
Introduction to Java

Carlos Kavka
Departamento de Informática

Universidad Nacional de San Luis
San Luis, Argentina

email: ckavka@unsl.edu.ar

Seventh College on Microprocessor-based Real-Time Systems in Physics
The Abdus Salam ICTP, Trieste, Italia

October 28 – November 22, 2002

1

Introduction

• Java is a very powerful language that has generated a lot of interest in the last
years.

• It is a general purpose concurrent object oriented language, with a syntax similar
to C (and C++), but omitting features that are complex and unsafe.

• The world wide web has popularized the use of Java, because programs written in
this language can be transparently downloaded with the web pages and executed
in any computer with a Java capable browser.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

2

Some definitions

• A Java application is a standalone Java program that can be executed indepen-
dently of any web browser.

• A Java applet is a program designed to be executed under a Java capable
browser.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

3

These lecture notes

• These lecture notes assume that you have some familiarity with C.

• All examples used in this notes are available for experimentation.

• There is a page that complements these lecture notes at:

http://www.ictp.trieste.it/~ckavka/Java

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

4

The Java platform

• Java programs are compiled to Java byte-codes, a kind of machine independent
representation. The program is then executed by an interpreter called the Java
Virtual Machine (JVM) 1.

1Ilustration from Sun Java Tutorial at http://java.sun.com

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

5

Introduction

• Its main advantage is the fact that the compiled code is independent of the
architecture of the computer) 2.

• The price to pay is a slower execution.

2Ilustration from Sun Java Tutorial at http://java.sun.com

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

6

A first example

/**
* Hello World Application
* Our first example
*/

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!"); // display output

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

7

Development cycle

• Creation of the source file:

emacs HelloWorld.java

• Compilation:

javac HelloWorld.java
ls

HelloWorld.java
HelloWorld.class

• Execution:

java HelloWorld
Hello World!

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

8

Documentation

• The javadoc utility can be used to generate automatically documentation for
the class:

javadoc HelloWorld

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

9

Basic types

• Java provides ten primitive types:

? four types of integers
? two types of floating point numbers
? characters
? booleans
? the special type void
? strings.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

10

Variables

• The variables can be declared specifying its type and name. They can be
initialized in the point of declaration, or a value can be assigned later with the
assignment expression, as it is shown below:

int x;
double f = 0.33;
char c = ’a’;
String s = "abcd";

x = 55;

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

11

Literals

• The integer values can be written in decimal, hexadecimal, octal and long forms,
as shows the next example:

int x = 34; // decimal value
int y = 0x3ef; // hexadecimal
int z = 0772; // octal
long m = 240395922L; // long

• The floating point values are of type double by default. In order to specify a
float value, we have to add the letter F at the end, as it is shown below:

double d = 6.28; // 6.28 is a double value
float f = 6.28F; // 6.28F is a float value

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

12

Literals

• The character values are specified with the standard C notation, with the
exception that unicode values can be specified with \u:

char c = ’a’; // character lowercase a
char d = ’\n’; // newline
char e = ’\u2122’ // unicode character (TM)

• The boolean values are true and false. They are the only values that can be
assigned to boolean variables:

boolean ready = true; // boolean value true
boolean late = false; // boolean value false

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

13

Constants

• The declaration for constants is very similar to the declaration of variables. It
has to include the word final in front. The specification of the initial value is
compulsory, as it is shown in the examples below:

final double pi = 3.1415; // constant PI
final int maxSize = 100; // integer constant
final char lastLetter = ’z’; // last lowercase letter
final String word = "Hello";

• Of course, their values cannot be modified.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

14

Expressions

• Java provides a rich set of operators in order to use them in expressions.

• Expressions can be classified as:

? arithmetic
? bit level
? relational
? logical
? specific for strings

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

15

Arithmetic operators

• Java provides the usual set of arithmetic operators:

? addition (+)
? subtraction (-)
? division (/)
? multiplication (*)
? modulus (%).

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

16

Arithmetic operators

class Arithmetic {
public static void main(String[] args) {
int x = 12;
int y = 2 * x;
System.out.println(y);
int z = (y - x) % 5;
System.out.println(z);
final float pi = 3.1415F;
float f = pi / 0.62F;
System.out.println(f);

}
}

The output produced by the execution of the application is:

24
2
5.0669355

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

17

Arithmetic operators

• The shorthand operators composed of the assignment operator and a binary
operator are also present.

class ShortHand {
public static void main(String[] args) {

int x = 12;
x += 5; // x = x + 5
System.out.println(x);
x *= 2; // x = x * 2
System.out.println(x);

}
}

The output produced by the execution of the application is:

17
34

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

18

Arithmetic operators

• The pre and post increment and decrement operators are also provided:

class Increment {
public static void main(String[] args) {
int x = 12,y = 12;

System.out.println(x++); // x is printed and then incremented
System.out.println(x);
System.out.println(++y); // y is incremented and then printed
System.out.println(y);

}
}

The output produced by the execution of the application is:

12
13
13
13

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

19

Relational operators

• Java provides the standard set of relational operators:

? equivalent (==)
? not equivalent (!=)
? less than (<)
? greater than (>)
? less than or equal (<=)
? greater than or equal (>=).

• The relational expressions always return a boolean value.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

20

Relational operators

class Boolean {
public static void main(String[] args) {

int x = 12,y = 33;

System.out.println(x < y);
System.out.println(x != y - 21);

boolean test = x >= 10;
System.out.println(test);

}
}

The output produced by the execution of the application is:

true
false
true

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

21

Bit level operators

• Java provides a set of operators that can manipulate bits directly.

• Some operators do boolean algebra on bits:

? and (&)
? or (|)
? not(~)

• and others perform bits shifting:

? shift left (<<)
? shift right with sign extension (>>)
? shift right with zero extension (>>>).

