the

abdus salam
energy ageny

School and Conference on Intersection Theory and Moduli

(9-27 September 2002)

Orbifold cohomology and quantum cohomology of orbifolds

D. Abramovich

Department of Mathematics
Boston University
11 Cummington Street
Boston, MA 02215
United States of America

Orbifold cohomology and quantum cohomology of orbifolds

ICTP, Trieste, September 2002 lectures by Dan Abramovich

Part 1:

Moduli of twisted stable maps

- with Angelo Vistoli
- other construction by W. Chen and Y. Ruan

Work over \mathbb{C}
recall that
nice moduli problems are typically Deligne-Mumford stacks admitting projective coarse moduli spaces.

Classic Examples:

- $\overline{\mathcal{M}}_{g, n} ; \quad \overline{\mathcal{M}}_{g, n}(X, \beta)$

Notation: $\quad \overline{\mathcal{M}}_{g, n}(X, \beta)=: \mathcal{K}_{g, n}(X, \beta)$

- $B G=\{p t\} / G$
$=$ moduli of principal homogeneous G-spaces
- the quotient stack $[V / G]$

Stacks have been introduced as "moduli objects" for families of schemes, sheaves etc.

People have now come to accept them as basic algebraic geometry objects.

Is $\mathcal{K}_{g, n}(\mathcal{X}, \beta)$ likely to be interesting for a DM stack \mathcal{X} ?
examples:

1. $\mathcal{X}=\overline{\mathcal{M}}_{\gamma, \nu} \rightsquigarrow$
$\mathcal{K}_{g, n}(\mathcal{X})=$ moduli of fibered surfaces: families of stable curves over stable curves
2. $\mathcal{X}=\mathbf{B} G \rightsquigarrow$ moduli of principal G bundles on stable curves
recall:
Definition. A stable n-pointed map

$$
\left(C, \ldots x_{i} \ldots, f: C \rightarrow X\right)
$$

of genus g and image class β is a morphism from a prestable n-pointed curve $\left(C, x_{1}, \ldots, x_{n}\right)$ to a variety X, such that

- the group $\operatorname{Aut}_{X}\left(f: C \rightarrow X, x_{i}\right)$ of automorphisms of f fixing x_{i} is finite

Now let \mathcal{X} be a Deligne-Mumford stack.
Preliminary Definition. A stable n-pointed map

$$
\left(C, x_{i}, f: C \rightarrow \mathcal{X}\right)
$$

is a morphism from a prestable n-pointed curve $\left(C, x_{i}\right)$ to the stack \mathcal{X} such that

- $\operatorname{Aut} \mathcal{X}(f: C \rightarrow \mathcal{X})$ is finite

PROBLEM: NOT COMPLETE!!

e.g. consider degeneration of a smooth curve of genus 2,
and map to $B G$, with $G=(\mathbb{Z} / r)^{4}$.
smooth fiber C_{η} has connected principal G bundles, one for each isomorphism

$$
H_{1}\left(C_{\eta}, \mathbb{Z}\right) / r \xrightarrow{\sim} G
$$

C_{s} has $H_{1}\left(C_{\eta}, \mathbb{Z}\right)=\mathbb{Z}^{3}$, so no connected G bundle!!

Claim: this problem is resolved if we allow the degenerate curve to be a stack.
Consider the example above:

If we try to extend directly (e.g. normalization of C in P_{η}) we typically get ramification index r over C_{s}.
(i) after base change of order r may assume P_{η} extends over $C_{\text {sm }}$:

(Purity of Branch Locus)
(ii) at node p we have in local analytic coordinates $C_{p}: x y=t^{r}$

We can pick a "uniformization" $V_{p} \rightarrow C_{p}$
$V_{p}:\{\xi \eta=t\} \quad$ where $\quad u=\xi^{r}, v=\eta^{r}$
V_{p} nonsingular. Purity \Longrightarrow the bundle extends:

$$
P_{p} \rightarrow V_{p}
$$

There is an action of μ_{r} on V_{p} which lifts to the bundle P_{p}.
(iii) $V_{p} \rightarrow C_{p}$ with μ_{r} action is a chart for an orbifold structure $\mathcal{C} \rightarrow C$, namely a DM stack \mathcal{C} with moduli space C
moreover we have a morphism $\mathcal{C} \rightarrow B G$

Twisted curves ($n=0$)
Definition. A twisted (pre-stable) curve is a Deligne-Mumford stack \mathcal{C} with coarse moduli space C such that

1. C is a pre-stable curve,
2. the $\operatorname{map} \mathcal{C} \rightarrow C$ to the coarse moduli curve is an isomorphism away from singularities of C, and
3. \mathcal{C} has at most nodes as singularities

Terminology:

$r=1$: untwisted; $r>1$: twisted.
$a \equiv-1 \bmod r:$ balanced; otherwise unbalanced.

