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1.1 Lie group oids and de Rham cohomology

Differentiable stacks are stacks over the category of differentiable manifolds.
They are the stacks associated to Lie groupoids. A groupoid X\ =3 XQ, is a Lie
groupoid if both XQ and X\ are smooth C°°-manifolds and source and target
map are C°°-submersions.

Two Lie groupoids X\ =4 ^o and Y\ =3 Yo give rise to essentially the same
stack, if and only if they are Morita equivalent, which means that there is a
third Lie groupoid Z\ =4 ZQ, together with Morita morphisms Z. -> X% and
Z% —v Y,. A morphism of Lie groupoids / : X, —> Y. is a Morita morphism if
/o : XQ -> Yo is a surjective submersion and the diagram

is cartesian, i.e., a pullback diagram of differentiable manifolds. We say that a
Morita morphism / : X.Y. admits a section if Xo -> YQ admits a section.

Any section s : XQ —> YQ of a Morita morphism / : X. —> Y. induces uniquely
a groupoid morphism s : Y. —> X. with the properties

• / o s = idy#,
msof= idx., which means that there exits a 2-isomorphism 6 \ s°f ^> idx. •

(Recall that a 2-isomorphism of morphisms of Lie groupoids XM —> Y. is a
differentiable map 6 : XQ -» Y\ satisfying the formal properties of a natural
transformation between functors.)

The simplicial nerve of a Lie groupoid

Let X\ =4 XQ be a Lie groupoid. Then we can produce a simplicial manifold X.
as follows. For every p > 0 we let Xp be the manifold of composable sequences
of elements of X\ of length p. In other words,

Xp - X\ xXo Xi XXQ •.. xx0 Xi .

Then we have p+1 C°°-maps di : Xp -» Xp-\, for i = 0,. . . , p, where <9; is given
by 'leaving out the i-th object'. Thus 8Q leaves out the first arrow, dp leaves out
the last arrow, and 9i , . . . , dp~\ are given by composing two successive arrows.
(There are also maps Xp-\ -^ Xp, given by inserting identity arrows, but they
are less important for us.) Note that for the composition of maps Xp —>• Xp_2
we have the relations

[rel] didj = dj-tdi, for all 0 < i < j < p. (1)

We summarize this data by the diagram of manifolds

[sim.ma] • • • h X2 =£ X1 T XQ . (2)



Cech cohomology

Let X\ 4 XQ be a Lie groupoid and X. the associated simplicial manifold.
Letting ftq be the sheaf of g-forms, we get an induced cosimplicial set

[cosim] ffl(Xn) £ ffl(Xi) = f : W(X2) ==f: • • • (3)

Since this is, in fact, a cosimplicial abelian group, we can associate a complex

Qq(X0) — ^ ^ 2

Here 8 : W(Xk) -> nq(Xk^) is given by 8 = E ^ - l ) ^ * - W e ca l1 t h i s

complex the Cech complex associated to the sheaf flq and the simplicial mani-
fold X%. Its cohomology groups Hk(X\ =3 X0,Q

q) are called Cech cohomology
groups of the groupoid X\ =3 Xo with values in the sheaf of g-forms Qq.

Remark 1.1 (naturality) Given a morphism of Lie groupoids / : X. —)• Y.,
we get an induced homomorphism of Cech complexes

It is given by the formula

/*(a;)(^i...0p) =

for CJ € fi^(l^). Here <j>\ ... <j)p abbreviates the element

in Xp. This follows directly from the presheaf property of ftq and the functori-
ality of / .

More interestingly, if we have a 2-isomorphism 0 : / =$> g between the two
morphisms f,g : X. ->> Y., then we get an induced homotopy 0* : /* => p*,
between the two induced homomorphisms /*,#* : (7(Y#,n

a) —> C(X.,Qq). In
fact, 0* : O^(Yp+i) ->. H^(XP) is denned by the formula

One checks (this is straightforward but tedious) that

80* +0*8 = g* - / * .

As a consequence of these naturality properties we deduce that
• groupoid morphisms induce homomorphisms on Cech cohomology groups,
• 2-isomorphic groupoid morphisms induce identical homomorphisms on

Cech cohomology groups,
• a Morita morphism admitting a section induces isomorphisms on Cech

cohomology groups.



