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Chapter 1

Internals of a Real-Time operating system

by Anthony James Wetherilt

Abstract

RINOS, a Real-Time kernel developed for this series of colleges is introduced.
Originally written in assembler for the 6809, a C version is now under develop-
ment that will allow porting to other systems. Components of Real-Time systems
are described and illustrated using the C code of this version. The kernel is de-
signed to implement a small memory manager, a task scheduler, software system
calls and installable device drivers. Software tools (compilers, debuggers etc) that
accompany the MC6809 version are presented. On top of the kernel, several
layers of software have been implemented to provide full high level language li-
brary support, including a version of the POSIX 1003.1C (PThreads) standard.
Examples are provided that illustrate the use of the kernel and these libraries.

1.1 Introduction

RINOS (for Real-Time Integrated Operating System) is a full-fledged Real-Time,
multitasking kernel for embedded processors. Originally targeted at the MC6809
and written in the assembly language of that processor, it is now being rewritten
virtually entirely in C with the aim of porting it to other small embedded systems.
The original design criteria were:

(i) Use software-interrupt system calls to an EPROM based kernel for inter-
facing to client programmes rather than be linking in with a library based
version compile time.

(ii) Allow a variable number of client applications to run concurrently in RAM
when the kernel is started.

(iii) Provide a set of functions that would allow the efficient coexistence of, and
communications between, a number of processes.

(iv) Provide a means of installing device drivers that can be changed after the
start of the kernel and without having to re-assemble the system code.
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(v) Provide a means of downloading code to a target board and running the code
under the control of an external debugger.

(vi) Provide external libraries for wrapping the operating system calls and in-
creasing functionality. These libraries are to provide compatibility with
standard implementations on other systems and allow a measure of cross
platform development.

The first four items in this list of design criteria belong completely to the do-
main of the kernel itself, whereas the remaining items are descriptions of exter-
nal requirements and impose minimalist limits on the scope of the kernel design.
Only those items that are essential to the operation of the kernel should be placed
in it and anything that can be handled, as a general, external library function
should be left out. Thus the kernel should contain a complete set of functions
needed for the concurrent operation of real-time, multitasking processes, with
everything else being left for external libraries.

Since C code is generally much easier to understand and considerably more
concise than assembler, where possible, C has been used to illustrate the princi-
ples outlined, although the currently released versions of the kernel are written
entirely in assembler and differ in detail from the some of the descriptions pre-
sented here.

1.2 Components of a multi-tasking kernel

In any operating system, certain requirements must be fulfilled in order to achieve
the desired performance. Multi-tasking and real-time requirements each place
specific demands and constraints on the system that the designer must comply
with. Another important issue concerns the manner in which the target hardware
interacts with the kernel and how this interaction can be generalized to allow
better porting to other hardware platforms.

An operating system is basically a set of functions or system calls that provide
a framework for a unit of code to execute and interact with other such units.
Each process or task runs in a manner that is governed by the operating system
and makes use of the system calls provided by the operating system. Thus when
coding a process, the programmer can employ existing and tested functions with
ease and does not usually need to be concerned with the underlying details of
the platform. A basic set of functions would start with items for the creation and
subsequent destruction of processes.

A process that has no interaction with its hardware platform would be of nei-
ther much interest nor use, so provision should be made for processes to use the
hardware platform through the provision of device drivers, that allow standard-
ized access to, for example, the input and output channels of a serial commu-
nications channel. When one considers the usage of hardware it soon becomes
apparent that a process often has to wait for some event on a particular piece
of hardware for a response with the desired information. For example, the se-
rial communications port inputs a byte roughly once every 2080 � s (at a Baud
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rate of 4800). This means that on the scale of a microprocessor, there is a very
long wait between input bytes, a time that could possibly be put to better use
by processing something else. An efficient manner of achieving this is to arrange
for multiple processes to divide up the work between them so that, for instance,
one process could be monitoring input from the serial port and a second could be
doing calculations or something. Then the operating system must provide mech-
anisms for deciding which process will be running at any one time (scheduling)
and how to switch between processes (context switching). In real-time systems,
a related problem is how rapidly a process can be switched when an interrupt
arrives so that the time used in servicing the interrupt can be minimized. The
concept of a thread (sometimes called a lightweight process) is often used. On
some systems context switching involves considerable work and can take many
processor cycles. Threads are part of a process and a single process can consist
of several threads. Context switching is allowed between the threads which can
be a much simpler affair than a full context switch between separate processes.
Thus threads are often used to improve response times. Under RINOS, threads
and processes are identical.

Once multiple processes are considered, a whole host of secondary issues
must be addressed. Firstly, the idea of synchronization of resources (be they
variables, sections of code, hardware etc) must be considered. A classic example
of the need for synchronization is as follows: Two processes A and B attempt
to write to a serial, byte-oriented printer. A tries to write the word ‘Hello’, and
B ‘Goodbye’. Let us assume that they write slowly so that the operating system
performs several context switches during the time they both write to the printer.
What will be the output? Assuming A starts first it will send the ‘H’ character
maybe followed by an‘e’. If at this stage we get a context switch B will then send
a ‘G’. It is not difficult to imagine the effects of several more context switches pro-
ducing output something like “HeGololdboye” which presumably is the intention
of neither A nor B. What is needed here is a lock that the first process can claim
and once claimed will prevent access to other processes. When the process fin-
ishes its business it releases the lock, which then becomes available for another
process to claim. In this way, access to resources can be synchronised between
processes. A generalization of this principle is the semaphore with the associated
operations Down and Up corresponding to lock and unlock. A second need when
using multiple processes is the ability to communicate information between two
or more processes in a synchronised manner. Several mechanisms for inter pro-
cess communication (IPC) are often implemented in an operating system such
as shared memory, pipes, messages and signals with each mechanism having
its own advantages and disadvantages. Thirdly, some form of control over the
running of processes is also needed. For example, each process should have a
separate priority, which the scheduler uses to determine when the process should
run, and it must be possible to change this priority. It must also be possible to
prevent a process from running or put it to sleep and subsequently wake it up
again.
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Table 1.1: Basic function calls of a multi-tasking operating kernel

