
Seventh College on Microprocessor-Based
Real-Time Systems in Physics

Abdus Salam ICTP, Trieste.

October 28 – November 22, 2002

Lecture Notes

Contents

1 Software Design
by Paul Bartholdi vii
1.1 Documentation . vii

1.1.1 Various Types of Documentation vii
1.1.2 Internal Documentation to the Code viii
1.1.3 Maintenance Manual – Programme Logic viii
1.1.4 User’s Guide . ix
1.1.5 Reference Manual . ix
1.1.6 Reference Card . ix
1.1.7 Administrator’s Guide . x
1.1.8 Teaching Manual, Primer x
1.1.9 General Index . x
1.1.10 Reference Page Contents x
1.1.11 Literate Programming . xi

1.2 Quality Assurance . xiii
1.2.1 Standards, Practices and Conventions xiii
1.2.2 Software Quality Factors xiii
1.2.3 Review and Audits . xiv
1.2.4 Testing . xiv
1.2.5 Defensive Programming in the Laboratory xv
1.2.6 Debugging . xvi
1.2.7 Murphy’s Laws . xvi

1.3 UNIX Tools . xvii
1.3.1 UNIX as a Programming Language xvii
1.3.2 Pipes and Redirections . xviii
1.3.3 Five ways to input data into a programme xix
1.3.4 Aliases and functions . xix
1.3.5 Searching Tools . xx
1.3.6 Looking for parts of a file xx
1.3.7 Stream Editor: sed and gawk xxi
1.3.8 Character conversion using tr xxi
1.3.9 Use of the history . xxii
1.3.10 Command/file name completion xxiii
1.3.11 Executing just What is Necessary, using make xxiv
1.3.12 RCS and SCCS: Automatic Revision Control xxvi

iii

Contents

1.4 Shell programming . xxviii
1.4.1 bash and csh command syntax compared xxxii

1.5 Very High Level Programming . xli
1.5.1 Public Domain Software xlii
1.5.2 Notes about Relational Data Bases xliii

1.6 Use of network . xliv
1.6.1 File transfer . xliv
1.6.2 Working on another computer xlvi
1.6.3 Executing a command on a remote host xlvi
1.6.4 Remote copying a file . xlvii
1.6.5 Displaying on another station xlvii
1.6.6 Secure remote commands xlvii

1.7 Data structures . xlviii
1.7.1 Arrays . xlviii
1.7.2 Linked lists . liii
1.7.3 Stacks . lvii
1.7.4 Queues . lviii

1.8 Real-Time Systems . lix
1.8.1 Concurrent and Real-Time Concepts lix
1.8.2 Embedded and Distributed Real-Time Systems lx
1.8.3 Implementation Issues . lxi
1.8.4 Time Handling . lxii
1.8.5 Real-Time Systems Design lxvi
1.8.6 Structured design of Real-Time Systems lxxiv
1.8.7 Example of a concurrent problem lxxvi

1.9 Use of man pages, apropos and info lxxxi
1.9.1 man and apropos . lxxxi
1.9.2 info . lxxxii

1.10 Think . lxxxiii
1.11 Introduction . lxxxiv

1.11.1 Why Data Base Systems ? lxxxiv
1.11.2 What is a Data Base System ? lxxxv
1.11.3 What is a Data Base ? . lxxxv
1.11.4 Database Models . lxxxv

1.12 The Relational Model . lxxxvi
1.12.1 Historical background . lxxxvi
1.12.2 The relational model . lxxxvi
1.12.3 The relational system . lxxxvii
1.12.4 Data entities and relations lxxxvii
1.12.5 The Data model . lxxxviii
1.12.6 Entity-Relationship diagrams lxxxviii
1.12.7 Normal forms . lxxxix

1.13 UNIX flat tables . xci
1.13.1 Using pipes and redirections xci
1.13.2 Building Databases . xci
1.13.3 UNIX commands . xciii

iv

Contents

1.13.4 Advantages and limitations xciv
1.13.5 SQL equivalence . xcv

1.14 References and Bibliography . xcvi
1.14.1 Structured Programming xcvi
1.14.2 Algorithms & Data Structures xcvi
1.14.3 Object Orientation . xcvii
1.14.4 Concurrent and Real-Time Programming xcvii
1.14.5 Languages . xcvii
1.14.6 UNIX Tools . xcviii
1.14.7 RELATIONAL DATABASE . xcix

Index . c

v

Contents

vi

Chapter 1

Software Design
by Paul Bartholdi

Abstract

In this chapter, we will look at various topics concerning Software Design, from
program documentation to very specific aspects of real-time. It contains also an
introduction to shell programming and the use of various Unix tools.

