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Chapter 1

Toward Real-time Linux
by Catharinus Verkerk

Abstract

We examine the operating system support needed for a real-time application. We’ll
see to what extent Linux satisfies the requirements and what has been done to
adapt it.

1.1 Introduction and a few definitions

A real-time system is defined as a system that responds to an external stimulus
within a specified, short time. This definition covers a very large range of systems.
For instance, a data-base management system can justly claim to operate in real-
time, if the operator receives replies to his queries within a few seconds. As soon
as the operator would have to wait for a reply for more than, say, 5 seconds,
she would get annoyed by the slow response and maybe she would object to
the adjective “real-time” being used for the system. Apart from having unhappy
users, such a slow data-base query system would still be considered a real-time
system.

The real-time systems we want to deal with are much more strict in requiring
short response times than a human operator is, generally speaking. Response
times well below a second are usually asked for, and often a delay of a few mil-
liseconds is already unacceptable. In very critical applications the response may
even have to arrive in a few tens of microseconds.

In order to claim rightly that we are having a real-time system, we must spec-
ify the response time of the system. If this response time can be occasionally
exceeded, without any real harm being done, we are dealing with a soft real-time
system. On the contrary, if it is considered to be a failure when the system does
not respond within the specified time, we are having a hard real-time system. In
a hard real-time system, exceeding the specified response time may well result
in serious damage of one sort or another, or in extreme cases even in the loss
of human life. A data-base query system will generally fall in the first category:
it will make little difference if a human operator will have to wait occasionally 6
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seconds, instead of the specified 5 seconds response time, and nobody will dare
to speak of a failure, as long as the replies to the queries are correct. This does
not mean that all data-base systems are soft real-time systems: a data-base may
well be used inside a hard real-time system, and its response may become part
of the overall reaction time of the system.

Data-base systems are not at the centre of our attention in this course; we
rather are interested in systems which control the behaviour of some apparatus,
machinery, or even an entire factory. We call these real-time control systems. We
are literally surrounded by such real-time control systems: video recorders, video
cameras, CD players, microwave ovens, and washing machines are a few domes-
tic examples. In the more technical sphere we will find the control of machine
tools, of various functions of a car, of a chemical plant, etc., but also automatic
pilots, robots, driver-less metro-trains, control of traffic-lights, and many, many
more. Several of those systems are hard real-time systems: the automatic pilot is
a good example.

We implicitly assumed that the systems we are dealing with are computer con-
trolled. We are in fact interested in investigating the role the computer plays, what
constraints are imposed by the part of the system external to the computer, or the
environment in general, and what these constraints imply for the program that
steers the entire process. We will pay particular attention to the role the under-
lying operating system plays and to what extent it may help in the development
and or running of a real-time control system.

At this point we should define two classes of real-time systems. On the one
hand we have embedded systems, where the controlling microprocessor is an in-
tegral part of the entire product, invisible to the user and where the complete
behaviour of the system is factory defined. The user can only issue a very lim-
ited and predefined set of instructions, usually with the help of switches, push-
buttons and dials. There is no alpha-numeric keyboard available to give orders
to the device, nor is there a general output device which can give information on
the state of the system. On a washing machine we can select four or five differ-
ent programs, which define if we will wash first with cold and then with warm
water, or if we skip the first, or which define how often we will rinse, if we will
use the centrifugal drying or not, etc. If we add the control the user has over the
temperature of the water, we have practically exhausted the possibilities of user
intervention. The microprocessor included in the system has been programmed
in the factory and cannot be reprogrammed by the user. Cost has been the over-
riding design consideration, user convenience played a secondary or tertiary role.
These embedded systems run a monolithic, factory defined program and there
is no trace of an interface to an operating system which would allow a user to
intervene. This does not mean that such an embedded system does not take ac-
count of a number of principles, which should not be neglected in a system that
claims to operate in real-time. All real-time aspects are folded into the monolithic
program, indistinguishable of the other functions of the program.

The other class of real-time control systems comprises those systems that
make use of a normal computer, which has not been severed of its keyboard
and of its display device and where a human being can follow in some detail
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how the controlled process is behaving and where he can intervene by setting
or modifying parameters, or by requesting more detailed information, etc. The
essential difference with an embedded system is that a system in this second
class can be entirely reprogrammed, if desired. Also, in contrast to an embedded
system, the computer is not necessarily dedicated to the controlled process, and
its spare capacity may be used for other purposes. So, a secretary may type and
print a letter, while the computer continues to control the assembly line.

It is obvious that the latter class of real-time control systems needs to run an
operating system on the control computer. This operating system must be aware
that it is controlling external equipment and that several operations initiated
by it may be time-critical. The operating system must therefore be a real-time
operating system. We will see in these lectures what this implies for the design
and the capabilities of the operating system. We should keep in mind that we
speak of generic real-time systems and generic real-time operating systems. The
real-time control system does not necessarily use all features of the operating
system, but the unused ones remain present, ready to be used at a possible
later upgrade of the control system. This again is in contrast with the embedded
system, where the parts of the operating system needed are cast in concrete inside
the controlling program and where all other parts of it have been discarded.

1.2 The ingredients of a real-time computer controlled
system

In order to investigate to some extent what the ingredients of a real-time control
system are and what the implications are for a supporting operating system, we
will take a simple example, which does not require any a-priori knowledge: a
railway signalling system.

Safety in a railway system, and in particular collision-avoidance is based on
a very simple principle. A railway track, for instance connecting two cities, is
divided into sections of a few kilometers length each (the exact length depends on
the amount of traffic and the average speed of the trains). Access to a section —
called a block in railway jargon — is protected by a signal or a semaphore: when
the signal exhibits a red light, access to the block is prohibited and a train should
stop. A green light indicates that the road is free and that a train may proceed.
The colour of the light is pre-announced some distance ahead, so that a train
may slow down and stop in time. Access to a block is allowed if and only if there
is no train already present in the block and prohibited as long as the block is
“occupied”. Normally all signals exhibit a red light; a signal is put to green only a
short time before the expected passage of a train and if the condition mentioned
above is satisfied. Immediately after the passage of the train, the signal is put
back to red. The previous block is considered to be free only when the entire
train has left it.

We will try to outline briefly – and rather superficially – what would be required
if we decided to make a centralized, computer controlled system for the signalling
of the entire railway system in a small or medium-sized country, comprising a few
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thousand kilometers of track, with hundred or so trains running simultaneously.
This would be a large-scale system, but it would be conceptually rather simple.
The basic rule is: if there is a train moving forward in block i − 1, and block i is
free, the signal protecting the entrance to block i shall be put to green and back
to red again as soon as the first part of the train has entered block i. For the
time being we consider only double track inter-city connections, where trains are
always running in the same direction on a given track.

From the rule we see that we need to know at any instant in time which blocks
are free and which are occupied. So we need a sort of a data-base to contain this
information. This data base must be regularly updated, to reflect faithfully the
real situation. In fact, whenever a train is leaving a block and entering another,
the data-base must be updated.

How do we know that a train moves from one block to the next? Trains are
supposed to run according to a time table and at predefined speeds, so a simple
algorithm should be able to provide the positions of all trains in the system at
any moment. Unfortunately this assumption is not valid under all circumstances
and we need a reliable signalling system, exactly to be able to cope with more or
less unexpected situations where trains run too late, or not at all, or where an
extra train has been added, or another ran into trouble somewhere. We conclude
that it is better to actually measure the event that a train crosses the boundary
between two blocks. We could put a switch on the rails, which would be closed
by the train when it is on top of the switch. We could scan all the switches in
our system at regular intervals. How long — or rather how short — should this
interval be? A TGV of 200 meter length and running at close to 300 km/h, would
be on top of a switch for 21

2 seconds. A lonely locomotive, running at 100 km/h
would remain on top of the contact for much less than a second. So we must
scan some thousand or more contacts in, say 1

2 second. This can be done, but it
would impose a heavy load on the system and we would find the vast majority of
the switches open in any case. We could refine our method and scan only those
contacts where we expect a train to arrive soon. This would reduce the load on
the system, as only hundred or so contacts have to be scanned, but it still is
not very satisfactory, as we will continue to find many open contacts. Note that
instead of contacts, we could have used other detection methods: strain gauges
on the rails, or photo-cells.

A better way of detecting the passage of a train, is by using hardware inter-
rupts 1. We could generate an interrupt when the contact closes and another
when it opens again, indicating the entrance of a train into block i and the exit
of the same train from block i− 1, respectively. We don’t lose time then anymore
for looking at open contacts. We also simplify the procedure, for we do not have
to look anymore at the data-base before the start of a scan, to find out which
contacts are likely to be closed by a train soon.

We have discovered here a very important ingredient of any real-time control

1For those who may have forgotten: a hardware interrupt is caused by an external electrical
signal. The normal flow of the program is interrupted and a jump to a fixed address occurs, where
some work is done to handle the interrupt. A “return from interrupt” instruction brings us back to
the point where the program was interrupted.
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system: the instrumentation with sensors and actuators. In our case we must
sense the presence of a train at given positions along the tracks, and we must
actuate the signals, putting them to green and to red again. Generally speaking,
the instrumentation of a real-time control system is a very important aspect,
which must be carefully considered. Usually, apart from sensors which provide
single-bit information, such as switches, push-buttons, photocells, which can also
be used to generate hardware interrupts, we will need measuring devices, giving an
analog voltage output, which then has to be converted into a digital value with an
analog-to-digital converter. Conversely, output devices may be single bit, such as
relays, lamps and the like, or digital values, to be converted into analog voltages.
Accuracy, reproducibility, voltage range, frequency response etc. have to be
considered carefully. The operation of a system may critically depend on how it
has been instrumented. The interface to the computer is another aspect to take
into account for its possible consequences. Speed, reliability and cost are some
of the concurring aspects. We will not dwell any further on these topics in these
lectures, as they are too closely related to the particular application, making a
general treatment impossible.

For our railway signalling system we mentioned the timetable, claiming that
we could not rely on it. We can however use it to check the true situation against
it in order to detect any anomaly. These anomalies could then be reported im-
mediately. For instance, we could tell the station master of the destination, that
the train is likely to have a delay of x minutes. Another useful thing is to keep
a log of the situation. This can be used for daily reports to the direction (where
they would probably be filed away immediately), but they could prove valuable for
extracting statistics and for global improvement of the system. Operator interven-
tion is also needed. For instance, when a train, running from station A to station
B, leaves station A, it does not yet exist in the data-base of running trains. Like-
wise, when it arrives at B, it has to be removed from this data-base. This could
be done automatically, in principle, but what do we do if it has been decided to
run two extra trains, because there is an important football match? We conclude
that data-logging, operator intervention and some calculations (to check actual
situation against predicted one) are also essential ingredients of a real-time con-
trol system, in addition to the interrupt handling, interfacing to the sensors and
actuators and updating of the data-base reflecting the state of the system.

This idyllic picture of our railway signalling system might stimulate us to start
coding immediately. A program which uses the principles outlined above does
not seem too difficult to produce. We simply let the program execute a large
loop, where all different tasks are done one after the other. The interrupts have
made it possible to get rid of a serious constraint, so all seems to be nice and
straightforward. Once we would have a first version of the program ready, we
would like to test it. Hopefully we will use some sort of a test rig at this stage,
and abstain from experimenting with real trains. During the testing stage, we will
then quickly wake up and find that we have to face reality.

In our model, we assumed double track connections between cities, where on
a given track, trains always run in the same direction. But, even in the case that
the entire railway network is double track between cities, we must nevertheless
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consider also single track operation, because a double track connection may have
to be operated for a limited period of time and for a limited distance as a single
track, repair or maintenance work making the other track unusable.

Assume that, on a single track, we have two trains, one in block k+1, the other
in block k − 1, running in opposite directions, both toward block k. If we would
apply our simple rule, they would both be allowed to enter block k (supposing
it was free) and a head-on collision would result. The problem can be solved by
slightly modifying our rule: If a train is moving forward in block i−1 toward block
i, then access to block i will be allowed if blocks i and i + 1 are free. So both
trains will be denied access to block k in our example. We have eliminated the
possibility of a head-on collision, but we now have another problem. Assume that
our two trains are in block k − 2 and k + 1 respectively and running toward each
other. Applying our new rule, they would be allowed to enter block k − 1 and k
respectively and both trains would stop, nose to nose at the boundary between
these two blocks. We have created a sort of a deadlock situation.

The true solution is of course not to allow a south-bound train into an entire
section of single track, as long as there is still a north-bound train somewhere in
this entire section, and vice-versa. A section consists of several blocks and inside
a section there are no switches enabling a train to move from one track to another,
nor to put it on a side-track. South-bound and north-bound trains compete
for the same “resource”, the piece of single track railway. They are mutually
exclusive and only one type (north-bound or south-bound) of train should be
allowed to use the resource. If the stretch of single track is long enough, and
comprises several blocks, more than one north-bound train can be running on
that stretch of track. Now assume that several north-bound trains are occupying
the stretch of single track and that a south-bound train presents itself at the
northern end of the stretch. It obviously has to wait, but while it is waiting,
do we continue to allow more north-bound trains into the stretch? This is a
matter of priority, which should be defined for each train. A scheduler should
take the priorities into account and deny the entrance into the stretch for a north-
bound train if the waiting south-bound one has higher priority. As soon as the
stretch has then been emptied of all north-going trains, the south-bound one can
proceed, possibly followed by others.

A similar situation, where two trains may be competing for the same resource,
arises when two tracks, coming from cities A and B, merge into a single track
entering city C. Obviously, if two trains approach the junction simultaneously,
only one can be allowed to proceed, which should be the one with the highest
priority. It should be noted that the priority assigned to a train is not necessarily
static. It may change dynamically. For instance, a train running behind schedule,
may have its priority increased at the approach of the junction and allowed to
enter city C, before another train which normally would have had precedence.
This latter example illustrates a synchronization problem: some trains may carry
passengers which have to change trains in city C; the two trains should reach the
station of C in the right order.

We have thus discovered some more ingredients (or concepts) for a real-time
control system: priorities, mutual exclusion, synchronization.

8 Toward Real-time Linux
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We started off by considering our railway signalling problem being controlled
by a single program, which guides all trains through all tracks, junctions and
crossings. We have gradually come to have a different look at the problem: a
set of trains, using resources (pieces of railway track), and sometimes competing
for the same resource. We can consider our trains as independent objects, more
or less unaware of the existence of similar objects and of the competition this
may imply. In order to get a resource, every train must put forward a request to
some sort of a master mind (the real-time operating system), who will honour the
request, or put the train in a waiting state.