1 Create a process
2 Kill a process

Process functions 3 Set process priority
4 Put a process to sleep
5 Wake a sleeping process

Semaphore operations 6 Up semaphore
7 Down semaphore
8 Send message
9 Receive message

10 Signal a process
IPC functions 11 Open a pipe

12 Close a pipe
13 Write to a pipe
14 Read from a pipe

Memory management functions 15 Allocate memory block
16 Deallocate memory block

Finally, an operating system generally exerts control over the allocation of
memory resources to processes. Whilst this is not an essential item of an operat-
ing system it is a common feature especially on larger systems.

These then are a minimal set of function calls that most multi-tasking oper-
ating systems implement in one way or another. Most large systems implement
considerably more than this number. In the following sections, these basic func-
tions are discussed and using the RINOS kernelon the ICTP09 board, methods of
implementing them in C are presented.

1.3 Basic process management mechanisms

1.3.1 The Task Control Block

In order to control a process, an operating system must be aware of a consider-
able amount of information regarding the process, such as its priority, its running
state, any errors etc. Such information is often stored in a structure, commonly
known as a Task Control Block (TCB), with one such TCB existing for each pro-
cess. The exact information recorded in this structure depends on the precise
nature of the operating system but must contain everything needed by the oper-
ating system to control the execution of a process. The TCB structure defined for
RINOS is given in the following table.
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typedef struct _tcb_t {
struct _tcb_t* priority_link; // link to next highest priority task
BYTE state; // State of the task. Possible values:

// READY, NO_TASK, SLEEPING, BLOCKED etc.
registers_t* context; // Thread stack pointer for context

// switch at a system call or hardware
// interrupt

WORD pid; // Unique task identifier
BYTE priority; // Priority level
BYTE base_priority; // Base priority level
BYTE page; // The page of memory where task resides
addr_t code_segment; // Start of code in memory (load point)
addr_t stack_segment; // Top of stack segment
WORD stack_size; // Length of space reserved for stack
WORD parent; // Parent of this task
BYTE exit_status; // Exit status
WORD exit_code; // Return code of the thread
func_t* exit_func; // Pointer to thread’s exit function
void* exit_arg; // Pointer to argument of exit_func
event_t exit_event; // Event for threads waiting for

// termination
WORD timer; // Used to indicate how many clock ticks

// a sleeping task has to wait until
// wakeup

struct _tcb_t* timer_list; // Link to timer list
struct _semaphore_t*

blocking_mutex; // Blocking semaphore
struct _tcb_t* waiting_list; // Link to waiting list of semaphores
struct _semaphore_t*

owned_mutexes; // Link to list of mutexes owned by
// thread

message_t* message_list; // Pointer to the thread’s message queue
addr_t signal_handler; // Pointer to thread’s signal handler
BYTE error; // Last error status
BYTE attributes; // Thread set of attributes

} tcb_t;

On process creation the various fields are initialized to suitable values and
the TCB is inserted in a linked list in order of its requested priority, using the
priority link field to point at the next TCB in the list and a variable located
in the RAM data area as the list head. The final TCB always has this field set to
NULL. This TCB represents a special process called the Null Task that has the
lowest possible priority and can never be put to sleep. This means that although
it is always in a runable state it can only run when no other process is available.
The state field of the TCB is used to indicate whether the process is running,
sleeping, blocked, waiting for a timer to expire, suspended or whether the TCB
is itself unallocated. A unique process identifier (pid) value that can be used to
identify the thread is placed in the pid field. The attribute field is a set of bits
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defining various properties of the created process and the manner in which the
process is allowed to terminate.

1.3.2 Context switching mechanism

Most (if not all) modern microprocessors use a set of registers to hold and manip-
ulate data. The register set and the data stored in each register constitute what is
known as the context. During an interrupt, the processor usually saves at least
a subset of the register set by pushing the contents of the registers onto the hard-
ware stack in RAM and pulling the same set off the stack as the interrupt exits.
The interrupt routine optionally can push (and subsequently pull) using special
commands available for this purpose, the remaining registers on to the stack to
ensure that the complete context is saved as needed. However, most interrupt
routines will only save only the registers that are actually used by the routine for
reasons of efficiency. Many processors have an instruction for a software inter-
rupt (SWI) that performs this pushing programmatically. This technique provides
a convenient mechanism for starting, stopping and swapping processes. When
the kernel receives a request to create a new process, it copies the supplied data
(requested priority, attribute, requested stack size etc) into the TCB and initial-
izes most of the remaining fields. It then allocates a stack (or uses the stack
supplied), copies the default values to the stack for each register in the context
and saves a pointer to the context in the context field of the TCB. When the
process is first run, the context in its entirety is pulled from the stack, the stack
pointer adjusted and execution continued from the address placed in the regis-
ter acting as the processor program-counter register (PCR). Conversely, when a
context switch occurs, initiated either by a hardware interrupt or system call, the
reverse of this process happens. The context of the running process (including
the current PCR) is pushed onto its stack and a pointer to this context stored in
the TCB. The kernel then decides which process will run next, obtains the context
pointer from that process’ TCB, pulls the saved context from the stack and starts
execution at the address placed in the PCR. Thus a neat and effective mechanism
for context switching is available using the processors’ native behaviour during
either a hardware or software interrupt.

