
Seventh College on Microprocessor-Based
Real-Time Systems in Physics

Abdus Salam ICTP, Trieste.

October 28 – November 22, 2002

Lecture Notes

This chaper contains lecture notes of building GUI.

Contents

7 Building GUI With Swing
by Ulrich Raich 263
7.1 Building Graphical User Interfaces with Swing 263

7.1.1 General comments on Graphical User Interfaces, the
MVC concept . 263

7.1.2 The View . 264
7.1.3 The Controller . 265
7.1.4 Creating the View . 265
7.1.5 The first widget on the screen 265
7.1.6 Java Applets . 267
7.1.7 The Applet life cycle . 272
7.1.8 Adding more Elements, Layout Management 273
7.1.9 The Event Delegation Model 279
7.1.10 The Calculator Model . 284

7.2 Software Components, Java Beans . 285
7.2.1 What is a Bean? . 285
7.2.2 The Beanbox . 287
7.2.3 The BeanInfo class . 291
7.2.4 A customised Property Editor 293
7.2.5 Beans and Events . 294
7.2.6 Bounded Properties . 296

7.3 Conclusions and Acknowlegements 299
7.3.1 Conclusions . 299
7.3.2 Acknowlegements . 299

7.4 Appendixes . 300
7.4.1 HC-11 test procedure . 300
7.4.2 The GCI program for the HC-11 interface 301
7.4.3 The full source code of the Complex Calculator 312

iii

Contents

iv

Chapter 7

Building GUI With Swing
by Ulrich Raich

7.1 Building Graphical User Interfaces with Swing

7.1.1 General comments on Graphical User Interfaces, the MVC con-
cept

Since the appearance of the first MacIntosh computers the use of a mouse for
interaction with a program displaying buttons, menus, sliders, textboxes and the
like has become common practice on all desktop computers. These Graphical
User Interfaces (GUI) have not only given computer access to many computer
illiterate people but they also have revolutionized the way application programs
are written. While the use of computers becomes more and more easy or ”user
friendly”, providing (designing and implementing) the programs becomes more
and more difficult and time consuming.

GUI programming is inherently difficult: conceptually difficult because the
user dictates the sequence of operations to be carried out but difficult also be-
cause of the size of GUI libraries which may well contain 10,000 different routines
or more needed for creation, layout and interaction with user interface element:
the so-called widgets.

When creating a program with a GUI the design will usually be broken up
into 3 distinct parts. We will take a calculator program for complex numbers as
our example (ComplexCalc) and demonstrate the full design and implementation
cycle on this example:

The Model

The first part models the problem. We call this part the Model. Our Complex-
Model models the Calculator and is implemented with classical object oriented
programming without connection to graphical user interfaces. Here the real prob-
lem solving takes place. Imagine the user wants to perform an addition in our
complex calculator. He will first enter the real and imaginary parts of the first
number and then press +. Then the second number will be entered and finally he
will press =. The model therefore must be capable of

7.1. Building Graphical User Interfaces with Swing U. Raich

� keeping the current state of the entered number;
� saving the entered number in internal registers when the operator button

(+) is pressed
� keeping the operator in order to know which calculation must be executed

once = is pressed.

In order to fulfil these requests the ComplexModel needs to have instance
variables allowing to save

� the number currently entered;
� the number that had been entered before the operator button was pressed
� the operator

and it needs methods to

� get the currently entered number
� add a digit to the currently entered number
� clear the currently entered number
� set/get the operator
� get the number entered before pressing the operator button
� execute the calculation
� set the decimal point

We will see the implementaion of the ComplexModel in some detail later.

7.1.2 The View

Graphical User Interfaces consist of a hierarchy of widgets. Here we must dis-
tinguish two different widget types: the container widget whose function is to
contain other widgets which in turn may be container widgets themselves, and
primitive widgets which are the ones that can be seen on the screen and inter-
acted with. Starting from a root widget a tree structure is built with intermediate
notes being container widgets and the primitive widgets as leafs.

This static layout of widgets (the buttons, menus, labels, and the like) which
show the current state of the model, we call the View .

Interactive GUI builders help with the task of creating the widget hierarchy.
The dynamic behaviour however is entirely left to the programmer. It is up to
him to implement what will happen when a user presses a button or selects an
item in a menu. GUI builders can save time but they can be used efficiently
only once the programmer perfectly understands the underlying concepts (layout
managers, widget resources etc.). For this reason the GUI for the complex calcu-
lator is created by hand. Once you understand all the mechnisms involved you
are encouraged to try rebuilding the view with help of a GUI builder like Borlands
JBuilder

���

; or SUN One
���

.
In our complex calculator this will be the code that creates text widgets show-

ing the current state of real and imaginary parts, buttons that allow to enter
numbers (in addition to the text widgets themselves) and buttons that permit
starting the operations like addition, multiplication, etc.

264 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

7.1.3 The Controller

Last but not least, we must make our GUI responsive (dynamic). This means
that pushing buttons or entering text must provoke changes in the model and
the view. Pushing the ”add button” must add the number currently visible in
the text widgets with the previously entered numbers and display the result on
the text widgets. The task of dispatching commands for data entry or calculation
to the model and commands for display updates to the view is performed by the
Controller.

The 3 parts that make up a GUI driven program are therefore the Model, View
and Controller, and we speak of the MVC concept.

7.1.4 Creating the View

Since a single example says more than thousand words we will go through the
design and implementation of the complex calculator step by step. We will start
with the GUI (the view), then attach a few simple actions, just in order to demon-
strate that we can actually launch actions with our interface (a few steps into the
direction of implementing the controller), then we create the model and in the end
we put the pieces together in order to get a working program.

Before coding, the widget layout should be done on paper. Here we show where
we want to get to and then we slowly work towards this goal.

You can distinguish

� 2 text widgets and 2 associated labels used for display and data entry for
the real - and the imaginary parts of the number.

� Then there is a series of buttons allowing to enter single digits and a radio
box with 2 radio buttons, defining into which of the two text widgets the
input will go.

� Last but not least, we have the operator buttons ”+” ”-” ... ”=” starting
operations on the numbers.

What you don’t see are the container widgets allowing to define geometrical
relations between these widgets.

7.1.5 The first widget on the screen

In order to get a feeling of what we need to do, we will write a sort of a Swing
”hello world” program. Swing is the name of the Java class library responsible
for the creation of graphical user interfaces. It relies on classes that connect to
the native operating system for window creation placement and the like, collected
in the Abstract Windows Toolkit (AWT). We create a single text widget and make
it appear on the screen.

import javax.swing.*;
import java.awt.*;

Building GUI With Swing 265

7.1. Building Graphical User Interfaces with Swing U. Raich

Screenshot of the finished static part of the GUI for the complex number
calculator, the View.

Figure 7.1: The Layout of Widgets for the Complex Calculator

import java.awt.event.*;

/**
* ComplexCalcUI.java
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 1
* @author Ulrich Raich
* @version 1.0
*/

public class ComplexCalcUI
{

public static void main(String arg[])
{

266 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

/*
Create a Panel for real and imaginary part
text inputs

*/
JFrame frame =

new JFrame("Beginning of the Complex Calculator");
JTextField realPartText = new JTextField(30);

frame.getContentPane().add(realPartText);
frame.pack();
frame.setVisible(true);

}
}// ComplexCalcUI

And the result is shown in figure 7.2

Figure 7.2: A Java Application with a single Swing GUI Element

Firstly we need to include a few Swing specific packages which is done by the
import statements at the beginning of the code. Then we create a JFrame which
is the basic window into which all other GUI elements will be put. Then we create
a text input widget of 30 chars in length, put it into the contentPane of the base
window and make the JFrame (and therefore also the text input) visible on the
screen. The application is extremely simple but it already allows you to enter
some text.

7.1.6 Java Applets

Now you say: “This is all fine but how do I put this application onto the WEB,
after all your lectures have the title: Programming the WEB?”

Well, ehhh. . . oops. . . I cannot! However, what I can do is re-writing the ap-
plication very slightly, turning the program into an applet. Now I do not have
the main method any more but there is an init method instead. Also this class
extends JApplet and it adds the text input into the contentPane of the JApplet
instead of creating a JFrame and putting it in there.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI_Stage1.java
* Created: Mon Aug 21 21:19:31 2000
* Stage 1

Building GUI With Swing 267

7.1. Building Graphical User Interfaces with Swing U. Raich

* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcUI_Stage1 extends JApplet {
public ComplexCalcUI_Stage1 () {
}

/**
* Generates a Text widget that will be used for Display
* and text entry for the real part of our complex number
*/

public void init() {
/*
Create a Panel for real and imaginary part
text inputs

*/
JTextField realPartText;
realPartText = new JTextField();

this.getContentPane().add(realPartText);
}

}// ComplexCalcUI_Stage1

However now we have the problem that there is no main method any more and

java ComplexCalcUI Stage1

will result in an error message. We have to integrate the applet into a html page.

<html>
<head>
<title> A Calculator for Complex Numbers </title>
<!-- Changed by: Uli Raich, 12-Feb-2000 -->
<h1> A Calculator for Complex Numbers </h1>
<body bgcolor="#c4c4c4">
<div align="center">
<applet code="ComplexCalcUI_Stage1.class" height=50 width=150>
</applet>
</div>
</body>
</html>

Save this html page into a file named ComplexCalc.stage1.html and run ap-
pletviewer ComplexCalc.stage1.html Your applet will appear on the screen.
“Wait!” you say, “this is still not what I wanted. I wanted to have a WEB page
with everything you showed us in the section called Introduction in Chapter 1 and
the section called CGI Programming in Chapter 2 and my applet appearing on this
page and I want to visualise all this in my Netscape browser!”

268 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

Unfortunately here things become really clumsy. Most WEB browsers come
with a rather outdated Java VirtualMachine (JVM) which is unable to run Swing
applets. Older java versions were delivered with only the Abstract Windows
Toolkit installed but without the Swing classes. You can therefore not run Swing
applets in these browsers, unless you install a plugin implementing a more mod-
ern JVM.

Now the problem arises of how to distinguish those 2 JVMs, the one packaged
in the standard Netscape distribution and the one added through the plugin. The
answer is new tags within the html file.

When creating a real Java program and not just a simple ICTP college exercise
the code is usually subdivided into modules stored in several files. When compil-
ing, this will create several .class files. In addition you may need image or video
or audio files for your applet. In order to improve applet loading time you can
package all these files into a single jar (java archive) file which is very similar to
tar files. This simple Makefile shows you how the jar file for the first stage of the
Complex Calculator has been created:

This makefile creates the jar file for the Complex Calculator
in a single JAR file.