• This operators operate on integral types. If the argument is a char, short or
byte, it is promoted to int and the result is an int.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

22

Bit level operators

class Bits {
public static void main(String[] args) {

int x = 0x16; // 00000000000000000000000000010110
int y = 0x33; // 00000000000000000000000000110011
System.out.println(x & y);// 00000000000000000000000000010010
System.out.println(x | y);// 00000000000000000000000000110111
System.out.println(~x); // 11111111111111111111111111101001

x &= 0xf; // 00000000000000000000000000000110
System.out.println(x); // 00000000000000000000000000000110

short s = 7; // 0000000000000111
System.out.println(~s); // 11111111111111111111111111111000

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

23

Bit level operators

class Bits2 {
public static void main(String[] args) {

int x = 0x16; //00000000000000000000000000010110
System.out.println(x << 3);//00000000000000000000000010110000

int y = 0xfe; //00000000000000000000000011111110
y >>= 4; //00000000000000000000000000001111
System.out.println(y); //00000000000000000000000000001111

x = 9; //00000000000000000000000000001001
System.out.println(x >> 3);//00000000000000000000000000000001
System.out.println(x >>>3);//00000000000000000000000000000001

x = -9; //11111111111111111111111111110111
System.out.println(x >> 3);//11111111111111111111111111111110
System.out.println(x >>>3);//00011111111111111111111111111110

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

24

Logical operators

• Java provides the logical operators:

? and (&&)
? or (||)
? not (!).

• The logical operators can only be applied to boolean expressions and return a
boolean value.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

25

Logical operators

class Logical {
public static void main(String[] args) {
int x = 12,y = 33;
double d = 2.45,e = 4.54;

System.out.println(x < y && d < e);
System.out.println(!(x < y));

boolean test = ’a’ > ’z’;
System.out.println(test || d - 2.1 > 0);

}
}

The output produced by the execution of the application is:

true
false
true

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

26

String operators

• Java provides a complete set of operations on Strings.

• We will consider now just the concatenation operator (+).

• This operator combines two strings, and produces a new one with the characters
from both arguments.

• If the expression begins with a string and uses the + operator, then the next
argument is converted to a string.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

27

String operators

class Strings {
public static void main(String[] args) {

String s1 = "Hello" + "World!";
System.out.println(s1);

int i = 35,j = 44;
System.out.println("The value of i is " + i +

" and the value of j is " + j);
}

}

The output produced by the execution of the application is:

Hello World!
The value of i is 35 and the value of j is 44

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

28

Casting

• Java performs a automatic type conversion in the values when there is no risk
for data to be lost. This is the usual case for widening conversions:

class TestWide {
public static void main(String[] args) {

int a = ’x’; // ’x’ is a character
long b = 34; // 34 is an int
float c = 1002; // 1002 is an int
double d = 3.45F; // 3.45F is a float

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

29

Casting

• In order to specify conversions where data can be lost (narrowing conversions)
it is necessary to use the cast operator.

class TestNarrow {
public static void main(String[] args) {

long a = 34;
int b = (int)a; // a is a long
double d = 3.45;
float f = (float)d; // d is a double

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

30

Control structures

• Java provides the same set of control structures as C.

• The main difference is that the value used in the conditional expressions must
be a boolean value, and cannot be an integer.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

31

The if control statement

class If {
public static void main(String[] args) {

char c = ’x’;
if ((c >= ’a’ && c <= ’z’) || (c >= ’A’ && c <= ’Z’))

System.out.println("letter: " + c);
else if (c >= ’0’ && c <= ’9’)

System.out.println("digit: " + c);
else {

System.out.println("the character is: " + c);
System.out.println("it is not a letter");
System.out.println("and it is not a digit");

}
}

}

The output produced by the execution of the application is:

letter: x

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

32

The while control statement

class While {
public static void main(String[] args) {
final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;
float var = initialValue;
int counter = 0;

while (var < limit) {
var += step;
counter++;

}
System.out.println("It is necessary to increment it "

+ counter + " times");
}

}

The output produced by the execution of the application is:

It is necessary to increment it 22 times

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

33

The for control statement

class For {
public static void main(String[] args) {

final float initialValue = 2.34F;
final float step = 0.11F;
final float limit = 4.69F;

int counter = 0;

for (float var = initialValue;var < limit;var += step)
counter++;

System.out.println("It is necessary to increment it "
+ counter + " times");

}
}

The output produced by the execution of the application is:

It is necessary to increment it 22 times

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

34

Break and continue

class BreakContinue {
public static void main(String[] args) {

for (int counter = 0;counter < 10;counter++) {

// start a new iteration if the counter is odd
if (counter % 2 == 1) continue;

// abandon the loop if the counter is equal to 8
if (counter == 8) break;

// print the value
System.out.println(counter);

}
System.out.println("done.");

}
}

The output produced by the execution of the application is:

0 2 3 6 done.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

35

The switch control statement

class Switch {
public static void main(String[] args) {

boolean leapYear = true;
int days = 0;
for(int month = 1;month <= 12;month++) {
switch(month) {

case 1: // months with 31 days
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
days += 31;
break;

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

36

The switch control statement

case 2: // February is a special case
if (leapYear)

days += 29;
else

days += 28;
break;

default: // it must be a month with 30 days
days += 30;
break;

}
}
System.out.println("number of days: " + days);

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

37

Arrays

• In Java it is possible to declare arrays that can be used to store a number of
elements of the same type:

int[] a; // an unitialized array of integers
float[] b; // an unitialized array of floats
String[] c; // an unitialized array of Strings

• The declaration does not specify a size for the arrays. In fact, the declaration
does not even allocate space for them.