1.1 Documentation

Some program are used once and never used again.
However most programs

� will be used many times;
� will be changed, upgraded;
� will go to other users;
� will contain undetected errors.

Maintaining, upgrading, using again, debugging, cost more time and money
after a program is “finished” than before.

Good programming � Good documentation � lower total cost

1.1.1 Various Types of Documentation

Documentation will serve many goals, and be read by many different users.
It should be

� Useful, that is concise and readable;
� Consistent, any change should be time stamped;
� Maintainable, indexes and cross-references should be produced automati-

cally;
� Up-to-date, in parallel with the codes.

1.1. Documentation Paul Bartholdi

Here is a short list of various situations:

1. Source Code Comments
2. Maintenance Manual
3. User’s Guide (Tutorial)
4. Reference Manual
5. Reference Card
6. Administrator’s Guide
7. Teaching Notes
8. General Index

Depending on the importance of the system, some of these points may be
ignored, or be part of others. For large project, they should be independent doc-
uments.

1.1.2 Internal Documentation to the Code

Goal: Document each module at the local level for the programmer. It should be
short and informative (not paraphrase), easily readable on a screen.

Header � name + descriptive title
� programmer’s name and affiliation
� date and version of revisions with changes
� short description of what it does and how
� input expected, limits
� output produced
� error conditions, special cases
� other modules called

In-line comments � should help to follow execution
� break into sub-sections
� indent if useful
� use meaningful names
� do not duplicate code

1.1.3 Maintenance Manual – Programme Logic

Goal: Present a global view of the product to a programmer, at the functional and
structural level.

� table of contents
� program purpose, what it does and how
� names and purpose of principal modules
� cross-reference between modules
� name and purpose of main variables
� flow chart of main activities, dynamical behavior

viii Software Design

Paul Bartholdi 1.1. Documentation

� debugging aids, how to use them
� interface for new modules
� index

It should complement the internal documentation (not duplicate it)
Look at your program from above, think about it as an outsider.

1.1.4 User’s Guide

Goal: Should help the user, present him a global overview of the product and
how to use it!

� Table of contents
� how to use the documentation
� how to contact author/maintainer (E-Mail) addresses, phones etc
� acknowledgments
� program name(s)
� what it does (briefly)
� explanation of the main notions and concepts used
� references (how it does it)
� how to start and stop the programs
� input expected, controls available
� unusual conditions, errors, limitations
� sample run with input, output and comments
� index

1.1.5 Reference Manual

Goal: Present an exhaustive and formal description for the various elements of
the product.

� table of contents
� table of function, with a short description
� reference pages: list of all functions in a standard form, with a complete

description similar to the module headers
� table of global variables with complete description and cross-indexing
� glossary for all specific words
� table of errors
� table of drivers
� annexes
� index

1.1.6 Reference Card

Goal: Single sheet with formal references for rapid consultation.
List of all commands, with their syntax, ordered by subject. Should be pro-

duced automatically from the Reference Manual and User’s Guide.

Software Design ix

1.1. Documentation Paul Bartholdi

1.1.7 Administrator’s Guide

Goal: Easy installation and maintenance of the product in various environments.
� Table of contents
� minimum configuration and necessary associated products
� installation
� documentation production
� updates
� des-installation procedure
� list of supported machines and configurations
� list of attached files
� table of variables
� index

1.1.8 Teaching Manual, Primer

Goal: Easier understanding and learning of the product.
Step by step introduction of the various concepts and commands of the sys-

tem, with examples, exercises, answers etc
It will depend considerably on the product. It could be part of the User’s

Guide.
As a rule, make suggestions for serial execution, avoid to force the reader on

a given path, let him try whatever he wants, put data files at his disposition. In
my opinion, many Introduction to . . . are far too restrictive in this sense.

1.1.9 General Index

Goal: Find information anywhere in the documentation.
Should be prepared at the same time as the various documents.

1.1.10 Reference Page Contents

Here is a quite exhaustive list of fields for a reference page:

name
list of commands linkages to other products
short description long description remarks
synopsis (BNF) syntax return value(s)
options global variables context
input parameters output parameters optional parameters
author version date
examples keywords optional keywords
known bugs limitations cross-references
errors level of errors bibliography
algorithms precision complexity
input files library files external references
temporary files used files modified files

x Software Design

Paul Bartholdi 1.1. Documentation

1.1.11 Literate Programming

Knuth, while writing his set of books on TEX , that is the TEX text processing
system, in parallel with the design of the product, has build a new concept for
the documentation of codes, where the text around the code is the main object of
attention.

