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LECTURE NOTES ON RELATIVE GW-INVARIANTS

JUN LI

1. INTRODUCTION

1.1. The GW-invariants. Let W be a smooth projective variety. It is
known that we can construct the GW-invariants of W via the (virtual)
intersection theory on the moduli of stable morphisms to W.

Let us review the key ingredient of such construction. We fix integers g.
k and algebraic class d (E H2(X). We form the moduli space

fmgik(X, d)={f:X^W\X = (X,Pl,--- ,pk), g(X) = g, d e g / = d}/ ~ .

Here we of course impose that X be a connected nodal curve and / be
stable. We know %ftgik {X* d) is a proper, separated DM-stack, of expected
dimension

exp. dimm9ik(X, d) = (3 - dim W)(g - 1) + k + d • a(W).

We let
ev:Wlg,k(X.id)—>Xk

be the evaluation map. Then the GW-invariants are

When 9Jl9ik(X. d) has pure dimension and is equal to the expected dimen-
sion, [Wlgijc(X.d)]YlT is the fundamental class of 5DT^(X, d). In general, we
need to use the notion of virtual cycles [9Jl^^(X, d)]vir, constructed by Li-
Tian and Behrend-Fantechi [16, 1, 2].

1.2. An easy example. An easy case is when W = P2 , g = 0 and d is a
multiple of a line in P2 . Then

is the space of all degree d stable / : X -» P2 with g(X) = 0. It is easy to
see that 9Jto,fc(P2,d) is smooth, since the first order deformation of the /
fits into the exact sequence

0 -> H°(TX) -> H°(f*TP2) -> Def(f) -> Def\X) -> H^fTP2) = 0.

By Riemann-Roch theorem, Def1(f) is independent of / and is equal to
the expected dimension above. This is the first indication that

l
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is smooth. (To prove the smoothness of the moduli, we need to prove the
vanishing of the obstruction classes.)

We pick k so that dimSDto^CP2?^) = 2k. We then pick k general points
Qi','' * 5 Qk € P2 . look at the subset of the moduli space 3D?o,A;(P2? d):

their degrees are the GW-invariants of P2 .
For instance, when k = 3d - 1, dimSPto^(P2.d) = 2k and their GW-

invariants are

JVi = 1, N2 = 1, iV3 = 12, JV4 = 87304

In general there is an explicit formula expressing N^.

1.3. The game of degeneration. In algebraic geometry, we like to play
the game of degeneration. One direction in GW-invariants is to degenerate
the domain of the curves. Say. restricting to a nodal curves. This is the
basis of the associativity law of the GW-invariants. we will not talk about
this in our lecture.

What we like to do it to degenerate the target space. Simply speaking,
we let C be a connected smooth curve. 0 € C be a fixed closed point and let
W -> C be a family of projective schemes so that the fibers Wt of W over
t ^ 0 € C are smooth and the central fiber WQ is the union of two smooth
varieties Ti and Y2 intersecting transversally along a smooth irreducible
divisor. We denote by A C ^ the divisor Yi n Y2 C 1J. We will say WQ is
the gluing of (Du Yx) and (Y2, D2) along Dt = D2. We call Y/el = (Yh D{)
the relative pair.

Figure 1: The generation W.

As for t / 0. since Wt are members of a connected family of smooth
varieties, the Gromov-Witten invariants of Wt are all equivalent.

Main Question: flow to relate the Gromov-Witten invariants ofWt with
that of WQ, and then with that of the pairs (Yi, Di).

The goal of this lecture series is to show how to construct the rela-
tive Gromov-Witten invariants of the pairs (Yi, Di). and how to relate the
Gromov-Witten invariants of Wt with the relative Gromov-Witten invari-
ants of the pairs {Y\.D\) and (Y2,D2). The hoped relation will be of the
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form
GW(Wt) = GW(Y{el) *

Here we use GW(Wt) to denote the full GW-invariants of Wt and use
GW(Y?el) to denote the full relative GW-invariants of (Yu A) . The op-
erator * is an involution type product linear in both arguments.

1.4. Continuation of the easy example. Let us continue with the ex-
ample SPto^CP2?^). We like to play the game of degenerating the P 2 to a
reducible surface with two smooth component. One example is as follows:
We blow up a line L x 0 C P2 x A1. We let the resulting 3-fold be W -> A1.
Clearly. Wt = P2 while WQ is the union of P2 with the Hirzebruch surface
H, intersecting along the line L. Now let's see how to trace the moduli space

If this space is too big for the moment to visualize, let us pick five sections
Zi(t) of W —> A1, and look at the subspace

6 t = {/ € 3%>(Wt,2) | f{pi) € Zi(t), i = I , - . ,5}.

If we choose Z{ in general positions, for almost all closed t / 0 € A1 we have
©t = pt. Thus we expect Go = pt as well.