1.3.3 Process scheduling

At the very heart of a kernel is the process scheduler that regulates at any instant
which process is running and for how long the process will continue to run. Two
scheduling policies commonly in use are discussed here:

(i) Round robin scheduling. At its very simplest, round robin scheduling di-
vides time into a series of fixed intervals using the system clock interrupt
and runs a process for the duration of the interval or time-slice. At the end
of the interval a context switch occurs and another process runs for the next
time slice. In this manner all processes are given equal shares of processor
time with none having priority over another and all yielding at the end of
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its time slice. It is also possible for a process to yield voluntarily before its
allotted time turning over the processor to the next one in line. Although
simple to implement, round robin scheduling has very poor time response
and cannot be used for real-time systems.

(ii) Priority based scheduling. In this scheme, each process is awarded a unique
priority and the scheduler checks the processes in order of highest priority.
If the highest priority process can run it is awarded processor time and will
run until either complete or a higher priority process becomes runnable. If
the process cannot run (ie it is blocked for some reason) the next process
in the priority list is examined and so on until a runnable process can be
found. There must always be at least one process that can be executed
in this scheme and a special process called the Null Task that cannot be
blocked always has be available. As its name suggests, the Null Task does
nothing except wait for a higher priority process to preempt it. This type
of scheduling is ideal for real-time systems as response times for context
switching can be minimized. RINOS uses priority based scheduling.

In practice, neither extreme is totally suitable and compromise solutions are
often used. One such solution is the incorporation of priority into round robin
scheduling. In this scheme, processes are divided into priority bands and within
each priority band round robin scheduling applied. In this way a higher priority
processes get more of the processor time but no one process can hog the proces-
sor entirely.

1.3.4 Interrupts

The processor can be interrupted asynchronously (i.e. at any time) by a hardware
event and, as previously described, the processor will respond by saving the cur-
rent context on the stack and jumping to a handler for the interrupt. The time it
takes to respond to the interrupt is called the interrupt service latency and is
a measure of the quality of a real-time system. In some systems, not only does a
jump to an interrupt handler occur, but a lengthy interrogation of the hardware
and filtering through several software layers can also arise. In such cases the
latency can easily approach millisecond rather than microsecond times, which
may be acceptable for some soft real-time applications but is unlikely to suit the
more severe restrictions of hard real-time systems. Interrupts can be disabled for
short periods within the kernel, but it is not advisable for client applications to
interfere with interrupt operation as this can have a severe effect on latency.

1.3.5 The system clock

In systems where round robin scheduling is used, a system clock is essential for
the proper scheduling of all the processes. In priority-based systems, a clock is
often found for timing purposes. In most cases the clock interrupts the system
at a frequency that is a trade off between to opposing requirements. At higher
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clock frequencies, time resolution increases, and timing events have greater pre-
cision. On the other hand, the higher the frequency, the longer the time spent
by the processor servicing the clock interrupt, the less time available for client
programmes, and the longer the potential latency for other interrupts. RINOS
sets the clock chip on the ICTP09 board to interrupt once every 10 ms, which is
adjudged suitable for this application. The RINOS kernel uses the clock interrupt
to time process sleeping periods. When a process is put to sleep, the state field in
the TCB has the SLEEPING bit set and the sleeping period (in units of the clock
period) is placed in the timer field. On each subsequent clock interrupt, the
timer field is decremented until zero upon which the state field has its SLEEPING
bit cleared, and the process can again run (assuming the process is not blocked
in any other fashion).

1.3.6 The dispatcher

The system dispatcher acts as the interface between the client programmes and
the kernel. In many operating systems, values are placed in certain registers and
the software interrupt command issued. This causes a jump to the SWI handler
where the command number is retrieved from its register and the address of the
appropriate function obtained from a jump table. This function is then called
with the current context as a function argument. The following code fragment
illustrates how RINOS performs these actions.

#pragma _interrupt_
void system_call(void)
/*
* Entrance point for all kernel functions
* The context is made local to avoid reentrancy problems
* when the hardware interrupts a system call
* Note that interrupts are assumed masked by the processor on
* entrance to this function
*/

{
registers_t* context;
WORD function_call;
BYTE error_no;

// Place current stack frame in the context variable to allow direct
// accessing of registers

context = get_frame();

// Get function call number from caller and check whether it is a
// device driver call

if (!((function_call = context->CALLER_REG) & IS_DRIVER)){
// Is a normal function call. Check nested interrupt level
if ((intrpt_level++ == 0)){
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// We have not interrupted the system so we replace
// the system stack
SET_SYSTEMSTACK();
// If the kernel is running, we save the current context
// in the current thread tcb
if (kernel_running) current_thread->context = context;

}

// It is now safe to reenable interrupts
EXIT_CRITICAL();

// Check that system call is valid
if (function_call < MAXSYSTEMCALLS) {

// Dispatch function call using jump table
error_no = dispatch_table[function_call](context);

}
else {

error_no = ERR_BADCALL;
}

}
else {

// Dispatch a device driver call
error_no = device_driver(context);

}
if (error_no){

// An error occured, set the error status in the current thread
// and indicate in the flags register
current_thread->error = error_no;
context->FLAG_REG |= SET_ERROR;
// leaving the function, first decrement interrupt level
intrpt_level--;
// This function does not return here!
run_thread(context);

}
// After completing the function call we return back to the system
// via a context switch. We first check the interrupt level
// to determine whether or not we should perform the switch.
// If after decrementing, the interrupt level is > 0 we do
// NOT perform the context switch but return to this function
// and pop the context directly from the system stack
switch_context();

}

Several points are worth noting here.