At this stage, we realize that we better abandon our first version of the pro-
gram, because it would have to be rewritten from scratch in any case. We have be-
come aware that our particular real-time control system may have many things in
common with other real-time systems and that it would be advantageous to take
profit from the facilities a real-time operating system offers to solve the problems
of mutual exclusion, priorities, etc. Once we have mastered the use of these facil-
ities, we can build on our experience for the implementation of another real-time
control system. In case we would obstinately continue to adapt our original pro-
gram, we would probably find, after months of effort, that we have rewritten large
parts of a real-time operating system, but which have been so intimately inter-
woven with the application program, that it will be difficult, if not impossible, to
re-use it for the next application we may be called to tackle.

Other aspects we have not yet considered may also build very nicely on the
foundations laid by a real-time operating system. For instance, we have the
problem of dealing with emergencies. A train may have derailed and obstructed
both tracks. Such an unusual and potentially dangerous situation must be im-
mediately notified to the operating system which can then take the necessary
measures. If they cannot be notified, a mechanism for detecting potentially dan-
gerous situations must be devised: in our particular case, the system should be
alerted if a train does not leave its block within a reasonable time. In other words,
a time-out could be detected.

Now that we mentioned time, we are reminded of the fact that time may play
an important role in any real-time system, either in the form of elapsed time,
or of the time of the day. It is difficult to think of a system that could operate
without the help of a clock. A real-time clock and the possibility to program it to
generate a clock interrupt at certain points in time, or after a given time-interval
has elapsed, are therefore indispensable ingredients of a real-time control system.

Reliability of the entire system is another item for serious consideration. You
certainly do not want a parity error in a disk record to bring your system to a halt
or to create a chain of very nasty incidents.

In many cases, we are not dealing with a closed system, so there must be
a means of communicating with other systems (our national railway network is
connected to other networks, and trains do regularly cross the border). User-
friendly interfaces to human operators, which usually implies the use of graphics,
are also very likely to be an essential ingredient of our real-time control system.
A large synoptic panel, showing where all trains are in the network, would be the
supervisor’s dream, not to speak of makers of science fiction films.

Toward Real-time Linux 9
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In the following lectures, we will investigate in more depth the various features
a real-time operating system should provide. Making use of these features will
prevent us from re-inventing the wheel.

The question then arises: which real-time operating system
should I use? There are several on the market: OS-9000 for Motorola 68000
machines, and QNX or LynxOS for Intel machines, Solaris for Sparc processors,
to mention only a few of the older ones. These systems are sold together with
the tools necessary to build a real-time application: compiler, assembler, shell,
editor, simulator, etc. A minimum configuration would cost US$ 2000-2500, a
full configuration may push the price up into the 10 K$ range. This would cause
no problem whatsoever for a railway company, but what about you?

Another solution is to use a real-time kernel, useful for embedded systems,
which you compile and link into your application. VxWorks, MCX11 and µCOS are
examples. They are much cheaper —or practically free: MCX11 and µCOS 1—,
but you will need a complete development system in addition. This development
system could of course be Linux.

The ideal would be to be able to use Linux for development of a real-time
control system, as well as for running the application. We will see shortly to
what extent this is possible at present. Before proceeding, however, we will make
sure that we understand the fundamental concept of a process.

1.3 Processes

In our example we have seen that a real-time system has a number of tasks
to accomplish: besides ensuring that trains could proceed from block to block
without making collisions, we had to log data, keep the data-base up-to-date,
communicate with the operator, cater for emergency situations, etc. Not all of
these tasks have the same priority, of course.

When we analyze a real-time system, we will almost invariably be able to iden-
tify different tasks, which are more or less independent of each other. “Inde-
pendent of each other” really means that each task can be programmed without
thinking too much of the other tasks the system is to perform. At most there
is some intertask communication, but every task does its job on its own, without
requiring assistance from other tasks. If assistance is required, the operating
system should provide it. The system designer should identify and define the
different tasks in such a way that they really are as independent of each other as
possible. Some synchronization may be needed: certain tasks can only run after
another task has completed. For instance, if some calculations have to be done
on collected data, the data collection tasks could be totally separated from the
calculation task. In order to make sense, the latter should only be executed when
the data collection task has obtained all data necessary for the calculation. This
implies that some inter-task communication is needed here. The true difficulty of
dividing the overall system requirement up into different tasks consists of choos-

1RTEMS is a more recent, very complete real-time executive, also available for free.
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ing the tasks for maximum independence, or —in other words— for minimum
need of inter-task communication and synchronization.

These various tasks can now be implemented as different programs and then
run as different processes.

What exactly is a process and what is the difference between a program and
a process? A program is an orderly sequence of machine instructions, which
could have been obtained by compilation of a sequence of high-level programming
language statements. It is not much more than the listing of these statements,
which can be stored on disk, or archived in a filing cabinet. It becomes useful
only when it is run on a machine and executing its instructions in the desired
sequence, thus obtaining some result. It is only useful when it has become a
running process.

A process is therefore a running (or runnable) program, together with its data,
stack, files, etc. It is only when the code of a program has been loaded into mem-
ory, and data and stack space allocated to it, that it becomes a runnable process.
The operating system will then have set up an entry in the process descriptor ta-
ble, which is also part of the process, in the sense that this information would
disappear when the process itself ceases to exist. The operating system may de-
cide at a certain moment to run this runnable process, on the basis of its priority
and the priorities of other runnable processes. This would happen in general
when the process that is using the CPU is unable to proceed — e.g. because it
is waiting for input to become available — or because the time allocated to it has
run out.

We should emphasize that we are considering only the case of a single pro-
cessor system, where only one process can run at a time. The other runnable
processes will wait for the CPU to become free again. If the different processes
are run in quick succession, a human observer would have the impression that
these processes are executed simultaneously.

The consequence of this is that we can write a program to calculate Bessel
functions, without having to think at all about the fact that when we will run our
program, there may already be fifty or more other processes running, some of
them even calculating Bessel functions. In as far as we have written our program
to be autonomous, it will not be aware of the existence of other runnable pro-
cesses in the computer system. Consequently, it cannot communicate with the
other processes either: its fate is entirely in the hands of the operating system1.

There may exist on the disk a general program to calculate Bessel functions
and on a general purpose time-sharing computer system several users may be
running this program. A reasonable operating system should then keep only
one copy of the program code in memory, but each user process running this
program should have its own process descriptor, its own data area in memory,
its own stack and its own files. All users of the computer system will presumably
run a shell. Command shells, such as bash or tcsh are very large programs and it

1And luckily so: the operating system will also provide protection, avoiding that other processes
interfere with ours.
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would be an enormous waste if every single user of a time-sharing system would
have his own copy of the shell in memory.

In general, we will have a number of runnable processes in our uniproces-
sor machine, and one process running at a given instant of time. When will the
waiting processes get a chance to run? There are two reasons for suspending the
execution of the running process: either the time-slice allocated to it has been
exhausted, or it cannot proceed any further before some event happens. For in-
stance, the process must wait for input data to become available, or for a signal
from another process or the operating system, or it has to complete an output op-
eration first, etc. The programmer does not have to bother about this. At a given
point in the program, where it needs to have more input data, the programmer
simply writes a statement such as: read(file,buffer,n);. The compiler will translate
this into a call to a library function, which in turn will make a system call, (or
service request), which will transfer control to the kernel. Our process becomes
suspended for the time the kernel needs to process this system call. In the case
of a read operation on a file, the kernel will set this into motion, by emitting the
necessary orders to the disk controller. As the disk controller will need time to
execute this order, the kernel will decide to block the execution of the process
which was running and which made the system call. This blocked process will
be put in the queue of waiting processes, and it will become runnable again later,
when the disk controller will have notified the kernel —by sending a hardware
interrupt— that the I/O operation has been completed. The kernel makes use of
the scheduler to find, from the queue of runnable processes the one that should
now be run. The kernel will then make a context switch and this will start our
suspended process running.

A context switch is a relatively heavy affair: first all hardware registers of the
old (running) process must be saved in the process descriptor of the old process.
Then the new process must be selected by the scheduler. If the code and data
and stack of the new process are not yet available in memory, they must be
loaded. In order to be loaded, it may be necessary first to make room in memory,
by swapping out some memory pages which are no longer needed or which are
rarely used. The page tables must be updated, and the process descriptors must
be modified to reflect the new situation. Finally the hardware registers of our
machine must be restored from the values saved at an earlier occasion for the
process now ready to start running. The last register to be restored is the program
counter. The next machine instruction executed will then be exactly the one
where the new process left off when it was suspended the last time.

The execution of a program will thus proceed piecemeal, but without the pro-
grammer having to bother about it: the operating system takes care of everything.
So the application programmer can continue to believe that his program is the
only one in the world. The price to be paid for this convenience is the overhead
in time and memory resources introduced by the intervention of the operating
system.

For our Bessel function program we are entirely justified in thinking that we
are alone in the world. There are however situations where this is not the case and
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where different processes interfere with each other, either willingly or unwillingly.
Here is my favourite example of such a case of interference1.

Assume that we have three separate bytes in memory which contain the hour,
minutes and seconds of the time of the day. There is a hardware device which
produces an interrupt every second and this will cause the process that will up-
date these three bytes to be woken up. Any process which wants to know the
time, can access these three memory bytes, one after the other (we assume that
our machine can address only one byte at a time). Now suppose that it is 10.59.59
and that a process has just read the first byte ”10”, when a clock interrupt occurs.
As the process that updates the clock has a higher priority than the running pro-
cess, the latter is suspended. The clock process now updates the time, setting it
to 11.00.00. Control then returns to the first process which continues reading
the next two bytes. The result is: 10.00.00; which is one hour wrong. What hap-
pened here is that two processes access the same resource — the three memory
bytes — and that one or both of them can alter the contents. No harm would be
done if both processes had read-only access to the shared resource.

The reader should note that the concept of a process has allowed us to speak
about them as if they were really running simultaneously. We do not have to
include in our reasoning the fact that there is a context switch and that com-
plicated things are going on behind the scenes. We only have to be aware that
access to shared resources must be protected, in order to avoid that another pro-
cess accesses the same resource ”simultaneously”. On a multi-processor system
”simultaneous” can really mean ”at the same instant in time”, on a uni-processor
machine it really means ”concurrently”. The processor concept is equally valid
for a uni- and a multi-processor machine.

The places in the program where a shared resource is accessed are so-called
critical regions. We must avoid that two processes access simultaneously the
resource and this can be done by ensuring that a process cannot enter a critical
region when another process is already in a critical region where it accesses the
same shared resource. The entrance to a critical region must be protected with a
sort of a lock.

Two operations are defined on such a lock: lock and unlock. The lock oper-
ation tests the state of the lock and if it is unlocked, locks it. The test and the
locking are done in a single atomic operation. If the lock is already locked, the
lock operation will stop the process from entering the critical region. The unlock
operation will simply clear a lock which was locked, and allow the other process
access to the critical region again. That these operations must be atomic means
that it must be impossible to interrupt them in the middle. Otherwise we would
get into awkward situations again. If the lock operation would not be atomic, we
could have a situation where process 1 inspects the lock and finds it open. If
immediately after this, process 1 gets interrupted, before it had a chance to close
the lock, process 2 could then also inspect the lock. It finds that it is open, sets
it to closed, enters the critical region where it grabs the resource (a printer for

1The reader should be aware that the example describes a primitive situation; no modern oper-
ating system would allow this situation to occur.
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instance) and starts using it. Some time later process 1 will run again, it will also
close the lock and it will also grab the same printer and start using it. Remember
that process 1 previously had found the lock to be open and it is unaware that
process 2 has been running in the meantime!

The lock and unlock operations must therefore be completed before an inter-
ruption is allowed. This can be done —primitively— by disabling interrupts and
then enabling them after the operation. No reasonable operating system would
allow a normal user to tinker with the interrupts, so most machines have a test-
and-set instruction. The test-and-set instruction tests a bit and sets it to ”one” if
it was ”zero”. If it was already ”one” it is left unchanged. The result of the test (i.e.
the state of the bit before the test-and-set instruction was executed is available in
the processor status word and can be tested by a subsequent branch instruction.
The test-and-set instruction is a single instruction; a hardware interrupt arriving
during the execution of the instruction will be recognized only after the execution
is complete. This guarantees the atomicity of a test-and-set operation.

What do we do after the test-and-set instruction? If the lock was open, you can
safely enter the critical region. If, on the contrary, process A finds the lock closed,
it should go to sleep. The operating system will then suspend the execution of
process A and schedule another process to run, say C, or E. The process B, which
had closed the lock in the first place, will also be running again at some instant
and eventually will unlock the lock and wakeup1 the sleeping process A. The
system will then make process A runnable again.

Now suppose that process A gets interrupted immediately after doing its —
unsuccessful — lock operation and before it could execute the sleep() call. Process
B will at some stage open the lock and wakeup A. As A is not sleeping, this wakeup
is simply lost. When A will run again, it will truly go to sleep, this time forever.

The solution to the problem was given in 1965 by Dijkstra, when he defined the
semaphore. A semaphore can count the number of such “lost wakeups”, without
trying to wake up a process that is not sleeping. It can therefore only have a pos-
itive value, or ”0”. Two atomic operations are defined on a semaphore, which we
will call up and down2. Once an operation on a semaphore is started, no other
process can access the same semaphore. Thus atomicity of a semaphore opera-
tion is guaranteed. The work done for a down (and similarly for an up) operation
must therefore be part of the operating system and not of a user process. The
down operation checks the value of the semaphore. If it is greater than zero, it
decrements the value and the calling process just continues execution. On the
contrary, If the down operation finds that the semaphore value is zero, the calling
process is put to sleep. The up operation on a semaphore increments its value.
If one or more processes were sleeping, one of them is selected by the operating
system. The selected process will then be allowed to run can now complete its
down, which had failed earlier. Thus, if the semaphore was positive, it will simply

1Process B itself does not directly wakeup A, of course. The operating system takes care of doing
it.

2Various other names are also used: post and signal, P and V (the original names given by
Dijkstra), and possibly others. For mutexes, lock and unlock are often used.
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be incremented, but if it was ”0” — meaning that there are processes sleeping on
it — its value will remain ”0”, but there will be one process less sleeping.

We have described the general form of a semaphore: the counting semaphore,
which is used to solve synchronization problems, ensuring that certain events
happen in the correct order. A binary semaphore can only take the values ”0”
or ”1” and is particularly suited for solving problems of mutual exclusion, which
explains its other name: mutex.

To illustrate the use of mutexes and counting semaphores we show an ex-
ample of the Producer-Consumer problem. Suppose we have two collaborating
processes: a producer which produces items and puts them in a buffer of finite
size, and a consumer which takes items out of the buffer and consumes them. A
data acquisition system which writes the collected data to tape is a good example
of a producer-consumer problem. It is clear that the producer should stop pro-
ducing when the buffer is full; likewise, the consumer should go to sleep when
the buffer is empty. The consumer should wake up when there are again items
in the buffer and the producer can start working again when some room in the
buffer has been freed by the consumer.