INSTALLDIR=/var/www/html/ICTP/lecture/

CLASSFILES= \
ComplexCalcUI_Stage1.class

JARFILE= ../jars/complexCalcStage1.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$(JARFILE): $(CLASSFILES)

echo "Name: ComplexCalcUI.class" >> manifest.tmp
echo "Java-Bean: False" >> manifest.tmp

echo "" >> manifest.tmp

jar cfm $(JARFILE) manifest.tmp *.class

@/bin/rm manifest.tmp

Rule for compiling a normal java file
%.class: %.java

export CLASSPATH; CLASSPATH=. ; \
javac $<

clean:

Building GUI With Swing 269

7.1. Building Graphical User Interfaces with Swing U. Raich

/bin/rm -f *.class
/bin/rm -f *˜
/bin/rm -f $(JARFILE)

install:
cp $(JARFILE) $(INSTALLDIR)/jars
cp ComplexCalcStage1-Netscape.html $(INSTALLDIR)/HTML/complexCalc

The following html file defines that the class ComplexCalcUI Stage1.class should
be loaded from the java archive ../jars/ComplexCalcUI Stage1.jar and should be
executed.

270 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

<html>
<head>
<title> The beginning of the Complex Calculator GUI <\title>
<!-- Changed by: Uli Raich, 02-Mar-2000 -->
<h1> The beginnings of the Complex Calculator GUI </h1>
<body bgcolor="#c4c4c4">
<div align="center">

<EMBED type=application/x-java-applet
java_docbase=file:///none width=150 height=50
code=ComplexCalcUI_Stage1.class
archive=../jars/ComplexCalcUI_Stage1.jar>
<p>
</div>
</body>
</html>

And the result is shown in figure 7.3

Figure 7.3: The first Java applet within a WEB page as seen by Netscape

Notice that when clicking on the text widget the caret will appear and you will
be able to enter text into it.

Building GUI With Swing 271

7.1. Building Graphical User Interfaces with Swing U. Raich

7.1.7 The Applet life cycle

Applets encounter several important milestones in their life. Firstly they are cre-
ated when the browser brings up the html page into which they are embedded for
the first time. At this moment the init method is called.

When you switch to another page the applet is stopped (its stop method is
called) and restarted (the start method is called) when you come back to the
page. Finally, when you exit the browser the destroy will be given a chance to do
some cleanup that might be necessay.

The applet therefore has the following methods which may be overridden or
not:

� init
� start
� stop
� destroy

One more thing that is worth mentioning: System.out.println will not print
anything onto the applet area; this text goes into the system console. When
rewriting the HelloWorld program from the lectures on basic Java into an applet
we will have to do graphics drawing in order to get the text onto the html page.

import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI.java
*
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 1
* @author Ulrich Raich
* @version 1.0
*/

public class HelloWorld extends JApplet {
public HelloWorld () {

}

/**
* Generates a Text widget that will be used for Display
* and text entry for the real part of our complex number
*/
public void paint(Graphics g)

272 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

{
g.drawString("Hello World !",10,20);

}

}// HelloWorld

Figure 7.4: The Hello World Program re-written as an Applet

Unfortunately explaining the Graphics class which permits drawing in Java,
or its more modern Graphics2d or even 3d counterparts, goes largely beyond the
scope of this Workshop. We could actually give a 4 weeks course on Java graphics
alone. For this reason you are referred to the Java API documentation of the SUN
Java tutorials.

7.1.8 Adding more Elements, Layout Management

A typical graphical user interface, except for a hello world style program consists
of a whole series of GUI elements. In our example we first want to add a label
describing the text intput. Of course you have no problem of creating such a label:

realPartLabel = new JLabel("Real Part");

Building GUI With Swing 273

7.1. Building Graphical User Interfaces with Swing U. Raich

will do the trick, however the question arises where this new widget will be situ-
ated on the screen. To keep things simple for the moment we will create a vertical
box and add the label and the text to the box where they will appear one on top
of each other, as you may expect. The box is then added to the content pane of
the applet and we are done.

Box realPartBox;
JLabel realPartLabel;
JTextField realPartText;
/*
create the widgets

*/
realPartBox = Box.createVerticalBox();
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
/*
Place the label and the text widget in the box

*/

realPartBox.add(realPartLabel);
realPartBox.add(realPartText);
this.getContentPane().add(realPartBox);

And here is the result:

Figure 7.5: Two Applets in a Vertical Box

Since there is the equivalent to the vertical Box also in horizontal direction
many layout problems can be solved this way. When many GUI elements are
used however, this method gets very clumsy.

274 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

The BorderLayout

For this reason Java uses the concept of layout managers in order to define how
the children of container widgets are placed. The default Layout manager of
JApplet is the BorderLayout which has 5 fields into which the elements can be
placed.

Figure 7.6: The BorderLayout

Instead of creating a vertical box and inserting our label and text widget in
there, we could have taken advantage of the border layout manager associated
with JApplet and placed the label in the North area of the layout while the text
would have gone into the South area. The end result would have been essentially
the same because the unused areas are shrunk to zero size.

public void init() {
/*
Create a Panel for real and imaginary part
text inputs

*/
JLabel realPartLabel;
JTextField realPartText;
/*
create the widgets

*/
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
/*
Place the label and the text widget the content pane

Building GUI With Swing 275

7.1. Building Graphical User Interfaces with Swing U. Raich

using the default border layout manager
*/

this.getContentPane().add(realPartLabel,"North");
this.getContentPane().add(realPartText,"South");

}

The GridLayout

Unfortunately the BorderLayout does not really map onto our problem. We want
to have our widget laid out in a regular grid. When only looking at the 2 text input
areas we would like to have them arranged as a 2x2 matrix. This is exactly what
the GridLayout does. We will therefore create a GridLayout manager, attach it to
the applets content pane and then insert our label widgets, which will go into the
first row followed by text widgets which will appear below.

In addition, to make things look even prettier, we surround the 4 widgets with
a border, the BevelBorder, which allows to make the widgets look lowered into
the screen by setting its bevelType to Bevel.LOWERED (a constant defined in the
BevelBorder object). Again there are many different border types and you are
invited to look for the keywords: BevelBorder, LineBorder, EtchBorder, TitledBor-
der. . . in the Java API docs.

Now the Calculator display is already almost done.
In the next step we add all the buttons needed for number entry and for en-

try of commands like add, sub, div, mult, clear. In contrast to the GridLayout,
the GridBagLayout allows the creations of elements of different size which are
realised using so-called GridBagConstraints. These constraints are imposed on
the element to be entered into the GridBag. gridx and gridy define the position
while weightx and weighty define the amount of space (in %) to be taken up by
the element. Like this we can optimise the calculator layout since the display
area needs less space than all the buttons. Width and height can be used if you
want to have one element take more than one slot in x or y direction.

/**
* In this stage we create the rest of the widgets.
* Now the number output widgets as well as the
* number and command buttons are ready for use.
* All that is missing are the labels on those buttons
*/

public void init() {
/*
Create a Panel for real and imaginary part
text inputs

*/
JPanel calcPanel;

276 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

Figure 7.7: The Display Part of the Calculator

GridBagLayout gridBagLayout = new GridBagLayout();
GridBagConstraints gridBagConstraints = new GridBagConstraints();
GridLayout numberLayout;
GridLayout numberInputLayout;
JPanel numberPanel;
Box inputBox;
JButton[] numberInputButton;
JButton[] operatorInputButton;
JPanel numberInputPanel;
JPanel operatorInputPanel;
JLabel realPartLabel;
JTextField realPartText;
JLabel imagPartLabel;
JTextField imagPartText;
BevelBorder TextBorder;
/*
create the widgets

*/

Building GUI With Swing 277

7.1. Building Graphical User Interfaces with Swing U. Raich

calcPanel = new JPanel(gridBagLayout);
inputBox = Box.createHorizontalBox();
numberInputLayout = new GridLayout(4,3);
numberInputPanel = new JPanel(numberInputLayout);
operatorInputPanel = new JPanel(numberInputLayout);
inputBox.add(numberInputPanel);
inputBox.add(operatorInputPanel);

numberInputButton = new JButton[12];
for (int i=0;i<12;i++)

{
numberInputButton[i] = new JButton();
numberInputPanel.add(numberInputButton[i]);

}
operatorInputButton = new JButton[12];
for (int i=0;i$<$12;i++)

{
operatorInputButton[i] = new JButton();
operatorInputPanel.add(operatorInputButton[i]);

}
numberPanel = new JPanel();
numberLayout = new GridLayout(2,2);
numberPanel.setLayout(numberLayout);
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField();
imagPartLabel = new JLabel("Imaginary Part");
imagPartText = new JTextField();
TextBorder = new BevelBorder(BevelBorder.LOWERED);
numberPanel.setBorder(TextBorder);
/*
Place the label and the text widget in the box

*/
numberPanel.add(realPartLabel);
numberPanel.add(imagPartLabel);
numberPanel.add(realPartText);
numberPanel.add(imagPartText);

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 20;
gridBagConstraints.fill = GridBagConstraints.BOTH;

278 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

gridBagLayout.setConstraints(numberPanel,gridBagConstraints);
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 80;
gridBagLayout.setConstraints(inputBox,gridBagConstraints);
calcPanel.add(numberPanel);
calcPanel.add(inputBox);
this.getContentPane().add(calcPanel);

}

Once the labels are on the widget and 2 radio buttons, deciding into which
field (the real or the imaginary one) button input has to go, the GUI is entirely
finished. An interesting point may be the way how the numbers are put onto the
number buttons:

numberInputButton = new JButton[12];
for (int i=0; i<10; i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);

}

The Integer class provides a conversion method from integer to String which
we take advantage of in order to convert the loop index into a String, which is
used as a button label when creating the JButton.

7.1.9 The Event Delegation Model

The GUI of the complex calculator is more or less ready and you have seen that
it is a rather tedious task to put all the widgets together. For this reason graph-
ical user interface builders have been built allowing you to create the GUI in an
interactive manner. You click on graphical representations of JLabel, JButton,
JTextField ... and place them in a container widget on the screen. At the same
moment the GUI elements are created and visualised such that you can see what
the final result is going to be. In order to make this possible the elements must
be built in a well defined way such that they can act as software components
which can be connected to other components a bit like when building a model
out of Lego

���

; blocks (did you play with Legos when you were a child?). How
exactly the software components, the Java Beans, are built, we will see in the
next chapter.

