cohomology class of degree two.
This will lead to new features starting in Section 5, where we let act a certain discrete group
on the various moduli spaces. This section follows papers by Aspinwall, Morrison, and oth-
ers. Using this action mirror symmetry of K3 surfaces will be explained in Section 6. The
advantage of this slightly technical approach is that various versions of mirror symmetry for
(e.g. lattice polarized or elliptic) K3 surfaces can be explained by the same group action. Of
course, explaining mirror symmetry in these terms is only possible for K3 surfaces or hy-
perkahler manifolds. Mirror symmetry for general Calabi-Yau manifolds will usually change
the topology.

The text contains little or none original material. The main goal was to explain global
phenomena of moduli spaces of K3 surfaces, or more generally of compact hyperkahler mani-
folds, and to give a concise introduction into the main constructions used in establishing
mirror symmetry for K3 surfaces.

We encourage the reader to consult the survey [1] and the original articles [3, 4].



1 Basics

In this section we collect the basic definitions and facts concerning irreducible holomorphic
symplectic manifolds and compact hyperkahler manifolds. Most of the material will be pre-
sented without proofs and we shall refer to other sources for more details (e.g. [6. 19]).

Definition 1.1 An irreducible holomorphic symplectic manifold (1HS; for short) is a simply
connected compact Kdhler manifold X, such that H°(X.Ct2

x) is generated by an everywhere
non-degenerate holomorphic two-form a.

Since an IHS is in particular a compact Kahler manifold, Hodge decomposition holds. In
degree two it yields

H2(X,C) = H
= Ca

The existence of an everywhere non-degenerate two-form a £ H°(X.ft\) implies that the
manifold has even complex dimension dimc(X) = 2n. Moreover, a induces an alternating
homomorphism a : Tx —> £lx- Since the two-form is everywhere non-degenerate, this ho-
momorphism is bijective. Thus, the tangent bundle and the cotangent bundle of an IHS are
isomorphic. Moreover, the canonical bundle Kx — Sl2x is trivialized by the (2n, 0)-form an.
Thus, an IHS has trivial canonical bundle and, therefore, vanishing first Chern class ci(X).

In dimension two IHS are also called K3 surfaces (K3=Kahler, Kodaira, Kummer). More
precisely, by definition a K3 surface is a compact complex surface with trivial canonical bundle
Kx and such that ^(X. Ox) = 0. It is a deep fact that any such surface is also Kahler [29].
Moreover, Hl(X. Ox) = 0 does indeed imply that such a surface is simply-connected.

Here are the basic examples.

Examples 1.2 i) Any smooth quartic hypersurface X C P3 is a K3 surface, e.g. the Fermat
quartic x$ + x\ + x\ + x\ =0 .

ii) Let T = <C?/F be a compact two-dimensional complex torus. The involution x «-> — x
has 16 fixed points and, thus, the quotient T/± is singular in precisely 16 points. Blowing-
up those yields a Kummer surface X —> T/±, which is a K3 surface containing 16 smooth
irreducible rational curves.

iii) An elliptic K3 surface is a K3 surface X together with a surjective morphism TT : X —>•
P1. The general fibre of TT is a smooth elliptic curve.

It is much harder to construct higher dimensional examples of IHS and all known examples
are constructed by means of K3 surfaces or two-dimensional complex tori. The list of known
examples has been discussed in length in the lectures of Lehn (see also [19]).

So far we have discussed IHS purely from the complex geometric point of view. However,
the most important feature of this type of manifolds is the existence of a very special metric.



Definition 1.3 A compact oriented Riemannian manifold (M.g) of dimension An is called
hyperkahler (HK, for short) if the holonomy group of g equals Sp(n). In this case g is called
a hyperkahler metric.

Remark 1,4 If g is a hyperkahler metric, then there exist three complex structures /, J.
and K on M. such that g is Kahler with respect to all three of them and such that K =
/ o J = —J o J. Thus, / is orthogonal with respect to g and the Kahler form uj := g(I( ), )
is closed (similarly for J and K). Often, this is taken as a definition of a hyperkahler metric.
Note that our condition is stronger, as we not only want the holonomy be contained in Sp(n),
but be equal to it.

Proposition 1-5 Let (M.g) be a HK. Then for any (a.b.c) € M3 with a2 + b2 +c2 = 1 the
complex manifold (M. al + bJ + cK) is an IHS.

Thus, for any HK (M, g) there exists a two-sphere S2 C M3 of complex structures com-
patible with the Riemannian metric g.

Remark 1.6 Let (M.g) be a HK. The associated Kahler forms u)j. UJJ. UK span a three-
dimensional subspace H\(M. g) C H2(M.R). In fact, this space will always be consid-
ered as a three-dimensional space endowed with the natural orientation. If X = (M.I).
then H\(M,g) = (H2fi(X) @ # ° ' 2 ( X ) ) R 0 RLJT, where the orientation is given by the base
(Re(a),Im(<7),cjf). In order to see this, one verifies that the holomorphic two-form a on
X = (M. I) can be given as a = UJJ + iu)K (cf. [19]).

Definition 1.7 Let X be an IHS. The Kahler cone Kx C ^^(X.R) is the open convex
cone of all Kahler classes on X, i.e. classes that can be represented by some Kahler form.

The most important single result on IHS is the following consequence of the celebrated
theorem of Calabi-Yau:

Theorem 1.8 Let X be an IHS. Then for any a € ICx there exists a unique hyperkahler
metric g on M} such that a = [wj] for LOJ = g(I( ), ).

Thus, on any IHS X the Kahler cone Kx parametrizes all possible hyperkahler metrics
g compatible with the given complex structure. Below we will explain how the Kahler cone

can be described as a subset of Hlil(X).

Remark 1.9 Thus, an IHS X together with a Kahler class a £ Kx is the same thing as
a HK (M.g) together with a compatible complex structure / . As a short hand, we write
(X. a) = (M. p, /) in this case.



Definition 1.10 The BB(Beauville-Bogomolov)-form of an IHS X is the quadratic form on
H2(X,R) given by

qx(a) = (n/2) / a2

Jxx Jx

where a £ H2>°(X) is chosen such that fx(cr<j) = 1

For any Kahler class [ui] we obtain a gx-orthogonal decomposition H2(X. R) = (H2>°(X)®
H°>2(X))u © Mo; © H^iX)^. Here. H^^X)^ is the space of ^-primitive real (1. l)-classes.
Note that we get a different decomposition for every Kahler class [d] € /Cx, but that the
quadratic form qx does not depend on the chosen Kahler class.

The following proposition collects the main facts about the BB-form qx-

Proposition 1.11 i) For any Kahler class [CJ] £ Kx on an IHS X the BB-form qx is positive
definite on (H2fi(X) © H°>2(X))R ©MCJ and negative definite on H^iX)^.
ii) There exists a positive real scalar \\ such that qx(&)n = ^i ' Ixa2n for a^ a ^ H2{X).
Hi) There exists a positive real scalar A2 such that A2 • qx is a primitive integral form on
H2(X,Z).
iv) There exists a positive real scalar A3 such that qx{&) — A3 • Jxa

2y/td(X) for all a G

After eliminating the denominator of y/td(X) by multiplying with a universal coefficient
cn that only depends on n we obtain an integral quadratic form Cn • / a2 i/td(X). In general
this form need not be primitive, but this will be of no importance for us. Moreover, since any

IHS has vanishing odd Chern classes, i/td(X) = yA(X). (Everythings that matters here is
that ^td(X) is purely topological in this case.) Therefore, in these lectures we will use the
following modified version of the BB-form.

Definition 1,12 The BB-form qx of an 2n-dimensional IHS X is given by

With this definition we see that qx only depends on the underlying manifold M, i.e. for
two different hyperkahler metrics g and g1 and two compatible complex structures / resp. i7

the BB-forms with the above definition of X — (M. I) and X1 = (M, I1) coincide.

Note for n — 1 we have c\ = 1 and thus qx is nothing but the intersection pairing a2 of the
four-manifold underlying a K3 surface. The quadratic form in this case is even, unimodular
and indefinite and can thus be explicitely determined:

Proposi t ion 1,13 The intersection form ( i J 2 (XZ) ,U) of a KS surface X is isomorphic to
the KS lattice 2(-E$) © 3U, where U is the standard hyperbolic plane (Z2, (§ J ) ) .



Definition 1.14 The BB-volume of a HK (M.g) is

q(M,g) :=

where X — (M. I) is the IHS associated to one of the compatible complex structures I and UJJ
is the induced Kdhler form.

Note that the BB-volume does not depend on the chosen complex structure. Analogously
one can define the volume of an IHS endowed with a Kahler class a as qx(&)- For a K3
surface one has q(M.g) = f u2, which is the usual volume up to the scalar factor 1/2. In
higher dimension the usual volume is of degree In and the BB-volume is quadratic. Of course,
due to Proposition 1.11 one knows that up to a scalar factor q(M,g)n equals the standard
volume, but this factor might depend on the topology of M.

What makes the theory of K3 surfaces and higher-dimensional HK so pleasant is that they
can be studied by means of their period.

Definition 1.15 Let X be an IHS. The period of X is the lattice (H2(X,Z),qx) endowed
with the weight-two Hodge structure H2(X, Z) ® C = H2(X, C) = Co © Hl^(X, C) © Co.

Since i71)1(XC) is orthogonal with respect to qx and Co is the complex conjugate of
Or. the period of the IHS X is in fact given by the lattice (H2(X.Z),qx) and the line
GrCi? 2 (XC) .

The theory of K3 surfaces is crowned by the so called Global Torelli Theorem (due to
Pjateckii-Sapiro, Shafarevich, Burns. Rapoport, Looijenga, Peters, Friedman):

Theorem 1.16 Let X and X1 be two KS surfaces and let tp : H2(X,Z) £ H2(Xf,Z) be
an isomorphism of their periods such that (f(JCx) H Kx' ^ 0- Then there exists a unique
isomorphism f : X' = X such that f* — (p.

Moreover, an arbitrary isomorphism between the periods of two K3 surfaces is in general
not induced by an isomorphism of the K3 surfaces, but the K3 surfaces are nevertheless
isomorphic.

The uniqueness assertion in the Global Torelli Theorem is roughly proven as follows (cf.
[25]): If / is an automorphism of finite order with /* = id then the holomorphic two-form a is
invariant under / and the action at the fixed points is locally of the form (ii, v) h-> (£'U. £ - 1 -v).
Using Lefschetz fixed point formular and again /* = id one finds that there are 24 fixed points.
Thus the minimal resolution X of the quotient X/(f) contains 24 pairwise disjoint curves.
Moreover, one verifies that X is again a K3 surface. The last two statements together yield
a contradiction for |( /) | ^ 1.