Note: if $f(t) \neq 0$ then balanced.

$n>0$: Twisted curves at a marking

One way to arrive at marked curves is by normalizing a nodal curves and "separating" a node in two markings.

Local description via parameters

$$
\begin{gathered}
C: x \\
\mathcal{C}=\left[V / \mu_{r}\right], \\
V: \xi, x=\xi^{r}
\end{gathered}
$$

Action of $\mu_{r}: \quad \xi \mapsto \zeta_{r} \cdot \xi$

Global description: a marking is a closed substack which is a gerbe banded by μ_{r}.
NOT NECESSARILY A SECTION

Definition

Let \mathcal{X} be a D-M stack, $\mathcal{X} \rightarrow X$ projective coarse moduli scheme.

An n-pointed twisted stable map $f: \mathcal{C} \rightarrow \mathcal{X}$ to \mathcal{X} of genus g, class β, is a diagram

$$
\begin{aligned}
& \mathcal{C} \xrightarrow{f} \mathcal{X} \\
& \downarrow \\
& C \xrightarrow[\rightarrow]{ } \quad \downarrow \\
&
\end{aligned}
$$

where
(i) \mathcal{C} twisted curve with coarse moduli space C
(ii) $\mathcal{C} \rightarrow \mathcal{X}$ representable
(no unnecessary branchings)
(iii) $C \rightarrow X$ stable n-pointed map of genus g and class β
$(\Leftrightarrow \quad$ automorphism group is finite)

Theorem: the moduli of n-pointed twisted stable maps of genus g and class β to \mathcal{X} is a proper D-M stack $\mathcal{K}_{g, n}(\mathcal{X}, \beta)$ admitting a projective coarse moduli scheme $\mathbf{K}_{g, n}(\mathcal{X}, \beta)$.
In fact, there is a commutative diagram of finite maps (not cartesian)

$$
\begin{array}{cc}
\mathcal{K}_{g, n}(\mathcal{X}, \beta) & \rightarrow \mathbf{K}_{g, n}(\mathcal{X}, \beta) \\
\downarrow & \downarrow \\
\mathcal{K}_{g, n}(X, \beta) & \rightarrow \mathbf{K}_{g, n}(X, \beta)
\end{array}
$$

Issues coming in proof:
(i) existence of bottom line in diagram
(ii) valuative criterion for properness like for $\mathbf{B} G$
(iii) annoying technicalities

Problem: a stack is a category, but this is apriori a 2-category.
Claim: the 2-category of twisted curves is equivalent to the associated category.

Lemma Let $F: \mathcal{X} \rightarrow \mathcal{Y}$ be a morphism of Deligne-Mumford stacks over a scheme S. Assume that there exists a dense open representable substack (i.e. an algebraic space) $U \subseteq \mathcal{X}$ and an open representable substack $V \subseteq \mathcal{Y}$ such that F maps U into V. Then any automorphism of F is trivial.
in fact we have:
Proposition: the category of twisted curves is an algebraic stack.

Purity Lemma

S a nonsingular surface, $U \subset S, \quad U=S \backslash p t\}$.
Given a diagram

Then the f_{U} extends uniquely to $f: S \rightarrow \mathcal{X}$ (up to unique isomorphism...)

Valuative criterion for properness (one case):

Suppose $S=\operatorname{Spec} R$, the spectrum of a discrete valuation ring;
Generic point $\eta=\operatorname{Spec} K$, special point s.
Suppose C_{η} / K is an untwisted curve, $C_{\eta} \rightarrow \mathcal{X}$ a (twisted) stable map.
Then, after a base change $S^{\prime} \rightarrow S$, there is an extension

Steps:
(i) Kontsevich: extend the map to the coarse moduli space X.
(ii) Properness of \mathcal{X} : extend the map $C_{\eta} \rightarrow \mathcal{X}$ over an open set containing the generic points of C_{s}
(iii) Purity Lemma: the map extends over the smooth locus of C.
(iv) local argument as for $B G$: lift the map to $\left[V_{p} / \mu_{r}\right] \rightarrow \mathcal{X}$
(v) descent: replace $\left[V_{p} / \mu_{r}\right]$ by something representable.

Global description of a twisted marking

 Recall that a marking $\Sigma^{\mathcal{C}} \subset \mathcal{C}$ is a gerbe. In fact, there is a nice canonical way to recover $\Sigma^{\mathcal{C}} \subset \mathcal{C}$ from $\Sigma^{C} \subset C$, away from nodes.The point is that the pullback of Σ^{C} is $r \cdot \Sigma^{\mathcal{C}}$.