(i) The pragma directive informs the compiler that this is an interrupt handler
and that the entire context is to be pulled from the stack on exit from the
function. This is a (not even) semi-standard convention that GCC deprecates
but other compilers often support. GCC can also be made to support it with
a bit of effort.
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(ii) Since hardware interrupts can occur at any time and the Null Task in partic-
ular has little stack reserved to hold multiple copies of the context, a design
decision was to swap to a special, safe stack during system calls. The in-
trpt level variable is a flag initialized to 0 that indicates whether or not
the system stack is currently being used. If the flag is 0, it is safe to switch
to the system stack, otherwise the stack is in use and it is not appropriate
to make the change. Thus when a hardware interrupt arrives during either
another hardware interrupt or a while a system call is being processed, this
value is above 0 and the stack is not switched. The flag is decremented on
exit from the handler and the system stack replaced if the flag is found to
be 0.

(iii) The device driver interface shares the same entry point as normal function
calls but since driver calls occur in the client space, it is not desirable to
switch stacks.

(iv) If an error occurs and for some reason the system call cannot be completed,
the error field in the TCB of the current process is set with the error
number and a bit set in the Condition or Flags register of the current con-
text. The setting of this bit indicates to the client programme that an error
occurred. Further information can usually be obtained from the operating
system. RINOS for example provides the OSGetLastError call that returns
the value of the error field from the current TCB.

1.4 Semaphores and events

1.4.1 Semaphores and mutexes

Semaphores are programming objects designed to act as locks that regulate ac-
cess to shared resources. Typically, they contain a variable that must be set and
tested in order to gain access. Under RINOS the variable is decremented and
compared with zero. If the value (after decrementing) is negative, access is re-
fused and the process requesting the semaphore is blocked. On the other hand,
if the value is zero or positive, access to the resource is granted. The key point
here is that the two operations of test and set must be performed without any
interruption whatsoever. The operations of test and set are said to be atomic.
The reason for this can be seen from the following example. Two processes A
and B compete for access to the same variable previously initialized to zero. A
will load the current value of the variable, increment it by one and store the new
value back in its location. B will similarly try to decrement the variable. The two
operations should result in the value of the variable remaining unchanged, that
is, at zero. A loads the value of the variable and let us assume a context switch
occurs just at that moment before A has a chance to increment the value. B now
runs and loads the value and decrements it to minus one, which is stored. A
now resumes running and increments the value in its register to plus one, which
it stores. As a result of the two operations the final value is not the expected
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value of zero but one. Moreover it is easy to see that the final value depends on
when the interruption (in this case a context switch) occurs. The only way to
safeguard the integrity of the variable is to insist that once either A or B start
their action, a context switch will not occur and the action will run to completion.
This is obviously an action that must be managed by the kernel itself as in a well
run system a client process should not be able to interfere with interrupts or the
internals of the kernel in any way. Thus operations on semaphores are almost
always handled as kernel functions.

Several types of semaphore are in common usage. The most general of these,
called the Counting Semaphore (or more usually just semaphore), allows sema-
phore values up to a maximum. Two operations exist: Down and Up. Down on a
semaphore decrements the semaphore variable and tests whether the new value
is zero or negative. If not the process continues, otherwise the process blocks.
The Up operation on a semaphore increments the semaphore value. If the value
was zero or negative before the increment, one of the processes currently being
blocked by the semaphore is made runnable, and when allowed by the scheduler
will be able to access the resource guarded by the semaphore. A special case
of the semaphore called the Binary Semaphore or more often the Mutex (for
MUTually EXclusive) can only take values up to one and blocks for all other
values.

The structures used by RINOS to represent semaphores and mutexes are as
follows:

typedef struct _semaphore_t{
SWORD Value; // The value of the semaphore
struct _tcb_t* WaitingList; // Pointer to the first thread

// in a linked list of threads
// waiting on this semaphore

struct _tcb_t* Owner; // Current semaphore owner
struct _semaphore_t* OwnerList; // Link to list of owner’s

// semaphores
} semaphore_t;
typedef semaphore_t mutex_t;

Here the semaphore value is given in the Value field. When a process blocks
during a Down operation, a pointer to the TCB of the process is linked to a list
with its head in the WaitingList field. The waiting list field of the TCB points
at subsequent items of this list. In keeping with the real-time nature of the kernel
RINOS orders this list in order of priority so that the list head in the semaphore
points directly at the highest priority process and that this process will be the
first to become unblocked as the result of an Up operation. The remaining fields
are to ensure that the semaphore will become unblocked if the process owning
the semaphore is killed without first releasing it.

1.4.2 Deadlocks and mutexes

While the careful use of semaphores can solve many problems associated with
the synchronization of shared resources, there is a subtlety that the user should
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be aware of. This concerns the interaction of the blocking property of semaphores
and the priorities of the processes using the semaphore, and can lead to deadlock
in real-time systems. Consider the following situation: A low priority process, L,
grabs a mutex and intends to use the resource it guards. At a later time, a high
priority process, H, is created and immediately attempts a Down on the mutex,
and blocks as a result. The aim of real-time systems is to provide as rapid a
response as possible to high priority processes, but here we have a situation
where the high priority process H is blocked waiting for the low priority process,
L, to finish its work with the shared resource and then release the mutex. This
is known as bounded priority inversion and has the effect of increasing the
latency of high priority processes. A much more serious situation occurs if a
third, medium priority process, M, starts to run immediately following process
L. Process H must still wait for L to finish with the mutex, but now since M
is the highest priority, runnable process, L never gets to run and H is blocked
indefinely. This condition, referred to as unbounded priority inversion, realized
a degree of notoriety when it occurred during the 1997 Mars Pathfinder mission,
resulting in the onboard computer periodically resetting itself with considerable
loss of data. Two solutions are commonly implemented:

(i) The Priority Inheritance protocol When a process locks a mutex, the kernel
boosts its priority to a level equal to that of the highest priority process
waiting for the mutex and restores the original priority when the process
finally releases the mutex. This has the effect of allowing the process owning
the mutex to inherit the priority of the highest process and should thus
prevent unbounded priority inversion. Since the priority boost is applied
automatically by the kernel, it is transparent to the client and hence requires
little extra programming. Theoretically, it appears that priority inheritance
does not give full protection against deadlock and is still the subject of some
controversy [ref]. Nonetheless, almost all real-time systems offer the priority
inheritance protocal as a means of resolving priority inversion.

(ii) The Priority Ceiling protocol In this protocol, each mutex is initialised to a
priority level or ceiling. Any process successfully locking the mutex has its
priority boosted to the ceiling level. As long as the priority ceiling is greater
than the priority of any process that may attempt to lock the mutex, this
scheme works well, but it requires some (potentially considerable) analysis
by the programmer to determine the correct level for the priority ceiling.
Theoretically, it does appear to prevent deadlock, but at the expense of an
additional requirement that a process can only lock a mutex if its priority
is greater than the priority ceilings of all other locked mutexes. This protocol
always requires two priority boosts each time a process attempts to acquire
a mutex and is thus often considered inefficient. The full version of the
protocol is not implemented by any commercial system, but a reduced ver-
sion (priority ceiling protocol emulation) in which the additional scheduling
constraint is relaxed is common (it is a specification of POSIX 1003.1c).
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RINOS implements the priority inheritance protocol. The Down operation is
coded as in the following:

BYTE DownSemaphore(tcb_t* pThread,
semaphore_t* pSemaphore,
BOOL IsMutex)

/*
Perform the DOWN operation on a semaphore or mutex

*/
{

if (pSemaphore == NULL) return ERR_BADSEMA;
// Ensure no possible interruption
ENTER_CRITICAL();
if (pSemaphore->Value-- > 0) {
// Semaphore is available, claim it
if (IsMutex) {
pSemaphore->Owner = pThread;
// Attach to new thread’s list of owned mutexes
pSemaphore->OwnerList = pThread->owned_mutexes;
pThread->owned_mutexes = pSemaphore;

}
}
else {

// Semaphore is claimed by another thread, we block
// First check priorities of current owner and calling thread
if (pThread->priority >= pSemaphore->Owner->priority && IsMutex) {
// Need to apply a priority boost to the current owner
// We first remove the thread from the priority list
delete_thread_priority(pSemaphore->Owner);

//... and then reinsert at the new priority value
set_priority(pSemaphore->Owner, pThread->priority + 1, FALSE);

}
// We now insert the calling thread into the
// semaphore’s waiting list
priority_insert(pThread, pSemaphore);

// Next set the thread’s blocked semaphore
// to point at this semaphore
if (pSemaphore->IsMutex) pThread->blocking_mutex = pSemaphore;
// Finally set calling thread to BLOCKED state
pThread->state |= BLOCKED;

}
// It is now safe to restore interrupts
EXIT_CRITICAL();
return ERR_OK;

}

In this function, the semaphore value is tested and decremented and if avail-
able, marked as being owned by the calling process. Otherwise, the semaphore’s

Seventh College on Microprocessor-Based Real-Time Systems in Physics
Trieste, 28 October - 22 November, 2002

14



Internals of a Real-Time operating system Wetherilt, A.J.

current owner has its priority boosted (if it is lower than the priority of the calling
process). The original priority is stored in the base priority field of the owner’s
TCB so that it can be restored when required at a later time. If the process is
blocked a pointer to the mutex is copied to the blocking mutex field of the TCB
and the state field marked as BLOCKED. All this code is executed with interrupts
masked, to fulfill the requirement of atomicity.

1.4.3 Events

A related concept to a semaphore is that of the event. An event has the property
of blocking when any process performs a Down operation on it. The Up operation
on an event unblocks all processes waiting for the event. An event therefore acts
as a sort of group trigger and is often used to react to a hardware signal such as
a button push. RInos implements events with the structure:

typedef struct _event_t {
SWORD Value;
struct _tcb_t* WaitingList;

} event_t

Here the value field is either 1 indicating that the event has occurred (is
signaled) or 0 indicating that it has not (is pending). As for semaphores, the
WaitingList field is a linked list to the processes waiting for the event. Unlike
semaphores, events require an extra operation to initialize or reset them following
a signal.

1.4.4 Joining a process

It is sometimes needed to wait for a child process to finish a particular action
before the parent resumes operation. In the jargon, the child process is said to be
joined. Most POSIX 1003.1c compatible systems provide this facility. RINOS im-
plements this feature using an event, exit event, in the TCB of each process. If
a process wants to join a child process, it calls the OSJoin system call, which per-
forms the Down operation on the event of the appropriate process thus blocking
the calling process. The event becomes signaled as the process terminates.