For the time being there exists not even a convincing conjectural version of the Global
Torelli theorem in higher dimensions. E.g. if / : X = X is an automorphism of a K3 surface



X such that /* = id, then / = id. This does not hold in higher dimensions [7]. Even worse,
due to a recent counterexample of Namikawa [28] one knows that higher dimensional IHS X
and X1 might have isomorphic periods without even being birational.

Often, a certain type of K3 surfaces is distinguished by the form of the period. We explain
this in the three examples presented earlier. In fact, the proofs of these descriptions are all
quite involved.

Example 1.17 i) Let X be a K3 surface such that Pic(X) = H2(X, VjCiH^X) is generated
by a class a with a2 — 4. Then X is isomorphic to a quartic hypersurface in P3 and a
corresponds to 0(1) (cf. [1, Exp. VI]).

ii) Let X be a K3 surface such that Pic(X) contains 16 disjoint smooth irreducible rational
curves Ci,...,Ci6 C X such that ^2[Ci] € H2(X.Z) is two-divisible. This description of
Kummer surfaces is not entirely in terms of the period. Later we will rather use the following
description of an even more special type of K3 surfaces: Let X be a K3 surface such that the
lattice (H2'°(X) © H°'2(X))z is of rank two and any vector x in this lattice satisfies x2 = 0
mod 4. Then X is a Kummer surface. It turns out that K3 surfaces with this type of period
are exactly the exceptional Kummer surfaces, i.e. Kummer surfaces with rk(Pic(X)) = 20
(cf. [1, Exp.VIII]).

iii) Let X be a K3 surface such that there exists a class a € H2(X,Z) n i ? 1 ' 1 ^ ) with
a2 — 0. Then X is an elliptic K3 surface. Clearly, if X -> P1 is an elliptic K3 surface then the
class of the fibre defines such a class. But note that conversely not every class a with a2 = 0
is automatically a fibre class of some elliptic fibration, but by applying certain reflections it
can be be made into one (cf. [8]).

In order to get a better feeling for the set of all possible hyperkahler structures on an IHS
X we shall discuss the Kahler cone in some more detail.

Definition 1.18 The positive cone Cx of an IHS X is the connected component of {a \ qx(&) >
0} C i?"1'1 (X, M) that contains the Kahler cone Kx-

(Here we use the fact that qx(&) > 0 for any Kahler class a.) Thus, Cx U {—Cx) can be
entirely read off the period of X. This is no longer possible for the Kahler cone, but one can
at least try to find a minimal set of further geometric information that determines Kx as an
open subcone of Cx-

Proposition 1.19 The Kahler cone Kx C Cx is the open subset of all a € Cx such that
Jc a > 0 for all rational curves C C X. If X is a KS surface it suffices to test smooth rational
curves (cf [1, 5, 19]).



Since any smooth irreducible rational curve C in a K3 surface X defines a (-2)-class
[C] £ i?1?1(X. Z). one can use this result to show that for any class a G Cx there exists a
finite number of smooth rational curves C\...., C& C X such that SQ • • • $Ck (&) £ /Cx, where
$C is the reflection in the hyperplane [C]-1. Of course, these reflection sc are contained in
the discrete orthogonal group OQT) of the lattice T = ( i? 2 (XZ) ,U) .

2 Moduli spaces

Ultimately, we will be interested in moduli spaces of irreducible holomorphic symplectic
manifolds (IHS), hyperkahler manifolds (HK). etc. In this section we will introduce moduli
spaces of such manifolds endowed with an additional marking. A marking in general refers
to an isomorphism of the second cohomology with a fixed lattice. The choice of such an
isomorphism gives rise to the action of a discrete group and the quotients by this group
will eventually yield the true moduli spaces. For this section we fix a lattice T of signature
(3,6 — 3) and an integer n.

2.1 Moduli spaces of marked IHS

Definition 2.1 A marked IHS is a pair (X. ip) consisting of an IHS of complex dimension
2n and a lattice isomorphism cp : (H2(X. 7A). qx) — T. We say that two marked IHS (X.tp)
and (X'.ip1) are equivalent, (X.(p) ~ {X'.tp'), if there exists an isomorphism f : X = X' of
complex manifolds such that ip1 — <p o /*.

Definition 2.2 The moduli space of marked IHS is the space

l ) = marked I H S } / - .

A priori, Tj?p is just a set, but, as we will see later, it can be endowed with the structure
of a topological space locally isomorphic to a complex manifold of dimension 6 — 2.

Let X be an IHS and (p a marking of X. If X —> Def (X) is the universal deformation of
X = Ao, then Def(X) is a smooth germ of dimension h}(X, TV)- We may represent Def(X)
by a small disc in Ch (x^x). The marking cp induces in a canonical way a marking cpt of the
fibre Xt for any t € Def (X). Using the Local Torelli Theorem (cf. Section 4) we see that the
induced map Def (X) —> T^pl is injective, i.e. any two fibres of the family X -> Def (X) define
non-equivalent marked IHS. The various Def (X) C T^p for all possible choices of X and
markings cp cover the moduli space Tj?p . Since the universal deformation X —> Def (X) of
X = XQ is, at the same time, also the universal deformation of all its fibres Xt, one can define
a natural topology on Tj^p by gluing the complex manifolds Def (X). Thus, locally T^p is a
smooth complex manifold of dimension h1(X. TV) = 6 - 2. However, T^p is not a complex
manifold, as it does not need to be Hausdorff. In fact, not a single example is known, where
T^p would be Hausdorff and conjecturally this never happens.



A family (X, (p) —> S of marked IHS is a family X -> S of IHS of dimension 2n and a
family of markings cpt of the fibres Xt locally constant with respect to t.

Lemma 2.3 / / (X. cp) —>• S is a family of marked IHS, then there exists a canonical holo-
morphic map 77: S -» 7^p , such that r)(t) — [(Xt. ipt)].

Proof This follows directly from the universality of X —>• Def (X). D

Remark 2.4 In order to construct a universal family over 7^p one would need to glue
universal families X -> Def (X). y —> Def (Y). where ( X cp) and (Y. VO axe marked IHS. over
the intersection Def (X) n Def (Y) C 7^p l . This is only possible if for t £ Def (X) n Def (Y)
there exists a unique isomorphism / : Xt = 3^ with ^t = ft ° /*< For K3 surfaces the
uniqueness can be ensured due to the strong version of the Global Torelli Theorem (see Thm.
1.16), but in higher dimensions this fails. Thus. 7j?pl is, in general, only a coarse moduli
space.

2.2 Moduli spaces of marked HK

Definition 2.5 A marked HK is a triple (M.g.(p), where (M.g) is a compact HK of di-
mension An in the sense of Prop. 1.3 and ip is an isomorphism (H2(M.Z).q) = T. Two
triples (M.g.ip), (M'.g'.tp1) are equivalent, (M.g.(p) ~ (M'.g'.ip1), if there exists an isome-
try f : (M, g) £ (M ;, g;) with (f/ = (pof*.

Definition 2.6 The moduli space of marked HK is the space

et := {(M, g, cp) = marked H K } / - .

A slightly different approach towards T^1161 will be explained in Section 2.5. There, the
manifold M is fixed and only the metric g is allowed to vary.

2.3 Moduli spaces of marked complex HK or Kahler IHS

Recall (cf. Remark 1.9) that there is a bijection between HK with a compatible complex
structure and IHS with a chosen Kahler class. Thus, the two moduli spaces are naturally
equivalent.

Definition 2.7 A marked complex HK is a tuple (M.g.I.cp), where (M.g.ip) is a marked
HK and I is a compatible complex structure on (M.g). A marked Kahler IHS is a triple
(X. a. <p), where (X, cp) is a marked IHS and a £ Kx is a Kahler class. Two marked complex
HK (M, g, / , (p), (M ;, g1. V. ip1) are equivalent if there exists an isometry f : (M, g) = (M7, g1)
with / = / * / ' and cpf = <p ° f* • Analogously, one defines the equivalence of marked Kahler
IHS.



Note that the equivalence relation is compatible with the natural bijection {(M, <?, / , (p)}

Definition 2.8 The moduli space of complex HK or, equivalently, of Kdhler IHS is the space

7f := {(M. g. I. <p) = marked complex HK}/~

= {(X a, tp) = marked Kahler I H S } / - .

Obviously, there are two forgetful maps

7f-

Proposition 2.9 The set Tp has the structure of a real manifold of dimension 3 (6 -2 ) . The
fibre c~l ( X (p) = Kx is a real manifold of dimension 6-2. The fibre mT1 (M, g. <p) is naturally
isomorphic to the complex manifold P1. The induced map c : F1 = m~1(M. g, cp) —> 7j?p is a
holomorphic embedding. The map m : c~1(X. cp) —> Tj?161 is a real embedding.

The line P1 C 7^pl is also called 'twistor line5. Having of a global deformation like this, is
one of the key tools in studying moduli spaces of IHS.

2.4 CFT moduli spaces of HK

Prom a geometric point of view the following moduli space is an almost trivial extension of
7f. However, it will become of central interest in later sections, when we will let act the full
modular group on it. This group action will relate very different HK and thus gives rise to
mirror symmetry phenomena.

Definition 2.10 A marked complex HK with a B-field is a tuple (M, g. I. B. (p), where (M, g. I. (p)
is a marked complex HK and B € H2(M. R). Two such tuples (M, g. / , B, (p), (M ;, p7, V, B1, y1)
are equivalent if there exists an isometry f : (M.g) = (M1 .g1) with I = f*P, cpr = cp o /*,
andf*(B') = B.

Definition 2.11 The (2,2)-CFT moduli space of HK is the space

7^2'2) := {(M, g, 7, B, (p) = marked complex HK with B- f ie ld} / - .

Clearly, the moduli space 7p2'2) is naturally isomorphic to 7? xT®lK by mapping (M, g. I. B. (p)
to ((M, g. I. cp). CPR(B)). In particular, 7p2'2) is a real manifold of dimension 46 — 6.



Analogously, one defines the (4,4)-CFT moduli space

1<AA) := {(M, g, B, tp) = marked HK with B-field}/- .

In partiular. there is a natural forgetful map 7p —> 7y which is surjective with fibre S2.