#define N 100 /* number of slots in buffer */
typedef int semaphore; /* this is NOT POSIX !! */
semaphore mutex=1; /* controls access to critical region */
semaphore empty=N; /* counts empty buffer slots */
semaphore full=0; /* counts full buffer slots*/

void producer(void)
{

int item;
while(TRUE) { /* do forever (TRUE=1) */

produce item(&item); /* make something to put in buffer */
down(&empty); /* decrement empty count */
down(&mutex); /* enter critical region */
enter item(&item); /* put new item in buffer */
up(&mutex); /* leave critical region */
up(&full); /* increment count of full slots */

}
}

void consumer(void)
{

int item;
while(TRUE) { /* do forever */

down(&full); /* decrement full count */
down(&mutex); /* enter critical region */
remove item(&item); /* take item from buffer */
up(&mutex); /* leave critical region */
up(&empty); /* increment count of empty slots */
consume item(&item) /* use the item */

}
}
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In order to obtain this synchronization between the two processes, two count-
ing semaphores are used: full which is initialized to ”0” and counts the buffer
slots which are filled, and empty, initialized to the size of the buffer and which
counts the empty slots. Access to the buffer, which is shared between the two
processes, is protected by a mutex, initially ”1” and thus allowing access. The
example is taken from Andrew Tanenbaum’s excellent book1. The reader should
study carefully the listing of the Producer-Consumer problem on the previous
page. He should be aware that the example is simplified: instead of two pro-
cesses and a buffer structure in shared memory, the listing shows two functions,
using global variables. Also the semaphores are not exactly what the standards
prescribe. Using semaphores and mutexes remains a difficult thing: changing
the order of two down operations in the listing below may result in chaos again.

1.4 What is wrong with Linux?

UNIX has the bad reputation of not being a real-time operating system. This
needs some explanation. Time is an essential ingredient of a real-time system:
the definition says that a real-time system must respond within a given time to
an external stimulus. Theoretically, it is not possible to guarantee on a general
UNIX time-sharing system that the response will occur within a specified time.
Although in general the response will be available within a reasonable time, the
load on the system cannot be predicted and unexpected delays may occur. It
would be a bad idea to try and run a time-critical real-time application on an
overloaded campus computer. Nevertheless, before discarding altogether the idea
of using UNIX or Linux as the underlying operating system for a real-time ap-
plication, we should have a critical look at what the requirements really are, to
what extent they are satisfied by off-the-shelf Linux, and what can be done (or
has been done already) to improve the situation.

The UNIX and Linux schedulers have been designed for time-sharing the CPU
between a large number of users (or processes). It has been designed to give a
fair share of the resources, in particular of CPU time, to all of these processes.
The priorities of the various processes are therefore adjusted regularly in order
to achieve this. For instance, the numerical analyst who runs CPU-intensive
programs and does practically no I/O, will be penalized, to avoid that he absorbs
all the CPU time.

Such a scheduling algorithm is not suitable for running a real-time appli-
cation. If the operating system would decide that this particularly demanding
application had consumed a sufficiently large portion of the available CPU time,
it would lower its priority and the application might not be able anymore to meet
its deadlines.

A real-time application must have high priority and — in order to be able

1Andrew S. Tanenbaum, Modern Operating Systems, Prentice Hall International Editions, 1992,
ISBN 0-13-595752-4. The reader is encouraged to read the chapter on Interprocess Communica-
tion, which provides a much more detailed treatment of synchronization problems than is possible
here.
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to meet its deadlines — must run whenever there is no runnable program with a
higher priority. In practice, the real-time process should have the highest prior-
ity, and it should keep this highest priority throughout its entire life1. Another
scheduling algorithm is therefore required: a certain class of processes should be
allocated permanently the highest priorities defined in the system. The normal
scheduler of Linux did not have this feature, but another scheduler, designed for
mixed time-sharing and real-time use is available and is usually compiled into the
kernel.

Time being a precious resource for a real-time system, overheads imposed by
the operating system should be avoided as much as possible. Some of the over-
heads can be avoided by careful design of the real-time program. For instance,
knowing that forking a new process is a time-consuming business, all processes
which the real-time application may need to run, should be forked and exec’ed
(the fork and exec system calls will be illustrated in section 5) during the initial-
ization phase of the application. Other overheads cannot be avoided so simply
and need some adaptation or modification of the operating system.

Context switches may be very expensive in time, in particular when the code
of the new process to be run is not yet available in memory and/or when room
must be made in memory. All code and data of a real-time application should be
locked into memory, so that this part of a context switch would not cause a loss
of time. Locking everything into memory will also prevent page faults to happen,
avoiding this way other memory swapping operations. Originally Linux did not
have the possibility of locking processes into memory, but again, memory locking
is now compiled into all recent kernels.

A further help in reducing the overheads due to context switches is to use so-
called light-weight processes or multi-threaded user processes. Linux as such
does not provide these, but library implementations do exist to implement the
standard POSIX pthreads.

Other places where to watch for lurking losses of time are Input/Output op-
erations. Normally, when a file is opened for writing, an initial block of disc
sectors is allocated — usually 4096 bytes — and inodes and directory entries are
updated. When the file grows beyond its allocated size, the relatively lengthy pro-
cess of finding another free block of 4096 bytes and updating inodes and directory
entries is repeated. A real-time system should be able to grab all the disc space it
needs during initialization, so that these time losses may be avoided. Linux does
not allow this at present.

All input and output in Linux is synchronous. This means that a process
requesting an I/O operation will be blocked until the operation is complete (or
an error is returned). Upon completion of the operation, the process becomes
runnable again and it will effectively run when the scheduler decides so. How-
ever, “completion” of an output operation means only that the data have arrived
in an output buffer, and there is no guarantee that the data have really been writ-
ten out to tape or disc. When the process is only notified of completion of the I/O

1It would be wise to run a shell with an even higher priority, in order to be able to intervene
when the real-time process runs out of hand. This shell would be sleeping, until it gets woken up
by a keystroke.
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operation when the data are really in their final destination, we have synchro-
nized I/O, which may be a necessity for certain real-time problems. Linux does
not spontaneously do synchronized I/O, but it can be easily imposed by using
sync or fsync.

Asynchronous I/O may be another real-time requirement. It means that the
process requesting the I/O operation should not block and wait for completion, but
continue processing immediately after making the I/O system call. The standard
device drivers of Linux do not work asynchronously, but the primitive system
calls allow the option of continuing processing. A special purpose device driver
could make use of this and thus do asynchronous I/O. The process will then be
notified with an interrupt when the I/O operation has been completed.

The designer of a real-time system should of course also be aware that no
standard device drivers exist for exotic1 devices. They have to be written by the
application programmer. In a standard UNIX system, such a new device driver
must be compiled and linked into the kernel. Linux has a very nice feature: it
allows to dynamically load and link to the kernel so-called modules, which can be
— and very often are — device drivers.

We have shown before that it would be wise to divide a real-time system up
into a set of processes, which can each care for their own business, without ex-
cessively interfering with each other. Nevertheless, some communication between
processes may be needed. Old UNIX systems had only two interprocess commu-
nication mechanisms: pipes and signals. Signals have a very low information
content, and only two user definable signals exist. System V UNIX added other
IPC mechanisms: sets of counting semaphores, message queues, and shared
memory. Most Linux kernels have the System V IPC features compiled in.

Probably no real-time system could live without a real-time clock and inter-
val timers. They do exist in off-the-shelf systems, but the resolution, usually
1/50 th or 1/100 th of a second, may not be enough. The user-threads package
can work with higher resolutions, if the hardware is adequate.

The IEEE has made a large effort to standardize the user interface to operating
systems. The result of this effort has been the POSIX 1003.1a standard, which
defines a set of system calls, and POSIX 1003.1b, which defines a standard set
of Shell commands. Both were approved by IEEE and by ISO and thus gained
international acceptance. Also real-time extensions to operating systems have
been defined in the POSIX 1003.1c-1994 standard, which has also been ac-
cepted by ISO. All the points discussed above are part of this POSIX 1003.1c
standard, except for the multiple threads and mutexes, which are defined in
a later extension. To the best of my knowledge, the so-called “pthreads” are
now also an part of the international standard. Linux is POSIX 1003.1a and .1b
compliant, although it may not have been officially certified.

1With exotic I really mean very weird non-standard devices. The list of devices supported by
Linux is indeed incredibly long!

18 Toward Real-time Linux



C. Verkerk 1.5. Creating Processes

In summary, Linux used to be weak on the following, and may still be on a
few items:

• Mutexes. A simple mutex did not exist in the original Linux kernel. The
System V IPC semaphores can be used, although they are overkill, intro-
ducing a large overhead. Atomic bit operations are defined in asm/bitops.h
and can be used more easily, but care should be exercised (danger of prior-
ity inversion). Mutexes are defined in the pthreads package. They will work
between user threads inside a single process, and for some implementations
also between threads and another process.

• Interprocess Communication. System V IPC is usually part of the Linux
kernel and adds counting semaphores, message queues and shared memory
to the usual mechanisms of pipes and of signals.

• Scheduling. A POSIX 1003.1c compliant scheduler for Linux exists and is
part of the kernel in most Linux distributions.

• Memory Locking. Memory locking is part and parcel of the more recent
Linux kernels (at least above 2.0.x and maybe earlier).

• Multiple User Threads. A few library implementations exist. The more
recent Linux distributions have Leroy’s Pthread library, which makes use of
a particular feature of Linux: the “clone” system call. It is entirely compliant
with the POSIX standard. You will soon get into close contact with it.

• Synchronized I/O. Can be obtained easily with sync and fsync.

• Asynchronous I/O. Not available in standard device drivers. Could be im-
plemented for special purpose device drivers.

• Pre-allocation of file space. Not available to my knowledge.

• Fine-grained real-time clocks and interval timers. They are part of the
available pthreads packages and could be used if the hardware is capable.

1.5 Creating Processes

Creating a new process from within another process is done with the fork() system
call. fork() creates a new process, called the child process, which is an exact copy
of the original (parent) process, including open files, file pointers etc. Before the
fork() call there is only one process; when the fork() has finished its job, there
are two. In order to deal with this situation, fork() returns twice. To the parent
process it returns the process identification (PID) of the child process, which
will allow the parent to communicate later with the child. To the child process it
returns a 0. As the two processes are exact copies of each other, an if statement
can determine if we are executing the child or the parent process.
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There is not much use of a child process which is an exact copy of its parent,
so the first thing the child has to do is to load into memory the program code
that it should execute and then start execution at main(). A child is obviously too
inexperienced to do this on its own, so there is a system call that does it for him:
execl(). The entire operation of creating a new process therefore goes as follows:

/* here we have been doing things */
child=fork(); /* PID of new process -- > child */
if(child) { /* here for parent process */

/*continue parent’s business*/
}

else { /* here for child process */
execl("/home/boss/rtapp/toggle rail signal", \

"toggle rail signal", N sigs, NULL);
perror("execl"); /* here in case of error */
exit(1);
}

/* here continues what the parent was doing */

execl() will do what was described above, so in our example it will load the exe-
cutable file /home/boss/rtapp/toggle rail signal and then start execution of the
new process at main(argc,argv). The other arguments of execl() are passed on to
main(). execl is one of six variants of the exec system call: execl, execv, execle,
execve, execlp, execvp. They differ in the way the arguments are passed to main():
l means that a list of arguments is passed, v indicates that a pointer to a vector of
arguments is passed. e tells that environment pointer of the parent is passed and
the letter p means that the environment variable PATH should be used to find the
executable file.

This completes the creation of a new process. On a single CPU machine, one
of the two processes may continue execution, the other will wait till the scheduler
decides to run it. There is no guarantee that the parent will run before the child
or vice versa.

The new process can exit() normally when it has done its job, or when it hits
an error condition. The parent can wait for the child to finish and then find out
the reason of the child’s death by executing one of the following system calls:

pid t wait(int *status); /* wait for any child to die*/
or: pid t waitpid(pid t which, int *status, int options)

/* wait for child "which" to die */

These wait calls can be useful for doing some cleaning-up and to avoid leaving
zombies behind. When the parent process exits, the system will do all the neces-
sary clean-up, childs included.

We can now understand what the shell does when we type a command, such
as cp file1 dir. The shell will parse the command line, and assume that the first
word is the name of an executable file. It will then do a fork(), creating a copy of
the shell, followed by an execl() or execv() which will load the new program, in our
example the copy utility cp. The rest of the command line is passed on to cp as a
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list or as a pointer to a vector. The shell then does a wait(). When an & had been
appended to the command line, then the shell will not do a wait, but will continue
execution after return from the exec call.

The following gives a more complete and rather realistic example of a terminal
server and a client1. The reader is invited to study this example in detail.

The code for the server looks like:

#define POSIX C SOURCE 199309

#include <unistd.h >
#include <stdio.h >
#include <sys/types.h >
#include <sys/wait.h >
#include <signal.h >
#include <errno.h >
#include "app.h" /* local definitions */

main(int argc, char **argv)
{

request t r;
pid t terminated;
int status;

init server(); /* set things up * /

do {
check for exited children();
r = await request(); /*get some input*/
service request(r); /*do what wanted*/
send reply(r); /*tell we did it*/

} while (r != NULL);

shutdown server(); /*tear things down*/
exit(0);

}

void
service request(request t r)
{

pid t child;
switch (r- >r op) {

case OP NEW:
/* Create a new client process */
child = fork();

1the example is taken from Bill O. Gallmeister, POSIX.4, Programming for the Real World,
O’Reilly, 1995.
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if (child) {
/* parent process */
break;

} else {
/* child process */
execlp("terminal","terminal \

application","/dev/com1",NULL);
perror("execlp");
exit(1);

}
break;

default:
printf("Bad op %d \n", r- >r op),
break;

}
return;

}

The terminal end of the application looks like:

#include <unistd.h >
#include <stdio.h >
#include <sys/types.h >
#include <sys/wait.h >
#include <signal.h >
#include "app.h" /* local definitions */

char *myname;

main(int argc, char **argv)
{

myname = argv[0];
printf("Terminal \"%s\" here!", myname);
while (1) {

/* deal with the screen */
/* await user input */

}
exit(0);

}

Presumably request t is defined in app.h as a pointer to a structure. await request()
is a function which sleeps until a service request arrives from a terminal. The op-
erations performed by the other functions:
init server, service request(), check for exited children(), send reply() and shutdown server()
are implied by their names.
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1.6 Interprocess Communication

In the case where we have a real-time application with a number of processes
running concurrently, it would be a normal situation when some of these pro-
cesses need to communicate between them. We said already that the classical
UNIX system only knows pipes and signals as communication mechanisms. In-
terprocess communication, suitable for real-time applications is an essential part
of the POSIX standard, which adds a number of mechanisms to the minimal UNIX
set. In the following we will briefly describe the various IPC mechanisms and how
they can be invoked. We will follow as much as possible the POSIX standard,
except where the facilities are not implemented in Linux. In that case we will
describe the mechanism Linux makes available.