Definition. Let V be a scheme, L an invertible sheaf, s a global section of L. Define a stack $\sqrt[r]{(L, s)}$ whose objects over a scheme T are

$$
(f, M, t, \phi),
$$

where

- $f: T \rightarrow V$ is a morphism
- M is an invertible sheaf on V
- t is a section of M
- $\phi: M^{\otimes r} \xrightarrow{\sim} f^{*} L$ is an isomorphism, such that
- $\phi\left(t^{\otimes r}\right)=s$,
and arrows are fiber diagrams.
Proposition Near Σ^{C}, the twisted curve \mathcal{C} is isomorphic to $\sqrt[r]{(L, s)}$ where L is $O_{C}\left(\Sigma^{C}\right)$ and s is the defining section.

Orbifold cohomology and quantum cohomology of orbifolds

ICTP, Trieste, September 2002
lectures by Dan Abramovich
Part 2:
Algebraic Orbifold Quantum Products

- Work over \mathbb{C}
- This work with Tom Graber and Angelo Vistoli
- Quantum products based on W. Chen + Y. Ruan
- global quotient case by Fantechi + Göttche.

Suppose that \mathcal{X} is an algebraic stack, with moduli space X. Let \mathcal{C} be a twisted curve
Contraction Lemma: Given (possibly unstable)

$$
\begin{array}{lll}
\mathcal{C} & \rightarrow \mathcal{X} \\
\downarrow & & \downarrow \\
C \rightarrow X
\end{array}
$$

Then if $C \rightarrow X$ can be stabilized, so does $\mathcal{C} \rightarrow \mathcal{X}$.

Applications:
(a) functoriality in $\mathcal{X} \rightarrow \mathcal{Y}$
(b) forgetful maps for untwisted markings and universal curve.

Recall: Gromov-Witten theory

Let X be a smooth projective variety. Consider the correspondence

$$
\begin{aligned}
& \overline{\mathcal{M}}_{g, n+1}(X, \beta) \xrightarrow{e_{n+1}} X \\
& e_{1} \times \cdots \times e_{n} \mid \\
& X^{n}
\end{aligned}
$$

Define

$$
\begin{aligned}
H^{*}(X)^{n} & \longrightarrow H^{*}(X) \\
\gamma_{1} \times \cdots \times \gamma_{n} & \mapsto\left\langle\gamma_{1}, \ldots, \gamma_{n}, *\right\rangle_{g, \beta}
\end{aligned}
$$

where
$\left\langle\gamma_{1}, \ldots, \gamma_{n}, *\right\rangle_{g, \beta}=$
$\left(e_{n+1}\right)_{*}\left(e_{1, \ldots, n}^{*}\left(\gamma_{1} \times \cdots \times \gamma_{n}\right) \cap\left[\overline{\mathcal{M}}_{g, n+1}(X, \beta)\right]^{v}\right)$
In genus zero these $G W$ invariants satisfy $W D V V$ relations, giving associativity.
"Small" quantum product is defined by

$$
\gamma_{1} * \gamma_{2}=\sum_{\beta \in H_{2}(X)}\left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{0, \beta} q^{\beta}
$$

(grading of q^{β} is $2 c_{1}(X) \cdot \beta$)

Associativity (assuming nothing odd):

$$
\begin{aligned}
& \sum_{\beta_{1}+\beta_{2}=\beta}\left\langle\left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{0, \beta_{1}}, \gamma_{3}, *\right\rangle_{0, \beta_{2}}= \\
& \quad \sum_{\beta_{1}+\beta_{2}=\beta}\left\langle\left\langle\gamma_{1}, \gamma_{3}, *\right\rangle_{0, \beta_{1}}, \gamma_{2}, *\right\rangle_{0, \beta_{2}}
\end{aligned}
$$

A key step in proving associativity is a morphism from

$$
\overline{\mathcal{M}}_{0,3}\left(X, \beta_{1}\right) \underset{X}{\times} \overline{\mathcal{M}}_{0,3}\left(X, \beta_{2}\right)
$$

to a "boundary divisor" in

$$
\begin{aligned}
& \overline{\mathcal{M}}_{0,4}\left(X, \beta_{1}+\beta_{2}\right)
\end{aligned}
$$

In order to generalize this picture, we will need

1. an analogue of $H^{*}(X)$ or $A^{*}(X)$ for a smooth Deligne-Mumford stack,
2. an analogue of the evaluation maps e_{i} and e_{n+1},
3. an analogue of the virtual fundamental class, and
4. an analogue of the fiber product description of the boundary divisors.