• The size can be specified by initializing the arrays in the declaration:

int[] a = {13,56,2034,4,55}; // size: 5
float[] b = {1.23F,2.1}; // size: 2
String[] c = {"Java","is","great"}; // size: 3

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

38

Arrays

• Other possibility to allocate space for arrays consists in the use of the operator
new. In this case, the size of the array can be computed even at execution time:

int i = 3,j = 5;
double[] d; // unitialized array of doubles

d = new double[i+j]; // array of 8 doubles

• The components of the array are initialized with default values: 0 for numeric
type elements, ’\0’ for characters and null for references.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

39

Arrays

• The array can be accessed by using an integer index that can take values from
0 the the size of the array minus 1.

a[2] = 1000; // modify the third element of a

• Every array has a member called length that can be used to get the length of
the arrays.

int len = a.length; // get the size of the array

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

40

Arrays

class Arrays {
public static void main(String[] args) {

int[] a = {2,4,3,1};
// compute the summation of the elements of a
int sum = 0;
for(int i = 0;i < a.length;i++)
sum += a[i];

// create an array of floats with this size
float[] d = new float[sum];
// assign some values
for(int i = 0;i < d.length;i++)
d[i] = 1.0F / i;

// print the values in odd positions
for(int i = 1;i < d.length;i += 2)
System.out.println("d[" + i + "]=" + d[i]);

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

41

Arrays

The output produced by the execution of the application is:

d[1]=1.0
d[3]=0.33333334
d[5]=0.2
d[7]=0.14285715
d[9]=0.11111111

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

42

Arrays

• It is also possible to declare multidimensional arrays with a similar approach.

• As an example, the following line declares a matrix of integers that can be used
to store 50 elements, organized in 10 rows of 5 columns.

int a[][] = new int[10][5];

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

43

Command line arguments

• We have seen that the method main has to be defined as follows:

public static void main(String[] args)

• It takes one argument that is defined as an array of strings. Through this
array, the program can get command line arguments, typed when the program
is submitted to the java virtual machine for execution.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

44

Command line arguments

class CommandArguments {

public static void main(String[] args) {
for(int i = 0;i < args.length;i++)
System.out.println(args[i]);

}
}

Sample executions of the application follows:

java CommandArguments Hello World
Hello
World
java CommandArguments
java CommandArguments I have 25 cents
I
have
25
cents

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

45

Command line arguments

• Even if, in the last example, the argument 25 is an integer, it is considered as
the string “25”, which is stored in args[2].

• It is possible to convert a string that contains a valid integer into an int value
by using the class method parseInt that belongs to the class Integer.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

46

Command line arguments

class Add {
public static void main(String[] args) {

if (args.length != 2) {
System.out.println("Error");
System.exit(0);

}
int arg1 = Integer.parseInt(args[0]);
int arg2 = Integer.parseInt(args[1]);
System.out.println(arg1 + arg2);

}
}

Sample executions of the application follows:

java Add 2 4
6
java Add 4
Error
java Add 33 22
55

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

47

Classes

• A class is defined in Java by using the class keyword and specifying a name for
it.

class Book {

}

• New instances of the class can be created with new, as follows:

Book b1 = new Book();
Book b2 = new Book();

• or in two steps, with exactly the same meaning:

Book b3;

b3 = new Book();

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

48

Classes

• Inside a class it is possible to define:

? data members, usually called fields
? member functions, usually called methods

• We can then add data members to the class as follows:

class Book {
String title;
String author;
int numberOfPages;

}

• The fields can be accessed with the dot notation, which consists of the use of a
dot (.) between the name of the instance and the name of the field we want to
access.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

49

Classes

class Book {
String title;
String author;
int numberOfPages;

}
class ExampleBooks {
public static void main(String[] args) {

Book b;
b = new Book();
b.title = "Thinking in Java";
b.author = "Bruce Eckel";
b.numberOfPages = 1129;
System.out.println(b.title + " : " + b.author +

" : " + b.numberOfPages);
}

}

The output produced by the execution of the application is:

Thinking in Java : Bruce Eckel : 1129

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

50

Constructors

• The constructors allow the creation of instances that are properly initialized.

• A constructor is a method that has the same name as the name of the class to
which it belongs, and has no specification for the return value, since it returns
nothing.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

51

Constructors

class Book {
String title;
String author;
int numberOfPages;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;

}
}
class ExampleBooks2 {
public static void main(String[] args) {
Book b;
b = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b.title + " : " + b.author +

" : " + b.numberOfPages);
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

52

Constructors

The output produced by the execution of this application is:

Thinking in Java : Bruce Eckel : 1129

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

53

Constructors

• Java provides a default constructor for the classes. This is the one it was called
in the example ExampleBooks before, without arguments:

b = new Book();

• This default constructor is only available when no constructors are defined in
the class.

• It is possible to define more than one constructor for a single class, only if they
have different number of arguments or different types for the arguments.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

54

Constructors

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}
Book(String tit,String aut,int num,String isbn) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

55

Constructors

class ExampleBooks3 {

public static void main(String[] args) {
Book b1,b2;
b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.title + " : " + b1.author +

" : " + b1.numberOfPages + " : " +
b1.ISBN);

b2 = new Book("Thinking in Java","Bruce Eckel",1129,
"0-13-027363-5");

System.out.println(b2.title + " : " + b2.author +
" : " + b2.numberOfPages + " : " +
b2.ISBN);

}
}

The output of the execution of the application is:

Thinking in Java : Bruce Eckel : 1129 : unknown
Thinking in Java : Bruce Eckel : 1129 : 0-13-027362-5

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

56

Methods

• A method is used to implement the messages that an instance (or a class) can
receive.

• It is implemented as a function, specifying arguments and type of the return
value.