Proposition 1.2 [banal] / / X\ =4 XQ is the banal groupoid associated to a
surjective submersion of manifolds XQ —> Y, then the Cech cohomology groups
Hk(X.,W) vanish, for all k > 0 and all q > 0. Moreover, H°(X.,W) =

PROOF. Recall that the banal groupoid associated to a submersion Xo —> Y is
defined by setting X\ = XQ X y XQ . Since X\ —> XQ X XO is then an equivalence
relation on Xo, we get a groupoid structure on I i 4 Io- Note that such a
banal groupoid comes with a canonical Morita morphism X% —> Y, where Y is
considered as a groupoid Y 14 Y in the trivial way.

For example, if {Ui} is an open cover of Y, and XQ = JJ £/j, then X\ — JJ C7i7-,
where U\j = U{ C\ Uj. In this case the proposition is a standard fact, which
follows essentially from the existence of partitions of unity. See for example
Proposition 8.5 of [1], where this result is called the generalized Mayer-Vietoris
sequence.

Another case where the proof is easy, is the case of a surjective submersion
with a section. This is because a section s : Y -> Xo induces a section of the
Morita morphism X. -> Y. Thus by naturality we have Hk(X,,Q,q) = Hk(Y =4
Y,ft«), which vanishes for k > 0, and equals T(Y,^), for k = 0.

The general case now follows from these two special cases by a double fibra-
tion argument. Let {Ui) be an open cover of Y over which Xo —)• Y admits
local sections and let V — \J U{. We consider the banal groupoid V. given by
V-> Y.

The key is to introduce PF = Xo Xy V. Thus VF —> V is now a surjective
submersion which admits a section. We define Wmn — Xm Xy Vn, for all
77i, n > 0.

wmn



Then Wmm is a bisimplicial manifold. This means that we have an array

It is important to notice that W.n is the simplicial nerve of the banal groupoid
associated to Won —> Vn, and Wm, is the simplicial nerve of the banal groupoid
associated to Wmo —> Xm . All Won —> Vn are submersions admitting sections
and all Wmo —)• XTO are submersions coming from open covers. Thus we already
know the proposition for all of these submersions.

We apply O,g to this array to obtain a double complex O.P(W..) mapping to
the two complexes ft«(X.) and nq(V.).



Passing to cohomology we get a commutative diagram

H* (x., nq) — ^ H* (Y =t

and noticing that the two arrows originating at H*(W..,Qq) are isomorphisms,
which follows by calculating cohomology of the double complex in two different
ways, we get the required result. •

Corollary 1.3 Any Morita morphism of Lie groupoids f : Xm —> Y% induces iso-
morphisms on Cech cohomology groups f* : Hk(Y%,fLq) -> Hk(X,,flq). Morita
equivalent groupoids have canonically isomorphic Cech cohomology groups with
values in Qq.

PROOF. We first prove the latter statement. Let X be the differentiate stack
given by the first groupoid X.. Then there also exists a morphism Y% —» X,
identifying X as the stack given by Ym. Form the fibered product Zoo — Xo x XYQ .
Then define a bisimplicial manifold Z.. as in the previous proof and apply the
same kind of double fibration argument to produce isomorphisms H*(Z.,, Qq) -»
H*(X.) and H*(Z..,nq) -> H*(Y.). •

Thus we can make the following definition.

Definition 1.4 Let X be a differentiate stack. Then

for any Lie groupoid X% giving an atlas for X. In particular, this defines

Example 1.5 If G is a Lie group then Hk(BG, ft0) is the group cohomology of
G calculated with differentiate cochains. Thus there are stacks for which these
cohomology groups are non-trivial.



The Cech-de Rham complex

The exterior derivative d : ftq —> f̂ +1 connects the various Cech complexes of
a Lie groupoid with each other. We thus get a double complex

\d \d \d

n2(x0) —2-*- o2(Xj) —^n 2 ( x 2 )

[dr] L 1d fa W
nx(Xo) — ^

We make a total complex out of this by setting

W(XP)
p-\-q=n

and defining the total differential S : C^)R(Xl =$ Xo) -> C ^ ^ i ^ ^o) by

S(LJ) = d(u) + ( - l ) p dM, for CJ G

The sign change is introduced in order that S2 — 0.