We'll start with the last

$$
\begin{aligned}
& \mathcal{M}_{1} \times{ }_{X} \mathcal{M}_{2} \smile D_{(12 \mid 34)}(X)-\overline{\mathcal{M}}_{0,4}(X, \beta) \\
& D_{(12 \mid 34)} \longrightarrow \frac{1}{\mathcal{M}_{0,4}}
\end{aligned}
$$

Interpretation of boundary: suppose $C=$ $C_{1} \stackrel{p}{\cup} C_{2}$

Now say \mathcal{C} is a nodal twisted curve.

$$
\mathcal{C}=\mathcal{C}_{1} \cup^{\wp} \mathcal{C}_{2}
$$

where

$$
\wp \simeq B\left(\mu_{r}\right)
$$

Then

$$
\begin{aligned}
& \operatorname{Hom}(C, X)= \\
& \qquad H o m\left(C_{1}, X\right) \underset{\underset{\operatorname{Hom}(\{p\}, X)}{\times}}{\operatorname{Hom}\left(C_{2}, X\right)}
\end{aligned}
$$

$\operatorname{Hom}(\mathcal{C}, \mathcal{X})=$

$$
\operatorname{Hom}\left(\mathcal{C}_{1}, \mathcal{X}\right) \underset{\operatorname{Hom}(\wp, \mathcal{X})}{\times} \operatorname{Hom}\left(\mathcal{C}_{2}, \mathcal{X}\right)
$$

So evaluation lands in

$$
\operatorname{Hom}\left(B\left(\mu_{r}\right), \mathcal{X}\right)
$$

(and not just in \mathcal{X})

Inertia stack

Here

$$
\begin{aligned}
\mathcal{X}_{1} & =\bigcup_{r} H o m R e p\left(\mathcal{B} \boldsymbol{\mu}_{r}, \mathcal{X}\right) \\
& =\left\{\begin{array}{l|l}
(x, H, \chi) & \begin{array}{c}
x \in O b(\mathcal{X}), \\
H \subset \operatorname{Aut} x \\
\chi: H \xrightarrow[\rightarrow]{\rightarrow} \boldsymbol{\mu}_{r}
\end{array}
\end{array}\right\} \\
& =\left\{\begin{array}{l|l}
(x, g) & \begin{array}{c}
x \in \mathcal{O} b(\mathcal{X}), \\
g \in \operatorname{Aut} x
\end{array}
\end{array}\right\} \\
& =\mathcal{I}(\mathcal{X})
\end{aligned}
$$

The points of the coarse moduli space $I(X)$ are

$$
([x],(g))
$$

where $[x] \in X$ is the isom. class of an object x and
(g) is the conjugacy class of an element

$$
g \in \operatorname{Aut}(x)
$$

Let \mathcal{X} be a smooth Deligne-Mumford stack of dimension d with projective coarse moduli space X

WE WORK WITH

$$
H_{o r b}^{*}(\mathcal{X})=H^{*}\left(\mathcal{X}_{1}\right)
$$

Age

Let $([x],(g)) \in I(X)$
Can write locally $\mathcal{X}=[V / \Gamma]$, where $\Gamma=\operatorname{Aut}(x)$, and V smooth.

Diagonalize the action of g on the tangent $T_{x}(V)$, with eigenvalues

$$
e^{(2 \pi i) \cdot r_{j}}, \quad j=1, \ldots, d
$$

with $0 \leq r_{j}<1$.
Definition: the age

$$
a(x, g)=\sum_{i=1}^{d} r_{j} .
$$

Claim: $a(x, g)$ is constant on every connected component $Z \subset I(X) \quad($ notation $a(Z)$)

Claim: $a(x, g)+a\left(x, g^{-1}\right)=\operatorname{dim} X-\operatorname{dim} Z$

GRADING

Definition: The degree of an element $\alpha \in H^{i}(Z)$ in $H_{o r b}^{*}(\mathcal{X})$ is defined to be

$$
i+2 a(Z)
$$

Note: $\operatorname{dim} H_{\text {orb }}^{i}(\mathcal{X})=\operatorname{dim} H_{o r b}^{d-i}(\mathcal{X})$.

Evaluation

Unless $g=0, n=3, \beta=0$, the markings of $\mathcal{K}_{g, n}(X, \cdot)$ are nontrivial grbes
Define
$\overline{\mathcal{M}}_{g, n}(X, \cdot)=$ twisted stable maps with sections
$=$ fibered product of universal gerbes over $\mathcal{K}_{g, n}(X, \cdot)$

Have evaluation maps

$$
\overline{\mathcal{M}}_{g, n}(X, \cdot) \xrightarrow{e_{i}} \mathcal{X}_{1}
$$

recall that in

$$
\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}
$$

we can naturally identify $B\left(\mu_{r}\right) \simeq \wp \subset \mathcal{C}_{2}$, via the action of μ_{r} on the normal bundle to the marking in \mathcal{C}_{2}.
but then the action on the \mathcal{C}_{1} side is opposite!

$$
(\xi, \eta) \mapsto\left(\zeta_{r} \cdot \xi, \zeta_{r}^{-1} \cdot \eta\right)
$$