1.6.1 UNIX and POSIX 1003.1a Signals

The old signal facility of UNIX is rather limited, but it is available on every im-
plementation of UNIX or one of its clones. Originally, signals were used to kill
another process. Therefore, for historical reasons, the system call by which a
process can send a signal to another process is called kill(). There is a set of
signals, each identified by a number (they are defined in <signal.h>), and the
complete system call for sending a signal to a process is:
kill(pid t pid, int signal);
The integer signal is usually specified symbolically: SIGINT,
SIGALRM or SIGKILL, etc., as defined in <signal.h>. pid is the process iden-
tification of the process to which the signal shall be sent. If this receiving process
has not been set up to intercept signals, its execution will simply be terminated
by any signal sent to it. The receiving process can however be set up to intercept
certain signals and to perform certain actions upon reception of such an inter-
cepted signal. Certain signals cannot be intercepted, they are just killers: SIGINT,
SIGKILL are examples. In order to intercept a signal, the receiving process must
have set up a signal handler and notified this to the operating system with the
sigaction() system call. The following is an example of how this can be done:

A structure sigaction (not to be confounded with the system call of the same
name!) is defined as follows:

struct sigaction {
void (*sa handler)();
sigset t sa mask;
int sa flags;

void(*sa sigaction)(int,siginfo t *,void *); };

This structure encapsulates the action to be taken on receipt of a signal.
The following is a program that shall exit gracefully when it receives the signal

SIGUSR1. The function terminate normally() is the signal handler. The adminis-
trative things are accomplished by defining the elements of the structure and then
calling sigaction() to get the signal handler registered by the operating system.

Toward Real-time Linux 23



1.6. Interprocess Communication C. Verkerk

void
terminate normally(int signo)
{

/* Exit gracefully */
exit(0);

}

main(int argc, char **argv)
{

struct sigaction sa;
sa.sa handler = terminate normally;
sigemptyset(&sa.sa mask);
sa.sa flags = 0;
if (sigaction(SIGUSR1, &sa, NULL)) {

perror("sigaction");
exit(1);

}
...
}

The operating system itself may generate signals, for instance as the result of
machine exceptions: floating point exception, page fault, etc. Signals may also be
generated by something which happens asynchronously with the process itself.
The signals then aim at interrupting the process: I/O completion, timer expiration,
receipt of a message on an empty message queue, or typing CTRL-C or CTRL-Z
on the keyboard. Signals can also be sent from one user process to another.

The structure sigaction does not only contain the information needed to reg-
ister the signal handler with the operating system (in the process descriptor),
but it also contains information on what the receiving process should do when it
receives the registered signal. It can do one of three things with the signal:

— it can block the signal for some time and later unblock it.
— it can ignore the signal, pretending that nothing has happened.
— it can handle the signal, by executing the signal handler.

The POSIX.1 signals, described so far, have some serious limitations:

— there is a lack of signals for use by a user application (there are only two:
SIGUSR1 and SIGUSR2).

— signals are not queued. If a second signal is sent to a process before the first
one could be handled, the first one is simply and irrevocably lost.

— signals do not carry any information, except for the number of the signal.
— and, last but not least, signals are sent and received asynchronously. This

means in fact that a process may receive a signal at any time, for instance
also when it is updating some sensitive data-structures. If the signal handler
will also do something with these same data-structures, you may be in deep
trouble. In other words, when you write your program, you must always
keep in mind that you may receive a signal exactly at the point where your
pencil is.

Linux is compliant with this POSIX 1003.1a definition of signals.
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1.6.2 POSIX 1003.1c signals

From the description above, we have seen that the POSIX 1003.1a signals are a
rather complicated business (in UNIX jargon this is called flexibility). The POSIX
1003.1c extensions to the signal mechanism introduces even more flexibility.
POSIX 1003.1c really defines an entirely new set of signals, which can peace-
fully co-exist with the old signals of POSIX 003.1a1. The historical name kill() is
replaced by the more expressive sigqueue().

The main improvements are:
– a far larger number of user-definable signals.
– signals can be queued; old untreated signals are therefore not lost.
– signals are delivered in a fixed order.
– the signal carries an additional integer, which can be used to transmit more
information than just the signal number.

POSIX 1003.1c signals can be sent automatically as a result of timer expira-
tion, arrival of a message on an empty queue, or by the completion of an asyn-
chronous I/O operation. Unfortunately, the POSIX 1003.1c signals may not be
part of Linux, so we will not dwell on them any further.

1.6.3 pipes and FIFOs

Probably one of the oldest interprocess communication mechanisms is the pipe.
Through a pipe, the standard output of a program is pumped into the standard
input of another program. A pipe is usually set up by a shell, when the pipe
symbol ( | ) is typed between the names of two commands. The data flowing
through the pipe is lost when the two processes cease to exist. For a named
pipe, or FIFO (First In, First Out), the data remains stored in a file. The named
pipe has a name in the filesystem and its data can therefore be accessed by any
other process in the system, provided it has the necessary permissions.

A running process can set up a pipe to communicate with another process.
The communication is uni-directional. If duplex communication is needed, two
pipes must be set up: one for each direction of communication. The two “ends of
a pipe” are nothing else than file descriptors: one process writes into one of these
files, the other reads from the other.

Setting up a pipe between two processes is not a terribly straightforward op-
eration. It starts off by making the pipe() system call. This creates two file de-
scriptors, if the calling process still has file descriptors available. One of these
descriptors (in fact the second one) concerns the end of the pipe where we will
write, the other descriptor (the first one) is attached to the opposite end, where
we will read from the pipe. If we now create another process, this newly created
process will inherit these two file descriptors. We now must make sure that both
parent and child processes can find the file descriptors for the pipe ends. The
dup2 system call will in fact do this, by duplicating the “abstract” file descriptors
pipe ends[0] and pipe ends[1] into well-known ones. dup2 copies a file descriptor
into the first available one, so we should close first the files where we want the

Toward Real-time Linux 25



1.6. Interprocess Communication C. Verkerk

pipe to connect (usually standard out for the process connected to the writing end
and standard in for the process which will read from the pipe). Here is a skeleton
program for doing this in the case of a terminal server, which forks off a terminal
process to display messages from the server:

/* First create a new client */
if (pipe(pipe ends) < 0) {

perror("pipe");
exit(1);

}

global child=child=fork();
if (child) {

/*here for parent process*/
do something();

}
else {

/*here for the child*/
/* pipe ends will be 0 and 1 (stdin and stdout) */
(void)close(0);
(void)close(1);
if (dup2(pipe ends[0], 0) < 0)

perror("dup2");
if (dup2(pipe ends[1], 1) < 0)

perror("dup2");
(void)close(pipe ends[0]);
(void)close(pipe ends[1]);
execlp(CHILD PROCESS, CHILDPROCESS, "/dev/com1", NULL);
perror("execlp");
exit(1);

}

The terminal process, created as the child could look:

#include <fcntl.h>
char buf[MAXBYTES]
/* pipe should not block, to avoid waiting for input */
if(fcntl(channel from server, F SETFL, O NONBLOCK) < 0){

perror("fcntl");
exit(2);

}
while (1) {

/* Put messages on the screen */
/* check for input from the server */
nbytes = read(channel from server, buf, MAXBYTES);
if (nbytes < 0) && (errno != EAGAIN))

perror("read");
else if (nbytes > 0) {

printf("Message from the Server: \"%s\" \n", buf);
}
...
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In this example1, the server process simply writes to the write end of the pipe
(which has become stdout) and the child reads from the other end, which has
been transformed by dup2 into stdin. To set up a communication channel in the
other direction as well, the whole process must be repeated, inverting the roles of
the server and the terminal client (the first becomes the reader, and the second
the writer) and using two other file descriptors (for instance 3 and 4 if they are
still free). Note that the dup calls must be made before the child does its exec
call, otherwise, the file descriptors for the two pipe ends would be lost.

The use of named pipes is simpler: the FIFO exists in the file system and any
process wanting to access the file can just open it. One process should open the
FIFO for reading, the other for writing. A FIFO is created with the POSIX 1003.1a
mkfifo() system call.

1.6.4 Message Queues

When we have compiled the System V IPC facilities into the Linux kernel, we have
message queues available, which however do not conform to the POSIX 1003.1c
standard. We will nevertheless describe them briefly, as they are the only ones
we have at present.

In system V the message resource is described by a
struct msqid ds, which is allocated and initialized when the resource is created.
It contains the permissions, a pointer to the last and the first message in the
queue, the number of messages in the queue, who last sent and who last re-
ceived a message, etc. The messages itself are contained in:

struct msgbuf {
long mtype;
char mtext[l]; }

To set up a message queue, the creator process executes a msgget system call:
msqid = msgget(key t key, int msgflg);
The msqid is a unique identification of the particular message queue which en-
sures that messages are delivered to the correct destination. The exact role of
the key is complicated; in most cases the key can be chosen to be IPC PRIVATE.
The use of IPC PRIVATE will create a new message queue if none exist already. If
you want to do unusual things or make full use of the built-in flexibility, you may
fabricate your own key with the ftok(char* pathname, char proj) library call and
play with msgflg.

A process wanting to receive messages on this queue must also perform a
msgget call, in order to obtain the msqid.

A message is sent by executing:
int msgsnd(int msqid,struct msgbuf *msgp,int msgsz, \
int msgflg);

1Which was also taken from Gallmeister’s book.
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and similarly a message is received by:
int msgrcv(int msqid, struct msgbuf *msgp, int msgsz, \
long msgtyp, int msgflg);
msgtyp is used as follows:

if msgtyp = 0 : get first message on the queue,
> 0 : get first message of matching type,
< 0 : get message with smallest type

which is ≤abs(msgtyp).

Finally, the msgctl calls allow you to get the status of a queue, modify its size,
or destroy the queue entirely.

The message queue can be empty. If a message is sent to an empty queue,
the process reading messages from the queue is woken up. Similarly, when the
queue is full, a writer trying to send a message will be blocked. As soon as a
message is read from the queue, creating space, the writer process is woken up.

1.6.5 Counting Semaphores

System V semaphore arrays are an oddity. The semget call allocates an array of
counting semaphores. Presumably, and hopefully, the array may be of length 1.
You also specify operations to be performed on a series of members of the array.
The operations are only performed if they will all succeed!

Counting semaphores can be useful in producer-consumer problems, where
the producer puts items in a buffer and the consumer takes items away. Two
counting semaphores keep track of the number of items in the buffer and allow
to “gracefully” handle the buffer empty and buffer full situations.

Producer-consumer situations can easily arise in a real-time application: the
producer collects data from measuring devices, the consumer writes the data to a
storage device (disk or tape).

Another example is a large paying car park: There is one counting semaphore
which is initialized to the total number of places in the car park. A separate
process is associated with each entrance or exit gate. The process at an entrance
gate will do a wait on the semaphore, e.g. decrement it. If the result is greater
than zero, the process will continue, issue a ticket with the time of entrance, and
open the gate. It closes the gate as soon as it has detected the passage of the car.
If the value of the counting semaphore is zero when the decrement operation is
tried, the process is blocked and added to the pile of blocked processes. This is
just what is needed: the car park is full and the car will have to wait, so no ticket
is issued, etc.

The processes at the exit gates do the contrary: after having checked the ticket,
they open the gate and then do a post or increment operation on the semaphore,
effectively indicating that one more place has become free. This operation will
always succeed.

The System V counting semaphore mechanism is rather similar to the message
queue business: You create a semaphore (array) as follows:
int semid = semget(key t key, int nsems, int semflg);
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The key IPC PRIVATE behaves as before. All processes wanting to use the sema-
phore must execute this semget call. You can then operate on the semaphore:
int semop(int semid, struct sembuf *sops, \
unsigned nsops);
(here is the oddity, you do nsops operations on nsops members of the array; the
operations are specified in an array of struct sembuf ). This structure is defined
as:

struct sembuf
ushort sem num; /*index in array*/
short sem op; /*operation*/
short sem flg /*operation flags*/

Two kinds of operations can result in the process getting blocked:
i) If sem op is 0 and semval is non-zero, the process sleeps on a queue, waiting
for semval to become zero, or returns with error EAGAIN if either of (IPC NOWAIT
| sem flg) are true.
ii) If (sem op < 0) and (semval + sem op < 0), the process either sleeps on a
queue waiting for semval to increase, or returns with error EAGAIN if (sem flg &
IPC NOWAIT) is true.

Atomicity of the semaphore operations is guaranteed, because the mech-
anism is embedded in the kernel. The kernel will not allow two processes to
simultaneously use the kernel services. In other words, a system call will be en-
tirely finished before a context switch takes place.

Note: If you want to use a semaphore which takes only the values 0 or 1
(for instance for mutual exclusion), you are better off by using the atomic bit
operations, defined in <asm-i386/bitops.h>: test bit, set bit and clear bit.

1.6.6 Shared Memory

Shared Memory is exactly what its name says: two or more processes access the
same area of physical memory. This segment of physical memory is mapped
into two or more virtual memory spaces.

Shared Memory is considered a low-level facility, because the shared segment
does not benefit from the protection the operating system normally provides.
To compensate for this disadvantage, shared memory is the fastest IPC mech-
anism. The processes can read and write shared memory, without any system
call being necessary. The user himself must provide the necessary protection, to
avoid that two processes “simultaneously” access the shared memory. This can
be obtained with a binary semaphore or mutex.

A mutex can be simulated by performing the set bit(int nr, void * addr) call,
which sets the desired bit nr and returns the old value of the bit. The short
integer on which this operation is performed must also reside in shared memory,
in order to be accessible by both processes.
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The shared memory facility available in Linux comes from System V, and is
may therefore be not conforming to POSIX.1c. The related system calls are simi-
lar to the System V calls we have already seen:

There is, of course, a shared memory descriptor,
struct shmid ds .
Shared memory is allocated with the system call:
shmid = shmget(key t key, int size, int shmflg);
The size is in bytes and should preferably correspond to a multiple of the page size
(4096 bytes). All processes wanting to make use of the shared memory segment
must make a shmget call, with the same key.
Once the memory has been allocated, you map it into the virtual memory space
of your process with:
char *virt addr;
virt addr = shmat(int shmid, char *shmaddr, int shmflg);

shmaddr is the requested attach address:
if it is 0, the system finds an unmapped region;
if it is non-zero, then the value must be page-aligned.
By setting shmflg = SHM RDONLY you can request to attach the segment read-
only.