2.5 Moduli spaces without markings

All previous moduli spaces parametrize various geometric objects with an additional marking
of the second cohomology Of course, what we are really interested in are the true moduli
spaces Mc/, M^Qi, Mr-, Mp2), and M^4\ E.g. Mc/ is the moduli space of IHS X of
dimension 2n such that (H2(X,Z),qx) is isomorphic to F. but without actually fixing the
isomorphism. Analogously for the other spaces. In other words one has:

M?" = 0(T) \ V*, Mf' = O(r) \

The Teichmiiller spaces Ty are in general better behaved. E.g. the moduli spaces are
usually singular at points that correspond to manifolds with a bigger automorphism group
than expected. This usually leads to orbifold singularities. However, sometimes the passage
from the Teichmiiller space to the moduli space is really ill-behaved. E.g. the action of O(F)
on 7^pl is not properly discontinuously. Thus, 7r which already is not Hausdorff, becomes
even worse when dividing out by O(F) (cf. the discussion in Section 5).

There is yet another approach to these moduli spaces where one actually fixes the un-
derlying manifold and constructs the moduli space as a quotient of the space of hyperkahler
metrics by the diffeomorphism group. We will briefly discuss this.

Let M be a compact oriented differentiate manifold of real dimension An and let qM
be the quadratic form on H2(M.Z) given by <ZM(#) = n̂ * fMo?yA(M). ^ e wrire F =
(H2(M,Z).qM) and call this identification <po-

By Diff(M) we denote the group of orientation-preserving diffeomorphisms of M. In
fact, at least for 62 7̂  6, the group Diff(M) is the full diffeomorphism group of M, as
any orientation-reversing diffeomorphism / would induce an isomorphism (H2(M,Z).qM) —
(H2(M. Z), —qM) which is impossible for 62(M) ^ 6. The set of all hyperkahler metrics g on
M is denoted by MetHK(M). Clearly, Diff(M) acts naturally on MetHK(M) by (/, g) H» f*g.

Definition 2.12 The group Diffo(M) C Diff(M) is the connected component of Diff(M)
containing the identity idiw € Diff(M). The group Diff*(M) C Diff(M)) is the kernel of the
natural representation Diff(M) -> 0(H2(M,Z),qM).
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Mapping g 6 MetHK(M) to (M. g, ip) G Tf?161 induces a commutative diagramm

MetHK(M)/Diff*(M) - ^

MetHK(M)/Diff(M) - ^ .Mfet

Note that 77 is well-defined. Indeed, if / G Diff*(M), then (M, #, <̂ 0) ~ (M, /*#, <£0 ° /*) =

Remark 2.13 It seems, nothing is known about the quotient of the natural inclusion Diffo(M) C
Diff*(M), not even for K3 surfaces, i.e. n = 1.

Clearly, the image of rj (and fj) contains only those HK (M;, g'. (p) G Tp116* whose underlying
real manifold M1 is diffeomorphic to M. Let 7pnet(M) and M™ei(M) denote the union of all
those connected components.

i) In general, 7? : MetHK(M)/Diff*(M) -* 7^et(M) is injective, but not surjective.
Only the surjectivity needs a proof. If (M.g.ip) G Im(?7) and ^ G 0{H2(M, Z),^Af), then
(M, p, cpo o i/j) e Im(r7) if and only if there exists / G Diff (M) with /* = ^ but Diff (M) —>>
O(H2(M. Z), #Af) is not necessarily surjective. E.g. for K3 surfaces the image does not contain
-id and, more precsiely, O(H2(M, Z), U)/Diff(M) = Z/2Z (cf. 4.3). However in this case the
situation is rather simple, as Tp11^ consists of two components and MetHK(M)/DifF*(M) is
one of them. For higher dimensional HK nothing is known about the image of Diff (M) -»

ii) The map fj: MetHK(M)/Diff(M) -> Mfet(M) is bijective.
Indeed, if (M,g,<p) G 7^ei(M), then [(M,5,^0)] = [(M,5, ( ^ o ^
[(M. g. ip)] G jMpet(M). Thus, ij is surjective. If rj(M.g) = f)(M.gf). then there exists
V> G O(F) such that (M, p, </?o) ~ (M.g'.ili o (p0) and hence there exists / G Diff(M) with
f*g — g1 (note that for b2(M) = 6 one would have to argue that / can be chosen orientation-
preserving) and cpo = V;°^o°/*- Thus, [(M.g)] = [{M.g')) in MetHK(M)/Diff(M) and hence
fj is injective.

One last word concerning the stabilizer of the action of Diff(M). Clearly, the stabilizer of
a hyperkahler metric g is the isometry group Isom(M,g) of (M.g), This group is compact
(cf. [9]). Hence the stabilizer of g G MetHK(M) is a compact group. Moreover, Isom(M, g) fl
DifT*(M) is finite. Indeed, if we fix in addition a compatible complex structure / on (M.g)
then Aut(M, I) is discrete, as H°((M. I), T) = 0, and hence Aut(M, /) fiIsom(M, g) is finite.
Since any / G Isom(M, g) flDiff*(M) acts trivially on cohomology, it must preserve / . Hence,
the action of Diff*(M) on MetHK(M) has finite stabilizer.
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3 Period domains

The moduli spaces that have been introduced in the last section will be studied by means of
various period maps. In this section we define and discuss the spaces in which these maps
take their values, the period domains.

Let F be a lattice of signature (ra, n). The standard example for T is the K3 lattice
2(—Eg)®3U. where U denotes the hyperbolic plane (Z2, (Jo))- However. T might in general
be non-unimodular. This will be of no importance in this section, as only the real vector space
FR := F ® M is going te be used. In fact, usually we will work with an arbitrary vector space
V, but F will nevertheless occur in the notation. I hope this will not lead to any confusion.

3.1 Positive definite (oriented) subspaces

Let V be a real vector space that is endowed with a bilinear form ( , ) of signature (ra, n),
e.g. V = FR. We will also write x2 for (x.x). Fix k < m and consider the space of all
A;-dimensional subspaces W C V such that ( , ) restricted to W is positive definite. We
will denote this space by Gr^(V). Clearly, Gr£(V) is an open non-empty subset of the
Grassmannian Gr^(V).

In order to describe Gr^(F) as a homogeneous space we consider the natural action of
O(V) on Grk(V) given by: (<p,W) »-> <p(W). The stabilizer of a point Wo € Gr£(V) is
O(WQ) x O(W(f-). Since the action is transitive, one obtains the following description

^ O(m,n)/O(jfe) x 0 ( m _ k,n)

The second isomorphism depends on the choice of a basis of the spaces Wo and
Next consider the space Gr£°(y) of all oriented positive definite subspaces W C V of

dimension k. Clearly, the natural map Gr^°(y) —» Gr^(F) is a 2 : 1 cover. Again, O(V)
acts transitively on Gr^°(V) and the stabilizer of an oriented positive definite subspace Wo
is SO(T^o) x O(Wj-). Thus,

- O(V)/SO{WQ) x 0{w±) =O(ra,n)/ s o ( A ; ) x

3.2 Planes and complex lines

For k — 2 the space Gri^F) allows an alternative description. It turns out that there is a
natural bijection between this space and the space

Qv := {x | x2 = 0, (x + x)2 > 0} C P(FC),

where we use the C-linear extension of ( , ). Note that the second condition in the definition
of Qr is well posed, i.e. independent of the representative x € Fc of the line x £ P(Fc), as
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long as the first condition x2 = 0 is satisfied. Clearly, Qy is an open subset of a non-singular
quadric hypersurface in P(Fc).

To any x G Qv one associates the plane Wx := F^ H (xC © xC) C FR endowed with the
orientation given by (Re(x),Im(x)). Since xC®xC is invariant under conjugation, this space
is indeed a real plane. Moreover, W\x = FR n (XxC © XxC) = Wx and (Re(A#),Im(A:r)) =
(Re(rr),Im(rr))(__T^/A ^A ), where the matrix has positive determinant. Hence, the ori-
ented plane Wx is well-defined, i.e. it only depends on x G P(Fc). It is positive, since
(Xx + Xx)2 = XX(x + x)2 > 0 for A ^ 0.

Conversely, if W G G ^ ^ F R ) , then choose a positively oriented orthonormal basis W1.W2 G
W and set x := w\ + iw^ Then W — Wx and x2 = 0, (x + x)2 = (2wi)2 > 0. Moreover,
x G P(Fc) does not depend on the choice of the basis and any x G Qr can be written in this
form.

Thus, one has a bijection

3.3 Planes and three-spaces

For our purpose the spaces Gr̂ °(F]R), Gr^F^) , and Gr^° (FR © C7R) are the most interesting
ones. In the next two sections we will study how they are related to each other. To this end
let us first introduce the space

Gr̂ (rM) := {(p,w) 1 PeGrP°(rR) i ^ f i c r R y > o } .

Clearly, this space projects naturally to Gr^Fjfc) by (P, uS) *-* P. The fibre over the point
P is the quadratic cone {u> | u2 > 0} C P"1 C FR. If F has signature (3,6 — 3), this cone
consists of exactly two connected components, which can be identified with each other by
u) H-> — u. Thus, the fibre of Gr^FR) -> Gr̂ 0(F]R) over P in this case is the disjoint union
of two copies of a connected cone, which will be called Cp.

In fact, Gr^FR) -> Gr^FR) is a trivial cover, i.e. Gr^FR) splits into two components.
This can either be deduced from the fact that Gr^°(FR) £ 0(3, b- 3)/(SO(2) x 0 (1 ,6 - 3)) is
simply connected (cf. Sect. 3.6) or from the following argument: If we fix a positive oriented
three-space F G Gr^FR), then the orthogonal projection P © WLJ -> F for any u G ±Cx
must be an isomorphism, since F1 is negative definite. Thus, we can distinguish one of the
two connected components of ±Cx by requiring that P © MLJ = F is compatible with the
orientations on both spaces.

Mapping (P, LJ) to the oriented positive definite three-space F(P. u) := P © uR and the
scalar w2 G E>o defines a map Gr^FR) -> Gr|°(FR) x l>o . The map is surjective and the
fibre over a point (P, A) can be identified with the set of all LJ G F with UJ2 = A which is a
two-dimensional sphere.

Thus, one has the following diagram
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R) x M>0 s (0(m, n ) / s o ( 3 ) x 0 ( m _ 3? n ) ) x

0(m ; n ) / s o ( 2 ) x 0 ( m _ 2 n)

Note that the two natural compositions S2 C G I ^ F R ) -> Gr£°(FR) and CP C
x K>o are both injective.

3.4 Three- and four-spaces

Prom now on we will assume that F has signature (3,6—3). Furthermore, let us fix a standard
basis (w, w*) of U. i.e. w2 = w*2 = 0 and (w. w*) = 1. We will see that the space of four-
spaces in FR © UR relates naturally to the space of three-spaces in FR. Explicitely, we will
show

x R>0 x FR S
= O(4'6-2)/SO(4)x 0(6-2)

The second isomorphism follows from Sect. 3.1. The first one is given as follows.