Since Wo = P2 U H, we can choose Z{ so that
Case 1. All ^(0) € P2: In this case, one checks that ©o consists of a

single map
/ : ( X 1 , a i , a 2 ) U ( X 2 , 6 i , 6 2 ) - ^ P 2 U H ,

where X\ = P1, f{X\) C P 2 is a quadric; X% = P 1 U P 1 is a disjoint union
and /(X2) C H are fibers of H and a{ = hi and f{ai) = f(bi).

Case 2. î(O) and £2(0) € P 2 and the others are in H: In this case, one
checks that ©o consists of a single map

where X\ = P 1 and f(Xt) is a line. X2 = P 1 and / ( I 2 ) C H is in the
divisor class L + 2F where F is the fiber H, a = b and f(a) = f(b).

r
Figure 2: The specializations of families of stable maps.

The general philosophy is that when Wt specialize (degenerate) to Wo =
L U I2, the stable maps ft : Xt —>• Wt will degenerate to /o : XQ —> WQ.
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Since WQ = Yi U I2, then /Q can be split to a pair of maps

/1 : Xi -> l i and /2 : X2 -> Y2

so that they satisfy the incidence relations: 1. XQ is the gluing of X\ and
X2 and 2. /Q is the gluing of /1 and /2.

The counting of / : X —> Wt should be equivalent to the counting of pairs
(/15/2) satisfying the above incidence relations.

1.5. The need of tangential condition. This suggests that we should
consider the relative stable maps: Let D C Y be a smooth divisor in a
smooth projective variety. We should consider

/ : (X.pU'" ,pmqi-r- ,5m) —> Y

such that /(#i), • • • 5/(<?m) &re all lie in D. (Here Pi are the usual marked
points.)

A moment of thought suggests that we need to specify the order of con-
tacts of / at qi. In other words, we should insist on

as Cartier divisor, for a set of pre-chosen integers /-*!,••• , / j m . In other
words, qi is where f(X) intersects D. and we specify the order of tangent of
f(X) with D at q{ to be &.

On reason for doing this is that it is nature to impose such contact order
condition. The other reason is due to the requirement of the composition
formula we hope to develop.

We illustrate this by a simple example: A (local model of a) family of
smooth curves degenerates to a nodal curve with images in a family of
varieties is as follows:

W = A2

{•TT'2

A1

Then the contact order of / |xi and f\x2 are both e. The upshot is that
they have to be identical

It can be proved that this is a general rule: If we have a Bat C-scheme
S, a family of curves XjS and a C-morphism F : X -> W so that F~1(D)
does not contain irreducible components of fibers of XjS. Then the upper
and the lower contact orders of F at each q € F~1(D) are identical

Hence in order to establish a workable decomposition formula, we need
to keep track of the contact orders of the maps when they intersect D.
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1.6. The intuitive definition of relative stable maps. We fix the topo-
logical type of the domains of the relative stable maps we are interesting at.
It consists of the genus g. the number of marked points k* the number and
the weights of the distinguished marked points /ii, • • • , /ir- (This is the case
where the domain is connected. The general case will be specified later.)
We then fix the degree d € H2(Y) and look at the stable maps:

Definition 1. A regular relative stable map f : X -> Yrd of the given
topological type consists of the data (f^X.qi.pj) as follows:
1. X is a connected nodal curve of arithmetic genus g;
2. qi G X, i = 1, • • • , r and pj € X, j = 1, • • • . k, are disjoint points away
from the singular locus of X;.
3. f :X —>> Y is a morphism so that as Cartier divisors f~1(D) = Yll=i faQi
anddeg(f(X))=d;
4- The morphism f considered as a morphism whose domain is X with all
marked points pi, qj € X is a stable morphism.

It is standard to show that the moduli of all regular relative stable mor-
phisms is a DM-stack. is separated.

1.7. It does not work. Unfortunately, this construction of the moduli of
regular relative stable morphisms will not produce us a relative Gromov-
Witten invariant. The reason is that it is usually not proper. Here is an
example: We let (Y. D) be the pair of a line in P2 . We pick d = 2, r = 1
and /ii = 2. Then regular relative stable maps of the type given are quadric
in P 2 tangent to L. It is easy to see that regular relative stable morphisms
can specialize to an f:X -> P2 with I = P 1 U P 1 and / (P 1) = L.

One solution is to take the closure of the relative stable maps just defined,
and hope for the best. However, there is a serious draw back in this approach.
Recall that in general, GW-invariants are defined using the virtual moduli
cycles, which are defined based on a good understanding of the obstruction
theory of the moduli spaces. As one can imagine, it is almost impossible to
track the obstruction theory by simply taking the closure in some ambient
spaces.

What we need is an intrinsic way of compactifying the moduli space of
regular relative stable so that we can still keep track of its obstruction theory.
In algebraic geometry, the best way to achieve this is to expand the moduli
problem and show that the new moduli space is the desired compactification.