Even though our complex calculator GUI may look quite pretty, it is not of
much use yet. The reason is that nothing happens when we click the number

Building GUI With Swing 279

7.1. Building Graphical User Interfaces with Swing U. Raich

Figure 7.8: All the Calculator Widgets are there!

or operator buttons. We therefore have to look into the problem of activating the
GUI. What actually happens when you press a number button?

A button click will be seen by the operating system which will pass this in-
formation to the Swing button. The sequence of button down – button up will be
interpreted as a button press or, in other words, an activation of the button. The
button will create an ActionEvent and send it to all ActionListeners attached

280 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

to it. This means that, in order to interact with the button, we will have to create
an ActionListener and add it to the JButton’s list of ActionListeners.

The ActionListener is a Java Interface with just a single method: actionPer-
formed(ActionEvent). As explained in the introduction to GUI programming,
this is usually implemented in the Controller. In order to know from which Ob-
ject the event originated (which element was the event source) this information is
ported in the ActionEvent. The event’s method getSource() will return the Object
that sent the event.

In our example, and for the moment, only JButtons can be event sources and
each of our buttons has got a label on it. In order to find out which button had
been pressed we therefore first get the reference to the button that triggered the
event and then we read its label with the button’s getText() method. Since we
want to demonstrate the handling of events another textfield has been added to
the complex calculator’s user interface to display some text identifying the event.
We will also need a simple method that allows us to write to this textfield from an
outside object:

/*
add the controller containing the action listeners
*/
ComplexCalcController7 complexCalcController =

new ComplexCalcController7(this);
numberInputButton = new JButton[12];
for (int i=0; i<10; i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);
numberInputButton[i].addActionListener(complexCalcController);
}

numberInputButton[10] = new JButton(".");
numberInputPanel.add(numberInputButton[10]);
numberInputButton[10].addActionListener(complexCalcController);

numberInputButton[11] = new JButton("+/-");
numberInputPanel.add(numberInputButton[11]);
numberInputButton[11].addActionListener(complexCalcController);

operatorInputButton = new JButton[12];
operatorInputButton[0] = new JButton("+");
operatorInputPanel.add(operatorInputButton[0]);
/* activate the thing */
operatorInputButton[0].addActionListener(complexCalcController);
debugText = new JTextField(20);

and so on ...
/**

Building GUI With Swing 281

7.1. Building Graphical User Interfaces with Swing U. Raich

* Writes debug text to the debug text field
* Used for demonstration of events
*/

public void setDebugText(String debug)
{
debugText.setText(debug);
return;

}

This method is used by the controller which will find out the event source
and print a text identifying the source. We do not use System.out.println in
order to visualise the text on the page. Here of course, since this is only debug
information we could have used System.out.println and either tested the widget
with the appletviewer or we could have observed the print result on the system
console.

/**
* ComplexCalcController7.java
* Created: Sat Aug 26 22:17:25 2000
*
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcController7 implements ActionListener {
ComplexCalcUI_Stage7 parent;
public ComplexCalcController7 (ComplexCalcUI_Stage7 p) {
parent = p;

}
public void actionPerformed(ActionEvent e)
{

JButton activatedButton;
String buttonLabel;
activatedButton = (JButton)e.getSource();
buttonLabel = activatedButton.getText();
if (buttonLabel.equals("+"))

{
parent.setDebugText("Add Button");
return;

}
if (buttonLabel.equals("-"))

{
parent.setDebugText("Sub Button");
return;

}

282 Building GUI With Swing

U. Raich 7.1. Building Graphical User Interfaces with Swing

if (buttonLabel.equals("*"))
{

parent.setDebugText("Mult Button");
return;

}
if (buttonLabel.equals("/"))

{
parent.setDebugText("Div Button");
return;

}
if (buttonLabel.equals("+/-"))

{
parent.setDebugText("Change Sign Button");
return;

}
if (buttonLabel.equals("="))

{
parent.setDebugText("Equals Button");
return;

}
if (buttonLabel.equals("."))

{
parent.setDebugText("Dot Button");
return;

}
if (buttonLabel.equals("Clear"))

{
parent.setDebugText("Clear Button");
return;

}
if (buttonLabel.equals("Norm"))

{
parent.setDebugText("Norm Button");
return;

}
for (int i=0; i<10; i++)

if (buttonLabel.equals(Integer.toString(i)))
{

parent.setDebugText("Number:" + i);
return;

}
}

}

Building GUI With Swing 283

7.1. Building Graphical User Interfaces with Swing U. Raich

Figure 7.9: First Test of Activation

7.1.10 The Calculator Model

The most complex part of any GUI base program is the model and at the same
time it is the one I explain least. It is the model that implements the actual
problem solving. The user interface merely provides pretty buttons, pull-down
menus and the like while it does not do much, seen from the functional point of
view. The controller simply receives events from the user interface and dispatches
them to the model. Again not much is done from the functional point of view. It is
the model that does the actual data treatment. On the other hand, programming
the model only uses ”standard” programming concepts and there is nothing new
to be learned.

In the case of the calculator you will find all the routines that are needed
to handle digits newly entered, which are added to the already available digits,

284 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

the switch from entering numbers from the real part entry field to the imaginary
part field, the conversion of the series of digits entered into doubles and later
complex numbers, the handling of operators (”+”, ”-”, ”*”, ”/”) and of the course
calculations themselves (when ”=” is pressed).

The whole program now works as follows: The user presses a button (e.g. a
digit) which triggers an actionEvent. This event is captured and interpreted by
the controller which in turn informs the model which action needs to be taken.
To do this, it calls a model method.

The method modifies the model’s internal state (a digit is added to the number
entered) which must be reflected in the user interface. The controller therefore
informs the view by calling one of its methods, which in turn updates its display
on the screen.

You will find the complete source code of the model in the appendix. Please
have a look at it. Note that most of the work is actually the conversion from
doubles (well, actually Complex, the type used for calculations) to byte arrays
and back. Each time a modification is made, the conversions are performed in
order to make sure that the double respresentation and the byte arrays always
correspond.

And the final result will essentially look like figure 7.9

7.2 Software Components, Java Beans

7.2.1 What is a Bean?

Beans are re-usable software modules with strictly defined interfaces that can
be hooked together by a graphical user interface builder. Of course, most beans
will be visible user interface elements (all of the Swing components like JButton,
JLabel, JTextField... as well as the container components are beans) but even the
visibility is not a necessary criterion.

Apart from obeying certain rules, beans are just ordinary Java objects. Just
like any other object, beans have internal variables, here called properties, which
may be modified by the objects methods.

As we have seen in the calculator example, the objects that make up the
calculator applet interact with each other by means of events. Since beans, in
order to be treated by a GUI builder must be clearly defined entities with no cross
links, beans only use events for their communication.

The questions we now have to ask are: “How does the GUI builder discover
the capabilities of the bean? How does it know, which properties are implemented
in the bean and how to read and modify their values? How does it know which
events are used for communication and which bean is considered to create the
event and which one is capturing it?”

The magic buzz-word is introspection. Let us first have a look at properties.
If a bean has got a property called prop then it must implement two methods
named: void setProp(type val); type getProp() in order to expose them.

Building GUI With Swing 285

7.2. Software Components, Java Beans U. Raich

The very first beans example does not attempt to get a usable bean, it simply
tries to show the sequence of steps needed to create a bean. The bean itself is
a simple java object, not extending any Swing component which means that it is
not going to be visible. Note that the bean implements the Serializable interface
which does not require any supplementary code but add the capability to the
bean to save itself onto a file (serialize itself). This functionality is very important
because, after having built an application with a large number of beans, which
have all been customized (their properties have been set) we do not want to loose
this work but we want to be able to save it.

import java.beans.*;
import java.io.Serializable;

/**
* bean1.java
*
*
* Created: Sat Nov 24 13:13:42 2001
*
* @author Ulrich Raich
* @version
*/

public class bean1 implements Serializable{
public bean1 (){

}
double result;
/**
* Get the value of result.
* @return value of result.
*/

public double getResult() {
return result;

}

/**
* Set the value of result.
* @param v Value to assign to result.
*/

public void setResult(double v) {
this.result = v;

}
}// bean1

The bean only has a single property of type double called result and it exposes
a get and a set method for this property. In order to make a bean out of this code

286 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

it must be compiled and the resulting class file must be packed together with a
manifest file into a jar packet. Here is the Makefile that does exactly this:

This makefile delivers the bean1 bean into the beansbox
in a single JAR file.

BEANSDIR= /opt/ICTP/lectures/lectureNotes/Java/code/beans/BDK1.1/jars
CLASSFILES= \

bean1.class

JARFILE= ../../jars/bean1.jar

all: $(JARFILE)

Create a JAR file with a suitable manifest.

$(JARFILE): $(CLASSFILES) $(DATAFILES)
echo "Name: bean1.class" >> manifest.tmp
echo "Java-Bean: True" >> manifest.tmp
echo "" >> manifest.tmp
jar cfm $(JARFILE) manifest.tmp bean1.class

@/bin/rm manifest.tmp

Rule for compiling a normal .java file
%.class: %.java

export CLASSPATH; CLASSPATH=. ; \
javac $<

install:
cp $(JARFILE) $(BEANSDIR)

clean:
/bin/rm -f *.class
/bin/rm -f *.ser
/bin/rm -f $(JARFILE)

The manifest contains the following text:
Name: bean1.class
Java-Bean: True
It states that the content of this package contains a bean of name bean1. It is
possible to package several beans into a single jar package if they are denoted as
described above.

7.2.2 The Beanbox

As we said at the beginning, this bean does not provide much functionality and
it will not even be visible when used in a GUI builder.

SUN provides a very simplistic GUI builder designed for testing user created
beans in its Beans Development Kit, the beanbox. This program will search

Building GUI With Swing 287

7.2. Software Components, Java Beans U. Raich

through a directory of jar files and make all beans found in this directory available
for test. All we have to do is therefore copying our beans jar file into the directory
searched by the beanbox.

Once the beanbox is started we find back the bean in its toolbox. Clicking the
text will modify the cursor to a cross, clicking on the BeanBox now, make the
bean appear on the screen. The BeanBox is in design mode in which case the
bean is displayed with this strange border indicating that in the later application
or applet it will be invisible.