(j): (R a, B)^U:=Ft® B%

where F' := {/-(/, B)w\f e F} and B' := B + \{a-B2)w+w\ Clearly, (/-(/ , B)w: B
1) =

(/ — (f.B)w.B + w*) = 0 and thus the decomposition is orthogonal. Furthermore, (/ —
(/, B)w)2 = f > 0 for 0 + f € F and Bn = B2 + a - B2 = a > 0. Hence, II is a positive
four-space. Its orientation is induced by the orientation of F = F1 and the decomposition
II = F1 © B'K

In order to see that <f> is bijective we study the inverse map ip : II «-> (F. Bf2. B). where F.
B1. and B are defined as follows: One first introduces F1 := UDw^. This space is of dimension
three, since otherwise II C w1 = FR © wR and the latter space does not contain any positive
four-space. Again by the positivity of II one finds w g. F1 C II. Hence, F := 7r(F7) C FR
is a positive three-space, where TT : FR ffi UR —> TR is the natural projection. Furthermore,
there exists a B1 € n such that II = F1 ffi B'R is an orthogonal splitting. As before B1 cannot
be contained in w*~. Thus, one can rescale B1 such that (B'.w) = 1. This determines B1

uniquely. Since B1 e n, one has B12 > 0. The B-field is by definition B := 7r(J57). One easily
verifies that ^ and (j) are indeed inverse to each other.

3.5 Pairs of planes

The last space we will discuss in this series of period domains is the space of orthogonal
oriented positive definite planes in TR ffi UR. i.e.
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GrP°2(rK 0 Um) = {(HUH2) \ H, € Gr^pR © *7R), Ex JL H2}.

Using the same techniques as before this space can also be described as an homogeneous
space as follows

- ° ( 4 ' 6 - 2 ) / S O ( 2 ) x S O ( 2 ) x O ( 6 - 2 ) ;

for some chosen point (H\.H2) € Grl^FR © UR), respectively basis of the spaces H\, H2.

We will be interested in the natural projection

7T : GrP°2(rR © UR) -» GrP°(rR © *7R), {HUH2) ^ U := Hx © H2

and in the injection

7 : Gr^(rR ) x TR -> Gr5f°2(rR 0

which is compatible with Gr^^rn) -^ Grf°(rR).
Let us first study the projection. Using the above description of both spaces as homo-

geneous spaces this map corresponds to dividing by SO(4)/(SO(2) x SO(2)). The fibre of
7T over II G Gr^°(rM © UR) is canonically isomorphic to Gr£°(II) by (HUH2) *-> Hi. The
inverse image of H € Gri^II) is (H.H^. where H1 gets its orientation from II and the
decomposition II = H © H^.

Thus one obtains the following description of the fibre

The second isomorphism is derived as in Sect. 3.2 from

= {x e P(nc) I x
2 = 0} ^ P1 X P1.

Note that (x + x)2 > 0 is automatically satisfied, for ( , ) on II is positive definite by
assumption.

Let us now turn to the injection 7, which is defined as follows. We set 7((P,o;),B) =

(HUH2) with
H1:={x-(x,B)w\ xGP}

and

(2 B(aB)w + w
2 )

where as before (w. tt;*) is the standard basis of C/ and a = u2.

15



The isomorphism P = Hi. x i-> x — (x. B)w endowes Hi with an orientation. A natural
orientation of H<i is given by definition. Observe that Hi only depends on P and B. whereas
H2 on co and B. One easily verifies that the map 7 is injective and that it commutes with
the projections to

GrP°(rM e uR) x % 0 x rR ~ G^°(rR e t/R).

Recall that the fibre of G r ^ I ^ ) x FR -> Gr^°(rR 0 C7R) is S2, whereas the fibre of
Gr^°2(FR 0 UR) -> Gr$0(FR 0 J7R) is S2 x S2. It can be checked that the embedding 7 does
not identify the fibre 5 2 with the diagonal.

Remark 3.1 Note that the projection GrJ£(rM) x T M - ) GrJTi(rR) -> Gr£°(rR) does not
extend, at least not canonically, to a map Gr2^(rR©C/R) —> Gr^°(rR). Geometrically this will
be interpreted by the fact that not any point in the (2,2)-CFT moduli space of K3 surfaces
canonically defines a complex structure.

We summarize the discussion of this paragraph in the following commutative diagram

(

X M>o X J

) x M>o

Gi§°(TR)

3.6 Topology of period domains

Let us study some basic aspects of the topology of the period domains that are of interest
for us. Let F be a lattice of signature (m. n).

GrP°(rR) a 0(3, n ) / s o ( 2 ) x 0 ( i , „), Gr?°(TR 0 Uu) = 0(4, n + l ) / s 0 ( 4 ) x 0 ( n + 1)

GrP°(rR) S 0(3, n ) / s o ( 3 ) x 0 ( n ) , GrP°2(rR 0 UR) = 0(4, n + 1)/SO(2) x S0(2) x 0(n + 1

For simplicity we will suppose that n > 0.

Lemma 3.2 T/ae group 0(m, n) mYA m. n > 0 /ia^ exactly four connected components.
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Proof. Write O := O(ra, n). Then there are the following disjoint unions 0 = O+ U 0 ,
O = O+ U O_, and O = 0 J U O± U 0+ U 0 1 . Here, 0 | are defined as follows: Write Rm+n =
WQ © WQ- with WQ C Mm4"n a positive subspace, which is endowed with an orientation.
Then let 0 + and 0~ (respectively, 0+ and 0_) be the subsets of all linear maps A G O
such that the orthogonal projection AWQ —> Wo (respectively, AW(j- —» W^~) is orientation
preserving resp. orientation reversing. By definition 0^ = 0 + fl 0_|_, etc. For any Ao € 0±
the map 0+ -> Ozj:, A t-+ AAQ defines a homeomorphism. Thus, it suffices to show that 0+
is connected. •

Note that 0+ (m, n) is the connected component of the identity. It will thus also be
denoted 0 0 (m, n).

Corollary 1 The space Gr%°(T^) is connected, whereas the spaces Gr*^ (FR), Gr|0(FR);

Gr4°(rR©C7K, and Gr^0
2(FR© UR) consist of two connected components.

Proof. Use the obvious fact that the inclusion SO(2) x 0(1, n) C 0(3, n) respects the
decomposition into connected components, i.e. 0^(1,n) C 0^(3, n). Thus, TTO(SO(2) X

0(1, n)) = 7T0(O(3,n)) ^ Z/4Z. Similarly for Gr£°(rM). Here 7T0(O(3,n)) = Z/4Z, but
TTO(SO(3) x 0(n)) = Z/2Z, i.e. the components 0^ do not intersect the image of the inclusion.
Hence, 7ro(Gr3°(rR)) = Z/2Z. The remaining assertions are proven analogously. •

We are also interested in the fundamental groups of these spaces. In order to compute
those, we recall the following classical facts.

Proposition 3.3 One has m (SO (2)) = Z,TTI(SO(A0) =Z/2Zfork > 2, and<Ki{0Q(m,n)) S
7ri(S0(m)) X7n(S0(n)).

Proof The first assertion follows from S0(2) = S2. The universal cover of SO(Jfe) for k > 3
is the two-to-one cover Spin(A;) —>> SO (A:). The isomorphism in the last assertion is induced
by the natural inclusion SO(ra) x SO(n) c-^ 00(m. n). •

Corollary 2 All period domains Gxf{Y^), Grift (FR), GrP°(FM), Grf(rRffif7R); andGr^2(TR®
C/R) are simply-connected, i.e. every connected component is simply connected.

Proof Since

GI5°(FR) = 0(3,^/80(2) x 0(1,n) = °o(3^)/sO(2) x Oo(l,n)i

we may use the exact sequence

7r1(SO(2)xOo(l,n))-%7r1(Oo(3,n))->7r1(GrP°(rR))^7r0( ) * TTO( ).
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The map a is compatible with the natural isomorphisms TTI(SO(2) x Oo(l, n)) = TTI(SO(2)) X

7n(00(l,n)) ^ TTI(SO(2)) x TTI(SO(1)) x 7n(SO(n)), 7n(Oo(35n)) ^ TTI(SO(3)) X 7n(SO(n))
and the natural maps Z s TTI(SO(2)) X TTI(SO(1)) -> TTI(SO(3)) = Z/2Z. Thus, a is surjective
and hence T T ^ G ^ O J R ) ) = 0. The other assertions are proven analogously. D

Remark 3.4 Eventually, we list the dimensions of our period spaces, which can easily be
computed starting from Gr£°(FR) - Qv- We have dimGr£°(FM) = 2(n+ 1), dimGr|°(FR) =
3n + 1, GrP°(FM) = 3n - 1, and dimGrP°2(FM) = 3n + 3.

3.7 Density results

Here we shall be interested in those points P G Qv whose orthogonal complement P-1 C FR
contains integral elements a G F of given length. For simplicity we shall assume that F is the
K3 lattice 2(—Eg) © SU. but all we will use is that F is even of index (3,6 — 3) and that any
primitive isotropic element of F can be complemented to a sublattice of F which is isomorphic
to the hyperbolic plane. First note the following easy fact.

Lemma 3.5 7/0 ̂  a G FR then a1- n Qv is not empty.

Proof Indeed, a1- C Ft is a hyperplane containing at least two linearly independent
positive vectors x. y. Thus, P := (x. y) G a1- n Qv- E

The quadric in P(Fc) defined by the quadratic form ( , ) on F will be denoted Z. its real
points form the set Zu — I^FR) n Z.

Proposition 3.6 Let 0 ̂  a G F. Then the set

U 9(0^1
p€O(r)

is dense in Qv-

Proof. We start out with the following observation: Let F = F; © U be an orthogonal
decomposition and let (v.v*) be a standard basis of U. For B G F' with B2 ̂  0 we define
<PB € O(F) by <pB(v) = v, VB(V*) = B + v* - B2/2-v, a,nd(pB(x) = x - (B. x)v for x G F'. It
is easy to see that indeed with this definition cpB G O(F). (We shall study a similarly defined
automorphism (pn G O(F 0 U) in Sect. 5).

This automorphism has the remarkable property that for any y G F^ one has

In particular, we find that in the closure of the orbit O := O(F) • [a] C P(FR) there exists an
isotropic vector, i.e. O n Z^ ^ 0.
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In order to prove the assertion of the proposition we have to show that for any P G Qy
there exists an automorphism g G O(F) such that g(a) is arbitrarily close to P1. Indeed,
in this case we find a codimension two subspace W C T^ close to P1- containing g(a) and,
therefore, W1- G Qy is close to P and orthogonal to 5(0?).