• It is called by using the dot notation also.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

57

Methods

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
Book(String tit,String aut,int num) { ... }
Book(String tit,String aut,int num,String isbn) { ... }

public String getInitials() {
String initials = "";
for(int i = 0;i < author.length();i++) {

char currentChar = author.charAt(i);
if (currentChar >= ’A’ && currentChar <=’Z’) {

initials = initials + currentChar + ’.’;
}

}
return initials;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

58

Methods

class ExampleBooks4 {

public static void main(String[] args) {
Book b;

b = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println("Initials: " + b.getInitials());

}
}

The output of the execution of the application is:

Initials: B.E.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

59

Methods

class ExampleBooks5 {
public static void main(String[] args) {
Book[] a;

a = new Book[3];
a[0] = new Book("Thinking in Java","Bruce Eckel",1129);
a[1] = new Book("Java in a nutshell","David Flanagan",353);
a[2] = new Book("Java network programming",

"Elliotte Rusty Harold",649);
for(int i = 0;i < a.length;i++)

System.out.println("Initials: " + a[i].getInitials());
}

}

The output of the execution of the application is:

Initials: B.E.
Initials: D.F.
Initials: E.R.H.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

60

Equality and equivalence

class ExampleBooks6 {
public static void main(String[] args) {

Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are different

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

61

Equality and equivalence

class ExampleBooks6a {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = b1;

if (b1 == b2)
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are the same

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

62

Equality and equivalence

class Book {
String title;
String author;
int numberOfPages;
String ISBN;

Book(String tit,String aut,int num) { ... }
Book(String tit,String aut,int num,String isbn) { ... }
public String getInitials() { ... }

public boolean equals(Book b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN));

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

63

Equality and equivalence

class ExampleBooks7 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Thinking in Java","Bruce Eckel",1129);

if (b1.equals(b2))
System.out.println("The two books are the same");

else
System.out.println("The two books are different");

}
}

The output of the execution of the application is:

The two books are the same

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

64

Static data members

• Static data members (or class variables) are fields that belong to the class and
do not exist in each instance.

• It means that there is always only one copy of this data member, independent
of the number of the instances that were created.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

65

Static data members

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
static String owner;
Book(String tit,String aut,int num) { ... }
Book(String tit,String aut,int num,String isbn) { ... }
public String getInitials() { ... }
public boolean equals(Book b) { ... }

public void setOwner(String name) {
owner = name;

}

public String getOwner() {
return owner;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

66

Static data members

class ExampleBooks8 {

public static void main(String[] args) {
Book b1,b2;

b1 = new Book("Thinking in Java","Bruce Eckel",1129);
b2 = new Book("Java in a nutshell","David Flanagan",353);
b1.setOwner("Carlos Kavka");

System.out.println("Owner of book b1: " + b1.getOwner());
System.out.println("Owner of book b2: " + b2.getOwner());

}
}

The output of the execution of the application is:

Carlos Kavka
Carlos Kavka

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

67

Static data methods

• With the same idea of the static data members, it is possible to define class
methods or static methods.

• These methods do not work directly with instances but with the class.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

68

Static data methods

class Book {
String title;
String author;
int numberOfPages;
String ISBN;
static String owner;

Book(String tit,String aut,int num) { ... }
Book(String tit,String aut,int num,String isbn) { ... }
public String getInitials() { ... }
public boolean equals(Book b) { ... }
public void setOwner(String name) { ... }
public String getOwner() { ... }
public static String description() {

return "Book instances can store information on books";
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

69

Static data methods

class ExampleBooks9 {

public static void main(String[] args) {

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);

System.out.println(b1.description());
System.out.println(Book.description());

}
}

The output of the execution of the application is:

Book instances can store information on books
Book instances can store information on books

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

70

A static application

• All the examples we have seen till now define a class that contains a static
method called main, where usually instances from other classes are created.

• It is possible to define a class with only static methods and static data members.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

71

A static application

class AllStatic {
static int x;
static String s;

public static String asString(int aNumber) {
return "" + aNumber;

}
public static void main(String[] args) {

x = 165;
s = asString(x);
System.out.println(s);

}
}

The output of the execution of the application is:

165

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

72

Data members initialization

• All data members in an object are guaranteed to have an initial value.

• There exists a default value for all primitive types:

? byte : 0
? short : 0
? int :0
? long : 0
? float : 0.0F
? double : 0.0
? char : ’\0’
? boolean: false
? references: null

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

73

Data members initialization

class Values {
int x;
float f;
String s;
Book b;

}
class InitialValues {
public static void main(String[] args) {

Values v = new Values();
System.out.println(v.x);
System.out.println(v.f);
System.out.println(v.s);
System.out.println(v.b);

}
}

The output of the execution of the application is:

0 0.0 null null

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

74

Data members initialization

class Values {
int x = 2;
float f = inverse(x);
String s;
Book b;
Values(String str) { s = str; }
public float inverse(int value) {

return 1.0F / value;
}

}
class InitialValues2 {
public static void main(String[] args) {
Values v = new Values("hello");
System.out.println(v.x);
System.out.println(v.f);
System.out.println(v.s);
System.out.println(v.b);

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

75

Data members initialization

The output of the execution of the application is:

2
0.5
hello
null

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

76

The keyword this

• The keyword this, when used inside a method, refers to the receiver object.

• It has two main uses:

? to return a reference to the receiver object from a method
? to call constructors from other constructors.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

77

The keyword this

• For example, the method setOwner in the previous Book class could have been
defined as follows:

public Book setOwner(String name) {
owner = name;
return this;

}

• With this definition of the method, it can be used as follows:

Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
System.out.println(b1.setOwner("Carlos Kavka").getInitials());
System.out.println(b1.getOwner());

The output of the execution of this example is:

B.E.
Carlos Kavka

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

78

The keyword this

For example, in the definition of the class Book there were two constructors:

Book(String tit,String aut,int num) {
title = tit;
author = aut;
numberOfPages = num;
ISBN = "unknown";

}
Book(String tit,String aut,int num,String isbn) {

title = tit;
author = aut;
numberOfPages = num;
ISBN = isbn;

}

The second one can be defined in a shorter way by calling the first constructor:

Book(String tit,String aut,int num,String isbn) {
this(tit,aut,num); ISBN = isbn;

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

79

An example: the complex number class

class TestComplex {

public static void main(String[] args) {

Complex a = new Complex(1.33,4.64);
Complex b = new Complex(3.18,2.74);

Complex c = a.add(b);
System.out.println("a+b = " + c.getReal() + " " +

c.getImaginary());

Complex d = c.sub(a);
System.out.println("c+d = " + d.getReal() + " " +

d.getImaginary());
}

}

The output of the execution of this application should be something like:

a+b = 4.51 7.38 c+d = 3.18 2.74

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

80

An example: the complex number class

public class Complex {
double real; // real part
double im; // imaginary part

Complex(double r,double i) {
real = r;
im = i;

}

public double getReal() {
return real;

}

public double getImaginary() {
return im;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

81

An example: the complex number class

/** This method returns a new complex number wich is
* the result of the addition of the receptor and the
* complex number passed as argument
*/

public Complex add(Complex c) {
return new Complex(real + c.real,im + c.im);

}

/** This method returns a new complex number wich is
* the result of the substraction of the receptor and the
* complex number passed as argument
*/

public Complex sub(Complex c) {
return new Complex(real - c.real,im - c.im);

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

82

An example: the complex number class

• Let’s suppose we want to define a method addReal that increments just the real
part of the receptor of the message with the value passed as argument.

a.addReal(2.0);
a.addReal(3.0).addReal(3.23);

This can be done as follows:

public Complex addReal(double c) {
real += c;
return this;

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

83

An example: the complex number class

• We must be careful if we want to create one complex number as a copy of the
other, since the next assignment expression will not do it:

Complex e = a;

• This will make just e to be a reference to the same object referenced by a. This
means that if we increment e, then a will be incremented also.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

84

An example: the complex number class

• In order to create a new complex number, we should use a constructor, as
follows:

Complex e = new Complex(a);

• It is necessary then to define a constructor that takes one complex number as
argument.

• An interesting way to define it follows:

/** This constructor creates a complex number as a copy
* of the complex number passed as argument
*/

Complex(Complex c) {
this(c.real,c.im);

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

85

Inheritance

• Inheritance allows to define new classes by reusing other classes.

• It is possible to define a new class (called subclass) by saying that the class must
be ”like” other class (called base class) by using the word ”extends” followed by
the name of the base class.

• The definition of the new class specifies the differences with the base class.

class ScientificBook extends Book {
String area;
boolean proceeding = false;

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

86

Inheritance (Constructors)

class ScientificBook extends Book {
String area;
boolean proceeding = false;

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}
}

A scientific book can be defined as follows:

ScientificBook sb;

sb = new ScientificBook("Neural Networks, A Comprehensive
Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

87

Inheritance (Methods)

• New methods can be defined in the subclass to specify the behavior of the
objects of this class.

• However, methods defined above in this hierarchy can also be called.

• When a message is sent to an object, the method is searched for in the class of
the receptor object. If it is not found then it is searched for higher up in the
hierarchy of classes till it is found.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

88

Inheritance (Methods)

• Some methods can be reused:

ScientificBook sb;

sb = new ScientificBook("Neural Networks, A Comprehensive
Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

System.out.println(sb.getInitials());

The output of the execution of this example is:

S.H.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

89

Inheritance (Methods)

• New methods that calls methods in the base class can be defined:

class ScientificBook extends Book {
String area;
boolean proceeding = false;

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}
public boolean equals(ScientificBook b) {
return super.equals(b) && area.equals(b.area) &&

proceeding == b.proceeding;
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

90

Inheritance (Methods)

• Or it can be defined in this way:

class ScientificBook extends Book {
String area;
boolean proceeding = false;

ScientificBook(String tit,String aut,int num,String isbn,
String a) {

super(tit,aut,num,isbn);
area = a;

}

public boolean equals(ScientificBook b) {
return (title.equals(b.title) && author.equals(b.author) &&

numberOfPages == b.numberOfPages &&
ISBN.equals(b.ISBN) && area.equals(b.area) &&
proceeding == b.proceeding;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

91

Inheritance (Methods)

• Methods that overrides methods defined in the base class can also be defined:

class ScientificBook extends Book {
String area;
boolean proceeding = false;

ScientificBook(String tit,String aut,int num,String isbn,String a) {
super(tit,aut,num,isbn);
area = a;

}
public boolean equals(ScientificBook b) {

return super.equals(b) && area.equals(b.area) &&
proceeding == b.proceeding;

}
public static String description() {

return "ScientificBook instances can store information" +
" on scientific books";

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

92

Inheritance (Methods)

• New methods can also be defined:

class ScientificBook extends Book {
String area;
boolean proceeding = false;

ScientificBook(String tit,String aut,int num,String isbn,String a) { ... }
public boolean equals(ScientificBook b) { ... }
public static String description() { ... }

public void setProceeding() {
proceeding = true;

}

public boolean isProceeding() {
return proceeding;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

93

Inheritance

class TestScientificBooks {
public static void main(String[] args) {
ScientificBook sb1,sb2;
sb1 = new ScientificBook("Neural Networks, A Comprehensive"+

" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

sb2 = new ScientificBook("Neural Networks, A Comprehensive"+
" Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

sb2.setProceeding();
System.out.println(sb1.getInitials());
System.out.println(sb1.equals(sb2));
System.out.println(sb2.description());

}
}

The output of the execution of this example is:

S.H. false
ScientificBook instances can store information on scientific books

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

94

Instanceof and getClass methods

class TestClass {
public static void main(String[] args) {
Book b1 = new Book("Thinking in Java","Bruce Eckel",1129);
ScientificBook sb1 = new ScientificBook("Neural Networks, "+

"A Comprehensive Foundation","Simon Haykin",696,"0-02-352761-7",
"Artificial Intelligence");

System.out.println(b1.getClass());
System.out.println(sb1.getClass());
System.out.println(b1 instanceof Book);
System.out.println(sb1 instanceof Book);
System.out.println(b1 instanceof ScientificBook);
System.out.println(sb1 instanceof ScientificBook);

}
}

The output of the execution of this example is:

class Book class ScientificBook true true false true

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

95

Packages

• A package is a structure in which classes can be organized.