1.5 Messages and pipes

1.5.1 Messages

Message queues are familiar to all those who programme common graphical win-
dowing systems and provide a convenient method of passing information between
processes. Messages are basically software structures that can contain a pointer
to a data block and other optional information. They are sent from one process
to the mailbox of another, where they are queued and read as desired. Under
RINOS messages are implemented as follows:
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typedef struct _msgtag {
WORD sender;
struct _msgtag* next;
void* data;
WORD value;
event_t event;
BOOL wait;
BOOL in_use;

} message_t;

The sender field is the pid of the process that sent the message. An optional
pointer to a block of data can be sent using the data field and also a WORD value.
When sending the message, the calling process links the message structure into
a list with its head in the message list field of the receiver’s TCB where it can be
retrieved. If the receiving process is blocked awaiting a message, it will become
unblocked and will return with the values contained in the data and value fields
placed in the processes’ context. Sometimes, it is required that the sending pro-
cess waits for the message to be read. This is achieved by the sender setting the
event in the event field. The receiver will acknowledge receipt by signaling the
event when it actually retrieves the message from its mailbox.

1.5.2 Pipes

Pipes are basically a first in, first out queue (FIFO) that has data written at one
end and read at the other, together with a set of semaphores for regulating ac-
cess. Data can be of specified width (ie byte, integer, float etc) that must typically
be specified when first opening the pipe. RINOS implements pipes using the
following structure:

typedef struct {
void* buffer;
short width;
void* front;
void* rear;
semaphore_t full;
semaphore_t empty;
mutex_t lock;

} pipe_t;

Here buffer is a pointer to a block of memory allocated to form the circular
FIFO. It is organised as an array of 32 objects of size given by width. Two other
pointers, front and rear point to the front and rear of the pipe and are adjusted
as data is written to or read from the pipe. Two counting semaphores full, and
empty initialized to 32 and 0 respectively are used to keep track of how data are
inserted and removed from the FIFO. Finally, since the pipe itself represents a
shared resource, a mutex lock is available for regulating access to the pipe.

The pipe works in the following manner:
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Writing to the pipe

Writing proceeds as follows:

(i) A Down is performed on the full semaphore. This semaphore will block
when there are 32 items already in the buffer i.e. the buffer is full.

(ii) Prior to accessing the pipe resources, the lock mutex must be obtained to
prevent multiple accesses. Again this will block while another process is
using the pipe.

(iii) The datum is written in the buffer at the position pointed to by front and
the pointer updated by the set data width. If this update would bring the
pointer past the end of the buffer, the pointer is reset to the start of the
buffer.

(iv) The empty semaphore now has an Up operation performed on it to indicate
that another datum has been placed in the buffer.

(v) Finally, the lock mutex is released since access to the pipe has finished.

Reading from the pipe

Reading from the pipe proceeds in the reverse sequence:

(i) A Down is performed on the empty semaphore. This operation will block
when there are no items in the buffer i.e. it is empty.

(ii) The lock mutex is locked by performing a Down on it, to prevent multiple
accesses.

(iii) The datum pointed to by the end pointer is read and the pointer updated.
Again if this action would take the pointer past the end of the buffer, it is
reset to the beginning.

(iv) An Up is performed on the full semaphore to indicate that there is one
more item in the buffer.

(v) The lock mutex is released since access to the pipe has finished.

1.6 Memory management

RINOS uses a very simple memory management scheme. The first 256 bytes
of each RAM area form a table used to represent allocation state of blocks of
memory. Since the ICTP09 board has 32k of continuous memory, each byte in the
table represents a block of 128 bytes of RAM. A value of 0xff in an entry indicates
that the block is free and a value of 0xef indicates that the item is the last of
an allocated block. Otherwise, the value is the pid of the process owning the
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Table 1.2: Basic device driver functions

No. Function
1 Read single byte from channel 1
2 Write single byte to channel 1
3 Read string from channel 1
4 Write string to channel 1
5 Input/Output control (IOCTL)
6 Initialise

11 Read single byte from channel 2
12 Write single byte to channel 2
13 Read string from channel 2
14 Write string to channel 2

block (0 for the kernel itself). When a request to allocate memory is received, the
number of 128 byte units required is calculated and the memory table searched
for a block of contiguous free memory sufficient to satisfy the request. If such a
block is found, the table entries are marked as belonging to the process and the
last entry in the block marked with 0xef. A pointer to the start of the block in
memory is returned to the client programme.

When memory is freed, the start of the block in the memory table is found and
all entries up to and including the final entry marked with 0xef are marked as
free.

This simple scheme is sufficient for small, embedded systems without memory
management hardware.

1.7 Device drivers

Device drivers are usually supplied because of the difficulty and specialization re-
quired in addressing native hardware directly. A device driver should supply a set
of well-defined functions to the client process and simplify the process of using
the hardware. Device drivers under RINOS are fairly simple but have many of the
features of more complex systems. In their design, it was assumed that access
to each device was through streams that supported either single, byte oriented
accesses or multiple byte orientated accesses. Thus the serial communications
output port can be addressed either as a succession of calls to the driver or a sin-
gle call with a null terminated string. For generality, each driver was assumed to
have two channels; when this was not true, the second channel was left unused.
Similarly, a driver was assumed to have both input and output channels.

The device driver functions are presented in the following table:

Since RINOS is a real-time kernel, all device drivers have been written to use
interrupts, and an important part of each driver is the interrupt handler. Drivers
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exist for two serial channels (read/write), a parallel port connected to a 16 char-
acter LCD display (write only) and some input buttons (read only), two channels of
AD conversion (read only) and two channels of DA conversion (write only). Future
developments should probably include drivers for Ethernet connectivity.

1.8 Software tools and libraries

In order to use the ICTP09 board and RINOS kernel effectively, a number of other
tools have had to be developed. This section presents an overview of these tools
and the reader is referred to the 6809 Manual [ref] for further details.