2. RELATIVE STABLE MORPHISMS

2.1. The way out. As a warming up, let us look at a simple case where
degenerate relative stable morphisms arise. Let ft: (P^O) —>> (P2,.L), t €
C — 0, be a family of relative stable morphisms from P 1 to P 2 of degree 2
with ff1 (L) = 2[0]. We assume ft specialize to /o: P 1 -> L C P2 . Of course
/o is not a regular relative map.
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We change out view point a bit. We think of ft as a map P 1 x A1

to P 2 x A1, via F(z.t) = (f(z).t). To resolve the degeneracy, we blow up
L x 0 C P 2 x A1, with W[l] the resulting family. We denote W[l]0 = AUP1,
where A is a ruled surface and denote D[l] the proper transform o f l x A 1 .
Then the maps ft specialize to /orP1 -> A C W[l]0 with /j^C0!1]) = 2[0].

Figure 3: After replacing P2 by P2 U A, ft specialize to a new kind of relative
stable map.

The up shot is that after we change the target, from P2 to P2 U A, we
obtain a map with the same relative condition.

In general, a "good" specialization of a family of relative stable maps to
(P1, L) can be a relative stable morphism to P2 U A • • • U A. the gluing of
P 2 with several copies of A, relative to a divisor in the last copy of A.

2.2. The extended relative target spaces. Using blowing up to resolve
degenerate specialization is not new in algebraic geometry. What is new is
that we need to put all maps to different target spaces together to form a
moduli space of which we can still work out its obstruction theory. We now
show how to do such moduli problem.

We consider a pair of a smooth divisor in a smooth projective variety
DcY.

We let Y[l] be the blowing up of Y x A1 along D x 0, and let D[l] be the
proper transform of D x A1.

We let Y[2] be the blowing up of Y[l] x A1 along JD[1] X 0, and let D[2]
be the proper transform of D[l] x A1.

We construct pairs (D[n], Y[n]) accordingly.
We let G[n] be the direct product of n copies of C*. Let G[l] acts on A1

via ta = at. Then the induced G[l] action on Y x A1 lifts to an action on
Y[l]. In general, the induced product action G[n] on An lifts to an action
on Y[n].
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Figure 4: The new spaces Y[l] and Y[2], with arrows indicating the group action.

Note that Y[n]o is the union of Y with n copies of A. The A is a ruled
variety over D. with two sections D- and D+. There is a C action on
A. preserving each fibers and fixing the two sections D±. The G[n] action
on Y[n] leave invariant the Y[n]o. Its action on Y[n]o is induced by the n
O4-action on n A5s.

Figure 5: The Y[n]o.

The up shot is that Y[n] is a family that combines all members Y[k]o for
k < n. Following Grothendieck's view point, this is how Y[k]o deforms to
other Y[V]o with k1 < k.

For instance, if we let A^ be the l-th coordinate axis of An, then the union
of all fibers of Y[n] over A^ is a smooth of Y[n]o along its l-th singular divisor.
On the other hand, if we let L be the line t\ = t<i while all other t% = 0.
Then the union of all fibers of Y[n] over L is a smoothing of the first two
singular divisors of Y[n]o- Unlike the first case, this time the total space of
the smoothing is not smooth.

Figure 6: The fibers over A\ and L, which are smoothing of Y[n]o- The blur
part means that the total space is not smooth.
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What we will use in constructing the relative stable morphisms is the
quotient F[n]/G[n]. as an Artin stack. Since there are inclusions

Y[n - 1]/G[n - 1] C Y[n]/G[n],

we can talk about the limit stack

2) = lim Y[n]/G[n].

2.3. The domain of relative stable maps. For simplicity, we fix an am-
ple line bundle on Y. For any map / : X -» Y we define its degree to be the
degree of /*if. For / : X —> Y[n]o, we define its degree to be the degree of
the pull back of the ample line bundle on Y via X -> Y[n]o -> Y.

In this paper, by a graph F we mean a finite collection of vertices, edges,
legs and roots. Here an edge is as usual a line segment with both ends
attached to vertices of F. A leg or a root is a line segment with only one
end attached to a vertex of F. We will denote by V(T) the set of vertices of
F.

Definition 2. An admissible weighted graph F is a graph without edges
coupled with the following additional data:
1. An ordered collection of legs, an ordered collection of weighted roots and
two weight functions g: V(F) —»> Z>0 and b:V(T) —> Z>Q.
3. The graph is relatively connected in the sense that either V(F) consists of
a single element or each vertex in V(F) has at least one root attached to it.

Figure 7: These are examples of domain and their associated graphs.

2.4. Relative morphisms to extended targets.

Definition 3. Let F be an admissible graph with r roots, k legs and I vertices
vi, — - ,vi. A relative morphism to (Y[n]o,D[n]o) of type F is a quadruple
(/, X %. pj) as follows:
1. X is a disjoint union of Xi.-— .X\ such that each X{ is a pre-stable
curve of arithmetic genus g(vi).
2. qi € X, i = 1. • • • , r and pj € X, j = 1, • • • , k, are distinct points away
from the singular locus of X so that qi € Xj (resp. Pi € Xj) if the i-th root
(resp. i-th leg) is attached to the j-th vertex ofT.
S. f: X -> Y[n]o is a morphism so that as Cartier divisors /~1(JD[n]o) =
E L i Mi, *nd that deg(f(X)) = b{v).
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4- Finally, each morphism f\x^ considered as a morphism whose domain
is Xi with all marked points in Xi, is a stable morphism to Y[n]o-

Figure 8: Examples of relative morphisms.