Define involution

$$
\iota: \mathcal{X}_{1} \rightarrow \mathcal{X}_{1}
$$

via

$$
g \mapsto g^{-1}
$$

Define:

$$
\check{e}_{i}=\iota \circ e_{i}
$$

Deformations / Obstructions: general case
(i) Twisted curves are unobstructed:

$$
\operatorname{Ext}^{2}\left(\Omega_{\mathcal{C}}^{1}, \mathcal{O}_{\mathcal{C}}\right)=0
$$

(ii) Obstructions of $f: \mathcal{C} \rightarrow \mathcal{X}$ lie in

$$
H^{1}\left(\mathcal{C}, f^{*} T_{\mathcal{X}}\right)
$$

(iii) Relative infinitesimal deformations are

$$
H^{0}\left(\mathcal{C}, f^{*} T_{\mathcal{X}}\right)
$$

Behrend - Fantechi, Kresch \Longrightarrow
virtual fundamental class $\left[\mathcal{K}_{g, n}(X, \cdot)\right]^{v}$
Because of sections need to use
$\left[\overline{\mathcal{M}}_{g, n}(X, \cdot)\right]^{w}=r_{1} \cdots r_{n}\left[\overline{\mathcal{M}}_{g, n}(X, \cdot)\right]^{v}$

Special case: every deformation is unobstructed.

$$
\begin{aligned}
\mathcal{C} & \xrightarrow{\frac{f}{\mathcal{M}}} \\
&
\end{aligned}
$$

then

$$
[\overline{\mathcal{M}}]^{v}=c_{t o p}(E)=c_{t o p}\left(\mathbb{R}^{1} \pi_{*} f^{*} T_{\mathcal{X}}\right)
$$

If, moreover, $\mathcal{C}=[D / H]$ with $\tilde{f}: D \rightarrow \mathcal{X}$, then

$$
E=\left(\mathbb{R}^{1} \tilde{\pi}_{*} \tilde{f}^{*} T_{\mathcal{X}}\right)^{H}
$$

3-point orbifold G-W invariants

$$
\begin{aligned}
& \overline{\mathcal{M}}_{0,3}(\mathcal{X}, \beta) \xrightarrow{\check{e}_{3}} \mathcal{X}_{1} \\
& e_{1} \times e_{2} \downarrow \\
& \mathcal{X}_{1} \times \mathcal{X}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \gamma_{i} \in H_{o r b}^{*}(\mathcal{X}) \text { Define } \\
& \left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{\beta}= \\
& \quad\left(\check{e}_{3}\right)_{*}\left(e_{1}^{*}\left(\gamma_{1}\right) e_{2}^{*}\left(\gamma_{2}\right) \cap\left[\overline{\mathcal{M}}_{0,3}(X, \beta)\right]^{w}\right)
\end{aligned}
$$

"Small" quantum product is again defined by

$$
\gamma_{1} * \gamma_{2}=\sum_{\beta \in H_{2}(\boldsymbol{X})}\left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{0, \beta} q^{\beta}
$$

Theorem: this is a graded skew-commutative associative ring.
grading of q^{β} is $2\left(c_{1}(\boldsymbol{\mathcal { X }}) \cdot \beta\right)$

Will only prove when every deformation is unobstructed, and curves smooth freely

Associativity (assuming nothing odd):

$$
\begin{aligned}
& \sum_{\beta_{1}+\beta_{2}=\beta}\left\langle\left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{0, \beta_{1}}, \gamma_{3}, *\right\rangle_{0, \beta_{2}}= \\
& \quad \sum_{\beta_{1}+\beta_{2}=\beta}\left\langle\left\langle\gamma_{1}, \gamma_{3}, *\right\rangle_{0, \beta_{1}}, \gamma_{2}, *\right\rangle_{0, \beta_{2}}
\end{aligned}
$$

The product diagram

$$
\begin{array}{ccc}
\mathcal{M}_{1} \times \mathcal{M}_{2} & \rightarrow \mathcal{M}_{2} \\
\mathcal{X}_{1} & & \\
\downarrow & & \downarrow \\
\mathcal{M}_{1} & \rightarrow & \mathcal{X}_{1}
\end{array}
$$

can be expanded:

It follows that the coefficient in $\left(\gamma_{1} * \gamma_{2}\right) * \gamma_{3}$ is

$$
r_{\times}^{2} e_{4 *}^{\times}\left(\left(\prod_{i=1}^{3} e_{i}^{\times *}\left(\gamma_{i}\right)\right) \cdot \mathfrak{C}\right)
$$