Figure 7.10: Bean1 sitting in the beanbox

In order to provide a little more realistic example, let us consider an arrow
button, which is a simple JButton that shows an arrow pointer in any direction

288 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

up, down, left or right. From this description it becomes clear immediately that
we will extend a JButton, use icons for the arrows and have a property that can
be up, down, left or right. Please note the way, the icons are read: We use a
URL in order to get at the gif files that are transferred in the jar package. Due to
security reasons an applet is not allowed to access the local file system. We can
get at resources within the jar file though.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;

public class ArrowButton extends JButton implements Serializable {
Image arrowImage;

public ArrowButton() {
super();
createIcons();
arrowDirection = ARROW_UP;
this.setIcon(images[arrowDirection]);

}

public ArrowButton(int direction) {
super();
createIcons();
if ((direction < 0) || (direction > MAX_DIRECTIONS))

arrowDirection = ARROW_UP;
else

arrowDirection = direction;

this.setIcon(images[direction]);
}

public void createIcons()
{

try {
java.net.URL url = getClass().getResource("images/up.gif");
images[ARROW_UP] = new ImageIcon(url);

} catch (Exception e)
{
System.out.println(e.getMessage());

}
try {

java.net.URL url = getClass().getResource("images/down.gif");
images[ARROW_DOWN] = new ImageIcon(url);

} catch (Exception e)
{
System.out.println(e.getMessage());

}
try {

Building GUI With Swing 289

7.2. Software Components, Java Beans U. Raich

java.net.URL url = getClass().getResource("images/left.gif");
images[ARROW_LEFT] = new ImageIcon(url);

} catch (Exception e)
{

System.out.println(e.getMessage());
}

try {
java.net.URL url = getClass().getResource("images/right.gif");
images[ARROW_RIGHT] = new ImageIcon(url);

} catch (Exception e)
{

System.out.println(e.getMessage());
}

}
/**

* Get the value of arrowDirection.
* @return Value of arrowDirection.
*/

public int getArrowDirection() {return arrowDirection;}
/**

* Set the value of arrowDirection.
* @param v Value to assign to arrowDirection.
*/

public void setArrowDirection(int v)
{

if ((v < 0) || v > MAX_DIRECTIONS)
return;

this.arrowDirection = v;
if (images[v] == null)

images[v] = new ImageIcon(
"images/"
+ imageFilename[v]);

this.setIcon(images[v]);

}
ImageIcon[] images = new ImageIcon[4];

private int arrowDirection;
public static final int ARROW_UP = 0;
public static final int ARROW_DOWN = 1;
public static final int ARROW_RIGHT = 2;
public static final int ARROW_LEFT = 3;

private final int MAX_DIRECTIONS = 4;

static ImageIcon DownPic;
static final String[] imageFilename =

{"up.gif", "down.gif", "right.gif","left.gif"};
}

290 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

The Makefile needs some brush-up as well since we have to add the images
into the jar package. The code snippet below is of course not complete, the rest
of the Makefile does not change however.

ICONS=images
all: $(JARFILE)
Create a JAR file with a suitable manifest.
$(JARFILE): $(CLASSFILES) $(DATAFILES)

echo "Name: ArrowButton.class" >> manifest.tmp
echo "Java-Bean: True" >> manifest.tmp
echo "" >> manifest.tmp
jar cfm $(JARFILE) manifest.tmp ArrowButton.class $(ICONS)/*
@/bin/rm manifest.tmp

7.2.3 The BeanInfo class

When we instantiate the ArrowButton bean in the beanbox, it will appear as a
normal button and the arrow will be seen normally (this is now a visible bean
since it is extended from a Swing Component!). However we can also see that
the property box is entirely full even though we only defined the arrowDirection
property with set/get methods. The reason for this is the subclassing of JButton.
We do not only see the ArrowButtons properties but all the properties of its super
class. Note however that the arrowDirection property can actually be changed
with the property editor, which will make the arrow turn.

How can we avoid that all those properties, which we want to keep as default
values, will be proposed for change? This can be done with a BeanInfo class. If
our bean is named ArrowButton, then we will have to define a new class named
ArrowButtonBeanInfo and here it is:

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ArrowButton2BeanInfo extends SimpleBeanInfo {
public PropertyDescriptor[] getPropertyDescriptors() {

try {
PropertyDescriptor arrowDirection =

new PropertyDescriptor("arrowDirection",
beanClass);

PropertyDescriptor rv[] = {arrowDirection};
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}
private final static Class beanClass = ArrowButton2.class;

}

Building GUI With Swing 291

7.2. Software Components, Java Beans U. Raich

Figure 7.11: The Properties of the ArrowButton

An array of PropertyDescriptors is created and returned in the getPropertyDe-
scriptors() method. Only those properties explicitly exposed in the PropertyDe-
scriptor will be proposed for customisation.

292 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

Still the property editor is not as nice as it could be because the direction
can actually only take 4 values while it is implemented and seen by the property
editor as an integer. In order to give the user only those 4 possibilities we will
have to customise the property editor.

7.2.4 A customised Property Editor

Of course there are different possible ways of proposing to change the arrow di-
rections. When we have a set of possible values then implementing just a few
methods of the PropertyEditor interface and announcing this property editor in
the bean info file is enough. It is however also possible to write a custom prop-
erty editor as we would have been obliged to do if we wanted to enter complex
numbers.

Here is the property editor and a screen dump showing the result.

import java.beans.*;

/**
* ArrowButtonDirectionNameEditor.java
*
*
* Created: Sun Jan 16 15:58:36 2000
*
* @author Ulrich Raich
* @version
*/

public class ArrowButton3DirectionNameEditor extends
PropertyEditorSupport {

public String[] getTags()
{

String directions[] = {"Up","Down","Left","Right"};
return directions;

}
public String getAsText() {

Integer direction = (Integer)getValue();
switch(direction.intValue()) {
case ArrowButton3.ARROW_UP: return "Up";
case ArrowButton3.ARROW_DOWN: return "Down";
case ArrowButton3.ARROW_LEFT: return "Left";
case ArrowButton3.ARROW_RIGHT: return "Right";
default: return null;
}

}

public void setAsText(String text)
throws IllegalArgumentException

Building GUI With Swing 293

7.2. Software Components, Java Beans U. Raich

{
if (text.equals("Up"))

setValue(new Integer((int)ArrowButton3.ARROW_UP));
if (text.equals("Down"))

setValue(new Integer((int)ArrowButton3.ARROW_DOWN));
if (text.equals("Left"))

setValue(new Integer((int)ArrowButton3.ARROW_LEFT));
if (text.equals("Right"))

setValue(new Integer((int)ArrowButton3.ARROW_RIGHT));
}

public String getJavaInitializationString() {
return (String)getValue();

}

} // ArrowButtonDirectionNameEditor

. . . and the modified bean info

import java.awt.*;
import java.awt.event.*;
import java.beans.*;

public class ArrowButton3BeanInfo extends SimpleBeanInfo {

public PropertyDescriptor[] getPropertyDescriptors() {
try {

PropertyDescriptor arrowDirection =
new PropertyDescriptor("arrowDirection",

beanClass);

arrowDirection.setPropertyEditorClass(
ArrowButton3DirectionNameEditor.class);

PropertyDescriptor rv[] = {arrowDirection};
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}

private final static Class beanClass = ArrowButton3.class;
}

7.2.5 Beans and Events

Since beans are handled as autonomous entities it is not possible to directly call
methods of a bean from within another bean. You can never be sure that the

294 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

Figure 7.12: The Property Editor for the Arrow Directions

user of the GUI builder has actually instantitated both beans. How then can
beans communicate with each other? Again this is done using events. Our
ArrowButton, since it is a subclass of JButton is able to create ActionEvents.
These ActionEvents can be caught by any ActionListener. The BeanBox is capable
to connect a bean’s method to an event by interspersing so called event adapter
classes (other methods for doing the same thing exist).

If we add an increment method to our bean1 we can connect this method to
the ActionEvent created when the ArrowButton is pressed. Each time the user
presses the button, the number will be increased by one.

Looking at the events presented by the beanbox the user will again be bewil-
dered by their big number. As with the properties this is due to the subclassing
and as with properties we can restrict the events displayed to the essentials using
the bean info class.

This method must be added to the bean info class in order to achieve the
clean-up:

public EventSetDescriptor[] getEventSetDescriptors() {
try {

EventSetDescriptor push =
new EventSetDescriptor(beanClass,

"action",

Building GUI With Swing 295

7.2. Software Components, Java Beans U. Raich

java.awt.event.ActionListener.class,
"actionPerformed");

push.setDisplayName("action");
EventSetDescriptor[] rv = { push };
return rv;

} catch (IntrospectionException e) {
throw new Error(e.toString());

}
}

7.2.6 Bounded Properties

When developing the complex calculator we have already seen that the GUI part
of the project needed update each time the model changes its internal state. It
seems therefore logical to provide a PropertyChangeEvent which the model fires
each time any of its properties changes. The ComplexCalcUI then only needs to
provide the necessary methods that take an PropertyChangeEvent as parameter
just as our simple beans has done for ActionEvents.

Once these conditions are fulfilled then we can connect the Model with the
userinterface by means of an automatically generated event adapter. Of course
the model, which becomes an event source, must supply additional code such
that an PropertyChangeListener can be added and removed to a list of objects to
be informed of property changes.

One following code shows the simple invisible bean created at the begin-
ning of this chapter augmented with the capability of firing PropertyChangeEvent
s. In addition we create a NumberField bean which can take the Property-
ChangeEvents and display the latest number stored in the bean firing the events.
A PropertyChangeEvent always contains the old and the new values and it is
therefore simple to perform the updates of the NumberF ield. Now we can con-
nect the Arrowbutton to the simple bean for increment and decrement using
ActionEvents. The simple bean in turn is connected to the Numberfield through
the PropertyChangeEvent for display of its current state.