You can get rid of a shared memory segment by:
int shmdt(char *virt addr);
Finally, there is again the shmctl call, which you may use to get the status, or
also to destroy the segment (a shared segment will only be destroyed after all
users have detached themselves).

If you are using shared memory, and you need malloc as well, you should
malloc a large chunk of memory first, before you attach the shared memory
segment. Otherwise malloc may interfere with the shared memory.

A word about the Linux implementation of the System V IPC mechanisms is
in order. All System V system calls described above make use of a single Linux
system call: ipc(). A library of the system V IPC calls is available, which maps
each call and its parameters into the Linux ipc() call. An example is:

int semget (key t key, int nsems, int semflg)
{

return ipc (SEMGET, key, nsems, semflg, NULL);
}

The constants are defined in <linux/ipc.h>

1.7 Scheduling

The original scheduling algorithm of Linux aimed at giving a fair share of the
resources to each user. It therefore was a typical time-sharing scheduler. A
time-sharing scheduler is based on priorities, like any other type of scheduler,
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but the system keeps changing the priorities to attain its aim of being fair to
everyone.

For time-critical real-time applications you want another sort of scheduler. You
need a high priority for the most critical real-time processes, and a scheduler
which will run such a high priority process whenever no process with higher
priority is runnable1.

Less critical processes of the real-time application can run at lower priorities
and other user jobs could also be fitted in at priorities below.

SVR6 (System V, Release 6) has a scheduler that does both time-sharing and
real-time scheduling, depending on the priority assigned to a process. Critical
processes run at priorities between, say, 0 and 50, and benefit from the priority
scheduling. Other jobs run at lower priorities and have to accept the time-sharing
scheduler. This aspect of System V has not been ported to Linux.

A POSIX.1c compliant scheduler has been ported to Linux. In order to make
use of it, you must make patches to the kernel code and recompile the kernel
together with this POSIX.1c scheduler. At the time these notes were prepared, we
had not yet had a chance to try it.

The advantage of a POSIX.1c scheduler is, of course, that your application
program will be portable between different platforms.

What does a POSIX.1c scheduler do? Here is what it provides2:

#include <unistd.h >
#ifdef POSIX PRIORITY SCHEDULING
#include <sched.h >
int i, policy;
struct sched param *scheduling parameters;
pid t pid;

sched setscheduler(pid t pid, int policy, \
struct sched param *scheduling parameters);

int sched getscheduler(pid t pid);
int sched getparam(pid t pid, \

struct sched param *scheduling parameters);
int sched setparam(pid t pid, \

struct sched param *scheduling parameters);
int sched yield(void);
int sched get priority min(int);
int sched get priority max(int);
#endif POSIX PRIORITY SCHEDULING

You see that you define a scheduling ”policy”. You have a choice:

SCHED FIFO : pre-emptive, priority-based scheduling,
SCHED RR : pre-emptive, priority-based with time quanta,
SCHED OTHER : implementation dependent scheduler.

1Remember that you need a sleeping shell at a still higher priority.
2Again from Gallmeister’s book.
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With the first choice, the process will run until it gets blocked for one reason
or another, or until a higher priority process becomes runnable. The second policy
adds a time quantum: a process running under this scheduling policy will only
run for a certain duration of time. Then it goes back to the end of the queue
for its priority (each priority level has its own queue). Thus, at a given priority
level, all processes in that level are scheduled round-robin. In future, deadline
scheduling will probably have to be added as another choice.

There is a range of priorities for the FIFO scheduler and another range for the
RR scheduler.

After a fork(), the child process inherits the scheduling policy and the priority
of the parent process. If the priority of the child then gets increased above the
priority of the running process, the latter is immediately pre-empted, even before
the return from the sched setparam call! So be careful, you may seriously harm
yourself.

On the other hand, you may ”yield” the processor to another process. You
cannot really be sure which process this is going to be. As a matter of fact, the
only thing yield does, is to put your process at the end of the queue at your
particular priority level.

All this is nice, but we are still stuck with the fact that the kernel itself cannot
be pre-empted. This is usually not too much of a problem. Most of the system
calls will take only a short time to execute.

Usually, the system calls that may take a considerable time (such as certain
I/O related calls), should be relegated — as far as possible — to those tasks that
run at a lower priority level. Also some common sense will help: it is much faster
to write once 512 bytes to disk than to write 512 times a single byte!

Other system calls do take a long time. fork and exec for example. You should
therefore create all necessary processes during the initialization phase of your
application. Let the processes that you only need sporadically just sleep for most
of the day.

1.8 Timers

You may want to arrange for certain things to happen at certain times, or a given
time interval after something else happened. So you will nearly always have the
need for a timer and/or an interval timer.

Standard UNIX (and Linux) has a real-time clock. It counts the number of
seconds since 00:00 a.m. January 1, 1970. (called the Epoch). You get its value
with the time() function:

#include <time.h >

time t time(time t *the time now);

You can also call time with a NULL pointer.
Linux also has the gettimeofday call, which stores the time in a structure:
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struct timeval {
time t tv sec /* seconds */
time t tv usec } /* microseconds */

gettimeofday returns a 0 or -1 (success, failure respectively).
You can make things happen after a certain time interval with
sleep:

unsigned int sleep(unsigned int n seconds);

The process which executes this call will be stopped and resumed after n seconds
have passed. The resolution is very crude! As a matter of fact, many real-time
systems would need a resolution of milliseconds and, in extreme cases, even mi-
croseconds.

To overcome this drawback, Linux has also interval timers. each process has
three of them:

#include <sys/time.h >

int setitimer(int which timer, \
const struct itimerval *new itimer value, \
struct itimerval *old itimer value);

int getitimer(int which timer, \
struct itimerval *current itimer value);

The first argument, which timer, has one of three values:
ITIMER REAL, ITIMER VIRTUAL and ITIMER PROF. setitimer() sets a new value
of the interval timer and returns the old value in old timer value.

When a timer expires, it delivers a signal: SIGALRM, SIGVTALRM and SIG-
PROF respectively. The calls make use of a structure:

struct itimerval {
struct timeval it val /* initial value */
struct timeval it interval } /* interval */

The ITIMER REAL measures the time on the “wall clock” and therefore in-
cludes the time used by other processes.
ITIMER VIRTUAL measures the time spent in the user process which set up the
timer, whereas ITIMER PROF counts the time spent in the user process and in
the kernel on behalf of the user process. It is thus very useful for profiling.

The resolution of these interval timers is given by the constant HZ, defined in
<sys/param.h>. On Linux machines, HZ=100, so the resolution of the interval
timers is 10000 microseconds.

POSIX.1c extends the timer facilities to a number of implementation defined
clocks, which may have different characteristics. Timers and intervals can be
specified in nanoseconds.
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1.9 Memory Locking

As we already pointed out before, the real-time processes – at least the critical
ones – should be locked into memory. Otherwise you could have the very un-
fortunate situation that your essential task has been swapped out, just before it
becomes runnable again. Faulting a number of pages of code back into memory
may add an intolerable overhead.

Remember also that infrequently used pages may be swapped out by the sys-
tem, without any warning. Faulting them back in again may make you miss a
deadline. Thus, not only the program code, but also the data and stack pages
should be locked into memory.

A POSIX.1c conformant memory locking mechanism is available for Linux.
Unfortunately, we have not yet been able to test it. It does the following:

#include <unistd.h >
#ifdef POSIX MEMLOCK
#include <sys/mman.h >
int mlockall(int flags);
int munlockall(void);
#endif /* POSIX MEMLOCK */

mlockall will lock all your memory, e.g. program, data, heap, stack and also
shared libraries. You may choose, by specifying the flags, to lock the space you
occupy at present, but also what you will occupy in future.

Instead of locking everything, you may also lock parts:

#include <unistd.h >
#ifdef POSIX MEMLOCKRANGE
#include <sys/mman.h >

int mlock(void *address, size t length);
int munlock(void *address, size t length);
#endif /* POSIX MEMLOCKRANGE */

Finally, you may want to lock just a few essential functions: a signal handler
or an interrupt handler, for instance. You should not do this from within the
interrupt handler, but from a separate function:

void intr handler()
{

... /* do your work here */
}
void right after intr handler()
{

/* this function serves to get an address */
/* associated with the end of intr handler() */

}
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void intr handler init()
{

...
i = mlock(ROUND DOWNTOPAGE(intr handler), \

ROUNDUPTOPAGE(right after intr handler - \
intr handler));

}

The function right after intr handler() does nothing. It serves only to get an
address associated with the end of the interrupt handler. This is needed to cal-
culate the argument length for the mlock() call.

1.10 Multiple User Threads

All we have seen so far happened at the process level and kernel intervention was
needed for every coordinating action between processes. The overall picture has
become quite complicated and a programmer must master many details or else
he runs into trouble.

Is there not another solution, where the user has more direct control over what
is going on? Fortunately, there is: multiple user threads. POSIX.4a (or POSIX.1c
if you prefer) standardizes the API (Application Programmer’s Interface) for
multiple threads.

Threads are independent flows of control inside a single process. Each thread
has its own thread structure — comparable to a process descriptor —, its own
stack and its own program counter. All the rest, i.e. program code, heap storage
and global data, is shared between the threads. Two or more threads may well
execute the same function simultaneously. The services needed to create threads,
schedule their execution, communicate and synchronize between threads are pro-
vided by the threads library and run in user space. For the kernel exists only the
process; what happens inside this process is invisible to the kernel.

Lightweight Processes, as in Solaris or SunOS 4.x, are somewhere mid-way:
a small part of the process structure has been split off and can be replicated
for several LWPs, all continuing to be part of the same process, using the same
memory map, file descriptors, etc. The split-off part is still a kernel structure, but
the kernel can now make rapid context switches between LWPs, because only a
small part of the complete process structure is affected. Inside a LWP, multiple
threads may be present.

Multiple threads offer a solution to programming which has a number of ad-
vantages. The model is particularly well suited to Shared-memory Multiple Pro-
cessors, where the code, common to all threads, is executed on different pro-
cessors, one or more threads per processor. Also for real-time applications on
uniprocessors, threads have advantages. In the first place, the fastest, easiest
intertask communication mechanism, — shared memory — is there for free!

There are other advantages as well. The responsiveness of the process may
increase, because when one thread is blocked, waiting for an event, the other can
continue execution. The fact that threads offer a sort of “do-it-yourself” solution
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makes the user have a better grasp of what he is doing and thus he can pro-
duce better structured programs. Communication and synchronization between
threads is easier, more transparent and faster than between processes. Each
thread conserves its ability to communicate with another process, but it is wise
to concentrate all inter-process communication within a single thread.

Multiple threads will in general lead to performance improvements on shared
memory multiprocessors, but on a uniprocessor one should not expect miracles.
Nevertheless, the fact that there is less overhead and that some threads may
block while others continue, will be felt in the performance.

It sounds as if we just discovered a gold mine. Well . . . , there are a few
things which obscure the picture somewhat. For threads to be usable with no
danger, the library functions our program uses must be threads-safe. That
is, they must be re-entrant. Unfortunately, many libraries contain functions
which modify global variables and therefore are not re-entrant. For the same
reason, your threaded program must be re-entrant, so it has to be compiled with
REENTRANT defined. In addition, for a real-time application, you still need at
least a few facilities from the operating system: memory locking and real-time
priority scheduling1.

Threads can be implemented as a library of user functions. The standard set
of functions is defined in POSIX.1c, but other implementations also exist. The
package we are using2 implements the POSIX.1c pthreads. There are some 50
service requests defined. They are briefly described in Annex III and in more
detail in the man pages. We will illustrate only a few of them, the most important
ones.

Pthreads defines functions for Thread Management, Mutexes, Condition Vari-
ables, Signal Management, Thread Specific Data and Thread Cancellation.
Threads, mutexes and condition variables have attributes, which can be modi-
fied and which will change their behaviour. Not all options defined by the various
attributes need to be implemented. <pthread.h> defines eight data types:

Type Description
———————————————————
pthread attr t Thread attribute
pthread mutexattr t Mutex attribute
pthread condattr t Condition variable attribute
pthread mutex t Mutual exclusion lock (mutex)
pthread cond t Condition variable
pthread t Thread ID
pthread once t Once-only execution
pthread key t Thread specific data key

1Alternatively, you run on a dedicated machine, where you have killed all daemons, so that your
application is the only active process in the system.

2Xavier Leroy’s implementation, called LinuxThreads, which is part of many recent Linux dis-
tributions (Xavier.Leroy@inria.fr).
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Attributes can be set or retrieved with calls of the following type:

int pthread attr setschedpolicy( pthread attr t *attr, int newvalue);
or:
int pthread mutexattr getprotocol( pthread mutexattr t *attr, *protocol);

See Annex III for the complete list. The scheduling policy can be one of:
SCHEDFIFO, SCHED RR and SCHEDOTHER, as for the POSIX.1c standard. The
scheduling parameters can also be set and retrieved.

When the process is forked, main(argc, argv) is entered. In the main pro-
gram you may then create threads. Each thread is a function, or a sequence of
functions. At thread creation, the entry point must be specified:

int pthread create( pthread t *thread, \
const pthread attr t *attr, \
void *(*entry)(void *), \
void *arg );

void pthread exit( void *status );
does what is expected from it. It should be noted that NULL may often be
used to substitute an argument in the function call. This is notably the case
for pthread attr t *attr and void *status above.

An important function is:
int pthread join( pthread t thread, void **status );

When this primitive is called by the running thread, its execution will be sus-
pended until the target thread terminates. If it has already terminated, execution
of the calling thread continues. pthread join() is therefore an important mecha-
nism for synchronizing between threads. So-called detached threads cannot be
joined. You specify at creation time or at run time if the thread has to be detached
or not.