The divisor diagram

$$
\begin{aligned}
& \mathcal{M}_{1} \underset{\mathcal{X}_{1}}{ } \mathcal{M}_{2} \\
& \mathcal{M}_{0,4}(X) \leftarrow D \underset{\mathbf{M}_{0,4}}{\times} \mathcal{M}_{0,4}(X) \supset \quad \stackrel{\downarrow}{\downarrow(X)} \\
& \mathbf{M}_{0,4} \quad \supset \quad D
\end{aligned}
$$

where

$$
\mathfrak{C}=c_{\text {top }}\left(p_{1}^{*} E_{1} \oplus p_{2}^{*} E_{2}\right) c_{\text {top }}\left(N_{\delta} / N_{p_{1} \times p_{2}}\right)
$$

Here
$E_{i}=$ obstruction bundle of $f_{i}: \mathcal{C}_{i} \rightarrow \mathcal{X}$, $N_{\delta} / N_{p_{1} \times p_{2}}=$ excess normal bundle

$$
\mathfrak{C}=g l^{*} c_{t o p}(E)
$$

$E=$ obstruction bundle of $f_{0,4}: \mathcal{C}_{0,4} \rightarrow \mathcal{X}$.

Can we make this "symmetric"?

We consider the normalization sequence

$$
\left.0 \rightarrow f^{*} T \mathcal{X} \rightarrow \nu_{*} f^{\prime *} T \mathcal{X} \rightarrow\left(f^{*} T \mathcal{X}\right)\right|_{\Sigma} \rightarrow 0 .
$$

Pushing forward to \mathcal{Y} gives

$$
\begin{array}{rlrl}
0 & \rightarrow \pi_{*} f^{*} T \mathcal{X} \rightarrow \pi_{*}^{\prime} f^{\prime *} T \mathcal{X} & \rightarrow\left(\left.\pi_{*}\left(f^{*} T \mathcal{X}\right)\right|_{\Sigma}\right) & \text { So we got } \\
& \rightarrow g l^{*} E \rightarrow p_{1}^{*} E_{1} \oplus p_{2}^{*} E_{2} \rightarrow 0 . & 0 \rightarrow N_{p_{1} \times p_{2}} \rightarrow \pi_{*}\left(\left.\left(f^{*} T \mathcal{X}\right)\right|_{\Sigma}\right) \rightarrow Q \rightarrow 0
\end{array}
$$

Let Q be the bottom kernel.
Need: $Q=$ excess bundle.

Have on top

$$
\begin{aligned}
0 \rightarrow T \mathcal{Y} & \rightarrow p_{1}^{*} T \mathcal{M}_{1} \oplus p_{2}^{*} T \mathcal{M}_{2} \\
& \rightarrow \pi_{*}\left(\left.\left(f^{*} T \mathcal{X}\right)\right|_{\Sigma}\right) \rightarrow Q \rightarrow 0
\end{aligned}
$$

So the following suffices:

Lemma.

$$
\pi_{*}\left(\left.\left(f^{*} T \mathcal{X}\right)\right|_{\Sigma}\right) \simeq e_{\times}^{*} T \mathcal{X}_{1}
$$

Orbifold cohomology and quantum cohomology of orbifolds

ICTP, Trieste, September 2002
lectures by Dan Abramovich
Part 3:
Stringy Orbifold Cohomology: Theory and Examples

- Work over \mathbb{C}
- This work with Tom Graber and Angelo Vistoli
- Quantum products based on W. Chen + Y. Ruan
- global quotient case by Fantechi + Göttsche.

Equivariant Riemann-Roch

Let \mathcal{C} be a smooth twisted curve, \mathcal{E} a vector bundle on \mathcal{C}.
Let x be a twisted marking, locally \mathcal{C} is $\left[V / \mu_{r}\right]$,
V has coordinate z,
Say μ_{r} acts on $T_{V, x}$ via $v \mapsto \zeta_{r} \cdot v$.
(Then μ_{r} ants on z via $z \mapsto \zeta_{r}^{-1} \cdot z$.)
say μ_{r} acts on \mathcal{E}_{x} with eigenvalues $e^{(2 \pi i) \cdot r_{i}}$, with $0 \leq r_{i}<1$.
the age is

$$
a(\mathcal{E}, x)=\sum r_{i}
$$

Theorem.

$$
\chi(\mathcal{C}, \mathcal{E})=d(\mathcal{E})-r k(\mathcal{E})(g-1)-\sum_{x} a(\mathcal{E}, x)
$$

Exercise: quantum product is graded.