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;
import java.beans.*;

/**
* bean3.java
*
*
* Created: Sat Nov 24 13:13:42 2001
*
* @author Ulrich Raich<>

296 Building GUI With Swing

U. Raich 7.2. Software Components, Java Beans

* @version
*/

public class bean3 implements Serializable {
public bean3 (){

changes = new PropertyChangeSupport(this);
}
private double result;

/**
* Get the value of result.
* @return value of result.
*/

public double getResult() {
return result;

}

/**
* Set the value of result.
* @param v Value to assign to result.
*/

public void setResult(double v) {
double oldValue;
oldValue = result;
changes.firePropertyChange("value",

new Double(oldValue),new Double(v));
this.result = v;

}

/**
* increments the value
*/

public void increment(ActionEvent e)
{

double oldValue;
oldValue = result;
result+=1.0;
changes.firePropertyChange("value",new Double(oldValue),

new Double(result));
}

/**
* decrements the value
*/

public void decrement(ActionEvent e)
{

double oldValue;
oldValue = result;
result-=1.0;
changes.firePropertyChange("value",

Building GUI With Swing 297

7.2. Software Components, Java Beans U. Raich

new Double(oldValue),new Double(result));
}
/*
here we collect all Listeners to whom we sent the
propertyChange events

*/

public void addPropertyChangeListener(PropertyChangeListener l)
{
changes.addPropertyChangeListener(l);

}
public void removePropertyChangeListener

(PropertyChangeListener l)
{
changes.removePropertyChangeListener(l);

}

private PropertyChangeSupport changes;
}// bean3

import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;
import javax.swing.*;
import java.beans.*;
import java.text.*;

public class NumberField extends JTextField implements
PropertyChangeListener,Serializable {

double number;
public NumberField() {
super(16);

}

/**
* Get the current value
* @return double value
*/

public double getNumber()
{
return number;

}

/**
* Set the value
* @param v Value to assign
*/

298 Building GUI With Swing

U. Raich 7.3. Conclusions and Acknowlegements

public void setNumber(double v)
{

String valString;
DecimalFormat df = new DecimalFormat("0.0######");
valString = df.format(v);
setText(valString);
number = v;
return;

}

public void propertyChange(PropertyChangeEvent e)
{

String valString;
double newValue;
newValue = ((Double)e.getNewValue()).doubleValue();
DecimalFormat df = new DecimalFormat("0.0######");
valString = df.format(newValue);
setText(valString);
number = newValue;
return;

}

}

7.3 Conclusions and Acknowlegements

7.3.1 Conclusions

This ends our excursion into the world of WEB programming. Of course these
lectures will only allow you a quick glimpse on the opportunities opened by this
computer science field.

If we managed to stimulate your curiosity and we showed you how to go on
from here, then these lectures were a success. Please note that, even though we
are using Linux during the college, this is by no means a requirement for WEB
programming. All we showed you during these lectures can be applied to the
operating systems like MS Windows of MacOS.

7.3.2 Acknowlegements

Giving these lectures would not have been possible without the consent of my
employer CERN. Also my wife Dong Ye and my children Melanie and David have
suffered seeing their husband and father sitting in front of the computer for too
long hours. Thanks for their understanding.

Building GUI With Swing 299

7.4. Appendixes U. Raich

7.4 Appendixes

7.4.1 HC-11 test procedure

<html>
<head>
<title>HC-11 test procedure</title>
</head>

<h1><center>HC-11 Test</center></h1>
<form method="POST" action="http://localhost:8080/cgi-bin/hc11.cgi">
<p>
<table border="0" cellpadding="10" cellspacing="0">
<TR><TD>
Device
<select name="device">
<option value="LCD"> LCD </option>
<option selected value="LEDs"> LEDs </option>
<option value="Switches"> Switches </option>
<option value="Buttons"> Buttons </option>
<option value="ADC"> ADC </option>
<option value="Scope"> Digital Scope Trace </option>
</select>
</td>
<td>
<p>Command
<input type="radio" name="command" value="read"> read
<input type="radio" name="command" value="write" checked> write
<input type="radio" name="command" value="ioctl"> ioctl
<p>
</td></tr>
<tr><td>

<center> LCD</center>

LCD contents, don’t exceed 16 chars
<p>
<input type = "text" name ="LCD_Data" MAXLENGTH=16 VALUE="Hello World !">
LCD Text
<p>
<input type="radio" name="lcdIoctl" value="select"> select LCD
<input type="radio" name="lcdIoctl" value="deselect"> deselect LCD
<input type="radio" name="lcdIoctl" value="clear"> clear
<input type="radio" name="lcdIoctl" value="home"> home
<p>
</td>
<td>
<center>LED</center>

300 Building GUI With Swing

U. Raich 7.4. Appendixes

LED Value, highest significant bit first
<p>
<input type="checkbox" name="LED_data" value="b8"> 8
<input type="checkbox" name="LED_data" value="b7"> 7
<input type="checkbox" name="LED_data" value="b6"> 6
<input type="checkbox" name="LED_data" value="b5"> 5
<input type="checkbox" name="LED_data" value="b4"> 4
<input type="checkbox" name="LED_data" value="b3"> 3
<input type="checkbox" name="LED_data" value="b2"> 2
<input type="checkbox" name="LED_data" value="b1"> 1
<p>
</td></tr>
<tr><td>
<p>
<input type="submit" name="submit1" value="Submit Request">
<input type="reset" value="Reset Request">
</td></tr>
</table>

</form>
</body>
</html>

7.4.2 The GCI program for the HC-11 interface

#include <stdio.h>
#include <cgic.h>
#include <ICTP_IO.h>
#include <protocol.h>
#include <string.h>
#include <stdarg.h>

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif

int Device();
int Command();

int checkPars();
int protSendMsg();
void reportError(int);
void cgi_fprintf(FILE *stream, char *fmt,...);

/*
needed as globals

*/

Building GUI With Swing 301

7.4. Appendixes U. Raich

int cmdChoice;
int deviceChoice;
int ioctlChoice;
int dataSize;
int ICTP_IO_debugLevel = ICTP_IO_DEBUG_ERROR;
int ICTP_IO_msgType = ICTP_IO_HTML;

char *cmds[] = {
"invalid",
"read",
"write",
"ioctl"

};

char *ioctlCmds[] = {
"serverId",
"monitor",
"select", /* LCD ioctl cmds */
"deselect",
"clear",
"home"

};

char *devices[] = {
"ServerId",
"Switches",
"ADC",
"Buttons",
"LEDs",
"LCD",
"Serial",
"Scope"

};

int cgiMain()
{

int retCode;
//#define DEBUG 1

ICTP_IO_setMsgType(ICTP_IO_msgType);
ICTP_IO_setDebugLevel(ICTP_IO_debugLevel);

#if DEBUG
/* Load a saved CGI scenario if we’re debugging */
cgiReadEnvironment("/tmp/capcgi.dat");
#endif

302 Building GUI With Swing

U. Raich 7.4. Appendixes

if (ICTP_IO_msgType == ICTP_IO_HTML)
cgiHeaderContentType("text/html");

else
cgiHeaderContentType("text/plain");

if ((retCode = Device()) != ICTP_IO_SUCCESS)
{

reportError(retCode);
cgi_fprintf(cgiOut, "Device\n");
return 0;

}

if ((retCode = Command()) != ICTP_IO_SUCCESS)
{

reportError(retCode);
cgi_fprintf(cgiOut, "Command\n");
return 0;

}
else

cgi_fprintf(cgiOut, "Command ok\n");

if ((retCode = checkPars()) != ICTP_IO_SUCCESS)
{

reportError(retCode);
cgi_fprintf(cgiOut, "checkPars\n");
return 0;

}
else
{

/*
open the connection to the HC11

*/

if ((retCode = ICTP_IO_Open()) != ICTP_IO_SUCCESS)
{

cgi_fprintf(cgiOut,
"Could not open HC-11 connection, error: %d\n \n",
retCode);
reportError(retCode);
exit(0);

}

if ((retCode = protSendMsg()) == ICTP_IO_SUCCESS)
cgi_fprintf(cgiOut,

"%s successfully executed\n",cmds[cmdChoice]);
else

cgi_fprintf(cgiOut, "%s failed\n",cmds[cmdChoice]);
reportError(retCode);

if (ICTP_IO_Close() != ICTP_IO_SUCCESS)

Building GUI With Swing 303

7.4. Appendixes U. Raich

{
cgi_fprintf(cgiOut,
"Could not close HC-11 connection, error: %d\n \n",
retCode);

}
}// if checkPars

return 0;
}

int Device() {
cgiFormResultType retCode;
retCode = cgiFormSelectSingle("device",
devices, 7, &deviceChoice, 0);

switch (retCode)
{
case cgiFormSuccess:
cgi_fprintf(cgiOut, "Selected Device: %s\n",
devices[deviceChoice]);
return ICTP_IO_SUCCESS;
break;

case cgiFormNotFound:
cgi_fprintf(cgiOut,"Could not find Form \n");
break;

case cgiFormNoSuchChoice:
cgi_fprintf(cgiOut,"Could not find Choice \n");
break;

default:
cgi_fprintf(cgiOut,"Error Code unknown %d \n", retCode);
break;

}
return ICTP_IO_ILLEGAL_DEVICE;
}

int Command() {
cgiFormResultType retCode;
retCode = cgiFormRadio("command", cmds, 4, &cmdChoice, 0);
switch (retCode)

{
case cgiFormSuccess:
cgi_fprintf(cgiOut, "Command: %s Code: %d\n",

cmds[cmdChoice],cmdChoice);
return ICTP_IO_SUCCESS;
break;

case cgiFormNotFound:
cgi_fprintf(cgiOut,"Cmd: Could not find Form \n");
break;

case cgiFormNoSuchChoice:
cgi_fprintf(cgiOut,"Cmd: Could not find Choice \n");
break;

304 Building GUI With Swing

U. Raich 7.4. Appendixes

default:
cgi_fprintf(cgiOut,"Cmd: Error Code unknown \n");
break;

}
return ICTP_IO_ILL_REQUEST;
}

int checkPars()
{
int retCode;
if ((deviceChoice+1 < ICTP_IO_SWITCHES) |

(deviceChoice+1 > ICTP_IO_SERIAL))
{

cgi_fprintf(cgiOut,"Illeagal Device Code: %d\n \n",
deviceChoice);

return ICTP_IO_ILLEGAL_DEVICE;
}

if ((cmdChoice < ICTP_IO_OPEN) |
(cmdChoice > ICTP_IO_CLOSE))

{
cgi_fprintf(cgiOut,"Illeagal Command Code: %d\n \n",

cmdChoice);
return ICTP_IO_ILL_REQUEST;

}
/*

now check for data size and data
*/

/*
most times data size = 1

*/

switch (cmdChoice)
{
case ICTP_IO_WRITE:

cgi_fprintf(cgiOut,"checkPars: write\n");

switch (deviceChoice)
{
case ICTP_IO_LCD:
dataSize = 16;
return ICTP_IO_SUCCESS;

case ICTP_IO_LED:
return ICTP_IO_SUCCESS;

default:
cgi_fprintf(cgiOut,"Devices are read only!\n");
return ICTP_IO_RDONLY;

}

Building GUI With Swing 305

7.4. Appendixes U. Raich

break;

case ICTP_IO_READ:
switch (deviceChoice)