2.5. The s tabil i ty condition. Now we come to the notion of relative stable
morphisms.

Let / : X —> Y[n]o be a relative morphism. We let D\.- , Dn C Y[n]o
be the n singular divisor. For / to be stable. / first of all should satisfy the
so called admissible condition:

Definition 4. We say f is admissible if the following holds:
1. f~1{Di) = {^,i,--* . ^ i j j is a discrete set;
2. Each Z{j must be a node of X, and is the intersection of two irreducible
components, say A_ and A+, of X. Let e± be the contact order of /\A±
with Di at Zij, then e_ = e+.

A

Figure 9: The upper and lower contact orders

This condition is necessary because if / is a specialization of relative maps
to (Y. D), then this identity automatically holds on all f~1(Di).

Now we come to the definition of relative stable maps.

We define the automorphism group of / as

) \a£G[n], h:X^X, aoh = h}.

Definition 5. We say f is a relative stable morphism if f is admissible and
i/2tut(/) is finite.
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2.6. Examples. We let Y = P 1 x C , C a curve. Y[l]0 = YUA. We let
X = XtUX2 with Xi ^ P 1 and 0 € Xt is glued to oo € X2. We let
f:X—> Y[1]Q always send X\ to A and the second X% to Y. We fix a £ € C.

Example 1. f\x,(z) = (z2,£) and f\x2(
z) = (^2?0- T h i s i s n o t stable since

Example 2. / | X i (*) = {z2/{z +1),£) and f\x2(z) = {z2,0 is stable.
Note that in the first case / has one distinguished marked point with order

2; In the second case / has two distinguished marked points with order 1.
Example 3. f\x^ (z) = (z2/{z +1).£) and f\x2(

z) = (Z-X) is not admissible.

2.7. The equivalence relation. We say two f:X-> Y[n]o and f :X' ->
Y[n]o are equi^tlent if there is an isomorphism h and an a £ G[n] so that
the following diagram is commutative:

X

2.8. The existence theorem. We list the main theorem concerning the
relative stable morphisms. For the proof please consult [15].

Theorem 6. The moduli functor of relative stable morphisms to (Y. D) of
fixed topological type T is represented by a proper, separated DM stack. We
denote this moduli space by Wl(Yrel. F).

2.9. Relative GW-invariants. We define the relative Gromov-Witten in-
variants of YTel as follows:

We let

ev : 3Jt(Yre\F) —> Yn, / ^ (f(Pl),... J(pn)) € Yn

and
q : m(ir*,T) ^Dr, f H- (/(ft),--- ,f(qr)) € Dr

be the evaluation maps. The relative GW-invariants is

defined by

Here k (resp. r) is the number of ordinary (resp. distinguished marked
points of the domain curves).

2.10. Example. One example is the classical Hurwize number.
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3. DEGENERATION FORMULA OF GW-INVARIANTS

We will sketch how to establish the degeneration formula of the GW-
invariants.

3.1. Degeneration of targets. We let C be a smooth irreducible curve,
0 € C a closed point and TT : W —> C a flat and projective family of schemes
satisfying the following condition: The morphism TT is smooth away from
the central fiber WQ = W Xc 0 and the central fiber WQ is reducible with
normal crossing singularity and has two smooth irreducible components Y\
and I2 intersecting along a smooth divisor D C Wo- When we view D as a
divisor in Y{. we will denote it by JD$ C 1 .̂

Figure 10. A degeneration of targets.

3.2. Degeneration of moduli spaces. We fix g.k two integers and let
b be a homology class. We consider the moduli space (stack) 9Jt̂
The union

is a proper family over C°. Inserting the central fiber QJtp^Woi b) gives one
extension (which we will call a degeneration of moduli spaces). However,
the natural obstruction theory of this new family is no longer perfect near
degenerate stable morphisms. Here we say a stable morphism / : X —> Wo
is degenerate if some irreducible components of X are mapped entirely to
the singular locus of Wo-

The solution we propose is to work out a new degeneration oidKg^{Wc°, b)
that will allow us to apply the machinery of virtual moduli cycles. The idea
is parallel to the construction of relative stable morphisms.