• A package can contain any number of classes, usually related by purpose or by
inheritance.

• The standard classes in the system are organized in packages.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

96

Packages

/**
* Test Date Class
*/

import java.util.*;

class TestDate {

public static void main(String[] args) {

System.out.println(new Date());
}

}

The output of the application (when I was executing it) was:

Thu Nov 08 19:14:18 GMT-02:00 2001

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

97

Packages

• New packages can be defined by using the statement package with the name of
the package we are going to define as argument:

package mypackage;

• They can be imported by other classes with the import statement.

• There is a name convention, that we will not be covering here, in order to define
packages that can be shared with the Java community.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

98

Access control

• It is possible to control the access to methods and variables from other classes
with three so called modifiers:

? public
? private
? protected

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

99

Access control

• There exists a default access which is the one we have been using in most
examples, that allows full access from all classes that belong to the same
package.

• For example, it is possible to set the proceeding condition of a scientific book
from the class TestScientificBook as follows:

sb1.setProceeding();

• or by just accessing the data member:

sb1.proceeding = true;

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

100

Access control

• Usually we do not want direct access to a data member in order to guarantee
encapsulation. In this case we can use the modifier private.

class ScientificBook extends Book {
private String area;
private boolean proceeding = false;
...............

}

• In this case, the direct access to the data member proceeding is not allowed
from other classes, and the condition of a scientific book to be a proceeding can
only be asserted by sending the message setProceeding:

sb1.setProceeding();

• The same applies to methods: A private method can only be called from other
methods in its own class.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

101

Access control

• The public modifier allows full access from all other classes without restrictions.
This is the usual way in which methods are defined so the messages they
implement can be sent to objects of its class from all other classes.

• The protected modifier allows access to data members and methods from
subclasses and from all classes in the same package.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

102

Final and abstract

• Two other modifiers can be used to define the methods and the classes:

? final
? abstract

• A final method cannot be redefined in a subclass.

• A final class does not allow subclassing.

• An abstract method has no body, and it must be redefined in a subclass.

• An abstract class is a class that cannot be instantiated.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

103

Final and abstract

abstract class IOBoard {
String name;
int numErrors = 0;

IOBoard(String s) {
System.out.println("IOBoard constructor");
name = s;

}
final public void anotherError() {
numErrors++;

}
final public int getNumErrors() {
return numErrors;

}
abstract public void initialize();
abstract public void read();
abstract public void write();
abstract public void close();

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

104

Final and abstract

class IOSerialBoard extends IOBoard {
int port;
IOSerialBoard(String s,int p) {
super(s); port = p;
System.out.println("IOSerialBoard constructor");

}
public void initialize() {
System.out.println("initialize method in IOSerialBoard");

}
public void read() {
System.out.println("read method in IOSerialBoard");

}
public void write() {
System.out.println("write method in IOSerialBoard");

}
public void close() {
System.out.println("close method in IOSerialBoard");

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

105

Final and abstract

class IOEthernetBoard extends IOBoard {
long networkAddress;
IOEthernetBoard(String s,long netAdd) {
super(s); networkAddress = netAdd;
System.out.println("IOEthernetBoard constructor");

}
public void initialize() {
System.out.println("initialize method in IOEthernetBoard");

}
public void read() {
System.out.println("read method in IOEthernetBoard");

}
public void write() {
System.out.println("write method in IOEthernetBoard");

}
public void close() {
System.out.println("close method in IOEthernetBoard");

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

106

Final and abstract

class TestBoards1 {

public static void main(String[] args) {

IOSerialBoard serial = new IOSerialBoard("my first port",
0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

The output of the execution of this application is:

IOBoard constructor
IOSerialBoard constructor
initialize method in IOSerialBoard
read method in IOSerialBoard
close method in IOSerialBoard

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

107

Polymorphism

class TestBoards2 {

public static void main(String[] args) {

IOBoard[] board = new IOBoard[3];
board[0] = new IOSerialBoard("my first port",0x2f8);
board[1] = new IOTcpIpBoard("my second port",0x3ef8dda8);
board[2] = new IOTcpIpBoard("my third port",0x3ef8dda9);

for(int i = 0;i < 3;i++)
board[i].initialize();

for(int i = 0;i < 3;i++)
board[i].read();

for(int i = 0;i < 3;i++)
board[i].close();

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

108

Interfaces

• An interface looks like a class definition where:

? all fields are static and final
? all methods have no body and are public
? no instances can be created from interfaces.

• As an example:

/**
* IO board interface
*/

interface IOBoardInterface {

public void initialize();
public void read();
public void write();
public void close();

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

109

Interfaces

class IOSerialBoard2 implements IOBoardInterface {
int port;
IOSerialBoard2(int p) {

port = p;
System.out.println("IOSerialBoard constructor");

}
public void initialize() {

System.out.println("initialize method in IOSerialBoard");
}
public void read() {

System.out.println("read method in IOSerialBoard");
}
public void write() {

System.out.println("write method in IOSerialBoard");
}
public void close() {

System.out.println("close method in IOSerialBoard");
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

110

Interfaces

• The class can be used as follows:

class TestBoards3 {

public static void main(String[] args) {

IOSerialBoard2 serial = new IOSerialBoard2(0x2f8);

serial.initialize();
serial.read();
serial.close();

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

111

Interfaces

• The following interface defines how classes with nice behaviour must behave:

interface NiceBehavior {

public String getName();
public String getGreeting();
public void sayGoodBye();