Mutexes can have as the pshared attribute
PTHREADPROCESSSHAREDor PTHREADPROCESSPRIVATE, meaning that the mu-
tex can be accessed also by other processes or that it is private to our process.
Private mutexes are defined in all implementations, shared mutexes are an op-
tion. The two usual operations on a mutex are:
int pthread mutex lock( pthread mutex t *mutex );
and
int pthread mutex unlock( pthread mutex t *mutex );
but you can also try if a mutex is locked and continue execution, whatever the
result:
int pthread mutex trylock( pthread mutex t *mutex );

All memory occupied by the process is shared among the various threads,
which we said was an important advantage of threads. Nevertheless, sometimes
a thread needs to protect its data against attacks from other threads. For this
reason a few primitives which allow to create and manipulate thread specific data
are defined. For details see the man pages.
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We have not yet met condition variables, which are another feature of pthreads.
Condition variables are always associated with a mutex. A condition variable is
used to signal a thread that a particular condition has been satisfied in another
thread. The first thread — the one receiving the signal — will then be allowed to
proceed if it had blocked on the condition variable (CV). It works as follows:

Thread 1 Thread 2
—————————————————————————–
lock the mutex
test the condition
FALSE! unlock mutex
sleep on CV

lock the mutex
change the condition
signal thread 1
unlock mutex

lock mutex
test condition again
TRUE! do the job
unlock mutex

Translated into code, this becomes:

Thread 1 Thread 2
—————————————————————————–
pthread mutex lock(&m);
while (!my condition) {
while (pthread cond wait(&c, &m) != 0) { ;

pthread mutex lock(&m);
my condition = TRUE ;
pthread cond signal(&c);
pthread mutex unlock(&m);

do thing();
}
}
pthread mutex unlock(&m);

Note that pthread cond wait() will automatically free the mutex for you and
your thread will go to sleep on the condition variable.

pthreads is really a subject in itself and our quick review has been very super-
ficial. Threads are well suited for implementing Server-Client problems. Due to
the shared memory, the communication between the server and the — possibly
many — clients is easy.

We close this section with a complete code example1. The example concerns an
Automatic Teller Machine, e.g. one of those machines that distribute banknotes.

1This and the following example are from B. Nichols et.al., Pthreads Programming See Bibliog-
raphy, item ii)
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The main program, which is the server, receives requests over a communication
line from ATMs scattered all over town. For each request received, the server
spawns a worker or client thread which undertakes the actions necessary to sat-
isfy the request. This example mainly illustrates the creation of several threads.

typedef struct workorder {
int conn;

char req_buf[COMM_BUF_SIZE];
} workorder_t;

main(int argc, char **argv)
{

workorder_t *workorderp;
pthread_t *worker_threadp;
int conn, trans_id;

atm_server_init(argc, argv);

for(;;) {
/*** Wait for a request ***/
workorderp = (workorder_t *)malloc(sizeof(workorder_t));
server_comm_get_request(&workorderp->conn,

&workorderp->req_buf);

sscanf(workorderp->req_buf, "%d", &trans_id);
if (trans_id == SHUTDOWN) {

. . .
break;

}

/*** Spawn a thread to process this request ***/
worker_threadp = (pthread_t *)malloc(sizeof(pthread_t));
pthread_create(worker_threadp, NULL, process_request,

(void *)workorderp);

pthread_detach(*worker_threadp);
free(worker_threadp);

}
server_comm_shutdown();

}

The worker thread (the client) looks as follows:

void process_request(workorder_t *workorderp)
{

char resp_buf[COMM_BUF_SIZE];
int trans_id;
sscanf(workorderp->req_buf, "%d", &trans_id);

switch(trans_id) {
case WITHDRAW_TRANS:
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withdraw(workorderp->req_buf, resp_buf);
break;

case BALANCE_TRANS:
balance(workorderp->req_buf, resp_buf);

break;
.
.

default:
handle_bad_trans_id(workorderp->req_buf, resp_buf);

}

server_comm_send_response(workorderp->conn, resp_buf);
free(workorderp);

}

There are two points to note in this example. The first concerns the passing
of arguments to a child thread. The standard allows a single argument only.
Encapsulating several arguments in a single structure and passing a pointer to
this structure to the child is a way to program around the restriction. The second
point is a subtle one and concerns the use of malloc. Using static storage for the
workorder does not work: for every newly created thread the workorder would be
overwritten and most threads would work with a corrupted workorder.

The following example, taken from the same source, illustrates the use of
a mutex and a condition variable. Two of the threads created in this example
simply increment a counter and check if it has reached a limit value. In that
case they signal the condition variable. The third thread waits on the condition
variable and prints its value. The main thread will exit when all three threads it
created have “joined”.

#include <pthread.h>
#define TCOUNT 10
#define WATCH_COUNT 12

int count = 0;
pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;
int thread_ids[3] = {0, 1, 2};

main()
{

pthread_t threads[3];

pthread_create((&threads[0], NULL, inc_count, &thread_ids[0]);
pthread_create((&threads[1], NULL, inc_count, &thread_ids[1]);
pthread_create((&threads[2], NULL, watch_count, &thread_ids[2]);
for(i = 0; i < 3; i++)

pthread_join((&threads[i], NULL);
}
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void watch_count(int *idp)
{

pthread_mutex_lock(&count_mutex);
while(count <= WATCH_COUNT) {

pthread_cond_wait(&count_threshold_cv, &count_mutex);
printf("watch: Thread %d, Count is %d\n", *idp, count);

}
pthread_mutex_unlock(&count_mutex);

}

void inc_count(int *idp)
{

int i;
for(i = 0; i < TCOUNT;, i++)

pthread_mutex_lock(&count_mutex);
count++;
printf("inc: Thread %d, count is %d\n", *idp, count);
if(count == WATCH_COUNT)

pthread_cond_signal(&count_threshold_cv);
pthread_mutex_unlock(&count_mutex);

}
}

In this example the reader should note that two threads share identical code and
that only one copy of this code is present in memory. The program counter and
the stack are of course private property of each individual thread.

A brief resume of the POSIX 1003.1c definitions is given in Annex III. For more
details, the reader is referred to the “man pages”.

1.11 Real Time Linux

In October 1996, we learned that a Real-time Linux had been developed at the
New Mexico Institute of Technology and that a beta-version was available for
testing. Since then Barabanov et. al. have released updated versions of RTLinux,
and during this College participants can again experiment with it.

It is based on a different principle from what we have described so far: it uses
the concept of a virtual machine. RTLinux embodies a small, real-time exec-
utive, and standard Linux runs underneath it, as a low priority task. The time
critical parts of the application run directly under RTLinux and are scheduled by
RTLinux itself. “Classical” Linux is run only when there is no real-time task ready
to run.

The real-time executive intercepts the interrupts and therefore it can react
fast. Interrupts which have nothing to do with the real-time tasks are passed
down to Linux. When Linux disables interrupts (with the cli() call), RTLinux
will stop passing interrupts to Linux. But those interrupts remain available to
RTLinux for a later time. Linux is used for the lower priority and slower tasks,
such as file manipulation. But still all facilities of normal Linux are available.
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Communication between a real-time task and an ordinary Linux process is
done via a special IO interface, called a real-time fifo.

A real-time application should be split into small and simple parts, which have
real-time constraints on the one and larger pieces for more complex processing
on the other hand.

The real-time component is written as a dynamically loadable Linux kernel
module. A complete example 1 follows. In this example the real-time part reads
periodically data from an external device and puts it into a real-time fifo. The
Linux process reads the data from the fifo and can process it. In the example, the
data is simply written to stdout.

#define MODULE
#include <linux/module.h>

/* always needed for real-time task */
#include <linux/rt_sched.h>
#include <linux/rt_fifo.h>
RT_TASK mytask;

/* This is the main program */
void mainloop(int fifodesc)
{
int data;

/* in this loop we obtain data from the */
/* device and put it into fifo number 1 */
while (1) {

data = get_data();
rt_fifo_put(fifodesc, (char*)&data, sizeof(data));
/* give up the CPU until next period */
rt_task_wait();
}

}

/* This function is needed in any module */
/* It will be invoked when the module is loaded */
int init_module(void)
{

#define RTfifoDESC 1
RTIME now = rt_get_time();

/* ‘rt_task_init’ associates a function */
/* with the RT_TASK structure and sets parameters: */
/* Priority=4, stack size=3000 bytes, pass 1 to */
/*‘mainloop’ as an argument */

rt_task_init(&mytask, mainloop, RTfifoDESC, 3000, 4);

1The example is taken from: M. Barabanov and V. Yodaiken, Introducing Real-Time Linux, Linux
Journal, February 1997, page 19-23.
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/* Mark ‘mytask’ as periodic */
/* It could be interrupt driven as well */
/* Period is 25000 time units. It starts */
/* 1000 time units from now */

rt_task_make_periodic(&mytask, now+1000, 25000);
return 0;

}

/* Clean-up routine. It is called when the */
/* module is unloaded */
void clean_up(void)
{

/* kill the real-time task */
rt_task_delete(&mytask);
return;

}

The ordinary Linux process executes the following program:

#include <rt_fifo.h>
#include <stdio.h>

#define RTfifoDESC 1
#define BUFSIZE 10
int buf[BUFSIZE];

int main()
{

int i, n;
/* create fifo number 1, size 1000 bytes */
rt_fifo_create(1, 1000);
for (n=0; n<1000; n++) {

/* read data from fifo and print it */
rt_fifo_read(1, (char*)buf, BUFSIZE * sizeof(int));
for (i=0; i<BUFSIZE; i++) {

printf("%d ", buf[i]);
}
printf("\n");

}
/* destroy fifo number 1 */
rt_fifo_destroy(1);
return 0;

}

The latest version of RTLinux can be obtained from
http://luz.nmt.edu/ r̃tlinux and besides the executive, it contains kernel
patches, documentation, examples and installation tips. Recently, shared mem-
ory has been added as a means of communicating between RTLinux and stan-
dard Linux.
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In order to build RTLinux , the Linux kernel must be recompiled. A user can
then run either RTLinux or normal Linux at his choice, if lilo.conf is adjusted
accordingly.

RTLinux is used at various Institutes around the world. At the Humboldt
University in Berlin it is used for data acquisition with an ADC. On a 33 MHz
486 machine, a rate of 3000 samples/s is achieved, using a cheap ADC board
connected to the PC via a serial line. At the Universidad Politecnica di Valencia,
it is used to develop earliest deadline first schedules, including a comprehensive
graphical display. Also NASA is using it, but its web sites are not accessible,
and we were unable to obtain more information. The New Mexico Institute of
Technology itself uses RTLinux in a teaching environment and in the Sunrayce
Project (an embedded control system for a solar car?).

The authors of RTLinux say that they could run a repetitive task at a rate
of once every 150 µseconds on a 133 MHz Pentium. Tasks can be scheduled
within a precision of 10 µseconds.

1.12 RTAI

Paolo Mantegazza and his collaborators at the Dipartimento di Ingegneria Aero-
spaziale of the Politecnico di Milano have done a lot of work to improve RTLinux
and make it more versatile and user-friendly. The result is a completely new
package, RTAI, the Real Time Application Interface. The package is available
from www.aero.polimi.it/projects/rtai. It comes with a large amount of docu-
mentation, including explanations of the internals of RTAI, detailed installation
procedures, a sort of tutorial and several example programs.

RTAI implements a hard realtime system that coexists with Linux. It can run
periodic tasks with a frequency exceeding 10 kHz, with a jitter of ±5 µsec. It can
also run in one-shot mode.

RTAI has a number of interesting features. It can run on a single processor
machine or on a Symmetric Multi Processor PC. In the case of SMP, RTAI can
be confined to a subset of the processors, or even to a single one. One can also
choose to have the realtime interrupts handled by one specific processor, without
affecting the interrupts intended for Linux. Pentium or better processors are
prefered, but RTAI can run quite reasonably on a 486 machine. To get the most
out of it an APIC timer should be available in the processor, besides the usual
8254 timer.

The scheduler functions are also available for the normal Linux processes,
which means that you have at your disposal an uniform API for all your appli-
cations, be they hard, firm or soft realtime. You may use messages, semaphores,
shared memory and time intervals for communication from Linux to Linux, RTAI
to RTAI and also between Linux and RTAI.

When you build RTAI and install it, the realtime application will run in kernel
mode. You can also make your application run in user space, without the need
of being the superuser, once the superuser has installed the necessary kernel
modules for you.
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RTAI in fact presents itself in the form of kernel modules. Three are required
for a basic configuration (comparable to the one provided by RTLinux): the rtai
module (rtai), the scheduler (rtl sched) and the fifo module (rtl fifo). The appli-
cation program is added as a fourth module, for instance: rt process. The latter
must be written by the user. A simple example will be shown below. The fifo
(First In First Out buffer) model is the same as for RTLinux: the realtime task or
tasks write to a fifo and read from another fifo. Processes on the Linux side see
these fifos as normal character devices.

Linux maintains all its features and can thus be used to post-process the
acquired data, display the data and archive them, in case we are speaking of a
data acquisition system. Likewise, Linux can do also the necessary calculations
in the case of a control system. The authors assure that it is possible to run a
remote data acquisition system at a rate of one sample every 100 µsec, complete
with the network, X11 for displaying results, etc, without Linux falling flat. The
authors also suggest that you may use the interrupt trapping mechanism on its
own, without the scheduler and the rest of the RTAI machinery. This would give
you much closer control over the bare hardware, which could be useful for writing
a driver module.

The following example1 shows a simple data acquisition application, running
in periodic mode at a 10 kHz sampling rate:

#define MODULE
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <asm/io.h>
#include <rtai.h>
#include <rtl_sched.h>
#include <math.h>
#include "acquisition_lib.h"

#define STACK_SIZE 2000
#define LOOPS 1000000000

static RT_TASK acquisition_task;

/* This is the function that performs data-acquisition by reading from the
specific board at a frequency of 10000 Hz */

static void fun_acquis(int t)
{

unsigned int loops = LOOPS;
while(loops--){

read_adc();
rt_task_wait_period();

}
}

1taken from the “Beginners Guide” in the RTAI package.
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int init_module(void)
{

RTIME now, tick_period;
int period = 100000;
rt_set_periodic_mode(); /* The periodic mode is set because

we have only one task with a fixed period */
tick_period = start_rt_timer((int)nano2count(period));

/* Conversion of timer period from
nanoseconds to internal count units */

rt_task_init(&acquisition_task,fun_acquis,period,STACK_SIZE, 1, 1, 0);
now = rt_get_time();
rt_task_make_periodic(&acquisition_task,now + tick_period,tick_period);
return 0;

}

void cleanup_module(void)
{

stop_rt_timer();
rt_task_delete(&acquisition_task);

}

The reader should note that the routine read adc() has to be written to satisfy
the requirements of the specific acquisition board used.

1.13 KURT, the Kansas University Real Time Linux

Very recently, Balaji Shrinavasan of the Information and Telecommunications
Technolgy Center (ITTC) of the University of Kansas announced another version
of real-time Linux.

It is called KURT, for Kansas University Real Time Linux.
The author calls it a firm real-time system, somewhere between a hard and a

soft real-time system. It is based on a different principle from RTLinux.
KURTallows the explicit scheduling of real-time events, instead of just pro-

cesses. The event scheduling is done by the system.
Once KURThas been installed, Linux has acquired a second mode of operation.

The two modes are: normal-mode and real-time mode. In the first the system
behaves as normal Linux, but when the kernel is running in real-time mode, it
executes only real-time processes. All system resources are then dedicated to the
real-time tasks. There is a system call that toggles between the two modes.