3.3. Extended target degenerations. We now construct the class of ex-
panded degenerations of W. We let A be the projective bundle over D:

where I D is the trivial holomorphic line bundle on D and ND2/y2 is the
normal bundle of JD2 in Y2* A has two distinguished divisors

J9_ = P(1 D 0 0) and D+ = P(0 0 -
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For convenience, we call £L the left distinguished and D_|_ the right dis-
tinguished divisors. Using this identification, we can glue an ordered chain
of n A's by identifying the right distinguished divisor (i.e. D+) in the k-
th A with the left distinguished divisor (i.e. D_) of the (k + l)-th A. for
A; = 1, • • • . n — 1. We denote the resulting scheme by A[n]. It is connected,
has normal crossing singularity and has n-irreducible component all isomor-
phic to A. We then glue Y\ to A[n] by identifying D\ in Y\ with the left
distinguished divisor D_ in the first A of A[n], and then glue Y% to this
scheme by identifying the right distinguished divisor D_j_ of the last A in
A[n] with D<i in Y2. We denote the resulting scheme by W[n]o. Note that

[n]o has (n + 2)-irreducible components.

Figure 11. The picture of W[n]0.

We need to construct a stack 20 representing all extended degenerations
which include W[n]0 as their special fibers.

For simplicity, we assume C = A1. We let G[n] acts on An+1 via

(3.1) ta = (cri£i,(7J~ 0-2*2? * " s^n-i^nifn^n *n+l)-

Note that if we let

p : An+1 -> A1, p(t) = h x • • • x tn+1,

then p is G[n]-equivariant with the trivial (j[n]-action on A1.
The standard model W[n] will be constructed as a desingularkation of

W xAi An+1.

We construct W[n] by induction on n. For n = 0, W[0] = W. For n = 1,
W\ = l^ x^i A2 is smooth except along the locus D xAi 0, which is a
smooth codimension 3 subscheme in W\} After blowing up the subscheme
D xAi 0 in W xAi A2 we obtain the scheme W\ whose exceptional divisor
is isomorphic to a P 1 x Px-bundle over D. We then contract one factor of
this P 1 x P1-bundle to obtain a smooth scheme W[l] over A2. Note that
either way, the fiber of W[l] over 0 £ A2 is the W[1]Q introduced before.

formal completions (the germs) of its normal slices in W^ is isomorphic to the
formal completion of
(3.2) X = {z-lZi = Uh}cA4

along its origin. Here we use (zi, z-i, U, tt) to denote the coordinate of A4.
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We choose the construction so that the fibers of W[l] over the first and the
second coordinate line of A2 is a smoothing of the first and second singular
divisor D\ and D2 of W[1]Q.

Figure 12: The fibers over the two coordinate lines are smoothing of two singular
divisors.

We now construct W[2]. We let W<i be the fiber product W[l] xA2 A3

with A3 -> A2 the morphism (ti,t2?t3) i-> (t i . t2 t3) . We let W[2] -> A3 be a
small resolution of W%. We choose the small resolution so that the fiber of
W[2] over 0 € A3 is W[2]o, that the fibers over the i-th coordinate line is a
smoothing of the i-th singular divisor D{ C W[2]o«

We construct W[n] —>• A n + 1 inductively following the same line.

3.4. The group action. The G[n] action on A n + 1 lifts uniquely to a G[n]
action on W[n] —> A n + 1 . Its action on W[n]0 is the product of the C* action
on A leaving D± fixed.

Figure 13: The arrows indicate the C* x C* action on W[2],

We define

W = limW[n]/G[n].

It is the stack of the extended degenerations of PF/A1.

3.5. Degeneration of moduli spaces. We need to construct the new cen-
tral fiber of the family of the moduli spaces.

Def in i t ion 7 . A stable map to WQ is an ordinary stable map f:X —> 0

for some n such that it is admissible at each point in f~1(Di)f i = 1, • • • , n,
and such that 2lut(/) is finite.
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The notion of admissible is similar to that of relative stable maps.

We define 2tui(/) be the set of all pairs (h.a). where h : X = X and
a € G[n], so that a o h = h.

Two stable morphisms f:X—> W[n]Q and / ;:X' —> W[n]0 are equivalent
if there is an isomorphism h and an a € G[n] so that the following diagram
is commutative:

X - ^ W[n]Q

I ' t I-
X< - i U W[n]0.

We have the following existence theorem.

Theorem 8. Given g, k and degree d, the moduli functor of all equivalent
classes of stable morphisms to 2Bo of genus g, k marked points and degree
d is represented by a proper, separated DM stack 3JL

We will use WHgik(%Bo'td) as the new central fiber of the family of the
moduli space we seek to complete. We let

, d) = 3 ^ ( 2 % d) U U t €e fBtg^Wu d).

It is proved in [15] that

Theorem 9. 271^(2$, d) is a separated. A1-proper DM stack. It also admits
a perfect obstruction theory, thus the virtual moduli cycle [9Jt^(2U, d)]™.

To prove the theorem, we first define the corresponding moduli functor.
For this we need to make sense of family of stable morphisms to 2B. which
is rather straight forward. Then we prove that the functor is represented by
a stack, prove that this stack is separated, is A1-proper and is indeed a DM
stack. For details please consult [15].

4. T H E DEGENERATION FORMULA

In this lecture, we will demonstrate how to establish the decomposition
formula of the GW invariants associated to the family W/A1.