Since P^ contains some isotropic vector, it suffices to show that any vector [y] G ZR C
P ( F R ) is contained in O. As explained before, O fl ZR ^ 0. On the other hand, O n ZR is
closed and O(r)-invariant. Thus, it suffices to show that any O(F)-orbit O^ := O(F)-[y] C Z^
is dense. This is proved in two steps.

i) The closure Oj, contains the subset {[x] G Z \ x G F}. Indeed, for any x € F primitive
with x2 = 0 one finds an orthogonal decomposition F = V © U with x = v. where (v.v*)
is a standard basis of the hyperbolic plane U. If we choose B £ T1 with B2 / 0, then
limfc-̂ oo ipk

B[y] = [v] = [x]. as we have seen before. Hence, [x] G Oy.
ii) The set {[x] G Z | x G F} is dense in Z. Indeed, if we write F = F' © U as before, then

the dense open subset V C Z^ of points of the form [x' + Xv + v*] with A G R, x' G T'R is the
affine quadric {(#', A) | 2A + x/2 = 0} C FR X K and thus is given as the graph of the rational
polynomial F^ —> E, rr; i-> -xf2/2. Therefore, the rational points are dense in V.

Combining both steps yields the assertion. D

Corollary 3 For any me Z the subset

{P G Qv I there exists a primitive a G F n P1 with a2 — 2m}

is dense in Qy.

Proof. In order to apply the proposition we only have to ensure that there is a primitive
element 0 ^ a G F with a2 = 2m. If (w, w*) is the standard base of a copy of the hyperbolic
plane U contained in F, we can choose a = w + mw*. •

In fact, if #1, OLi G F are primitive elements with a2 = a2 then there exists an automor-
phism (p G O(F) with ip(oii) — #2 (cf. [25, Thm.2.4] or Remark 6.4). Thus, the assertion
of the corollary is essentially equivalent to the proposition (see [1] page 111). Note that for
general HKs we don't know which values of 2m can be realized.

As a further trivial consequence one sees that the set of those P G Qy such that P^f lF ^ 0
is dense in Qy. One can now go on and ask for those P G Qy such that P1- n F has higher
rank. Those with maximal rank, i.e. rk(P-L n F) = rk(F) - 2, are called exceptional. An
equivalent definition is

Definition 3.7 A period point P G Qy is exceptional if P C F^ is defined over Q, i.e.
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Clearly. P is exceptional if there exist linearly independent elements <*i,..., #rk(r)-2 £ F
such that P C â ~ for all i. Note that if P € Qr is exceptional, the orthogonal complement
P^- always contains a lattice vector x £ F with :r2 > 0 (use that F has signature (3,6 — 3)).

Next we will prove that also the exceptional points are dense in Qp. For K3 surfaces one
can add further restrictions.

Definition 3.8 Let F be the KS lattice. A 'period'point P € Qr is called exceptional Kummer
if P C F | is defined over Q and for all x € P D F one has x2 = 0 mod 4.

Proposition 3.9 Let F be the K3 lattice. Then the set of exceptional Kummer points P € Qr

is a dense subset of Qr-

Proof We first prove the following statement. Let L be an arbitrary lattice. Then the set

{[x] | x £ L is primitive and x2 = 0 mod 4} C P(Z>R)

is empty or dense. Indeed, if [x] is contained in this set and y € L is arbitrary, then
[x + TV • y] £ P ( I /R) converges towards [y] for TV -» oo. Moreover, (x + TV • y)2 = x2 = 0
mod 4 if TV is even. If y £ 1/ is primitive and y ^ x then there exist arbitrarily large even TV
such that x + TV • y is again primitive. Since the set of all [y] with y e L primitive is dense
in P ( L R ) , this proves the assertion.

Now let P 6 Qr be spanned by orthogonal vectors yi-ty2 € FR. Then by what was
explained before we can find x\ £ F primitive with rrf = 0 mod 4 such that [si] is arbitrarily
close to [j/i] G P ( F R ) . Furthermore, choose #2 £ xj- C T primitive and arbitrarily close to
2/2 £ 2/1" with #2 = 0 mod 4 and set P7 := (Z#i © 1*X2)R- Such an element #2 can be found,
as xj- C F contains a copy of the hyperbolic plane U and thus an element whose square is
divisible by four. e.g. 2v + v*, where (v.v*) is a standard basis of U. Then P7 is close to P
and {ax\ + bx2)2 — a2x\ + b2x2 = 0 mod 4. D

We leave it to the reader to modify the above proof to obtain

Corollary 4 Let F be an arbitrary lattice of signature (3,6 — 3). Then the set of exceptional

period points is dense in Qr> D

4 Period maps

The aim of this section is to compare the various moduli spaces introduced in Section 2 with

the period domains of Section 3 via period maps P c p \ V, P m e t . P ( 2 ' 2 ) . and
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4.1 Definition of the period maps

The period maps we are about to define will fit into the following two commutative diagrams:

V: Tv

^ Glf (rR) X E>0

and

I'
p(4,4) : ^

The latter should be compatible with the two diagrams

( r M ) x r R _ ^ G r
o ( r R )

1 1 1
and the period maps V and /Pmet.

The definition of the maps V, Vmet, Pcp l , V^2\, and V^ is straightforward. Let
{X.a.ip) = (M,g,I,<p) € 7f and B € H2(I.I) = H2(M,R) a B-field. By a we denote
a generator of H2${

Then we set:

V(x,a,<p) =

,v) = {<p(Hl(M,g)),q(M,g))£G4°(TM)xR>0

, g, B, <p) = (7>met(M, g, ^ ) , <p(B)) € GrP°(rR) x M>0 x TR £ GrP°(r

We leave it to the reader to verify that all period maps are O(F)-equivariant and that one
indeed obtains the above commutative digrams.
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4.2 Geometry and period maps

Without going too much into the details we collect in the following some important results
about period maps. In particular, we will translate geometric results, like the Global Torelli
Theorem into global properties of the period maps.

Local Torelli. The map 7^pl : 7^pl -» Qv is holomorphic and locally (in T£pl) an
isomorphism (cf. [6]).

Recall that 7j?p has a natural complex structure, but that the underlying topological
space is not Hausdorff. On the other hand, Qr is an open subset of a non-singular quadric
in P(Fc) and, therefore, a nice complex manifold.

Of course, the Local Torelli Theorem in the above version immediately carries over to
the other period maps. Thus, V, Pm e t , V^2\t and V^ are all locally injective. Since the
Teichmuller spaces 7f, V"^ 7p2'2). and T(4'4) are all Hausdorff, this shows that except Vcpl

all period maps define covering maps on their open images.

Twistor lines. Under the period map Vcpl the twistor line P1 = cm~1(M.g.cp) C 7^
(cf Proposition 2.9) is identified with a quadric in some linear subspace P2 C P(Fc).

Indeed, the P2 is given as W(y(H\{M,g)c)) C P(r c) .

Surjectivity of the period map. The map Vcpl : 7^p -» Qr maps every connected
component o/7^pl onto Qv (cf. [22]).

Analogous statements for the other period maps do not hold. In these cases the assertion
has to be modified. To see this let us look at the fibres of ly —> 7^p over (X.cp). By
definition of 7f this is the Kahler cone Kx which, via the period map V, is identified with an
open subcone of the positive cone C^pcp\tx^) which is one connected component of the fibre
of G ^ F R ) -> Qr over Vcp\X, <p). For a very general marked IHS (X tp) E 7^pl the Kahler
cone Kx is maximal, i.e. Kx = Cx- Thus, for those points V maps the fibre of 7r —> 7^pl

bijectively onto one of the connected components Cp or — Cp of the fibre of GrJ^FR) —> Qp
over P = Vcvl(X.(p). For special marked IHS (X<p), which usually (e.g. for K3 surfaces)
nevertheless form a dense subset of 7^p , the Kahler cone is strictly smaller.

Density of the image. The image of every connected component of Tr under the period
map V is dense in the connected component of the period domain Gr^ (FR) containing it.
Analogous statements hold true for Vmet, V&2\ and p(4>4).

Let us say a few words about how the density is proved and how the boundary Grpc^ (FR) \
V(Tp) can be interpreted.

Since Vcpl is surjective, we may consider (X. cp) G Tcpl and study the fibre of Gr^^F^) ->
Gr£°(rR) ^ Qr over Vcpl(X.<p), which is ±(p(Cx). The ±-sign distinguishes the two con-
nected components of Gr^FR) . The image of the fibre 7f —> 7^p over (X. cp) is the open
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subcone <p(JCx) C <p(Cx). We will discuss its boundary and its complement: If a G Cx is
general, then there exists (Xf. (pf) G 7r which cannot be separated from (X, <p) such that
V(X.(p) = V(X',ip') and y>(a) € iff{KX') (see [19]). (Moreover, X and X' are birational.)
Thus, the disjoint union ±\Jcp(ICx) over all (X.ip) in the same connected component and
with the same period V(X. ip) G Qy is dense in ip(Cx)-

For a point a G d(f(JCx) there always exists a rational curve C C X with J c a = 0 (see
[10], i.e. under the degenerate Kahler structure a the volume of the rational curve C shrinks
to zero. Thus, points in the boundary of V(lCx) should be thought of as singular IHS/HK
which are obtained by contracting certain rational curves. Unfortunately, neither are we able
to make this statement more precise nor do we know that any point a G y{Cx) is actually
contained in the closure of some ^(/C^O? where (Xf. cp') is as above. However, for K3 surfaces
the situation is much better understood (cf. [24]).

Projective IHS. The set of protective marked IHS forms a countable dense union of
hyperplane section of Qr- If .Mpr0J C Mr denotes the set of all Kahler IHS for which the
underlying IHS is projective, then .Mpr0J —>• jMj?et is surjective.

In fact, due to a general projectivity criterion for surfaces and an analogous result for
IHS (cf. [19]) one knows that an IHS X is projective if and only if there exists an integral
(Ll)-class a with q(a) > 0. Thus, (X.cp) G 7^pl is projective if and only if Vcpl(X.cp) is
contained in a hyperplane orthogonal to some a G F with a2 > 0. As we have seen before,
the set of such periods is dense in the period domain Qy. Since the fibre of 7r —> ly?^
is identified with a quadric curve P1 C P(F<c) under the projection 7f —>• 7^p and as such
is intersected non-trivially by every such hyperplane, the fibre contains at least one Kahler
(X. a. <p) with X projective. In other words, for any hyperkahler metric g on a manifold M
at least one of the complex structures A = al + bJ + cK defines a projective IHS. In fact, the
set of projective IHS is also dense among the (M, A).