1.8.1 The command interpreter shell

In order to interact with the kernel, code must first be placed in the RAM of the
target board. A small and simple command interpreter shell has been written
that allows commands to be input over a serial line from a PC terminal. The shell
is loaded following initialistion of the kernel as a child process and intercepts the
input stream to the serial driver. If the ESC (0x1b) character is detected in the
stream, the shell is invoked and the user can enter an interactive mode in which
code can be downloaded to the board, run and debugged using a set of basic
commands. Remote debugging is possible using these commands.

1.8.2 The gcc compiler

A complete set of compilation and dubugging tools have been provided mainly
through the efforts of Rinus Verkerk. The GNU C compiler has been adapted to
produce position independent M6809 assembler code, which together with a suit-
able assembler and linker found produces relocatable code in ELF format, linking
together the standard C libraries, and a startup module crt0, that performs ini-
tialisation and setting up command line arguments.

Embedded within the ELF output file is sufficient information for high level
debugging of the code.

The gcc compiler can be invoked using the following command

cc09 [-Wall] [-v] [-o output] prog.c

Here, prog.c is the input file(s) and the first two options inform the compiler
that you want to view any warnings generated and to see all steps involved. The
third option allows the name of the output file to be changed (in this case to
output).

1.8.3 The Java translator

Carlos Kavka has put together a system for running java programmes on the
ICTP09 board. The j09 script first calls the standard Java compiler provide with
the JDK from Sun Microsystems and then translates the resulting Java byte
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code into 6809 assembler code. The assembler code is passed through the same
assembler programme used by gcc and finally linked together with the startup
module crt0 to produce an ELF executable file.

The command:

j09 Test.java

will cause the java file Test.java to be compiled, assembled and linked to pro-
duce the executable file, Test, which can be run on the ICTP09 board.

1.8.4 The XGUM symbolic debugger

A symbolic debugger running under XWindows has been developed to ease the
process of debugging the ICTP09 board. It is invoked by:

xgum

XGUM consists of a client front end that connects via a pipe to a server spe-
cific to the requirements of the debugging session. Presently two servers are
available for debugging the ICTP09 board directly and an ICTP09 simulator that
allows debugging on the pc itself. Both servers load the RINOS kernel. XGUM is
independent of the source code language and can handle both C and Java.

1.9 Libraries available under RINOS

Libraries are available for provision of a number of functions under RINOS. First,
support for the C language is made available via the libc.a library. This library
contains the standard functions such as printf, putchar, malloc etc demanded by
the ANSI C standard. The

library is automatically linked in as part of the compilation chain and the
functions can be referenced by use of the standard headers

<stdio.h>, <stdlib.h>, <string.h> etc.

The second group of library routines generally consists of wrapper functions
for RINOS system calls and allow the user basic level access to the kernel and de-
vice driver services. These routines are found in libcreal.a and are automatically
linked in as required. The routines are accessed by inclusion of the ¡syscalls.h¿
header file which also includes all basic information on structures and types
defined and used by functions making system calls. This header is also automat-
ically called by the standard header files (stdio.h) etc and only if none of these
headers are included is it necessary explicitly to declare ¡syscalls.h¿ in a file. A
second library, libIOreal.a performs a similar function by bridging the low level
I/O services of the kernel to C level functions. These functions are in turn used
by the standard I/O functions of the C library. If low level output is required, the
header file � ICTP IO.h � should be included.
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The two members of the third group of library functions, libgcc.a and lib-
math09.a, are used by the compiler during code generation. libgcc.a is used by
the compiler to perform integer arithmetic operations and to convert between the
various integer types. libmath09 performs a similar function with floating point
functions. Neither library should be called explicitly in a user-defined function.

Finally, an implementation of the POSIX 1003.1c (pthreads) library is made
available to simplify the mechanics of preparing multi-threaded programmes. The
implementation is reasonably complete within the confines of the 8 bit micropro-
cessor platform and its use is encouraged as the functions for thread creation
and mutex usage in particular offer greatly simplified functionality over the na-
tive RINOS functions. As extensions to this library, the following functions allow
simple manipulation of (counting) semaphores and events

int event_init(event_t *event, const eventattr_t *attr)
int event_destroy(event_t *event)
int event_signal(event_t *event
int event_wait(event_t *event)
int semaphore_down(semaphore_t *sema)
int semaphore_init(semaphore_t *sema, const semaphoreattr_t *attr)
int semaphore_up(semaphore_t *sema)
int semaphore_destroy(semaphore *sema)
int semaphore_init(semaphore *sema, const semaphoreattr_t *attr)
int semaphore_destroy(semaphore_t *sema)

All the definitions and types used in these function definitions can be found
in the header file � pthread.h � which should be included when any reference is
made to any function member of the library.

1.9.1 Programming examples

Introduction

Although programming in C under RINOS is quite straightforward, there are sev-
eral points that should be noted. Code is presented that illustrate some of these
points and demonstrate the use of several of the available libraries.

Creating threads and mutexes

This example uses the pthreads library to create a child thread and a single
mutex. First a thread attribute is created and the desired priority of 20 is set
using a variable of type struct sched param.

Before the child is created, a static mutex is claimed using the down user sem()
function. This is actually a RINOS wrapper function rather than the pthreads
equivalent showing that the two libraries can be mixed at will. The child thread
is then created using the pthread create() function. Finally the mutex is released
and the parent exits, at which point the child gains the mutex and is able to run.
Note the use of the static initialiser for the mutex. Static initialisation is a con-
venvient method for all types of semaphore creation. In this example the thread
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owning the mutex will experience a priority boost if its priority is lower than
any thread waiting on the mutex. Please refer to the sycalls.h and pthread.h
header files for further semaphore types.