4.1. Family of GW-invariants. Using the perfect obstruction theory of
Wflgik(W,d), mgik(W0,d) we obtain their virtual cycles [mgik(W,d)]viT and
[9J^,fe(2tfo?eJ)]w and their respective GW-invariants.

The GW-invariants of Wt are homomorphisms

tfjT* :H*(Wt)
xk —XQ

defined by
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The Gromov-Witten invariants of 2U is the homomorphism

^gkd ' HA" \R f*Wj > H2 (A ) = Q

defined by

Here Q ^ is the sheaf of locally constant functions on W. TT:W —> A1 is the
tautological projection and H^^ is the Borel-Moore homology of the open
complex curve A1.

4.2. The invariance of the GW-invariants. The invariance of the GW-
invariants can be stated as the commutativity of the following diagram.

Let £ € A1 be any closed point and let 5 ^ ( 2 2 * ^ 0 ^ ) -> Jff*(Wf) be
induced by W^ -> W. For d G H^ (R*TT*QW) we denote by d(£) its image
in jy*(Wf)- We let -fff^A1) -> Q be the Gysin homomorphism defined
by intersecting with the divisor £ € A1. Then we have the commutative
diagram

(4.1) [3.22] |

The proof is quite involved, and will be omitted.

4.3. From WQ to the relative stable morphisms. We consider a stable
/ € Wl9ik(Wo,d) represented by

/ . X - > W[n]Q

for some n. We let D\ C W[n]0 be its l-th singular divisor. (The D{ is from
i = 0. • • • ,n.) Then PFfnJo is the gluing of li[Z]o and Y2[n — 1]Q along their
distinguished divisors.

By the stability condition on / , The nodes f~1(Di) = {^} splits X
into two parts X = (Xu<fi) U (X2 ,^) , where Xx = /^(Yipfo) and X2 =
/~1(^2[^—(|o)- The union is by gluing X\ and X2 via qi = q^ for i = 1, • • • . r.

It is direct to check that both hi = f\x{ • X± —> l«[*]o are stable relative
morphisms.

Proposition 10. ^4nt/ stable map f € 971^ (2Ucb cO i^ a gluing of a pair of
relative stable morphisms to 2)i and 2)2- If the target of f is W[n]0, then
there are exactly n + 1 different ways of decomposition.
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Figure 14: This is an example of decomposing stable morphism to W[2]o into
two pairs of relative stable maps.

Let / : X —»• W[n]0 be a stable morphism to 2Uo- For each I € [0, n] we
can decompose / into a pair of relative stable morphisms:

h[ : X{ —> Yi[t\0 and h\ : X\ —> Y2[n ~ l]Q.

Let T\ be the associated graph of h\.

Lemma 11 . The n + 1 pairs of graphs ( r f , r | ) are all distinct

This is true because of the stability condition imposed on / .

Now let 7 = ( F i , ^ ) a pair that appear in such a decomposition. We
consider any pair of relative stable morphisms

(huh2) G wt^f,^) x mt(2r2
el,r2).

Because 7 is derived from a splitting of some / € 9Jtgik(Wo,d). X{ has
distinguished marked points qi and q^. i = 1. • • • ,r , in their domains with
same orders /ii, • • • . / i r . In case h\{qi) = h2(qf

i) € D. then we can glue hi
and /12 along qi — q^. to obtain a stable morphism

h1Uh2:X1UX2—+ Yipi]o U Y2[Z2]0 = W[h + Z2]o.

We let

be the evaluation of the distinguished marked points. Then the above gluing
construction defines a morphisms

.,^) xDr mt(2)r
2

el
;r2) —». fm5

It is easy to show that the above morphism is a local immersion.

So as sets we have the union

mg,k(Wo,d) = u^imisgf,^) xnr, mt(2)r
2
el

;r2)).

Because the decomposition are not unique, the above is not a disjoint
union.
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4.4. The union as Cartier divisors. We know that a deformation of / €
9Jt9ik(WQ.d) in / € 9Jl̂ ^(2U. d) involves possibly the smooth of the singular
divisor of the target. Now in case / is in the image of the above map, the
target of / is W[n]0 and the above map is associated to the decomposition
along the l-th singular divisor D\ C W[n]0, then deformation of / in the
image of the above map can possibly smooth all singular divisor Dy except
Di.

In other words, if we let H^ C An+1 be the coordinate hyperplane defined
by t\ = 0. then all deformations of / will have target inside

W[n] xAn+i Hj.

Here is the key to our next step:

Lemma 12. There is a G[n]-linearized pair of a line bundle with a section
(Lhsi) on An+1 so that s^l(0) = H .̂

This can be constructed by hands.
The benefit of this is that if we have an 5-family of stable morphisms in

3D? (̂2U, d), say represented by an S —>> An+1 and

F : X —> Ws = W[n] xAn+i S,

then we can define Si = s^1(0) xAn+i S as a closed subscheme of 5.
Now we cover dJlgiji(W. d) by Sa with Fa be the tautological families over

Sa. For each k we obtain closed subscheme S^i- But, for a fixed k all S^i
do not define a closed substack of 971^ (2B, d).