}

• A class that expresses its desire to be nice can be defined as follows:

class IOSerialBoard3 implements IOBoardInterface,
NiceBehavior {

...
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

112

Exceptions

• The usual behavior when there is a runtime error in an application is to abort
the execution.

class TestExceptions1 {

public static void main(String[] args) {
String s = "Hello";

System.out.print(s.charAt(10));
}

}

• The execution stops with the following message:

Exception in thread "main"
java.lang.StringIndexOutOfBoundsException:

String index out of range: 10
at java.lang.String.charAt(String.java:499)
at TestExceptions1.main(TestExceptions1.java:11)

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

113

Exceptions

• This error, or exception in Java terminology, can be caught and some processing
can be done:

class TestExceptions2 {

public static void main(String[] args) {
String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (Exception e) {
System.out.println("No such position");

}
}

}

The output of the execution of the application is:

No such position

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

114

Exceptions

• If we are interested just in process the exception for index out of bounds for
strings, we can do it in this way:

class TestExceptions3 {

public static void main(String[] args) {
String s = "Hello";

try {
System.out.println(s.charAt(10));

} catch (StringIndexOutOfBoundsException e) {
System.out.println("No such position");

}
}

}

The output of the execution of the application is:

No such position

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

115

Exceptions

• There exists messages that can be sent to an exception object.

class TestExceptions4 {
public static void main(String[] args) {

String s = "Hello";
try {

System.out.println(s.charAt(10));
} catch (StringIndexOutOfBoundsException e) {

System.out.println("No such position");
System.out.println(e.toString());

}
}

}

The output of the execution of the application is:

No such position
java.lang.StringIndexOutOfBoundsException: String index out of range: 10

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

116

Exceptions

• There exists a set of predefined exceptions that can be caught.

• In some cases it is compulsory to catch exceptions.

• It is also possible to express the interest to not to catch even compulsory
exceptions.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

117

Input Output

• The input output system in Java is rather complicated.

• One advantage is the fact that input output from files, devices, memory or web
sites is performed in the same way.

• It is based on the idea of streams:

? A input stream is a data source that can be accessed in order to get data.
? An output stream is a data sink, where data can be written.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

118

Byte oriented streams (writing)

import java.io.*;

class WriteBytes {

public static void main(String[] args) {
int data[] = { 10,20,30,40,255 };
FileOutputStream f;

try {
f = new FileOutputStream("file1.data");
for(int i = 0;i < data.length;i++)

f.write(data[i]);
f.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

119

Byte oriented streams (reading)

class ReadBytes {
public static void main(String[] args) {

FileInputStream f;
try {

f = new FileInputStream("file1.data");

int data;
while((data = f.read()) != -1)

System.out.println(data);
f.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The output of the execution of the application is:

10 20 30 40 255

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

120

Byte oriented streams (writing)

import java.io.*;

class WriteArrayBytes {

public static void main(String[] args) {
byte data[] = { 10,20,30,40,50 };

FileOutputStream f;
try {

f = new FileOutputStream("file1.data");
f.write(data,0,data.length);
f.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

121

Buffered byte oriented streams (writing)

class WriteBufferedBytes {
public static void main(String[] args) {

int data[] = { 10,20,30,40,255 };
FileOutputStream f;
BufferedOutputStream bf;
try {

f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);

for(int i = 0;i < data.length;i++)
bf.write(data[i]);

bf.close();
} catch (IOException e) {

System.out.println("Error with files:"+e.toString());
}

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

122

Buffered byte oriented streams (reading)

class ReadBufferedBytes {
public static void main(String[] args) {
FileInputStream f;
BufferedInputStream bf;
try {

f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);
int data;
while((data = f.read()) != -1)

System.out.println(data);
bf.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

The output of the execution of the application is:

10 20 30 40 255

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

123

Data buffered byte oriented streams

• A data buffered byte oriented stream can be used to work with data in small
pieces corresponding to the primitive types.

• The following messages can be used to read and write data:

? readBoolean() writeBoolean(boolean)
? readByte () writeByte(byte)
? readShort() writeShort(short)
? readInt() writeInt(int)
? readLong() writeLong(long)
? readFloat() writeFloat(float)
? readDouble() writeDouble(double)

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

124

Data buffered byte oriented streams (writing)

class WriteData {
public static void main(String[] args) {

double data[] = { 10.3,20.65,8.45,-4.12 };
FileOutputStream f; BufferedOutputStream bf;
DataOutputStream ds;
try {
f = new FileOutputStream("file1.data");
bf = new BufferedOutputStream(f);
ds = new DataOutputStream(bf);
ds.writeInt(data.length);
for(int i = 0;i < data.length;i++)

ds.writeDouble(data[i]);
ds.writeBoolean(true);
ds.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

125

Data buffered byte oriented streams (reading)

class ReadData {
public static void main(String[] args) {
FileInputStream f;
BufferedInputStream bf;
DataInputStream ds;
try {

f = new FileInputStream("file1.data");
bf = new BufferedInputStream(f);
ds = new DataInputStream(bf);
int length = ds.readInt();
for(int i = 0;i < length;i++)

System.out.println(ds.readDouble());
System.out.println(ds.readBoolean());
ds.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

126

Data buffered byte oriented streams (reading)

The output of the execution of the application is:

10.3
20.65
8.45
-4.12
true

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

127

Character oriented streams

• The character oriented streams can be used to read and write characters.