#include <pthread.h>
// Child prototype
void* child_thread(void *arg);
// Static mutex construction
struct semaphore mutex = {MUTEX | SMBOOST ,1, 0,0,0};
int main()
{

pthread_t child ;
pthread_attr_t attr;
// Child will have high priority, default is 10
struct sched_param priority = {20};
pthread_attr_init(&attr);
// Initialise thread attribute
// Set priority of thread
pthread_attr_setschedparam(&attr,&priority);
// Get semaphore before anyone else can
down_user_sem(&mutex);
pthread_create(&child, &attr, child_thread, NULL);
// Finally release mutex
up_user_sem(&mutex);
return NULL;

}
void* child_thread(void *arg)
{

// Try to get mutex
down_user_sem(&mutex);
return NULL;

}

1.9.2 Mutex, semaphore and event handling

The previous example showed how a mutex can be created using a static ini-
tialiser. The base type for all three semaphore types is the semaphore struc-
ture defined in syscalls.h which is redefined in pthread.h as pthread mutex t,
semaphore t and event t for mutexes, counting semaphores and events respec-
tively. Under pthreads, a mutex would defined as:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

This would initialise the mutex to a value of 1, and allow priority boost-
ing by default. The priority boosting uses the prority inheritance protocol and
POSIX THREAD PRIO PROTECT is defined by the implementation. The func-
tions

int pthread_mutex_lock(pthread_mutex_t *mutex)
int pthread_mutex_unlock(pthread_mutex_t *mutex)
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are defined as operations on mutexes under pthreads which perform the down
and up operations respectively.

Events and semaphores do not form part of the standard pthreads implemen-
tation. Extension functions have been added to allow use of the objects in a
manner consistent with mutexes. Static initialisation of all semaphore types is
similar and follows the outline of the following fragment in which a semaphore
and several types of event are defined:

#include <pthread.h>// For function prototypes
#define INITIAL_VALUE 10
semaphore_t count = {COUNT,INITIAL_VALUE,0,0,0}
event_t pevent = {EVENT,0}; // Persistent event
event_t revent = {REVENT,0}; // Resetable event
event_t sevent = {SEVENT,0; // Single event, freed

// after signal
main()
{

// Create a child
....
event_wait(&revent); // Wait for an event to occur

}

void* child(void* artg)
/*
Child thread created by main

*/
{
....
// Signal any threads waiting for the event
event_signal(&revent)

}

The same frament using basic RINOS functions would be:

#include <syscalls.h>// For function prototypes
#define INITIAL_VALUE 10
semaphore count = {COUNT,INITIAL_VALUE,0,0,0}
semaphore pevent = {EVENT,0}; // Persistent event
semaphore revent = {REVENT,0}; // Resetable event
semaphore sevent = {SEVENT,0; // Single event, freed

// after signal
main()
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{
// Create a child
...
down_user_sem(&revent); // Wait for an event

// to occur
}

void* child(void* artg)
/*

Child thread created by main
*/
{
....
// Signal any threads waiting for the event
up_user_sem(&revent)

}

Note again the use of an initial value for the counting semaphore.
As an alternative to static initialisation, all semaphore types can be created

dynamically and initialised separately. Under RINOS however, this is wasteful of
memory and is not recomended.

Memory allocation under RINOS

As the following examples shows, memory allocation follows standard ANSI C
practise using malloc() and free(). In this example 5 blocks of (paged) memory
are allocated and then freed.

#include "stdio.h"
#define NBLOCKS 5
void main(void)
{

void* memptr[NBLOCKS];
int index;
// Allocate blocks of memory
for (index = 0; index < NBLOCKS; index++){
memptr[index] = malloc(256);

}
// Free them again
for (index = 0; index < NBLOCKS; index++){
free(memptr[index]);

}
}
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Global or shared memory can similarly be accessed using the pair of non-
standard functions:

void* globalalloc(int size)
void globalfree(void *p)

Accessing system variables

When downloading a programme to RINOS, an optional, run-time argument list
can be specified. The startup module, crt0 makes this list available to the pro-
gramme via the standard argument passing mechanism of argc and argv. As
usual, argc is the number of arguments passed to the programme and argv is an
array of strings containing the individual arguments. The startup file crt0 is also
responsible for making available several other global resources.

In earlier versions of RINOS, input and output functions acted on file descrip-
tors rather than file pointers. In the current release it is expected to use the file
pointers in the following list:

File Filename Description Type

stdin Standard input read only
stdout Standard output write only
stderr Standard error write only
fpia “lcd” LCD file read/write
facia1 “com1” ACIA1 file read/write
facia2 “com2” ACIA2 file read/write
fadc “adc” ADC file read only
fdac “dac” DAC file write only

With the exception of stdin, stdout and stderr, all the preceding files should
be opened prior to use and closed when finished in the standard manner. Thus
the following code fragement will open and later close the the first serial port for
writing:

#include <stdio.h>
FILE* f; // File pointer definition
...
if ((f = fopen(‘‘com1’’,’’w’’)) != NULL){

fprintf(f,...);
}
...
...

fclose(f);

Finally, crt0 provides access to the pushbutton on the LCD board. During
kernel initialsation, a resetable event semaphore is reserved and initialised. On
each press of the pushbutton, any threads waiting for this event will be woken.
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The startup module stores a pointer to the event semaphore in the global variable
pshbttn and all any thread wishing to wait on this event has to do, is to perform
a down using one other of the two functions:

down_user_sem(pshbttn);
event_wait(pshbttn);

The second of these is illustrated in the following code fragment:

/*
Push button test

*/

#include <pthread.h>
extern semaphore_t* pshbttn; // pushbutton semaphore

// pointer
void main(void)
{

event_wait(pshbttn); // wait for pushbutton to
// be pressed

.... // Got event, now do
// something ...

}
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