Finiteness. The induced period maps

-+ o(r)\^^O(r)\°(3'6-3)/so(2)xO(i,6-3)

are finite trivial covers of their images, i.e. every moduli space has only finitely many con-
nected components and each connected component is mapped bijectively onto its image.

Note that e.g. 7j?p might a priori have infinitely many components. That this is no longer
possible for the quotient My? — O(F) \ 7^p is a consequence of the finiteness result in [23,
Thm. 4.3] which says that there are only finitely many different deformation types of IHS
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with the same BB-form qx- Since Qr is simply connected and Vcpl is surjective, the cover
Vcpl has to be trivial. In fact, in order to make this precise one first should construct the
'Hausdorff reduction' of 7j^p by identifying all points that cannot be separated from each
other. This Hausdorff space then is an honest etale cover of the simply connected space Qr
and. therefore, consists of several copies of Qy.

We leave it to the reader to deduce similar statements for the maps V^2"® and 7^4'4).

Remark 4.1 This is essentially all that is known in the general case. For K3 surfaces
however the above results can be strengthened considerably as follows. The Global Torelli
for K3 surfaces shows that 7^p consists of two connected components which are identified
with each other by (X <p) H>. (X.-ip) and which are not distinguished by Pcp l . The two
components are separated by the map V : Tv —> Gr§° (FR), which is injective in the case of
K3 surfaces. Analogously. Vmet, T>(2^, and 7>(4^ are all injective.

The density results of Sect. 3.7 together with the description of the periods of our list of
examples of K3 surfaces in Section 1 and the above information about the period maps (i.e.
the Global Torelli Theorem) yield:

Proposition 4.2 The following three sets are dense in the moduli space of marked K3 sur-
faces: i) {(X.(p) | X C P3 is a quartic hypersurface}
ii) {(X (p) | X is an elliptic K3 surface}
iii) {(X. ip) | X is a(n exceptional) Kummer surface}. D

4.3 The diffeomorphism group of a K3 surface

Proposition 4.3 Let X be a K3 surface. The image of the natural map p : Diff(X) —>
O(#2(XZ),U) is the subgroup O+(#2(XZ),U).

Recall (cf. Section 3.6) that 0+ is the group of all A £ 0 that preserve the orientation of
positive three-space (but not of a negative 19-space). The proposition is due to Borcea [11],
who showed the inclusion 0 + C Im(p), and Donaldson [16], who showed equality. We only
reproduce Borcea's argument here.

Proof First note the following. If (Xf. (ft) is a connected path in 7^p , then there exists
a sequence of diffeomorphisms ft : XQ = Xt such that <po o /* = (pt.

Let now <p be any marking of X and consider (X <p) £ 7^p . By To we denote the connected
component of T^1 that contains this point. Pick A e 0+(H2(X, Z), U). Then A acts on 7^pl

and Qr by cpAip'1 and the period map Vcpl : 7^p —> Qr is equivariant. Since the restriction
of the period map Vcpl yields a surjective map To -> Qr-, there exists a marked K3 surface
(X1, <pf) with Vcp\X', ip') = AVcpl(X, cp) = V{X, A<p). If X is a general K3 surface such that
}CX = Cx, then ±<p'~1 o (<pA) : H2(X,Z) ^ H2(Xf,Z) is an isomorphism of periods mapping

to JCxf • By the Global Torelli Theorem there exists a (unique) isomorphism g : X' = X
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such that g* = dap' o (cpA). By the remark above we also find a diffeomorphism / : X == X1

such that cp o /* = (p\ Hence, cp o f*g* — ±(cpA) and thus (g o / )* = ±A is realized by a
diffeomorphism of X. In fact, the sign must be "+", as <?*, /*, and A preserve the orientation
of a positive three-space.

It remains to show that -id is not contained in the image and this was done by Donaldson
using zero-dimensional moduli spaces of stable bundles on a double cover of the projective
plane. D

Remark 4,4 In the proof above we used the assumption that n = 1 twice: When we applied
the Global Torelli Theorem and, of course, when using Donaldson invariants. The surjectivity
which is also crucial holds true also for n > 1. Somehow, the use of the Global Torelli Theorem
seems a little strong, as we have no need to know that g* is induced by a biholomorphic map,
a diffeomorphism would be enough.

In [28] Namikawa constructs an example of two four-dimensional IHS X and X1 together
with an isomorphism of their periods which preserves the Kahler cone, but such that X
and X' are not even birational. To be more precise, he let X — K2(T) and X' = K2(T*) be
generalized Kummer varieties associated to a complex torus T and its dual T*. As the moduli
space of complex tori is connected, one can endow X and X' with markings <p respectively
(p' such that (X (p) and (X', (p*) are contained in the same connected component To of 7j?pl.
His example shows that O+(F) does not preserve 7o, i«e. there exists A £ O+ such that
(X'.A<pf) # 7o (with V(X'.A(p') = V(X.(p)). Indeed, after identifying non-separated points
in 7^p the period map Vcpl : 7^p -» Qv is a covering and thus, since Qy is simply connected,
every connected component 7o of 7Ĵ P is generically mapped one-to-one onto Qr-

5 Discrete group actions

All spaces considered in Section 3 are quotients either of O(FR) or O(FR © C/R). SO from a
mathematical point of view it seems very natural to study the action of the discrete groups
O(F) respectively O(F © U) on these spaces. In fact, from a geometric point of view one has
to divide out by the smaller group in order to obtain moduli spaces of unmarked (complex)
HK or (kahler) IHS with or without B-fields.

But in [4] it is argued that dividing out 7^ ' ^ or 7y ' ' by O(FffiC7) yields the true moduli
space of CFTs on K3 surfaces. In order to recover the full symmetry of the situation they
proceed as follows:

i) Maximal discrete subgroups. Find a discrete group G that acts on a certain moduli
space of relevant theories and show that it is maximal in the sense that any bigger group would
no longer act properly discontinuously. (Recall that the quotient of a properly discontinuous
group action is Hausdorff.)
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ii) Geometric symmetries. Describe the part of G (the geometric symmetries) that
identifies geometrically identical theories and the part that is responsible for trivial identifi-
cations (e.g. integral shifts of the B-field).

iii) Mirror symmetries. Show that G is generated by the symmetries in ii) and a few-
others that are responsible for mirror symmetry phenomena.

5.1 Maximal discrete subgroups

We first recall the following facts:

• Let G be a topological group which is Hausdorff and locally compact. If K C G is a
compact subgroup then any other subgroup H acts properly discontinuously from the left on
the quotient space G/K if and only if H C G is a discrete subgroup. (For the elementary
proof see e.g. [34. Lemma 3.1.1].)

• Let L be a non-trivial definite even unimodular lattice and let q > 3. Then O(L®U®q) C
O(Z,R © U^q) is a maximal discrete subgroup (cf. [2]).

The second result in particular applies to the K3 surface lattice F = 2(—Eg) © 3U and
yields that O(F) C O(FR) and O(F©?7) C O(FM©C/M) are both maximal discrete subgroups.

The group O(F) acts on Gr£°(FR) and Gr£0(FR). As we have seen

Grf(FM) - 0(3,19)/S O ( 2 ) x o(l519) and Gvf(TR) <* 0(3,19)/S O ( 3 ) x

In the second case we are in the above situation, i.e. the quotient is taken with respect to the
compact subgroup S0(3) x 0(19). Hence. 0(F) acts properly discontinuously on Gr^F^ )
and there is no bigger subgroup of O(FR) than 0(F) with the same property. However,
the action of 0(F) on Gr^F^) is badly behaved, as the subgroup S0(2) x 0(1,19) is not
compact. In fact, in the proof of Proposition 3.6 we have already seen that the action of 0(F)
is properly discontinuous.

We are more interested in the action of 0(F © U) on G^°(FR © UR) = 0(4,20)/(SO(4) x
0(20)). Again 0(FffiC7) is maximal discrete and thus there is no bigger properly discontinuous
subgroup action on Gr4°(rR©J7R), as S0(4) x 0(20) is compact. Analogously, one finds that
0(F © U) is a maximal discrete subgroup of 0 ( F K © UR) acting properly discontinuously on

5
Presumably, all these arguments also apply to any HK manifold, but details need to be

checked. (Recall that (H2(X.Z),qx)) is not necessarily unimodular in higher dimensions.)

5.2 Geometric symmetries

We will try to identify "geometric" symmetries and integral shifts of the B-field inside 0(F ©
[/). To this end we use the identification

x TR <* GrP0(rR 0
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described in Sect. 3.4. The natural inclusion O(F) C O(F © U) is compatible with this is
isomorphism, i.e. if TI = <j>(F, a, B) and (p G O(r) C O(Fffit7), then cp(U) = <j)(<p(F). a, <p(B)).
This is a straightforward calculation which we leave to the reader. Clearly, O(F) acts naturally
on all spaces T, T1116*, T^1, 7^2'2^. and 7~̂ 4'4) and the period maps are equivariant. Thus,
O(F) is the subgroup that identifies geometrically equivalent theories.

Next let BQ G F and let cpB0 € O(F © U) be the automorphism w i-> w. w* i-> Bo + w* —
(BQ/2)W. and x € F »-> x — (Bo,x)w. One easily verifies that this really defines an isometry.
We claim that if IT = 0(F, a, B). then <pBo (II) = c/)(F. a, B + J50).

In order to do this let us more generally consider an element (p € O(F©[7) such that tp{w) =
w. For II € GT^(T^®UR), let fi := ^(11). Then F' = fin it;-1 = cpil^n^w)1 = (pillOw-1) =
(p(Ff). Moreover, one has the two orthogonal splittings fi = F'®B'R and fi = (p(F')®(p(B')R,
where & is determined by (B'.w) = 1. Since (<^(J3;),tt;) = {(p(B/).(p(w)) = (B1 .w) = 1, one
concludes B1 = (f(B'). In particular, J5/2 = B/2. The B-field B is given by 5 ; = aw + w* + B.
Hence, & = aw + (f{w*) + ̂ >{B) and thus the B-field determined by & is nothing but <p(B).

All this applied to (p — <po one finds that under the isomorphism Gr^FiR ffi C/R) =
Gr£°(FM) x R>0 x FR the integral B-shift by Bo that maps (F, a, B) to (F, a,B + Bo) corre-
sponds to <PB0-

We leave it to the reader to verify that also the O(F © 17)-action on Gr̂ °2(F]R © C/JR) is
well-behaved in the sense that O(F) C O(F © U) and the maps (pnQ for BQ e T act on the
subspace TCGr^FR) x FR) C G I ^ F R © C/R) in the natural way.