Here is the reason: Suppose we decomposition / : X —>• W[n]0 to a pair
(^i?^2) along D\ C W[n]0 with 7 = (71,^) its pair of graphs. Then
/ € Im($7). When we deform / inside Im($7), say ft, they all decompose
into (ht^i.ht^) along Dit with graph 7$. Prom the construction, 7$ is constant
but kt may not be constant in t.

Because the pairs (LJ,SJ) are G[n]-equivariant, a moment of thought
proves to us

Lemma 13. For each 7 appear in the morphism #7 , there is pair of a line
bundle and a section (L7,s7) over dJlg^(W,d) so that as sets

Im(*7)=s;1(0).

4.5. The multiplicities are different. It turns out that

as stacks, they are equal as sets but usually they are different as stacks.
Here is an easy way to see this phenomenon. We consider an example.

We let W be the blowing up of P 1 x A1 at (0,0), as family over A1 = A1.
Then WQ is a union of two P1 , intersecting at one point while Wt = P1 . We
let fs :XS —> W, s € S = A1, be a family of stable maps so that they have
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the following local property: We let A2 C W be a chart so that W -» A1 is
given by t = (W1.W2); We can find a chart of A2 C X so that X —> S is via
s = z\Z2 and the map fs locally is of the form

Then the induced S -» A1 is of the form t = six. In this case, the subscheme
defined by t = 0 (which is si = 0 in the previous subsection) is s^ = 0.
However, the subscheme associated to the image substack Im($7) is defined
by s = 0. They differ by a multiple of /i, which is exactly the order associated
to the node where the decomposition of the domain is taking place.

Lemma 14. Both Im(^7) and s"1^) are (virtual) Cartier divisors of the
moduli space 9Jtp^(2H. d). Further, as divisors they satisfy

Here 771(7) 1S the product of all the orders of the distinguished marked
points of 7 = (Fi, F2). Also, by virtually we mean if all relevant subsets are
of the expected dimension, then they are actual divisors. Otherwise this is
understood in terms of their respective obstruction theory.

4.6. One more identity. The bridge between 97^ (̂211, d) and 3D?(2)f \ r<)
is via the morphisms # 7 and the following

®7 admissible(L75 S7) = (LO,So),

where LQ is the trivial line bundle on ffllg &(2U. d) and So is the pull back of
t e r ( o A i ) .

The proof relies on the identity ®JL0(-£jjSj) = 7r*(lAi,t), where TT :
An + 1 —> A1 is the projection.

4.7. Statement of the decomposition formula. We have identities

and

Combined together, we have

We now state how virtual moduli cycles [Im($7)]vir is related to [M(2)f \ Ti
Using the natural evaluation morphism q̂  :37l(2)fel,r«) —>• Dr we form the
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Cartesian diagram
(4.2)

[3.51]

Dr —^ Dr x Dr

Here the arrow A is the diagonal morphism.
We have the identity

The main degeneration formula of the Gromov-Witten invariants of W/A1

follows immediately from these identities.

Theorem 15. Let the notation be as before. Then

Here are a few words on Eq(7). When we decompose / : X -> 0

we assign an order to the distinguished marked points. This assignment
is artificial, and has to quotient out to get the right answer. Also, the
automorphism of the decomposed curves will introduce extra quotient. The
term Eq(7) is a combination of all these.

Finally, we state the numerical corollary of this theorem. Let %: Y{ -> W
be the inclusion and let

be the induced pull back homomorphism. Now let 7 = ( F i , ^ , J) € O be
any admissible triple.

Corollary 16. Let W/A1 be the family and let T = (g. b. k) be as before.
Then for any closed point £ ^ 0 G A1, d € H% (R*7r*Qw)xk and fi €
H*(Wl9ik) as before,

7

Here • is the intersection of the homology groups

and [7)0 is the degree of the degree 0 part of the homology class 7 £ H*(Dr).
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5. THE OBSTRUCTION THEORY

There is a symplectic version of relative GW-invariants developed by
[5, 11. 17]. The benefit of an algebraic version of the relative GW-invariants
is because we can apply virtual localization to in many applications. For
this a good understanding of the deformation of the moduli of relative GW-
invariants is in order. In this part, we give a brief description of such ob-
struction. For details see [15, Appendix].

5.1. The first order deformations. Let YTel = (Y. D) be as before and let
f:X-> Y[n]o be a relative stable morphism. We like to describe the tangent
space T1 = T/9Jt(2)rel, F) and the obstruction space T2 to deformation of / .

Obviously, the first order deformation of / is the first order deformation
of / : X -> Y[n], observing the admissible condition and the contact order
requirement at the distinguished marked points, modulo the G[n] action.