{
case ICTP_IO_SERVER:
case ICTP_IO_SWITCHES:
case ICTP_IO_BUTTONS:
case ICTP_IO_LED:
case ICTP_IO_ADC:

dataSize = 1;
/*
if (dataSize != 1)
{

cgi_fprintf(cgiOut,"Illegal Data Size: %d\n \n",
dataSize);

return ICTP_IO_OUT_OF_RANGE;
}

*/
break;

case ICTP_IO_LCD:
dataSize=16;
break;

default:
cgi_fprintf(cgiOut,"Devices are write only!\n");
return ICTP_IO_WRONLY;
break;

}

break;

case ICTP_IO_IOCTL:
retCode = cgiFormRadio("lcdIoctl", ioctlCmds, 7,

&ioctlChoice, 0);
if (retCode == cgiFormSuccess)

cgi_fprintf(cgiOut, "Ioctl Command: %s \n",
ioctlCmds[ioctlChoice]);

else
{

retCode = cgiFormInteger("ioctlCmd", &ioctlChoice, 0);
if (retCode == cgiFormSuccess)
{

cgi_fprintf(cgiOut, "ioctl command: %d\n",ioctlChoice);
}

else
{

cgi_fprintf(cgiOut, "No ioctl code found.\n");
return FALSE;

}
}

306 Building GUI With Swing

U. Raich 7.4. Appendixes

switch (deviceChoice)
{
case ICTP_IO_LCD:
switch (ioctlChoice)

{
case LCD_SELECT:
case LCD_DESELECT:
case LCD_CLEAR:
case LCD_HOME:
cgi_fprintf(cgiOut,"Ioctl code valid for LCD %d\n",

ioctlChoice);
break;

default:
cgi_fprintf(cgiOut,"Ioctl code not valid for LCD %d\n",

ioctlChoice);
return FALSE;

}
break;

default:
cgi_fprintf(cgiOut,

"Device does not support any ioctl calls!\n");
break;

}
}

return ICTP_IO_SUCCESS;
}

char *LED_BitNames[] = {
"b8","b7","b6","b5","b4","b3","b2","b1",

};

int protSendMsg()
{
unsigned char mask;
unsigned char LED_Data;
unsigned char dataBuffer[128];
char LCD_Data[17];
int LED_Bits[8];
int i,invalid,ledData;
int retCode;

cgi_fprintf(cgiOut,"command code: %d\n",cmdChoice);

switch (cmdChoice)
{

case ICTP_IO_WRITE:

cgi_fprintf(cgiOut,"Executing Write \n");

Building GUI With Swing 307

7.4. Appendixes U. Raich

if (ICTP_IO_write)
{

switch (deviceChoice)
{
case ICTP_IO_LED:

/*
get the bits, construct the data byte
then call ICTP_IO_write

*/
retCode = cgiFormCheckboxMultiple("LED_data",

LED_BitNames, 8,
LED_Bits,
&invalid);

if (retCode == cgiFormSuccess)
{

mask = 0x80;
LED_Data = 0;
for (i=0; (i < 8); i++) {
if (LED_Bits[i])

LED_Data |= mask;
mask = mask >> 1;
}

cgi_fprintf(cgiOut, "LED data: %2x\n", LED_Data);
retCode = ICTP_IO_write(ICTP_IO_LED,

&LED_Data,1);
break;

}

retCode = cgiFormInteger("intData", &ledData, 0);
if (retCode == cgiFormSuccess)

{
cgi_fprintf(cgiOut, "Integer Data: %d\n",ledData);
LED_Data = ledData;
retCode = ICTP_IO_write(ICTP_IO_LED,&LED_Data,1);
reportError(retCode);

}
else

{
/* if none are checked */
cgi_fprintf(cgiOut,

"Nothing checked, data set to zero\n",ledData);
LED_Data = 0;
retCode = ICTP_IO_write(ICTP_IO_LED,&LED_Data,1);
reportError(retCode);

}
break;

case ICTP_IO_LCD:
retCode = cgiFormStringNoNewlines("LCD_Data", LCD_Data, 17);

switch (retCode)

308 Building GUI With Swing

U. Raich 7.4. Appendixes

{
case cgiFormSuccess:
cgi_fprintf(cgiOut,

"LCD_Data fetched: %s\n",LCD_Data);
retCode =

ICTP_IO_write(ICTP_IO_LCD,LCD_Data,strlen(LCD_Data));
break;

case cgiFormTruncated:
cgi_fprintf(cgiOut,

"LCD_Data fetched, result code: cgiFormTruncated\n");
retCode = -11;
break;

case cgiFormEmpty:
cgi_fprintf(cgiOut,

"LCD_Data fetched, result code: cgiFormEmpty\n");
retCode = -11;
break;

case cgiFormNotFound:
cgi_fprintf(cgiOut,

"LCD_Data fetched, result code: cgiFormNotFound\n");
retCode = -11;
break;

case cgiFormMemory:
cgi_fprintf(cgiOut,

"LCD_Data fetched, result code: cgiFormMemory\n");
retCode = -11;
break;

default:
cgi_fprintf(cgiOut,

"LCD_Data fetched,
unexpected result code: %s\n",
retCode);
retCode = -11;
break;

}
break;

}
}

break;

case ICTP_IO_READ:
cgi_fprintf(cgiOut,"Executing read \n");

retCode = ICTP_IO_read(deviceChoice,dataBuffer,dataSize);
reportError(retCode);
if (retCode == ICTP_IO_SUCCESS)

{
cgi_fprintf(cgiOut, "ICTP_IO Data: ");
for (i=0;i<dataSize;i++)

cgi_fprintf(cgiOut, "0x%02x ",dataBuffer[i]);

Building GUI With Swing 309

7.4. Appendixes U. Raich

cgi_fprintf(cgiOut,"\n");
}

return retCode;

case ICTP_IO_IOCTL:
cgi_fprintf(cgiOut,"Executing ioctl\n");
if (deviceChoice == ICTP_IO_LCD)

retCode = ICTP_IO_ioctl(deviceChoice,ioctlChoice);
break;

}
return retCode;

}

void reportError(int retCode)
{

if (ICTP_IO_msgType == ICTP_IO_HTML)
{

fprintf(cgiOut, "<h1><center>\n");
if (retCode == ICTP_IO_SUCCESS)

{
fprintf(cgiOut,"ICTP_IO Protocol Success
\n");
fprintf(cgiOut, "Error Code: %03d
\n",
retCode);

}
else

{
fprintf(cgiOut, "ICTP_IO Protocol Error:
\n");
fprintf(cgiOut, "Error Code: %d
\n",
retCode);

}
fprintf(cgiOut,"</center></h1>\n");

}
else
{

if (retCode == ICTP_IO_SUCCESS)
fprintf(cgiOut,"ICTP_IO Protocol Success\n");

else
fprintf(cgiOut, "ICTP_IO Protocol Error! Error Code: %d\n",
retCode);

}
}

void cgi_fprintf(FILE *stream, char * fmt, ...)
{

char *outString;
char *inPtr,*outPtr;
int i;

va_list ap;
va_start(ap,fmt);

310 Building GUI With Swing

U. Raich 7.4. Appendixes

switch (ICTP_IO_msgType)
{
case ICTP_IO_TEXT:

vfprintf(stream,fmt,ap);
break;

case ICTP_IO_HTML:
/*

replace \n with

*/
outString = (char *) malloc(strlen(fmt)+3*countCRs(fmt)+1);
outPtr = outString;
inPtr = fmt;
while (*inPtr != ’\0’)

if (*inPtr != ’\n’)
*outPtr++ = *inPtr++;

else
{

inPtr++;
*outPtr++=’<’;
*outPtr++=’B’;
*outPtr++=’R’;
*outPtr++=’>’;

}

*outPtr=’\0’;

vfprintf(cgiOut,outString,ap);
fflush(stream);
va_end(ap);

}
}

int countCRs(char *inString)
{
/*

count no of \n
*/
int i,count;
char *strPtr;
count = 0;
strPtr = inString;
for (i=0;i<strlen(inString);i++)

if (*strPtr++ == ’\n’)
count++;

return count;
}

Building GUI With Swing 311

7.4. Appendixes U. Raich

7.4.3 The full source code of the Complex Calculator

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;

/**
* ComplexCalcUI_Stage9.java
*
*
* Created: Mon Aug 21 21:19:31 2000
* Stage 7
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcUI_Stage9 extends JApplet {
private JTextField realPartText;
private JTextField imagPartText;
private JRadioButton realPartSelector,imagPartSelector;
boolean debug = false;

public ComplexCalcUI_Stage9 () {

}

/**
* In this stage be put a border around the 2 widgets
* Making the box look lowered
*/

public void init() {
/*

Create a Panel for real and imaginary part
text inputs

*/

JPanel calcPanel;
GridBagLayout gridBagLayout = new GridBagLayout();
GridBagConstraints gridBagConstraints = new GridBagConstraints();
GridLayout numberLayout;
GridLayout numberInputLayout;
JPanel numberPanel;
Box inputBox;
JButton[] numberInputButton;
JButton[] operatorInputButton;
Box selectorBox;
JPanel numberInputPanel;
JPanel operatorInputPanel;
JLabel realPartLabel;

312 Building GUI With Swing

U. Raich 7.4. Appendixes

JLabel imagPartLabel;

BevelBorder TextBorder;
if(debug)
System.out.println("Version 9");

/*
create the widgets

*/
calcPanel = new JPanel(gridBagLayout);
inputBox = Box.createHorizontalBox();

numberInputLayout = new GridLayout(4,3);
numberInputPanel = new JPanel(numberInputLayout);
operatorInputPanel = new JPanel(numberInputLayout);

inputBox.add(numberInputPanel);
inputBox.add(operatorInputPanel);

/*
create the label and the text fields for
entry of complex numbers

*/
numberPanel = new JPanel();
numberLayout = new GridLayout(2,2);
numberPanel.setLayout(numberLayout);
realPartLabel = new JLabel("Real Part");
realPartText = new JTextField(15);
realPartText.setText("0.0");
realPartText.setEditable(false);
imagPartLabel = new JLabel("Imaginary Part");
imagPartText = new JTextField(15);
imagPartText.setEditable(false);
imagPartText.setText("0.0");

TextBorder = new BevelBorder(BevelBorder.LOWERED);
numberPanel.setBorder(TextBorder);
/*
Place the label and the text widget in the box

*/

numberPanel.add(realPartLabel);
numberPanel.add(imagPartLabel);
numberPanel.add(realPartText);
numberPanel.add(imagPartText);

/*
create the controller containing the action listeners
and pass it the instances of realPartText,imagPartText...
which are needed when treating the Action events