5.3 Mirror symmetries

The next result (due to C. T. C. Wall, [33]) explains which additional group elements have
to be added in order to pass from O(F) to O(F © U).

Proposition 5.1 Let F be a unimodular lattice of index (m, n) with m. n > 2. Then O(F©J7)
is generated by the following three subgroups:

O(F), 0(17), and {<pBo \ Bo G F}.

Thus, the result applies to the K3 surface lattice 2(-Eg) ©317, but presumably something
similar can be said for the case of the lattice 2(-Es) © 3U © nZ, which is realized by the
Hilbert scheme of a K3 surface..

In [4] passing from 0(F) to 0(F © U) is motivated on the base of physical insight. As
usual in mathematical papers on mirror symmetry we will take this for granted and rather
study the effects of these additional symmetries in geometrical terms. Thus, the rest of this
paragraph is devoted to the study a few special elements of G that are not contained in the
subgroup generated by 0(F) and {<PB0 \ Bo 6 F}. In particular, we will be interested in the
their induced action on Gr^ (FR) X FR.
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So far we have argued that 0(F ffi [/) is a maximal discrete subgroup of O(TR ffi UR) that
acts on the two period spaces that interest us: Gr̂ °2(FM © 17R) and Gr$°(FK © E7R). However,
there seems to be a bigger group that naturally acts on the space Gr^(FR@ UR) (which thus
cannot be realized as a subgroup of O(FR ©

Definition 5.2 The group O(T®U) is the group acting on Gr^iT-^QU^) which is generated
by O(F © U) and the involution t: (Hi, H2) «-> (H2. Hi).

Note that one could actually go further and consider the maps (H1.H2) *-)• (H1.H2) or
(Hi. H2) •"->• (Hi-, H2) , where H is the space .H" with the opposite orientation. However, for
the versions of mirror symmetry that will be discussed in these lectures 1 will do.

5.4 — idu

Consider the automorphism ^0 £ O(F ffi £7) that acts trivially on F and as —id on U.

Lemma 5.3 The automorphism ^0 preserves the subspace Gr^^r^) x F^ and acts on it by

Proof. If (Hi, H2) = j((P, LJ), B), then by definition of ifo:

= {x + (x, B)w I x € P} = {x - (x, (~B))w \ x G P}

and

= - d ( a - (-Bf)w + w* - B)R © (w - (co, (-B))w)

Thus, the sign of u) has to be changed in order to get the correct orientation

5.5 w ^ w *

Consider the automorphism ^1 £ O(F ffi U) that acts trivially on F and as ^(w) = w*
ipi(w*) = w onU.

Lemma 5.4 The automorphism ty\ preserves the subspace {((P.UJ).B) \ B € (P.co^.a
B2} O / G ^ I ^ R ) x FR and acts on it by
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Proof. Indeed, by definition of ^i one has ipi(H\) = H\ and

ibxiHo) = f -(a- B2)w* +w + B)R®((jj - (LJ.B)W*)R

a
£o™ + S o 5 R ©

-B2 a-B2 ) \a-

2

Then check that for u := —^T<J and 5 := -\$B one indeed has —~r = h(ti2 - B2). Q

It is interesting to observe that on the yet smaller subspace {((P, CJ), 0)} the automorphism
^i acts by (P, CJ) —>> TTTCP?<*>)• ^n ^e geometric context this will be interpreted as invertion
of the volume.

5.6 U <* U7

If the lattice can be written as F = F7 © U1. where U1 is a copy of the hyperbolic plane U,
then by Wall's result Proposition 5.1 the group G is generated by O(F). {(PB0 \ BQ G F}. the
involution A, and £ £ O(F © Z7) which is the identity on V and switches U and f/7. Here we
use an isomorphism U = U' which we fix once and for all. We consider Gr^ (FR) x FR as a
subspace of Gri^FR © U&) via the injection 7.

Neither t nor £ leave the subspace Gr̂ ^ (FR) X FK invariant. Indeed, if ((P.w),5) then
H\ C FR © Ru; and i?2 ^ FR © Rw and therefore (i?2, fli) = L(H\. H2) cannot be contained
in the image of 7. Similarly, for a general (Hi, H2) the pair of planes (((Hi). £(#2)) will not
satisfy £(#1) CFRffi]

Definition 5.5 £ := t o ̂  G 6(F © 17).

By definition £ acts naturally on G T ^ ^ F R © C/R) and GX4°(FR © C/R). The action on the
latter coincides with the action of £. We will show that £ can be used to identify certain
subspaces of Gr^^FR) x FR, but the whole Gr^ (FR) X FR will again not be invariant.
Maybe it is worth emphasizing that £ is an involution. Indeed, 1 commutes with the action
of O(FR © UR) and both transformations 1 and £ are of order two.

Note that different decompositions of F yield different £, which then relate different pairs
of subspaces of Gr^FR) x FR. The following easy lemma shows that we dispose of such a
decomposition whenever we find a hyperbolic plane contained in F.

Lemma 5.6 IfU' is a hyperbolic plane contained in a lattice T, then F = Uf± © U!.

Proof. Choose a basis (v.v*) of Uf that corresponds to the basis (w, w*) of U under the
identification U' = U. Furthermore, let F7 := U11- and let V be the subspace of the Q-vector
space FQ that is orthogonal to UQ. Thus, FQ = V © UQ. Clearly, V CV and, conversely, for
any v eV there exists A G Q" with Xv € V n T C F7. Hence, V = F^. Let x € F and write
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x — y + i^v + Vv*) w ^h V € V a nd A. /i € Q. Then (re, v), (a:, v*) € Z implies A, /i € Z and,
therefore, y = rr - (Av + /zv*) G F n V = F'. D

For the rest of this section we fix the orthogonal splitting F = F' © U1 together with an
identification U' = U. By pr : FR -> F^we denote the orthogonal projection.

Proposition 5.7 Let ((P,u).B) £ G r ^ F ^ ) x FR such that LJ.B 6 F^ © Rv. Then the
^-mirror image ((Pw. OJV). BY) := L(£((P,(JJ).B)) is again contained in Gr^^F^) x FR. It is
explicitly given as

Here, we have replaced P by the corresponding line [a] € Qy C P(Fc). Furthermore, we have
chosen a such that Im(<j) is orthogonal to v.

Proof. By definition the positive plane P is contained in or1. Since the intersection of u1-
with Fj£ © Mv and F^ © HHv* have both only one positive direction, P cannot be contained in
either of them. Thus, we may choose a such that v1- n P — Im(<r)lR and (Re(cr), v) ^ 0. This
justifies the above choices. Also note that LJY and By do not change when a is changed by a
real scalar. The defining equations for Bv + CJY and av are spelled out as follows

).v)~1 (--(B + iu) + v*)2v + B + iu) + vA

\ \ — 1 /T / ^ /T / \ * \ /T / \ D \ \
i.i)) i imicT) — (JLmicTJ. u /u — vJ.micrj. JD)v\

),v)~1 (Re(a) - (Re(a),v)v* - {Re(cr),v*)v - (Re(cr),B)v)

Let us now compute ^(jffi, J^). We denote 7((crv,6c;v), Bv) by (H1.H2). where CTV,CJV, and
BY are as above.

The space H^ is spanned by the real and imaginary part of av — (<JY,BV)W. A simple
calculation yields

(a\,B^) = -(Re(a),v)-1 ((B,v*)+ i{uj,v*)).

Thus, HJ is spanned by

B + v* + \{u)2 - B2 - 2(5, v*))v + (B, v*)w

= -(a;2 - B2)v + v* + (B- (B, v*)v) + (B, v*)w
ZJ

fyu? - B2)w - (B, v*)v) + (B,v*)v)

30



and

u) — (u). B + v*)v + (CJ, v*)w

— (u - (OJ,V*)V) + (LJ.V*)W - (u.B)v

= £ (UJ — (u. v*)v + (LJ, V*)V — (CJ, B)w)

Hence, H^ — i(H<i)* Similarly, one proves H^ = £(#i) . First one computes

LJY2 = (Re(a),v)-2Im(<j)2,

where one uses {Im(a),v) = 0. Since Im(cr)2 = Re(cr)2, this yields

Hence, i7J is spanned by

-{LSJ2-

),'u)-1 (Re(cr) - (Re(a),v)v*(Re(a),v*)v - (Re(a),B)v)

and

.^)-1 ((Im(a) - (Im(a),v*)v) - (Im(a),B)v + (Im(a),v*)w)

Thus, ^(iJJ) is generated by Re(cr) - (Re(cr), B)w and Im(cr) - (Im(cr), B)w. Hence, £(H%) =

Examples 5.8 The proposition can be used to identify certain subspaces of Gr^^r^) x F^
via the mirror symmetry t o £. We will present a few examples, which will be interpreted
geometrically later on. As the B-field from a geometric point of view is not well-understood
we will be especially interested in those points with vanishing B-field.

i) Fix an orthogonal decomposition F^ = V © VY, such that both subspaces V and Vy

contain a positive line. The automorphism t o £ £ O(F © U) induces a bijection between the
two subspaces:

/),£) | B.cjeV, P CVV ®U^
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Note that in this case the formulae for (aY, uy, Bv) simplify slightly to: av = (Re(a),v)-1(-l(B+
iu)2v+v* + B+iuj), u)v = ( H e C c T ) ^ ) - 1 ^ ^ ) - ^ ^ , v*)v), and Bv = (Re((j)^)-1(Re(a)-
(Re(a).v)v* — (Re(a). v*)v). Prom here it is easy to verify that LO£ maps these two subspaces
into each other. Note that BY + iuv is up to the scalar factor (Re(cr),^)""1 nothing but the
projection of a G V£ 0 t/jf, to V£.

ii) It might be interesting to see what happens in the previous example if we set the B-filed
zero. Under the assumption of i) the symmetry /,o£ induces a bijection between the following
two subspaces

), B = 0) | u £ V, Re(a) G U^ Im(cr) €

and {((P, <j), £ = 0) | W G Vv, Re(a) G t ^

Indeed, Im(<rv) = ( R f i W j ^ - ^ - ^ w j H w ) and Re(av) =
S). Thus, if 5 = 0 one has Im(av) = (Re(a),t;)-1^ and Re(crv) = ( R e ^ ) , ^ ) - ^ ^ + v*),
and Bv = 0. Conversely, if Re(crv) € f/̂  then 5 = 0. Moreover, Im(cr) € V implies CJ e V
and o;v G VY implies Im(cj) G F V . Eventually, BY yields Re(cr) G U^.

iii) In this example we will not need any further decomposition of F^. The automorphism
to £ £ O(T ®U) induces an involution on the subspace

{((P, CJ), B) | CJ, 5 € rfc 0 Mt;} C ^

This follows again easily from the explicit description of (<rv, o;v, B V ) .

iv) Also in iii) one finds a smaller subset parametrizing only objects with trivial B-field
that is respected by t o £. Indeed, the subpace

is mapped onto itself under i o ^. D

Remark 5.9 i) Note that we have not used any further normalization, e.g. LJ2 — Re(<j)2 as
in [20].
ii) If ((P,w),B) such that Bv = 0 and tp G O(r ;), then also i((<p(P),(p(u)),<p(B)) has
vanishing B-field. Geometrically this is used to argue that if the mirror Xv of X has vanishing
B-field then the same holds for the mirror of f*X under any diffeomorphism / of X with
f*\ij/ = id. The assertion is an immediate consequence of the explicit description of 5 V given
above.