Definition 1.6 The complex C^,R(Xi =4 Xo) is called the de Rham complex
of the Lie groupoid X\ =4 XQ. Its cohomology groups

HlR{Xx =4 Xo) = hn(ChR(X1 =4 Xo))

are called the de Rham cohomology groups of X\ =3 Xo.

If Xi =| XQ is the etale banal groupoid associated to an open cover Xo —> Y
of a manifold Y, then the de Rham complex of Xi =4 Xo is just the usual
Cech-de Rham complex as treated, for example, in Chapter II of [1].

Remark 1.7 One can use Proposition 1.2 and a double fibration argument
to prove that de Rham cohomology is invariant under Morita equivalence and
hence well-defined for differentiate stacks:

for any groupoid atlas X\ =3 Xo of the stack X.
Moreover, there is a canonical isomorphism



where R is the big sheaf of locally constant E-valued functions. This latter claim
follows from the exact sequence of big sheaves (see Section 1.3)

1 K ?• \L > It > M r . . .

Example 1.8 Equivariant cohomology.

Multiplicative structure

We define a multiplication on the double complex (4) as follows. Let UJ E Qq(Xp)
and rj € ttq' (Xp>). Then we set

[cup] ojUr) = (-iyp's*ujAt*r) e flq+q> (Xp+p>). (5)

Here the map s : Xp±p> —> Xp projects the element

[elt] o ^ ^ o 5 ^ o G Xp+P> (6)

to

and ^: Xp+P> —>> XP' projects the same element (6) to

One checks that

S(LJ Uri) = S(u) Ur) + i-l)p+qu) U <J(r?),

and so we get an induced cup product

Hn
DR(X.) ® ^ f l ( X . ) —> ^ + m ( X . ) .

Note that there is no reason why the cup product should be skew commutative
on the level of cochains. On the other hand, on the level of cohomology this is
the case.

Cohomology with compact supports

As with cohomology, cohomology with compact supports is defined via a double
complex. As usual, let X\ =t Xo be a Lie groupoid. But now we have to also
assume that X\ =4 XQ is oriented. This means that both the manifolds X\ and
Xo and the submersions s and t are oriented, in a compatible way. Moreover,
assume that both XQ and X\ have constant dimension. Define two numbers r,
n by the formulas

r = dim X\ — dim XQ, n = 2 dim XQ — dim X\ .



Note that n is the dimension of the stack defined by Xi =4 Xo and r is the
relative dimension of X\ over XQ.

Let ftq(Xp) denote the space of differential forms on Xp which have compact
support. Note that ftq is not a sheaf. We consider the double complex

[cs] |d d |d (7)

Here d is usual exterior derivative. The boundary map d\ is the alternating sum
of the maps obtained from the various di : Xp -> Xp-\ be integration over the
fiber $ , : n*+r(Xp) -> fi?(-Xp_i).

To make a single complex out of (7), we define

and set the total differential equal to

8(u) = a ,H + (-l)pd(u), for CJ

Thus the total degree of an element of ftq
c(Xp) is equal t o g — rp — p — r —

« 7 - ( p + l ) ( r + l) + l.
We also introduce notation for the horizontal cohomology of (7). Namely, we

denote the Jb-th homology of (ni*+ 1 ) r"^(X+ ) ,a) by H*(Xm,W). This defines
* for k < 0 and g < n. We also denote H°(X.,nq) by Tc(X.,ft).

Module structure

Now we shall turn (7) into a module over (4). Given u € Qq(Xp) and 7 €
tt{(Xp>), we set

CJH7= (-l)^;t.(s*cjA7),

where s and £ have similar meanings as in (5). More precisely, they are defined
according to the cartesian diagram

>~ Xp'—P

0-th projecti

p-th projection
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Note that CJ n 7 € VLq+ql-pr(Xp>_p) and hence we have

deg(cj fl 7) — deg CJ 4- deg 7.

Of course, if p1 < p, then it is understood that CJ fl 7 = 0. One checks the
formula

S(UJ n 7) = SUJ n 7 + (-i)dega;cj n £7,

which implies that the cap product passes to cohomology, and we have that
H*(X,) is a graded module over the graded ring H*(X%).

The integral

We can define and integral

by noticing that the integral Q^r(X0) -* R vanishes on coboundaries of the
total complex C *c (X9).

Finally, we define a pairing

[PD] #*(*.) <8>#C*(X.)—>R (8)

CJ071—> / CJn 7 ,
Jx.