*/

Building GUI With Swing 313

7.4. Appendixes U. Raich

ComplexCalcController complexCalcController =
new ComplexCalcController(this);

/*
create a RadioBox for selection into which

TextField the button input should go
*/
selectorBox = Box.createVerticalBox();
realPartSelector = new JRadioButton(
"Input real part of the number");
realPartSelector.setActionCommand("SetReal");
realPartSelector.addActionListener(complexCalcController);
realPartSelector.setSelected(true);

imagPartSelector = new JRadioButton(
"Input imaginary part of the number");
imagPartSelector.addActionListener(complexCalcController);
imagPartSelector.setActionCommand("SetImag");

/*
Group them into a Radio Box

*/
ButtonGroup buttonGroup = new ButtonGroup();
buttonGroup.add(realPartSelector);
buttonGroup.add(imagPartSelector);

selectorBox.add(realPartSelector);
selectorBox.add(imagPartSelector);

numberInputButton = new JButton[12];
for (int i=0;i<10;i++)

{
numberInputButton[i] = new JButton(Integer.toString(i));
numberInputPanel.add(numberInputButton[i]);
numberInputButton[i].addActionListener(complexCalcController);

}

numberInputButton[10] = new JButton(".");
numberInputPanel.add(numberInputButton[10]);
numberInputButton[10].addActionListener(complexCalcController);

numberInputButton[11] = new JButton("+/-");
numberInputPanel.add(numberInputButton[11]);
numberInputButton[11].addActionListener(complexCalcController);

operatorInputButton = new JButton[12];

operatorInputButton[0] = new JButton("+");
operatorInputPanel.add(operatorInputButton[0]);
/* activate the thing */

314 Building GUI With Swing

U. Raich 7.4. Appendixes

operatorInputButton[0].addActionListener(complexCalcController);

operatorInputButton[1] = new JButton("-");
operatorInputButton[1].addActionListener(complexCalcController);
operatorInputPanel.add(operatorInputButton[1]);

operatorInputButton[3] = new JButton("*");
operatorInputPanel.add(operatorInputButton[3]);
operatorInputButton[3].addActionListener(complexCalcController);

operatorInputButton[4] = new JButton("/");
operatorInputPanel.add(operatorInputButton[4]);
operatorInputButton[4].addActionListener(complexCalcController);

operatorInputButton[8] = new JButton("=");
operatorInputPanel.add(operatorInputButton[8]);
operatorInputButton[8].addActionListener(complexCalcController);

/* this button is not used yet */
operatorInputButton[9] = new JButton();
operatorInputPanel.add(operatorInputButton[9]);

operatorInputButton[10] = new JButton("Norm");
operatorInputPanel.add(operatorInputButton[10]);
operatorInputButton[10].addActionListener(complexCalcController);

operatorInputButton[10] = new JButton("Clear");
operatorInputPanel.add(operatorInputButton[10]);
operatorInputButton[10].addActionListener(complexCalcController);

/*
get the proportions right between

the display and the button part
*/
gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 0;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 15;
gridBagConstraints.fill = GridBagConstraints.BOTH;
gridBagLayout.setConstraints(numberPanel,gridBagConstraints);

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 1;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 70;
gridBagLayout.setConstraints(inputBox,gridBagConstraints);

Building GUI With Swing 315

7.4. Appendixes U. Raich

gridBagConstraints.gridx = 0;
gridBagConstraints.gridy = 2;
gridBagConstraints.gridwidth = 1;
gridBagConstraints.gridheight = 1;
gridBagConstraints.weightx = 100;
gridBagConstraints.weighty = 15;
gridBagLayout.setConstraints(selectorBox,gridBagConstraints);

calcPanel.add(numberPanel);
calcPanel.add(inputBox);
calcPanel.add(selectorBox);

this.getContentPane().add(calcPanel);
}

/**
* Get the value of realPartText.
* @return Value of realPartText.
*/

public JTextField getRealPartText() {return realPartText;}
/**

* Get the value of imagPartText.
* @return Value of imagPartText.
*/

public JTextField getImagPartText() {return imagPartText;}
/**

* Get the value of imagPartText.
* @return Value of imagPartText.
*/

public void setRealPartText(String s)
/**

* Write the String into imagPartText.
*/

{
if(debug)

System.out.println("UI setText text: " + s);
realPartText.setText(s);

}

public void setImagPartText(String s)
/**

* Write the String into imagPartText.
*/

{
imagPartText.setText(s);

}

/**

316 Building GUI With Swing

U. Raich 7.4. Appendixes

* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

}// ComplexCalcUI_Stage9

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;
import java.awt.event.*;
import java.text.*;
/**
* ComplexCalcController.java
*
*
* Created: Sat Aug 26 22:17:25 2000
*
* @author Ulrich Raich
* @version 0.1
*/

public class ComplexCalcController implements ActionListener {
static final int plus=1;
static final int minus=1;
ComplexCalcUI_Stage9 complexUI;
int operator;
ComplexModel model;
boolean debug=false;

public ComplexCalcController (ComplexCalcUI_Stage9 ui)
{

/* save the identifier to the View */
complexUI = ui;
model = new ComplexModel();
if(debug)
System.out.println("ComplexController");

}

Building GUI With Swing 317

7.4. Appendixes U. Raich

/**
* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

private double getRealPartFromUI()

{
JTextField rp;

String numberString;
double value;

rp = complexUI.getRealPartText();
numberString = rp.getText();
value = Double.parseDouble(numberString);
System.out.println("real part value: " + value);
return(value);

}

private double getImagPartFromUI()
{

JTextField ip;
String numberString;

double value;

ip = complexUI.getRealPartText();
numberString = ip.getText();
value = Double.parseDouble(numberString);
if(debug)

System.out.println("real part value: " + value);
return(value);

}

public void actionPerformed(ActionEvent e)
{

JButton activatedButton;
String buttonLabel;
double value;
byte[] buttonChars;

318 Building GUI With Swing

U. Raich 7.4. Appendixes

if(debug)
System.out.println("Class name:" +

e.getSource().getClass().getName());
if (e.getActionCommand().equals("SetReal"))
{

if(debug)
System.out.println("Real part ");

model.setReal();
return;

}
if (e.getActionCommand().equals("SetImag"))
{

if(debug)
System.out.println("Imag part ");

model.setImag();
return;

}

activatedButton = (JButton)e.getSource();
buttonLabel = activatedButton.getText();

if (buttonLabel.equals("+"))
{

if(debug)
System.out.println("Add Button");

model.setOperator(ComplexModel.ADD);
model.copyNumbers();
return;

}
if (buttonLabel.equals("-"))

{
if(debug)

System.out.println("Sub Button");
model.copyNumbers();
model.setOperator(ComplexModel.SUB);
return;

}
if (buttonLabel.equals("*"))

{
if(debug)

System.out.println("Mult Button");
model.copyNumbers();
model.setOperator(ComplexModel.MUL);
return;

}
if (buttonLabel.equals("/"))

{
model.setOperator(ComplexModel.DIV);
model.copyNumbers();

Building GUI With Swing 319

7.4. Appendixes U. Raich

if(debug)
System.out.println("Div Button");

return;
}

if (buttonLabel.equals("Norm"))
{

model.setOperator(ComplexModel.NORM);
if(debug)

System.out.println("Norm Button");
model.execute();
setResult();
return;

}
if (buttonLabel.equals("+/-"))

{
if(debug)

System.out.println("Change Sign Button");
model.changeSign();
setResult();
return;

}
if (buttonLabel.equals("="))

{
if(debug)

System.out.println("Equals Button");
model.execute();
setResult();
return;

}
if (buttonLabel.equals("."))

{
if(debug)

System.out.println("Dot Button");
model.setPoint();
return;

}
if (buttonLabel.equals("Clear"))

{
model.clear();
setResult();

}
for (int i=0;i<10;i++)

if (buttonLabel.equals(Integer.toString(i)))
{

if(debug)
{

System.out.println("Number:" + i);
System.out.println("Actual result:" +

model.getResult().toString());
}

320 Building GUI With Swing

U. Raich 7.4. Appendixes

buttonChars = buttonLabel.getBytes();
if(debug)

System.out.println("Button Byte" +
buttonChars[0]);

model.addDigit(buttonChars[0]);
setResult();

}
}

private void setResult()
{

Complex result = model.getResult();
DecimalFormat df = new DecimalFormat("0.0######");
String resultString=df.format(result.getReal());
complexUI.setRealPartText(resultString);
resultString=df.format(result.getImaginary());
complexUI.setImagPartText(resultString);

}

private void clearResult()
{

complexUI.setRealPartText("0.0");
complexUI.setImagPartText("0.0");

}

}// ComplexCalcController

/**
* ComplexModel.java
*
*
* Created: Sun Nov 11 17:59:36 2001
*
* @author Ulrich Raich
* @version
*/
import java.text.*;

public class ComplexModel {

public static final int INVALID=0;
public static final int ADD =1;
public static final int SUB =2;
public static final int MUL =3;
public static final int DIV =4;
public static final int NORM =5;

Complex firstNumber,result;
int operator;
boolean realPoint,imagPoint;
boolean real = true;

Building GUI With Swing 321

7.4. Appendixes U. Raich

boolean newNumber = true;
byte[] realIntPart,imagIntPart;
byte[] realFloatPart,imagFloatPart;
int realIntIndex,realFloatIndex;
int imagIntIndex,imagFloatIndex;
boolean debug = false;

/**
* The ComplexModel is a model for the complex
* calculator. It has properties to save the numbers
* that are about to be entered and it stores the number
* entered before and operator. The operator is stored
* as well.
*/

public ComplexModel (){
realIntPart = new byte[50];
realFloatPart = new byte[50];

imagIntPart = new byte[50];
imagFloatPart = new byte[50];

realPoint = imagPoint = false;
result = new Complex(0.0,0.0);
firstNumber = new Complex(0.0,0.0);
clearAll();
operator = INVALID;

}
public ComplexModel (Complex c){
this();
result=c;

}
public ComplexModel (double r, double i){
this();
result.setReal(r);
result.setImaginary(i);

}

public void setOperator(int op)
{
if ((operator < ADD) && (operator > DIV))

return;
if(debug)

System.out.println("Operator set to " + op);
operator = op;
newNumber = true;

}

public int getOperator()
{

322 Building GUI With Swing

U. Raich 7.4. Appendixes

return operator;
}

/**
* Get the value of debug.
* @return value of debug.
*/

public boolean isDebug() {
return debug;