Note that i o £ is by far the most interesting automorphism considered so far, as it really
mixes the 'complex direction' a with the 'metric direction' (a;, B). However, at least for the
case of the K3 lattice T — 2(—Es) © 3U the automorphisms £ respectively {-idj7,w «-» w*}
together with {O(T)z(pB0er} generate both the same group, namely O(F © U). This is a
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consequence of Proposition 5.1, where one uses £O(Z7)£ = O(U') and thus O(U) C (£, O(F)).
So in this sense, £ G O(F 0 U) as an automorphism of Grj^FR © UR) is not more or less
interesting than those in 5.4 and 5.5, but for the latter ones the interesting things happen
outside the 'geometric world5 of Gri^ (FR) x FR.

6 Geometric interpretation of mirror symmetry

6.1 Lattice polarized mirror symmetry

Let F as before be the K3 lattice 2(—Eg) © 3U and fix a sublattice TV C F of signature (1, r).

Definition 6,1 An N-polarized marked KS surface is a marked K3 surface (X ip) such that
TV C

Note that any TV-polarized K3 surface is projective. If 7j?p is the moduli space of marked
K3 surfaces we denote by 7 ^ - r the subspace that consists of TV-polarized marked K3 surfaces.
Analogously, one defines

^ 2 , 2 ) ^ 2 , 2 )

'NCT ^ 'v
as the subset of all marked Kahler K3 surfaces with B-field (X id, B. ip) such that TV C Pic(X)
and UJ.BG TVR. Here and in the following, we omit the marking in the notation, i.e. the
identification H2(X. Z) = F via <p will be understood.

The condition N C Pic(X) is in fact equivalent to V := N& C Pic(X)R. The latter can
furthermore be rephrased as V C (H2>°(X) @ H^2(X))^, i.e. a G V£.

By construction there exists a natural map

NCT ~* 'NCT'

The fibre over (X, ip) € 7 ^ r is isomorphic to VR + i(JCx n VR) via (id, B) ^ B + iu.

Using the period map, the space TJ^p can be realized as a subspace of Gr^^F^) x F^ C

Gr^°2(FR © UR). Its closure I^NCT consists of all points ((P, w),B) € G^'CrR) x FR such

that P C V1- and CJ.B G V. Indeed, via the period map 1%QY is identified with an open

subset of {((P, id), 5) | B.UJ eV.P C V^ and the latter is irreducible.
Let us now assume that the orthogonal complement TV-1 C F contains a hyperbolic plane

U1 C TV-1. Then TV-1 = TVV 0 C/7 by Lemma 5.6 for some sublattice TVV C F of signature
(1,18 — r). The real vector space JVJ is denoted by y v . As above one introduces i^v^_v and

Proposition 6.2 T/ie mirror symmetry map £ associated to the splitting T = V@U' induces
a bisection

= ( 2 , 2 ) ^
' ATCF —
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Proof. By the description of T^'% as the set {((P, <j), B J l R w G K P C F"1}, it suffices
to show that the mirror map identifies the two sets {((P.u).B) | B. w G V.P C F"1} and
{((P, u).B) \ B.u € VY,P C (V^)-1-}, which has been observed already in the Examples in
Section 5.6. D

Remark 6.3 i) In general, we cannot expect to have a bijection T ^ p = ^N^CV Indeed,
for a point in TJ^-p that corresponds to a triple ((P. u). B) the image ((Pv.o;v). J5V) =
£((P,u).B) might admit a (-2)-class c € (Pv)-L OF with (C.<JV) = 0. In fact, these two
conditions on the (—2)-class c translate into the equations (c + (C.V)B.D) = 0 and (c —
{c,v)v*,Im(<r)} = 0. To exclude this possibility one would need to derive from this fact that
there exists a (-2)-class c1 with (c7, a) = 0 and (c7, CJ) = 0 and this doesn't seem possible in
general.

One should regard this phenomenon as a very fortunate fact. As points in the boundary
are interpreted as singular K3 surfaces, it enables us to compare smooth K3 surfaces with
singular ones. One should try to construct examples of (singular) Kummer surfaces in this
context.

ii) Also note that if u G F, i.e. u corresponds to a line bundle, then LJV does not necessarily
have the same property.

iii) We also remark that the lattices N and iVv are rather unimportant in all this. Indeed,
what really matters are the two decompositions T — T © U1 and T'R = V®VY.

To conclude this section, we shall compare the above discussion with [15]. Let N C T and
TV"-1 = 7VV © U' be as before. Following [15] one defines

H C) and DN := Qv n

Then by [15, Thm.4.2,Rem.4.5] the map

a : Q, -> DN, z\-^[z- -z2 - v + v*]

is an isomorphism. This map obviously coincides with (B + iu)) i-> [av] as described in Prop.
5.7, since for B, UJ € JVj[ C F^ one has pr(B+iu) = B+iu. Thus, the map a coincides with the
map given by the isomorphism if^cv — 'NYcv- ^O make this precise note that T^v c r = DN
via the period map and that ((P, a;), B) ^ B + iu defines a surjection 7^v'cp —^ ft. This
yields a commutative diagram

= 'MY

which emphasizes the fact that the mirror isomorphism identifies Kahler deformations with
complex deformations.
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Remark 6,4 We also mention the following result of Looijenga and Peters [25], which shows
that lattices of small rank can always be realized. Let F be the K3 lattice and N any even
lattice of rank at most three. Then there exists a primitive embedding N C F. If the rank
is smaller than three then this primitive embedding is unique up to automorphisms of F, i.e.
elements of O(F).

6.2 Mirror symmetry for elliptic K3 surfaces

Let 7T : Y -» P1 be an elliptic K3 surface with a section ao C Y. The cohomology class
/ of the fibre and [ao] generate a sublattice U' C H2(Y.Z). It can be identified with the
standard hyperbolic plane by choosing as a basis v = / and v* = f + cro- Thus, we obtain a
decomposition F := # 2 (Y Z) = F; @ U'.

Let us now study the action of £ on K3 surfaces that are related to Y. If we fix a HK-
metric g on Y, then we may write Y = (M, J), where J is one of the compatible complex
structures {al + bJ + cK \ a2 + b2 + c2 = 1} associated with g. A holomorphic two-form on
Y can be given as aj — OJK + iuj. The reason why the complex structure that defines Y is
denoted J is that we will actually not describe the mirror of Y. but rather of X := (M. / ) .

Clearly X inherits the torsu fibration from Y which gives rise to a differentiate map
7T : X -> Y.

Lemma 6.5 The torus fibration TT : X —» P1 is a SLAG fibration.

Proof. Indeed, since the holomorphc two-form aj vanishes on any holomorphic curve in
Y, the form LJJ = Im(crj) vanishes in particular on every fibre of X -> P1. i.e. all fibres are
Lagrangian. Moreover, since 07 = uj+iwx and UK — ^(VJ + VJ); we see that 1111(07)1̂ -1 (t) =
0 and Re(o7)|fl.-i($) = wj\ir-i(t)- Hence, the (smooth) fibres are special Lagrangians of phase
0. •

Proposition 6.6 The ^-mirror of (X.UJJ) is the K3 surface XY given by the period

which is endowed with the Kdhler class

where vol(/) = (uj. f) is the volume of the fibre of the elliptic fibration Y —> P1.

Proof. Using B — 0. {(JJJ^V) — 0. and (Re(o7),/) = 0. this is a direct consequence of the
general formula in Proposition 5.7. D

Of course, an explicit formula could also be given for the mirror of X endowed with the
Kahler form and an auxiliary B-field. We leave this to the reader.
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Remark 6.7 A priori, the mirror described by the proposition above could be singular, i.e.
there could be a (—2)-class c G l such that (c, o;v) = (c. <7Y) = 0. For such a class we would
have (C.LJT) — (c-, I**i(<7jr)) = 0. Of course, if we also had (c. uj) = 0, then already (X.ur)
would be singular.

The description of the mirror as above does not really give an idea of the kind of K3
surface we have to expect for the mirror Xv. However, there is a very special case where the
mirror can be understood by hyperkahler rotation.

Let 7T : Y —> P1 be an elliptic K3 surface with fibre / and section ao- Assume that
(a + l)f + ao is a Kahler class for some a > 0, e.g. Y has Picard number two. Let TT : X -» P1

be as before the SLAG fibration obtained from hyperkahler rotating Y with the complex
structure J and Kahler class u)j to X with the complex structure / and Kahler class uj.

Proposition 6.8 The %-mirror of(X.uoj) is the K3 surface given by the complex structure
-K = JI on the K3 surface Y.

Thus, in this very special case mirror symmetry is indeed given by hyperkahler rotation.
Stronger statements, i.e. for less special elliptic K3 surfaces, as made e.g. in [12], cannot be
justified by the approach of these lectures.

Proof The general formual shows that crv = VO1(/)"1(CJJ + iu)j). On the other hand,
G-K — uj + iuj. Hence, XY is given by the complex structure —K. •

There is one tiny subtlety. If we compute also the mirror Kahler form o;v, we obtain
—u)-K; but this is of no importance as we can always apply the harmless global transformation
-id € O(r).

Remark 6.9 If we go back to the more general case, where uj on Y might be arbitrary, then
we still see that UJY. Im((jv) € (v.v*)1, i.e. at least cohomologically the classes / and <ro are
still Lagrangian on the mirror, as in the more special case above where XY was given by —K.
Also note that in any case, the fibre of the volume is reversed, for (Re(<jv), v) = (Re(cr^), v)"1.

6.3 FM transforms

6.4 Kummer surfaces

In this section we plan to include a description of the toroidal theories insides the K3 surface
moduli space. See [27].

6.5 Large complex structure limit

A discussion of large complex structures should come here cf. [20].
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