For Poincare duality, let us assume that X\ and Xo have compatible finite
good covers.

Proposition 1.9 (Poincare duality) Under this assumption, the pairing (8)
sets up a perfect pairing

for allp> 0.

PROOF. Consider the homomorphism of complexes

C*(X.) - v (C*c(X.)[n})v

CJ n ( • ) ./
Jx0

It suffices to prove that this is a quasi-isomorphism. But this we can check
by considering the associated spectral sequences whose E\ -terms are given by
Hq(Xp) and H^~q(XPY', respectively. Thus conclude using usual Poincare
duality for manifolds (see for example [1, §5]). •
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Deligne-Mumford stacks

From now on, we will assume that our Lie groupoids are etale, which means
that s : Xi -> Xo and t : X\ -> Xo are etale. We will also assume that
X\ —y XQ x Xo is proper and unramified, with finite fibers. This means that
the associated differentiable stack is of Deligne-Mumford type.

Definition 1.10 A partition of unity for the groupoid X\ =4 Xo is an R-valued
C°°-function p on Xo with the property that s*p has proper support with respect
to t: X\ —> XQ and

Partitions of unity may not exist, unless we pass to a Morita equivalent
groupoid. This process works as follows.

For groupoid as above there always exists an open cover {Ui} of Xo, with
the property that the restricted groupoid V{ =3 U\ (which is the restriction of
X\ =3 XQ via Ui -> XQ) is a transformation groupoid associated to the action
of a finite group Gi on U{. Given such a cover, we let U — \\ Ui and V =3 U
be the restriction of X\ =3 XQ via U ->• XQ. Thus we have a Morita morphism
from Xl =4 XQ to V =4 U. _

Now we consider the moduli space X of X., which is also the moduli space
of V =4 U. The open cover {Ui} of XQ_ induces an open cover of X. Choose
a differentiable partition of unity for X subordinate to this cover. Pull back
to U. This gives over each Ui a Gi -invariant differentiable function pi. Define
p : U —> R by setting p | U\ — -^fpi- It is then straightforward to check that p
is, indeed, a partition of unity for the groupoid V =4 U.

Proposition 1.11 Assume that the groupoid X\ =£ XQ admits a partition of
unity. Then for every q we have long exact sequences

and
0 ^ T(X., ft*) ^ W(X0)

If we can find a partition of unity with compact support, then there is a long
exact sequence

[le8]

(9)
Here the central map ft^(Xo) —> ttq(Xo) is given by UJ *-> s\t*w — t\s*u. So in
this latter case, we have a canonical isomorphism

12



P R O O F . TO prove (9), let p : XQ —> R be a partition of unity for X#, such that
p has compact support. We define a contraction operator

w i—> 30! ((TTOP)CJ) .

Here TTO : Xp -> Xo maps onto the zeroth object, 8Q : Xp -± Xp-i leaves out
the zeroth object. This definition is valid for p > 0. We also define

U) I > 7[QP8QUJ .

This definition is valid for p > 0. We finally define K : W(X0) -
as multiplication by p. This defines a contraction operator for the total com-
plex (9), i.e. we have KS + SK — id, where S is the boundary operator of (9).

The only place where we used properness was when we used multiplication
by p to define Qq(Xo) —>• QC(XQ). For this, p needs to have compact support,
which is only true if X is proper. In this case, we may choose Xo to come from
a finite cover U{.

The first two claims follow by just using part of K. •

Corollary 1.12 For a differentiable Deligne-Mumford stack X we have:

• the de B.ham cohomology groups Hk(3t) can be calculated as the cohomology
groups of the global de Bham complex (F(JC, ft*), d).

• the compact support cohomology groups H^(X) can be calculated using the
global complex (FC(J£,ft*),d).

If X is proper, we also have:

• these two complexes are equal, i.e., for every q we have

• for every k we have
Hk(X) = H*(X),

in particular, there exists an integral

[inte] / :Hn(X) —* », (10)
Jx

• the induced pairing
Hk(X)®Hn-k(X) —>M

is perfect.

Let us denote the structure map of an atlas Xo admitting a partition of unity
by 7T: Xo -» j£. With this notation, we may write the integral (10) as follows:

CJ — \ p 7T*CJ.

Jx JxQ
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