During the setup phase the schedule of events to be executed in real-time
mode is established and the processes that must run in this mode are marked.
The kernel is then switched to the real-time mode. When all tasks have finished,
the kernel is switched back to normal-mode.

In order to obtain this behaviour, KURTconsists of a Real-Time Framework
which takes care of scheduling any real-time event. When such an event is to
be executed, the real-time framework calls the event handler of the associated
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RTMod (Real-Time Module). The RTMods can be very simple; calling them ac-
cording to a defined schedule is the responsibility of the real-time framework.
This framework provides the system calls that switch the kernel between the two
modes.

The RTMods are kernel modules, which are loaded at runtime. An RTMod
registers itself with the real-time framework. It then provides pointers to func-
tions for the event handler, initialization and clean-up.

When a RTMod must be invoked is defined in the Real-Time Schedule, which
is just a file. This file can be built beforehand. It can be copied entirely into
memory, or it can remain on disk. In the latter case, the timing of events may
become distorted by disk access times.

In addition to the Real-Time Schedule, processes can be run periodically in a
round-robin fashion.

Events can be scheduled with a high time resolution, when another package
has been installed: UTIME, for µsecond time. This package was developed at the
same Institute as KURT. If it is not installed then the time resolution is only the
usual 10 ms.

To install UTIME and/or KURT, the Linux kernel must be recompiled.
A more detailed description and sample programs are available. The reader

should look for them in the directory /usr/local/tarfiles.
The packages together with the necessary Kernel patches can be obtained by

anonymous ftp from the WEB page:
http://www.ittc.ku.edu/kurt/ for KURT and
http://www.ittc.ku.edu/utime/ for UTIME.
http://hegel.ittc.ukans.edu/projects/posix has extensions to the Linux
kernel for better POSIX 1003.1c compatibility.

1.14 Embedded Linux

With portable telephones, handheld and palmtop computers, wireless connec-
tions to Internet, automated home appliances and what not, there is a need for
embedded operating systems. A year or so ago efforts have started to develop
these. Several manufacturers have turned to Linux, having recognised that the
availability of open software bears many advantages, not only to individual de-
velopers, hackers and other maniacs, but also for industry. Linux Journal has a
regular review on this topic and the September 2000 issue concentrates on the
topic. Just to show how active this field is, I cite a few examples from this issue.

• The first example concerns a network of home infromation appliances, with
a central server and wireless connections to clients scattered through the
home. The server obviously runs Linux, but also the clients have an embed-
ded Linux system with a reduced (small footprint) X11. Hooking a keyboard,
a monitor and a mouse to such a client box, you use it as a PC. Hooking
high-fi speakers to it, you listen to music, etc. All the work is done on
the server, and data is passed over the network to and from the clients.
(http://www.adomo.com).
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• Yopi is a handheld computer, 12.5 × 7.5 cm2 with a color display and a 206
MHz StrongArm CPU with 32 Mbyte DRAM. Another 32 Mbyte of flash ROM
stores the Linux system and the core set of applications. The object has no
keyboard and looks like a gameboy.

• There is a commercial realtime system based on Linux on the market:
Linux/RT from TimeSys Corporation (email: info@timesys.com). Linux/RT
is based on the Carnegie Mellon University Linux Resource Kernel, Linux/RK.
There is support for Robust Embedded (RED) Linux system event logging.
Linux/RT also contains RTAI. You run one or the other at any one time.
The product may not yet be very mature.

• Aplio bets on voice transmission over Internet (VoIP). Their boxes plug into a
telephone as simply as an answering machine and the other side of it plugs
into an Ethernet port. The boxes run an embedded Linux kernel. It is really
based on µClinux, a Linux version for microcontrollers without a memory
management unit.

• The firm that produced LynxOS (see section 2) changed name. It now calls
itself LynuxWorks. They released BlueCat, a version of Linux tailored for
embedded applications. There LynxOS real time operating system will be-
come binary compatible with Linux, so that any executable that runs on
Linux can also run on LynxOS.

• Compaq produces iPaq, a handheld computer running Linux. The project to
develop iPaq originated at Digital Equipment Corporation, which has been
bought by Compaq.

• RedHat, in collaboration with Cygnus is working on the development of
EL/IX, a Linux-based operating system for embedded applications.

• Lineo is another firm working on Linux for embedded applications.

• To my shame, I don’t know where µClinux comes from and what it can do.

1.15 Conclusion

We have tried in this course to give a brief overview of the requirements of a real-
time application and we have investigated to what extent Linux can do the job. We
have also mentioned the improvements to Linux which have already been made.
Among these improvements, RTLinux and KURTare of the greatest importance for
the development of real-time applications. Recent developments in this direction
include RTAI and the various projects for embedded Linux.

Also the pthreads package does contain a major part of the improvements
a user would like to see. When a real-time application has been written using
pthreads, the only essential features the operating system has still to provide are
memory locking and real-time scheduling.
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The important thing to remember is that you should analyze your problem very
carefully, before deciding that you can (or cannot) use such or such an operating
system. Hopefully, this course has shown you the points to consider, and where
to search for existing and acceptable solutions.

All depends therefore on your application. If you expect high data rates or
high interrupt rates or if you are otherwise pressed for time constraints, or if
you must meet stringent deadlines, then you will need many of the mechanisms
described and you should have resort to RTLinux or KURTor else you may have
to accept acquiring a true real-time operating system.

This can be the case in physics experiments, in particular in Particle Physics
and in Nuclear Physics.

There will however be situations where you don’t need the heavy guns and
where the standard Linux system will do the job. To give you an idea: Ulrich
Raich runs a real-time application on a 66 MHz 486 machine, concurrently with
X11. The machine sustains a rate of 200 external interrupts per second, in
addition to the 100 Hz clock interrupts. It obviously all depends on what has to
be done as the result of an interrupt.

With prices of PCs and PC-boards going down, there is now a tendency to use
a PC-board also for an embedded system, where before you would have used a
small, dedicated microprocessor. Using a PC-board has the obvious advantage of
portability: you can develop your application on a large configuration, and then
download it to the embedded system.

Many people may be just interested in hooking up existing instruments, for
instance those which are equipped with an interface to the GPIB bus. This sit-
uation arises routinely in chemistry labs, or medical analysis labs, etc. There
is good news for those people as well: Packages for controlling instruments with
GPIB and Camac exist. The first parts of these were released already in 1995. It
has graphical interfaces, uses X11 and is extensible1. And they are free!. Such
packages will certainly deliver the ideal solution for laboratories using standard
equipment.

Device drivers for VME crates and modules are part of some off-the-shelf Linux
distributions (SuSE 8.1 for instance).

To end, I wish you a happy time programming your real-time applications!
Now that many more tools are available than a few years ago, there is a good
chance that this wish comes true.

Enjoy!

1You can ftp these packages from koala.chemie.fu-berlin.de.
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1.16 Annex I – Annotated bibliography

The last four or five years have seen a flood of books on Linux. A number of
them are nothing but collections of HOW-TOs from the Linux Documentation
Project. Others are specific for certain Linux Distributions, e.g. Slackware,
RedHat, Caldera Desktop, Yggdrasil Plug and Play Linux. These books generally
contain one or more CD-ROMs, or the CD-ROM set is sold separately (the Linux
Developers Resource from InfoMagic is an example).

Below is an annotated bibliography of the books I found most useful and which
is limited to those publications which are not specific to a distribution, or just
collections of HOW-TOs. Unfortunately the list has scarcely any item more recent
than 1998.

1. Matt Welsh and Lar Kaufman, Running Linux, Sebastopol,
CA95472, 1995, O’Reilly & Associates, Inc; ISBN 1-56592-100-3
An excellent book, very complete and very readable. Contains extensive in-
dications on how to obtain and install Linux, followed by chapters on UNIX
commands, System Administration, Power Tools (including X11, emacs and
LATEX), Programming, Networking. The annexes contain a wealth of informa-
tion on documentation, ftp-sites, etc. One of the most readable books on
Linux.

2. Marc Ewing, Running Linux Installation Guide and Companion CD-ROM,
O’Reilly & Associates, Inc.; no apparent ISBN.

3. Matt Welsh, Linux Installation Guide, 1995, Pacific Hi-Tech, 3855 South 500
West Suite M, Salt Lake City, Utah 84115,
email: orders@pht.com; No ISBN found.
The book is thin (221 pages) and cheap ($ 12.95). It contains a few extra
chapters on XFree86, TCP/IP, UUCP, e-mail and usenet.

4. Olaf Kirch, Linux Network Administrator’s Guide, Sebastopol CA95472, 1995,
O’Reilly & Associates, Inc; ISBN 1-56592-087-2
Another excellent book on Networking for Linux. Covers not only local net-
works and TCP/IP, but also the use of a serial line to connect to Internet,
and other chapters on NFS, Network Information System, UUCP, e-mail and
News Readers. Essential reading if you want to use your Linux box on the
network.

5. Stefan Strobel and Thomas Uhl, Linux, unleashing the workstation in your
PC, Berlin, 1994, Springer Verlag; ISBN 3-540-58077-8
This book is good to whet the appetite of someone who has no idea of what
Linux is or what it can do. It has many illustrations, in particular of graphics
applications and it mentions many software packages which are not part of
the usual Linux distributions, together with indications on how to obtain
and install the package.
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6. Linux Bible, 1994, San Jose, Yggdrasil Computing. No apparent ISBN.
I know about this book only from the advertisements.

7. Kamram Hussain, Timothy Parker et al., Linux Unleashed, 1996, SAMS Pub-
lishing, ISBN 0-672-30908-4
Approx 1100 pages of text, covering Linux and many tools and applica-
tions: Editing and typesetting (groff and Tex), Graphical User Interfaces,
Linux for programmers (C, C++, Perl, Tcl/Tk, Other languages, Motif, XView,
Smalltalk, Mathematics, Database products), System Administration, Set-
ting up an Internet site and Advanced Programming topics. The book con-
tains a CD-ROM with the Slackware distribution.

8. Randolph Bentson, Inside Linux, a look at Operating System Development,
1996, Seattle, Specialized system Consultants, Inc; ISBN 0-916151-89-1.
This book provides some more insight into the internal workings of operating
systems, with the emphasis being placed on Linux. It is written in general
terms and does not contain code examples.

9. John Purcell (ed.), Linux MAN, the essential manpages for Linux, 1995,
Chesterfield MI 48047, Linux Systems Lab, ISBN 1-885329-07-5.
Indispensable for those who cannot stare at a screen for more than 8 hours
a day, or who like to sit down in a corner to write their programs with pencil
and paper, but want to be sure they use system calls correctly. As the
title says, 1200 pages of “man pages” for Linux, from abort to zmore, and
including system calls, library functions, special files, file formats, games,
system administration and a kernel reference guide.

10. M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R. Magnus, D. Verworner, Linux
Kernel Internals, 1996, Addison Wesley, ISBN 0-201-87741-4.
There is at least a second edition: ISBN 0-201-33143-8, 1998. For the real
sports! A translation of a german book, revealing all the internals of the
Linux kernel, including code examples, definitions of structures, tables, etc.
The book contains a CD-ROM with Slackware and kernel sources. Indis-
pensable if you want to make modifications to the kernel yourself.

11. Alessandro Rubini, Linux Device Drivers, 1998, O’Reilly & Associates, ISBN
1-56592-292-1. This book is a real must for anyone wanting to write or
modify a device driver for Linux. Before publishing this book, the author
had written many articles in the kernel corner of Linux Journal. The book
leads the reader step by step through every corner of a Linux device driver.
No secrets are left unveiled.

Having mentioned Linux Journal, I should add that you can subscribe via one
of the following addresses: e-mail: subs@ssc.com, or on the web:
www.linuxjournal.com, Fax: +1-206 297 7515 and by normal mail: SSC, Spe-
cialized System Consultants, Inc., PO Box 55549, Seattle, WA 98155-0549, USA.
From some thirty pages back in 1994, Linux Journal has grown to around 200
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pages monthly. A good fraction of the pages is nowadays occupied by advertise-
ments, but there remain still some 120 or more pages of interesting reading.

Also note that the last few years a number of periodicals on Linux have seen
the light in languages other than english.

The following books concern real-time and POSIX.1c:

i) Bill O. Gallmeister, POSIX.4: Programming for the Real World, 1995, O’Reilly
& Associates, Inc.; ISBN 1-56592-074-0.
This book gives an in-depth treatment of programming real-time applica-
tions, based on the POSIX.4 standard. Several of the examples in the
present course were taken from this book. In addition to approximately 250
pages of text, the book contains 200 pages of “man pages” and solutions to
exercises.

ii) Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell, Pthreads Pro-
gramming, 1996, O’Reilly & Associates, Inc, ISBN 1-56592-115-1.
Probably the best book on Pthreads published so far, concentrating on the
POSIX 1003.1c standard and written with a good didactical structure.

iii) Bil Lewis, Daniel J. Berg, Threads Primer, A Guide to Multithreaded Program-
ming, 1996, Sunsoft Press (Prentice Hall);
ISBN 0-13-443698-9.
An introduction to threads programming, mainly based on the Solaris im-
plementation of threads, but containing comparisons to POSIX threads and
a full definition of the Applications Programmer’s Interface to POSIX.4a
pthreads.

iv) S. Kleiman, Devang Shah, B. Smaalders, Programming with Threads, 1996,
Sunsoft Press (Prentice Hall; ISBN 0-13-172389-8. This book contains a
more in-depth treatment of threads programming than the previous title. It
is also more pthreads-oriented.

v) Andrew S. Tanenbaum, Modern Operating Systems, 1992, Prentice Hall;
ISBN 0-13-595752-4.
This excellent book is not specifically tuned to real-time, but it provides
a comprehensive introduction to the features of modern operating systems
and their implementation. An older edition of the book contained a complete
listing of the minix operating system. The reader may appreciate that Linux
was born when Linus Torvalds set out to improve minix . . .

vi Last minute addition: O’Reilly is expected to issue a community written book
on Linux realtime. The editor is Phil Daly of realtimelinux.org. The an-
nouncement says: “The volume will be the definite guide to the installation
and use of real time Linux and will feature a bootable CD-ROM to help
“get you going” with this exciting technological development. The text will
be made available under an Open Content License agreement with content
under constant review.”
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Note that there are many more books available, in particular from O’Reilly, which
may be of relevance to topics treated in the present course. Finally, there is a
paper on Real Time Linux:
M. Barabanov and V. Yodaiken, Introducing Real-Time Linux, Linux Journal, Febru-
ary 1997, pages 19-23.

For RTAI, there is a large amount of documentation available from:
http://www.aero.polimi.it/projects/rtai/.

To conclude, some mailing lists which may be useful. To subscribe to any of
the lists, send an email to: missdomo@realtimelinux.org with subscribe ‘list-
name’ in the body of the email.