Stringy Orbifold cohomology:

We defined

$$
\gamma_{1} * \gamma_{2}=\sum_{\beta \in H_{2}(X)}\left\langle\gamma_{1}, \gamma_{2}, *\right\rangle_{0, \beta} q^{\beta} .
$$

Now we can plug in $q^{\beta} \mapsto 0$ and obtain an associative ring structure on $H_{o r b}^{*}(\mathcal{X}, \mathbb{Q})$

Exercise: This ring has unit $1 \in H^{*}(\mathcal{X}, \mathbb{Q})$.
Defined $\left\langle\gamma_{1}, \gamma_{2},{ }^{*}\right\rangle_{0, \beta}$ using $\overline{\mathcal{M}}_{0,3}(\mathcal{X}, \beta)$

Claim: when $\beta=0$ the three gerbes are trivial, and there are evaluation maps

$$
\mathcal{K}_{0,3}(\mathcal{X}, \beta) \rightarrow \mathcal{X}_{1} .
$$

These maps are representable
So the above lifts to a product

$$
\gamma_{1} \smile \gamma_{2}
$$

on $H_{o r b}^{*}(\mathcal{X}, \mathbb{Z})$
Theorem [$\aleph G V]$: this is well defined for arbitrary smooth separated Deligne-Mumford stack, independent of choices and associative.

Proof of associativity is much more delicate.

The Fantechi-Göttsche ring

In case $\mathcal{X}=[Y / G]$ write

$$
\tilde{Y}=\bigsqcup_{g \in G} Y^{g}
$$

The group G acts by sending $y \in Y^{g}$ to $h(y) \in$ $Y^{h g h^{-1}}$. So we have $\mathcal{I}(\mathcal{X}) \simeq[\tilde{Y} / G]$
Notation:

$$
H^{*}(Y, G)=H^{*}(\tilde{Y}, \mathbb{Q}) .
$$

Theorem [Fantechi-Göttsche]:

1. There is a (natural) associative (noncommutative) ring structure on $H^{*}(Y, G)$, with an action of G.
2. There is a ring isomorphism $H^{*}(Y, G)^{G} \simeq$ $H_{o r b}^{*}(Y)$
The construction and proof is very much analogous to the one for $H_{o r b}^{*}(Y)$

Example 0

$$
\begin{gathered}
\mathcal{X}=B G \\
\mathcal{I}(\mathcal{X})=[G / G]=
\end{gathered}
$$

$$
\bigsqcup_{(g)} B(C(g))=: \bigsqcup_{(g)} \mathcal{X}_{(g)}
$$

$$
H_{o r b}^{*}(B G, \mathbb{Z})=\bigoplus_{(g)} H^{*}(B(C(g)), \mathbb{Z})
$$

Example 1

Component $\mathcal{K}_{g, h}$ of $\mathcal{K}_{0,3}(B G, 0)$ with $g, h,(g h)^{-1}$:

$$
\mathcal{K}_{g, h} \simeq B(C(g) \cap C(h))
$$

product:

$$
x_{(g)} \smile x_{(h)}=\sum_{\left(g^{\prime}, h^{\prime}\right)}\left|\frac{C\left(g^{\prime} h^{\prime}\right)}{C\left(g^{\prime}\right) \cap C\left(h^{\prime}\right)}\right| x_{(g h)}
$$

$$
\begin{aligned}
& H_{o r b}^{*}(B G, \mathbb{Q})=C(\mathbb{Q}[G])=(\mathbb{Q}[G])^{G} \\
& \left(H^{*}(\{p t\}, G)=\mathbb{Q}[G]\right)
\end{aligned}
$$

$$
H_{o r b}^{*}\left(B\left(\mu_{r}\right), \mathbb{Z}\right)=\mathbb{Z}[s, t] /\left(s^{r}-1, r t\right)
$$

$$
\mathcal{X}=\left[\mathbb{A}^{1} / \mu_{r}\right]
$$

$$
\mathcal{I}(\mathcal{X})=\mathcal{X} \sqcup \bigsqcup_{k=1}^{r-1} B\left(\mu_{r}\right)
$$

$$
H^{*}\left(\mathcal{X}_{i}, \mathbb{Z}\right)=\mathbb{Z}\left[t_{i}\right] /\left(r t_{i}\right)
$$

Age of X_{i} is i / r

Components:

$$
\mathcal{K}_{i, j}= \begin{cases}\mathcal{X} & i=j=0 \\ B\left(\mu_{r}\right) & \text { otherwise }\end{cases}
$$

$\left[\mathcal{K}_{i, j}\right]^{v}=\left[\mathcal{K}_{i, j}\right]$ whenever $i+j \leq r$ by grading.
Product:

$$
\begin{aligned}
& x_{i} \smile x_{j}= \begin{cases}x_{i+j} & i+j<r \\
t_{0} & i+j=r\end{cases} \\
& t_{0} \smile x_{i}=t_{i} \\
& H_{o r b}^{*}(\mathcal{X}, \mathbb{Z})=\mathbb{Z}\left[x_{1}\right] /\left(r x_{1}^{r}\right)
\end{aligned}
$$