• There exists three methods that can be used to write data into this kind of
streams:

? write(String,int,int)
? write(char[],int,int)
? newLine()

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

128

Character oriented streams (writing)

class WriteText {
public static void main(String[] args) {
FileWriter f;
BufferedWriter bf;
try {

f = new FileWriter("file1.text");
bf = new BufferedWriter(f);
String s = "Hello World!";
bf.write(s,0,s.length());
bf.newLine();
bf.write("Java is nice!!!",8,5);
bf.newLine();
bf.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

129

Character oriented streams (reading)

class ReadText {

public static void main(String[] args) {

FileReader f;
BufferedReader bf;
try {
f = new FileReader("file1.text");
bf = new BufferedReader(f);

String s;
while ((s = bf.readLine()) != null)

System.out.println(s);
bf.close();

} catch (IOException e) {
System.out.println("Error with files:"+e.toString());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

130

Standard Input

• Standard input can be read by using an input buffered stream:

class StandardInput {

public static void main(String[] args) {
InputStreamReader isr;
BufferedReader br;
try {

isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)
System.out.println(line);

} catch(IOException e) {
System.out.println("Error in standard input");

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

131

Standard input

• The input output exception can be thrown at method level:

class StandardInputWithThrows {

public static void main(String[] args) throws IOException {
InputStreamReader isr;
BufferedReader br;

isr = new InputStreamReader(System.in);
br = new BufferedReader(isr);

String line;
while ((line = br.readLine()).length() != 0)

System.out.println(line);
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

132

Threads

• It is possible to run concurrently different tasks called threads.

• Each thread can be seen as an independently running task.

• The threads can communicate between themselves and their access to shared
data can be synchronized.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

133

Threads

class CharThread extends Thread {
char c;

CharThread(char aChar) {
c = aChar;

}

public void run() {
while (true) {
System.out.println(c);
try {

sleep(100);
} catch (InterruptedException e) {

System.out.println("Interrupted");
}

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

134

Threads

class TestThreads {

public static void main(String[] args) {

CharThread t1 = new CharThread(’a’);
CharThread t2 = new CharThread(’b’);

t1.start();
t2.start();

}
}

The output of the execution of the application is:

a
b
a
b
a
...

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

135

The Producer and Consumer example

/**
* Producer Consumer class Application
*/

class ProducerConsumer {

public static void main(String[] args) {

Buffer buffer = new Buffer(20);

Producer prod = new Producer(buffer);
Consumer cons = new Consumer(buffer);

prod.start();
cons.start();

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

136

The Producer and Consumer example

/**
* Producer class Application
*/

class Producer extends Thread {
Buffer buffer;

public Producer(Buffer b) {
buffer = b;

}
public void run() {
double value = 0.0;

while (true) {
buffer.insert(value);
value += 0.1;

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

137

The Producer and Consumer example

/**
* Consumer class Application
*/

class Consumer extends Thread {
Buffer buffer;

public Consumer(Buffer b) {
buffer = b;

}

public void run() {

while(true) {
System.out.println(buffer.delete());

}
}

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

138

The Producer and Consumer example

class Buffer {
double buffer[];
int head = 0,tail = 0,size = 0,numElements = 0;
public Buffer(int s) {
buffer = new double[s];
size = s;

}
public void insert(double element) {
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;

}
public double delete() {
double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}
}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

139

The Producer and Consumer example

• This implementation does not work for two reasons:

? The methods insert and delete operate concurrently over the same structure.
? The method insert does not check if there is at least one slot free in the

buffer, and the method delete does not check if there is at least one piece of
data available in the buffer.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

140

Synchronized methods

• The synchronized methods are not allowed to be executed concurrently on the
same instance.

• Each instance has a lock, that is used to synchronize the access.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

141

Synchronized methods

• The solution to the first problem is to define the methods as follows:

public synchronized void insert(double element) {

buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;

}

public synchronized double delete() {

double value = buffer[head];
head = (head + 1) % size;
numElements--;
return value;

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

142

Wait and notify

• Subclasses of Thread can send the messages wait and notify only from synchro-
nized methods.

• The message wait puts the calling thread to sleep, releasing the lock.

• The message notify awakens a waiting thread on the corresponding lock.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

143

Wait and notify

public synchronized void insert(double element) {
if (numElements == size) {
try {
wait();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
buffer[tail] = element;
tail = (tail + 1) % size;
numElements++;
notify();

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

144

Wait and notify

public synchronized double delete() {
if (numElements == 0) {
try {
wait();

} catch(InterruptedException e) {
System.out.println("Interrupted");

}
}
double value = buffer[head];
head = (head + 1) % size;
numElements--;
notify();
return value;

}

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

145

JAR files

• When we were compiling the example ProducerConsumer, four class files were
generated, as the following command shows:

ls *.class
Buffer.class
Consumer.class
ProducerConsumer.class
Producer.class

• In order to distribute the executable application it is necessary to copy the four
files.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

146

JAR files

• Java provides a mechanism to pack and compress files into one file, in order to
make the process of distribution of applications easier. This compressed file is
called a JAR (Java ARchive) file.

• A JAR file can be created and manipulated by the command jar.

• In order to create a JAR file, it is necessary to define a manifest file. The
manifest file contains information on the files included in the JAR file.

• The command jar creates a default manifest file in the directory META-INF with
name MANIFEST.MF, just below the current directory.

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

147

JAR files

• The creation of a JAR file for this application can be done as follows:

jar cmf mylines.txt ProducerConsumer.jar
ProducerConsumer.class Producer.class Consumer.class
Buffer.class

• with:

cat mylines.txt
Main-Class: ProducerConsumer

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

148

JAR files

• It is possible to see the contents of the JAR file just created by using the option
t as follows:

jar tf ProducerConsumer.jar
META-INF/
META-INF/MANIFEST.MF
ProducerConsumer.class
Producer.class
Consumer.class
Buffer.class

• Note that a manifest file was added. Its content is:

Manifest-Version: 1.0
Main-Class: ProducerConsumer
Created-By: 1.2.2 (Sun Microsystems Inc.)

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

149

JAR files

• The application included in the JAR file can be executed as follows:

java -jar ProducerConsumer.java

College on Microprocessor-based Real-Time Systems in Physics Carlos Kavka