}

/**
* Set the value of debug.
* @param v Value to assign to debug.
*/

public void setDebug(boolean v) {
this.debug = v;

}

public void execute()

{
boolean tmpRealImag;
String resultString;
byte[] tmpInt,tmpFloat;
int tmpIntIndex,tmpFloatIndex;
int i,j;

tmpInt = new byte[50];
tmpFloat= new byte[50];

if ((operator < ADD) || (operator > NORM))
return;

result=getResult();
/* assemble byte strings into complex */

switch(operator) {
case ADD:

result=firstNumber.add(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());

break;
case SUB:

result=firstNumber.sub(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +

Building GUI With Swing 323

7.4. Appendixes U. Raich

result.getImaginary());
break;

case MUL:
result=firstNumber.mul(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());

break;
case DIV:

result=firstNumber.div(result);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());
break;

case NORM:
result.setReal(result.norm());
result.setImaginary(0.0);
clearFirstNumber();
if(debug)

System.out.println("Execution result:" +
result.getReal() + " " +
result.getImaginary());

break;
}

newNumber = true;
clearFirstNumber();
tmpInt = double2IntArray(result.getReal());
copyByteArray(tmpInt,realIntPart);
realIntIndex = tmpInt.length;
if(debug)

System.out.println("execute: realIntPart: " +
new String(tmpInt));

tmpFloat = double2FloatArray(result.getReal());
copyByteArray(tmpFloat,realFloatPart);
realFloatIndex = tmpFloat.length;
if(debug)

System.out.println("execute: realFloatPart: " +
new String(tmpFloat));

tmpInt = double2IntArray(result.getImaginary());
copyByteArray(tmpInt,imagIntPart);
imagIntIndex = tmpInt.length;

tmpFloat = double2FloatArray(result.getImaginary());

324 Building GUI With Swing

U. Raich 7.4. Appendixes

copyByteArray(tmpFloat,imagFloatPart);
imagFloatIndex = tmpFloat.length;

}

public void clearFirstNumber()
{

firstNumber.setReal(0.0);
firstNumber.setImaginary(0.0);
return ;

}
public Complex getFirstNumber()
{

return firstNumber;
}
public Complex getResult()
{

return result;
}

private void assembleResult()
{

double real,imag;
byte[] intTmp,floatTmp;

intTmp = adaptByteArray(realIntPart, realIntIndex);
floatTmp = adaptByteArray(realFloatPart,realFloatIndex);
if (intTmp.length == 0)

{
if(debug)
System.out.println("zero length byte array");

return;
}

String numberString = new String(intTmp) + "."
+ new String(floatTmp);

if(debug)
System.out.println("assembleResult: real numberString: " +

numberString);
real = Double.parseDouble(numberString);

intTmp = adaptByteArray(imagIntPart, imagIntIndex);
floatTmp = adaptByteArray(imagFloatPart,imagFloatIndex);

numberString = new String(intTmp) + "." +
new String(floatTmp);

imag = Double.parseDouble(numberString);

if(debug)
System.out.println("assembleResult: imag numberString: " +

Building GUI With Swing 325

7.4. Appendixes U. Raich

numberString);
result = new Complex(real,imag);

}

private byte[] adaptByteArray(byte[] unadaptedByteArray,int index)
{

byte[] adaptedByteArray;
if (index==0)

{
adaptedByteArray = new byte[1];
adaptedByteArray[0]=’0’;
return adaptedByteArray;

}
else

{
adaptedByteArray = new byte[index];
for (int i=0;i<index;i++)

{
adaptedByteArray[i] = unadaptedByteArray[i];
if(debug)

System.out.println(i +
"Copy char:" +
new String(adaptedByteArray));

}
}

return adaptedByteArray;
}

public String[] getResultStrings()
{
String[] complexStrings = new String[2];
byte[] intTmp,floatTmp;

if(debug)
System.out.println("realIntIndex : " + realIntIndex);

intTmp = adaptByteArray(realIntPart, realIntIndex);
floatTmp = adaptByteArray(realFloatPart,realFloatIndex);

complexStrings[0] = new String(intTmp) + "." + new String(floatTmp);

intTmp = adaptByteArray(imagIntPart, imagIntIndex);
floatTmp = adaptByteArray(imagFloatPart,imagFloatIndex);

complexStrings[1] = new String(intTmp) + "."
+ new String(floatTmp);

if(debug)
System.out.println("result Strings: " +

326 Building GUI With Swing

U. Raich 7.4. Appendixes

complexStrings[0] + " " +
complexStrings[1]);

return complexStrings;
}

public void copyNumbers()
{

firstNumber = new Complex(result);
result.setReal(0.0);
result.setImaginary(0.0);
clearAll();

}

public void clearAll()
{

clear();
real = !real;
clear();
real = !real;

}

public void clear()
{

if (real)
{

realIntPart[0] = ’0’;
realFloatPart[0] = ’0’;
result.setReal(0.0);
realIntIndex = 1;
realFloatIndex = 0;

}
else

{
imagIntPart[0] = ’0’;
imagFloatPart[0] = ’0’;
result.setImaginary(0.0);
imagIntIndex = 1;
imagFloatIndex = 0;

}
realPoint = imagPoint = false;

}

public void addDigit(byte digit)
{

String resultString;
double newRealPart,newImagPart;
String integerPartString,floatPartString;
byte[] intBytes,floatBytes;
int intIndex,floatIndex;
byte[] intPart,floatPart;

Building GUI With Swing 327

7.4. Appendixes U. Raich

boolean point;

if (newNumber) {
clear();
newNumber = false;

}
if(debug)

System.out.println("addDigit: " + digit);
if (real)

{
intIndex = realIntIndex;
floatIndex = realFloatIndex;
intPart = realIntPart;
floatPart = realFloatPart;
point = realPoint;

}
else

{
intIndex = imagIntIndex;
floatIndex = imagFloatIndex;
intPart = imagIntPart;
floatPart = imagFloatPart;
point = imagPoint;
if(debug)

System.out.println("Imag addDigit");
}

if (point)
{

if (floatIndex > 7)
return;

floatPart[floatIndex] = digit;
floatIndex++;

floatBytes = new byte[floatIndex];
for (int i=0;i<floatIndex;i++)

floatBytes[i] = floatPart[i];
resultString = new String(floatBytes);
if(debug)

System.out.println("New result: " + resultString);

newRealPart = Double.parseDouble(resultString);
if(debug)

System.out.println(
"new value:" + new Double(newRealPart).toString());
result.setReal(newRealPart);

}
else

{
if (intIndex > 7)

328 Building GUI With Swing

U. Raich 7.4. Appendixes

return;
if(debug)
System.out.println("intIndex: " + intIndex);

if ((intIndex == 1)&&(intPart[0]==’0’))
{

if (digit == ’0’)
return;

intPart[0] = digit;
}

else
{

intPart[intIndex] = digit;
intIndex++;

}

intBytes = new byte[intIndex];
for (int i=0;i<intIndex;i++)
intBytes[i] = intPart[i];

resultString = new String(intBytes);
if(debug)
System.out.println("New result: " + resultString);

newRealPart = Double.parseDouble(resultString);
if(debug)
System.out.println("new value:" + new Double(newRealPart).toString());

result.setReal(newRealPart);

}
if (real)

{
realIntIndex = intIndex;
realFloatIndex= floatIndex;

}
else

{
imagIntIndex = intIndex;
imagFloatIndex= floatIndex;

}
assembleResult();

}

public void setPoint()
{

if (real)
realPoint = true;

else
imagPoint = true;

}

Building GUI With Swing 329

7.4. Appendixes U. Raich

public void setReal()
{
real = true;

}

public void setImag()
{
real = false;

}

public void changeSign()
{
if (real)

{
realIntPart = changeSign(realIntPart);
if (realIntPart[0] == ’-’)

realIntIndex++;
else

realIntIndex--;

if(debug)
{
System.out.println("After Change Sign " +

new String(realIntPart) + "." +
new String(realFloatPart));

System.out.println("realIntIndex: " + realIntIndex);
}

}
else

{
imagIntPart = changeSign(imagIntPart);
if (imagIntPart[0] == ’-’)

imagIntIndex++;
else

imagIntIndex--;
}

assembleResult();
}

public byte[] changeSign(byte[] inArray)
{
byte[] outArray = new byte[50];
if (inArray[0] == ’-’)

{
for (int i=0;i<inArray.length-1;i++)

outArray[i] = inArray[i+1];
return outArray;

}
else

{

330 Building GUI With Swing

U. Raich 7.4. Appendixes

outArray[0] = ’-’;
for (int i=0;i<inArray.length-1;i++)
outArray[i+1] = inArray[i];

return outArray;
}

}

public void copyByteArray(byte[] src, byte[] dest)
{

for (int i=0;i<src.length;i++)
dest[i] = src[i];

}

public double byteArray2Double(byte[] intArray, byte[] floatArray)
{

double result;
String numberString = new String(intArray) +

"." +
new String(floatArray);

result = Double.parseDouble(numberString);
if (debug)

System.out.println("byteArray2Double: double value " + result);
return result;

}

/**
* extracts the integer part from a double
* in form of a character array
*
*/

public byte[] double2IntArray(double val)
{

DecimalFormat df;
String valString;
byte[] intArray,tmpAll;
int i,length;

df = new DecimalFormat("0.0######");
valString=df.format(val);
/*

extract the byte array from the String
should be in the form ii.fff
with a least 1 i and 1 f

*/

length = 0;
tmpAll = valString.getBytes();

Building GUI With Swing 331

7.4. Appendixes U. Raich

for (i=0;i<tmpAll.length;i++)
{

/*
get at the position of the decimal point

*/
if (tmpAll[i] == ’.’)

break;
else

length++;
}

intArray = new byte[length];
for (i=0;i<length;i++)

intArray[i] = tmpAll[i];
return intArray;

}

public byte[] double2FloatArray(double val)
{
DecimalFormat df;
String valString;
byte[] floatArray,tmpAll;
int i,length,dotPos;

df = new DecimalFormat("0.0######");
valString=df.format(val);
/*

extract the byte array from the String
should be in the form ii.fff
with a least 1 i and 1 f

*/

tmpAll = valString.getBytes();
for (i=0;i<tmpAll.length;i++)

{
/*

get at the position of the decimal point
*/
if (tmpAll[i] == ’.’)

break;
}

dotPos=i;
length = tmpAll.length - dotPos - 1;

floatArray = new byte[length];
for (i=0;i<length;i++)

floatArray[i] = tmpAll[dotPos+i+1];
return floatArray;

}
}

332 Building GUI With Swing