Example 2 The wighted projective stack

$$
\mathbb{P}^{1}[a, b]=\left[\left(\mathbb{A}^{2} \backslash\{0\}\right) / \mathbb{G}_{m}\right]
$$

with the action $(x, y) \mapsto\left(t^{a} x, t^{b} y\right), \quad a, b>0$.
Let $g=\operatorname{gcd}(a, b), l=a b / g$.

$$
\begin{gathered}
\mathcal{I}(\mathcal{X})=\bigsqcup_{i=0}^{g-1} \mathcal{X} \sqcup \bigsqcup_{i=0}^{a-g} B\left(\mu_{a}\right) \sqcup \bigsqcup_{i=0}^{b-g} B\left(\mu_{b}\right) \\
=\bigsqcup_{i=0}^{g-1} X_{i} \sqcup \bigsqcup_{i=1}^{a-1} A_{i} \sqcup \bigsqcup_{i=1}^{b-1} B_{i} \\
\operatorname{gcd}(i, a / g)=1 \\
H^{*}(X, \mathbb{Z})=\mathbb{Z}[t] /\left(a b t^{2}\right)
\end{gathered}
$$

Age of A_{i} is $i g / a$, of B_{i} is $i g / b$
Ring:

$$
H_{o r b}^{*}(\mathcal{X}, \mathbb{Z})=
$$

$\frac{\mathbb{Z}[X, A, B, T]}{\left(X^{g}-1, a A T, b B T, A^{\frac{a}{g}}-b X T, B^{\frac{b}{g}}-a X T, A B\right)}$

Example:

$$
\mathcal{X}=\left[V^{n} / \mathcal{S}_{n}\right]
$$

Notation:

$\sigma \in \mathcal{S}_{n}$ has $l(\sigma)=$ length,
$o(\sigma)=$ number of cycles $=n-l(\sigma)$.
Also $\operatorname{dim} V=d$.

$$
\begin{gathered}
\mathcal{I}(\mathcal{X})=\bigsqcup_{(\sigma)}\left[\left(V^{n}\right)^{\sigma} / C(\sigma)\right] \\
\left(V^{n}\right)^{\sigma} \simeq V^{o(\sigma)} \Longrightarrow \operatorname{dim} \mathcal{X}_{(\sigma)}=d \cdot o(\sigma)
\end{gathered}
$$

Exercise: Find $H_{o r b}^{*}(\mathcal{X}, \mathbb{Q})$ and $H_{o r b}^{*}(\mathcal{X}, \mathbb{Z})$ when $\mathcal{X}=\mathbb{P}^{2}[1,1, a]$

Age: $\quad(\sigma)=\left(\sigma^{-1}\right)$

$$
\Longrightarrow a\left(\mathcal{X}_{(\sigma)}\right)=\frac{d \cdot l(\sigma)}{2}
$$

Components:

$$
\mathcal{K}_{(\sigma, \tau)}=\left[\left(V^{n}\right)^{\langle\sigma, \tau\rangle} / C(\sigma) \cap C(\tau)\right]
$$

Notation: $\mathcal{O}(\sigma, \tau)=$ set of orbits of $\langle\sigma, \tau\rangle$.
$W=\mathbb{C}^{n}$ standard representation of \mathcal{S}_{n}.
$W_{I}=$ representation of $\langle\sigma, \tau\rangle$ on the subspace with coordinates in $I \subset\{1, \ldots, n\}, I \in \mathcal{O}(\sigma, \tau)$.
Have $\mathcal{C} \xrightarrow{\pi} \mathcal{K}_{(\sigma, \tau)} \rightarrow \mathcal{X}$
$f^{*} T_{\mathcal{X}}=" \bigoplus_{I \in \mathcal{O}(\sigma, \tau)}\left(W_{I} \otimes \pi^{*} T_{V_{I}}\right) "$

$$
\begin{aligned}
& H^{0}\left(\mathcal{C}, W_{I} \stackrel{G}{\otimes} \mathcal{O}_{\mathcal{C}}\right)=1 \\
& \chi\left(\mathcal{C}, W_{I} \stackrel{G}{\otimes} \mathcal{O}_{\mathcal{C}}\right)= \\
& \quad|I|-a\left(g, W_{I}\right)-a\left(h, W_{I}\right)-a\left((g h)^{-1}, W_{I}\right)
\end{aligned}
$$

so $r_{I}=H_{I}^{1}=\frac{|I|+1-o_{I}(g)-o_{I}(h)-o_{I}(g h)}{2}$.
So W_{I} contributes a factor

$$
\begin{cases}1 & \text { if } r_{i}=0 \\ c_{\text {top }}\left(T_{V}\right) & \text { if } r_{i}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Finally there is a constant factor of $\left|\frac{C(g h)}{C(g) \cap C(h)}\right|$.