For simplicity, we consider the case n = 1. The general case is similar.
We let q\. • • • , qr be the distinguished marked points of X, with contact

order /ii, • • * , /ir- We let E C X be the divisor of all marked points of / .
We let £i, • • • ,& be the nodes of X in f~l{Di).
We have two exact sequences relating T1 and T2 to some known coho-

mology groups:

0 —> Ext^(fix(£), Ox) —> A0 —> T1 0 C —>

) , Ox)

and

Here ^yfi]t/Ait 1S ^e sheaf of log-differentials of the pair of log-schemes
(cf. [12, 13]).

Here is a heuristic explanation of the these two exact sequences without
going into the technical details.

First, the term T1 ©C is the space of the first order deformations of / : X —>
Y[l], as admissible map. Since / € 97l^(2)rel, F) is the equivalence class of
/ via the C* action, the tangent space T/9Jl^^(2)rel, F) = (T1 © C)/C = T1.

If fs-Xs -> Y[l] is a deformation of / , then Xs induces a deformation of
the domain curve X. This explain the arrow T1 © C -> Ext^(Ox(^)5 Ox)*

Now assume Xs is a constant family. Then the deformation is a deforma-
tion of maps only f3 :X -> Y[l]. We now describe the arrow feo- Let q be a
node in f^1(Di). We pick an (analytic) chart of q € X. via (^i, z<i) subject
to Z\Z2 = 0. We then pick a chart of f(q) € Y[l], say (w — 1, t̂ 25 * * *) with
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Y[l] —> A1 defined by t = w\W2- We assume the map / is given by W{ = zf.
The deformation fs will be of the form W{ = z£(l + Ci(z. s)) so that

(1 + ct(z, s))(l + c2(*, s)) = 1 + c(s).

The arrow 6o will send /o to c(0) G C. Clearly, if 60 (/o) = 0, then the
first order deformation /o is given by a (local) section of the log differential
/ * O ^ l t . This explains that the kernel of 60 is if°(/*OV 1 + ).

But then we need to cancel those in A0 that can arise from vector fields
of X. Hence the kernel of T1 0 C -* Ext^(Ox(^) , Ox) is the cokernel of

5.2. A n example of obstruct ion bundle . For amusement, let us deter-
mine the obstruction bundle of an example of the moduli of relative stable
morphisms.

Let Yre\ = (Y D) be a pair of smooth variety and a smooth divisor. We let
F be the graph consisting of one vertex and one leg. We assign the weights of
the vertex to be g = 1 and d = 0. Thus SDt(2)rel, V) is the moduli of relative
stable morphisms to Y from 1-pointed genus 1 curves to Y of degree 0. Since
d = 0. all f:X -» Y in 9Jt(2)rel.r) are constant maps. Hence a7t(2)re\r) is
isomorphic to 9Jli5i x Y. We now show that its obstruction sheaf is

where TT2 :90?I5I X Y —> Y is the second projection.

Let /o € 3Jt(2)rel.r) be a relative stable morphism. Since d — 0. we
can always represent /o by a morphism /Q : X -» Y[l]°, where Y[l]° =
Y[l] - JD[1] U Y[l]0,sing with Y[l]0)Sing is the singular locus of Y[l]0. Then
Y[l]°/C* = Y. The obstruction to deforming /o as morphism to Y[l]° is
ifl(/oTy[ljo//J4

1) = ^V[i]°/A1 l/o(x)? where Y[l]° -> A1 is the tautological pro-
jection and TyMio ŷ i is the relative tangent bundle. We let / : X —>> Y[l]°
be the family over 9Jti,i x Y[l]° so that Af is the pull back of the univer-
sal family over SDtij while the morphism / is the composite of the projec-
tion X -> 97ti,i x Y[l]° with the second projection 3Jti,i x Y[l]° -> Y[l]°.
Clearly. / is the universal family of 9Jl(Y[l]rel.r). The obstruction bundle
to the moduli space m(Y[l]Tel,T) over 9Jli,i x Y[l]° is P2Ty[i]°/A11 where
P2 is the second projection of 9Jli5i x Y[l]°. The C*-action lifts canon-
ically to P2^V[i]°/A1 a n d the obstruction sheaf of 9Jt(2)rel,r) is the de-
scent of p^^Vji^/A1 • I* is direct to check that under the quotient map
9Jti,i x Y[l]°/C* = SDti,! x Y. equivariant part (P2^V[i]°/A1 )€* i s canoni-
cally isomorphic to 7r2Oy(log-D)v. This proves the identity.

6. APPLICATIONS

There are several known applications, worked out by various people. I
will list the references here.
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The first application is the enumeration of curves in P2 . This was worked
out by Caporaso-Harris [4]. Ionel-Parker showed that their result can be
proved using degeneration of GW-invariants [11].

The second application is to derive some vanishing results on 9Jt^ by
using the degeneration formula of GW-invariants. This was first worked on
by A.Li-Zhao-Zheng [14] and Ionel [10]

Another one is the study of Hurwke number. As explained, these number
are exactly the relative GW-invariants of curves. There are some work in
this direction [14. 9].
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