• realtime — realtime@realtimelinux.org — general discussion.
• api — api@realtimelinux.org — API discussion.
• documentation — documentation@realtimelinux.org
• drivers — drivers@realtimelinux.org — discussion of drivers for use with

Realtime Linux.
• kernel — kernel@realtimelinux.org — Linux kernel modifications for use

with Realtime Linux.
• networking — networking@realtimelinux.org — Realtime networks.
• ports — ports@realtimelinux.org — Porting of RTL/RTAI to other platforms.

• testing — testing@realtimelinux.org — discussion on testing

1.17 Annex II – CD-ROM sets

All the well-known Linux distributions (Caldera, Corel, Debian, RedHat, Slack-
ware, SuSE and I will certainly miss out a few. . . ) now come on two or more
CD-ROMs. Beside the base system they contain in general a wealth of additional,
optional packages and a lot of documentation.
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1.18 Annex III — Resume of POSIX 1003.1c definitions

POSIX.1c/D10 Summary
Disclaimer

Copyright c© (C) 1995 by Sun Microsystems, Inc.
All rights reserved.

This file is a product of SunSoft, Inc. and is provided for unrestricted use
provided that this legend is included on all media and as a part of the soft-
ware program in whole or part. Users may copy, modify or distribute this
file at will.

THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND IN-
CLUDING THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE, OR ARISING FROM A COURSE OF
DEALING, USAGE OR TRADE PRACTICE.

This file is provided with no support and without any obligation on the part
of SunSoft, Inc. to assist in its use, correction, modification or enhance-
ment.

SUNSOFT AND SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY
WITH RESPECT TO THE INFRINGEMENT OF COPYRIGHTS, TRADE SE-
CRETS OR ANY PATENTS BY THIS FILE OR ANY PART THEREOF.

IN NO EVENT WILL SUNSOFT OR SUN MICROSYSTEMS, INC. BE LIABLE
FOR ANY LOST REVENUE OR PROFITS OR OTHER SPECIAL, INDIRECT
AND CONSEQUENTIAL DAMAGES, EVEN IF THEY HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

SunSoft, Inc.
2550 Garcia Avenue
Mountain View, California 94043

Introduction
All source that uses POSIX.1c threads must include the header file.

#include <pthread.h >

In addition, Solaris requires the pre-processor symbol REENTRANT to be defined
in the source code before any C source (including header files).

#define REENTRANT

The POSIX.1c thread library should be the last library specified on the cc(1) com-
mand line.

voyager% cc -D REENTRANT ... -lpthread

Name Space
Each POSIX.1c type is of the form:

pthread[ object] t
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Each POSIX.1c function has the form

pthread[ object] operation[ np| NP]

where object is a type (not required if object is a thread), operation is a type-
specific operation and np (or NP) is used to identify non-portable, implementation
specific functions.

All POSIX.1c functions (except for pthread exit, pthread getspecific and
pthread self ) return zero (0) for success or an errno value if the operation
fails.
There are eight(8) POSIX.1c types, see table 1.1:

Table 1.1: POSIX.1c types

Type Description

pthread attr t Thread attribute
pthread mutexattr t Mutual Exclusion Lock attribute
pthread condattr t Condition variable attribute
pthread mutex t Mutual Exclusion Lock (mutex)
pthread cond t Condition variable (cv)
pthread t Thread ID
pthread once t Once-only execution
pthread key t Thread Specific Data (TSD) key

Feature Test Macros
POSIX.1c consists of a base (or common) component and a number of implementa-
tion optional components The base is the set of required operations to be supplied
by every implementation. The preprocessor symbol ( POSIX THREADS) can be
used to test for the presence of the POSIX.1c base. Additionally, the standards doc-
ument describes a set of six (6) optional components. A pre-processor symbol can
be used to test for the presence of each All of the symbols appear in the table 1.2.

Table 1.2: POSIX.1c Feature Test Macro
Feature Test Macro Description

POSIX THREADS base threads
POSIX THREAD ATTR STACKADDR stack address attribute
POSIX THREAD ATTR STACKSIZE stack size attribute
POSIX THREAD PRIORITY SCHEDULING thread priority scheduling
POSIX THREAD PRIO INHERIT mutex priority inheritance
POSIX THREAD PRIO PROTECT mutex priority ceiling
POSIX THREAD PROCESS SHARED inter-process synchronization
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Macro Dependency
If POSIX THREAD PRIO INHERIT is defined

then POSIX THREAD PRIORITY SCHEDULING is defined.

If POSIX THREAD PRIO PROTECT is defined
then POSIX THREAD PRIORITY SCHEDULING is defined.

If POSIX THREAD PRIORITY SCHEDULING is defined
then POSIX THREADS is defined.

If POSIX THREADS is defined
then POSIX THREAD SAFE FUNCTIONS is defined.

POSIX.1c API
In the following sections, function arguments that are of the form:

type name = NULL

indicate that a value of NULL may safely be used for name.

int pthread atfork( void (*prepare)(void) = NULL,

void (*parent)(void) = NULL,

void (*child)(void) = NULL );

Register functions to be called during fork execution.
errors ENOMEM
notes prepare functions are called in reverse order of registration.

parent and child functions are called in order of registration.

Thread Attributes
All thread attributes are set in an attribute object by a function of the form:

int pthread attr setname( pthread attr t *attr, Type t );

All thread attributes are retrieved from an attribute object by a function of the form:

int pthread attr getname( const pthread attr t *attr, Type *t );

Where name and Type are from the table 1.3.

int pthread attr init( pthread attr t *attr ); Initialize a thread attribute ob-
ject.

errors ENOMEM

int pthread attr destroy( pthread attr t *attr );
Destroy a thread attribute object .
errors none
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Table 1.3: Thread Attributes

Name and Type Feature Test Macro Value(s)

int inheritsched POSIX THREAD PRIORITY SCHEDULING PTHREAD INHERIT SCHED,
PTHREAD EXPLICIT SCHED

int schedpolicy POSIX THREAD PRIORITY SCHEDULING SCHED FIFO,
SCHED RR ,
SCHED OTHER

struct sched param
schedparam POSIX THREADS POSIX.1b, Section 13
int contentionscope POSIX THREAD PRIORITY SCHEDULING PTHREAD SCOPE SYSTEM,

PTHREAD SCOPE PROCESS
size t stacksize POSIX THREAD ATTR STACKSIZE >= PTHREAD STACK MIN
void *stackaddr POSIX THREAD ATTR STACKADDR void *stack
int detachstate POSIX THREADS PTHREAD CREATE DETACHED,

PTHREAD CREATE JOINABLE

Thread Management

int pthread create( pthread t *thread,

const pthread attr t *attr = NULL,

void *(*entry)(void *), void *arg );

Create a new thread of execution.
errors EAGAIN, EINVAL
note Maximum number of PTHREAD THREADS MAX threads per process.

int pthread detach( pthread t thread );
Set the detachstate of the specified thread to PTHREAD CREATE DETACHED.

errors EINVAL, ESRCH

pthread t pthread self( void );
Return the thread ID of the calling thread.
errors none

int pthread equal( pthread t t1, pthread t t2 );
Compare two thread IDs for equality.

errors none

void pthread exit( void *status = NULL );
Terminate the calling thread.

errors none

int pthread join( pthread t thread, void **status = NULL );
Synchronize with the termination of a thread.

errors EINVAL, ESRCH, EDEADLK
note This function is a cancellation point.
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#include <sched.h>

int pthread getschedparam( pthread t thread, int *policy, struct sched param
*param );
Get the scheduling policy and parameters of the specified thread.

control POSIX THREAD PRIORITY SCHEDULING
errors ENOSYS, ESRCH

#include <sched.h>

int pthread setschedparam( pthread t thread, int policy,

const struct sched param *param );

Set the scheduling policy and parameters of the specified thread.
control POSIX THREAD PRIORITY SCHEDULING
errors ENOSYS, EINVAL, ENOTSUP, EPERM, ESRCH
policy { SCHED RR, SCHED FIFO, SCHED OTHER }

Mutex Attributes
All mutex attributes are set in a mutex attribute object by a function of the form:

int pthread mutexattr setname( pthread attr t *attr, Type t );

All mutex attributes are retrieved from a mutex attribute object by a function of the
form:

int pthread mutexattr getname( const pthread attr t *attr, Type *t
);

Where name and Type are from the table 1.4

Table 1.4: Mutex Attributes
Name and Type Feature Test Macro Value(s)

int protocol POSIX THREAD PRIO INHERIT PTHREAD PRIO NONE,
POSIX THREAD PRIO PROTECT PTHREAD PRIO PROTECT,

PTHREAD PRIO INHERIT
int pshared POSIX THREAD PROCESS SHARED PTHREAD PROCESS SHARED,

PTHREAD PROCESS PRIVATE
int prioceiling POSIX THREAD PRIO PROTECT POSIX.1b, Section 13

int pthread mutexattr init( pthread mutexattr t *attr );
Initialize a mutex attribute object.

errors ENOMEM

int pthread mutexattr destroy( pthread mutexattr t *attr );
Destroy a mutex attribute object.

errors EINVAL
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Mutex Usage

int pthread mutex init( pthread mutex t *mutex,
const pthread mutexattr t *attr = NULL );

pthread mutex t mutex = PTHREAD MUTEXINITIALIZER;
Initialize a mutex.

errors EAGAIN, ENOMEM, EPERM, EBUSY, EINVAL

int pthread mutex destroy( pthread mutex t *mutex );
Destroy a mutex.

errors EBUSY, EINVAL

int pthread mutex getprioceiling( const pthread mutex t *mutex,
int *prioceiling );
Get the prioceiling value of the specified mutex.

control POSIX THREAD PRIO PROTECT
errors ENOSYS, EINVAL, EPERM

int pthread mutex setprioceiling( pthread mutex t *mutex, int prioceiling,

int *old ceiling );

Set the prioceiling value and return the old prioceiling value in the specified mutex.
control POSIX THREAD PRIO PROTECT
errors ENOSYS, EINVAL, EPERM

int pthread mutex lock( pthread mutex t *mutex );
Acquire the indicated mutex.

errors EINVAL, EDEADLK

int pthread mutex trylock( pthread mutex t *mutex );
Attempt to acquire the indicated mutex.

errors EINVAL, EBUSY, EINVAL

int pthread mutex unlock( pthread mutex t *mutex );
Release the (previously acquired) mutex.

errors EINVAL, EPERM

Once-only Execution

pthread once t once = PTHREAD ONCE INIT;
Initialize a once control variable.

int pthread once( pthread once t *once control, void (*init routine)(void)
);
Execute init routine once.
errors none specified

Condition Variable Attributes
All condition variable attributes are set in a condition variable attribute object by a
function of the form:

int pthread condattr setname( pthread condattr t *attr, Type t );
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All condition variable attributes are retreived from a condition variable attribute
object by a function of the form:

int pthread condattr getname( const pthread condattr t *attr, Type
*t );

Where name and Type are from the table 1.5

Table 1.5: Condition Variable Attributes
Name and Type Feature Test Macro Value(s)

int pshared POSIX THREAD PROCESS SHARED PTHREAD PROCESS SHARED,
PTHREAD PROCESS PRIVATE

int pthread condattr init( pthread condattr t *attr );
Initialize a condition variable attribute object.

errors ENOMEM

int pthread condattr destroy( pthread condattr t *attr );
Destroy a condition variable attribute object.

errors EINVAL

Condition Variable Usage

int pthread cond init( pthread cond t *cond,

const pthread condattr t *attr = NULL );

pthread cond t cond = PTHREAD CONDINITIALIZER;
Initialize a condition variable.

errors EAGAIN, ENOMEM, EBUSY, EINVAL

int pthread cond destroy( pthread cond t *cond );
Destroy a condition variable.

errors EBUSY, EINVAL

int pthread cond signal( pthread cond t *cond );
Unblock at least one thread currently blocked in the specified condition variable.

errors EINVAL

int pthread cond broadcast( pthread cond t *cond );
Unblock all threads currently blocked on the specified condition variable.

errors EINVAL

int pthread cond wait( pthread cond t *cond, pthread mutex t *mutex );
Block on the specified condition variable.

errors EINVAL
note This function is a cancellation point.
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int pthread cond timedwait( pthread cond t *cond, pthread mutex t *mutex,

const struct timespec *abstime );

Block on the specified condition variable not longer than the specified absolute
time.

errors ETIMEDOUT, EINVAL
note This function is a cancellation point.

Thread Specific Data

int pthread key create( pthread key t *key, void (*destructor)(void *) = NULL
);
Create a thread-specific data key.

errors EAGAIN, ENOMEM
note system limit of PTHREAD KEYS MAX per process.

system limit of PTHREAD DESTRUCTOR ITERATIONS
calls to destructor per thread exit.

int pthread key delete( pthread key t key );
Destroy a thread-specific data key.

errors EINVAL

void *pthread getspecific( pthread key t key );
Return the value bound to the given key for the calling thread.

errors none

int pthread setspecific( pthread key t key, const void *value );
Set the value for the given key in the calling thread.

errors ENOMEM, EINVAL

Signal Management

#include <signal.h>

int pthread sigmask( int how, const sigset t *newmask = NULL,
sigset t *oldmask = NULL );
Examine or change calling threads signal mask.
errors EINVAL

how { SIG BLOCK, SIG UNBLOCK, SIG SETMASK }

#include <signal.h>

int pthread kill( pthread t thread, int signo );
Deliver signal to indicated thread.

errors ESRCH, EINVAL

#include <signal.h>

int sigwait( const sigset t *set, int *sig );
Synchronously accept a signal.

errors EINVAL, EINTR
note This function is a cancellation point.
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Cancellation

int pthread setcancelstate( int state, int *oldstate );
Set the cancellation state for the calling thread.
errors EINVAL
state { PTHREAD CANCEL ENABLE, PTHREAD CANCEL DISABLE }

int pthread setcanceltype( int type, int *oldtype );
Set the cancellation type for the calling thread.
errors EINVAL
type {PTHREAD CANCEL DEFERRED, PTHREAD CANCEL ASYNCHRONOUS }

int pthread cancel( pthread t thread );
Cancel the specified thread.

errors ESRCH
note threads that have been cancelled terminate with a status of PTHREAD CANCELED.

void pthread testcancel( void );
Introduce a cancellation point.

errors none
note This function is a cancellation point.

void pthread cleanup pop( int execute );
Pop the top item from the cancellation stack and optionally execute it.
errors none specified
note push and pop operations must appear at the same lexical level.
execute { 1, 0 }

void pthread cleanup push( void (*routine)(void *), void *arg );
Push an item onto the cancellation stack.
errors none specified
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