The code, written in the middle of the documentation, can be extracted au-
tomatically and passed untouched to the compiler. It is not intended for human
reading, even less for editing, this has to be done in the documentation file.

The printed documentation produce code listing that is particularly easy to
read.

cweb is well adapted to C programming.
Here is a small extract from a cweb file:

@ Most \.{CWEB} programs share a common structure.
It’s probably a good idea to state the overall structure
explicitly at the outset, even though the various parts
could all be introduced in unnamed sections of the code
if we wanted to add them piecemeal.

Here, then, is an overview of the file \.{wc.c} that is defined
by this \.{CWEB} program \.{wc.w}:
\index{c!cweb example}
\index{example!literate programming}

@c
@<Header files to include@>@/
@<Global variables@>@/
@<Functions@>@/
@<The main program@>

@ We must include the standard I/O definitions, since we want
to send formatted output to |stdout| and |stderr|.

@<Header files...@>=
#include <stdio.h>

@ The |status| variable will tell the operating system if the
run was successful or not, and |prog_name| is used in case
there’s an error message to be printed.

@d OK 0 /* |status| code for successful run */
@d usage_error 1 /* |status| code for improper syntax */
@d cannot_open_file 2 /* |status| code for file access error */

@<Global variables@>=
int status=OK; /* exit status of command, initially |OK| */
char *prog_name; /* who we are */

From this code, two files can be extracted, a .tex for the printed document,
and a .c file for the compiler.

Here is the corresponding extract in printed form:

Software Design xi

1.1. Documentation Paul Bartholdi

� ���������	��
��������������� ��� ���

�! #"%$'&)(+*�,�-�.�/102$'3�054�6�&	&27148059:4<;=$�6>6>$'?@&A(502B;C(2B10298D	EF(=G &H/102$'I148I1JLKM4N3�$�$�O@PQOR9S4T(5$M&)(54U(59V(57R9:$UW�9S0X48JLJR&)(205B1;C(5BR059
9=Y�/1JLPL;=PZ(5JZK�4U(T(2719>$�BR(5&29=(=[\9SW�9S?](57R$�B13�7�(2719@WU4805PL$�B&^/4802(5&�;=$�B1JLO�48JLJ	I�9@PL?�(202$RO�B;=9�O_PL?]B1?R?486>9�O]&)9�;C(5PZ$'?1&:$8`+(2719
;=$�OR9�Pa`cb+9�bd48?�(29�Oe(2$>4'ORO�(2719S6f/1PZ9�;=9S6>9�48JgD
h 9S0298[R(57R9S?![�PQ&i48?�$UW�9S02W�PZ9Sbj$8`k(2719�l1JL9Tmnpo2ne(274U(VPL&VOR9Cl?R9�O�I�K�(271PQ&i*�,�-�.%/R05$�3�0X486qm�ncormks
t h 9S4'O�9S0il1JL9�&+(5$@PL?1;=JLBO�9�u!v
t'w JL$�I14�J�WU4�02PQ48I1JZ9�&�x\v
t�y B1?;X(5PL$�?1&@zX{|v
t�} 719~6�4�PZ?e/R05$�3�0X486��|v

�| ���9M6MB&A(:PL?1;=JLBO�9~(57R9@&)(54�?1O14805O_E2�'��O�9=l?RPZ(5PZ$'?1&=[!&)PL?1;=9<bd9<bd4�?'(:(2$�&)9S?O�`�$�056�48()(29�O%$�BR(2/1B�(T(5$%�=�r���U�1�~48?O
�=�r���=�C�1D
t h 9�4�OR9S0dlJL9S&d(2$>PL?1;=JLB1OR9eu|vp�
�<�����'�����������U�R�1�� og¡!¢
£|¤¦¥ §k¨)©Sª¦«c¥ §\¬U§g«)ª:¥ �§g«A¨A®�¥ ©X z�¯

°\ } 7R9��=�r±8�g���_WU4805PQ48IRJL9<bVPLJZJ	(29SJLJc(2719�$'/9S0X4U(2PL?13�&2K�&)(29S6²PZ`+(2719>05BR?�bi4�&N&2B1;S;=9�&2&)`�BRJp$'0~?R$8(S[c48?O�³��5�2´ µ�±8¶>�%PQ&
B&)9�O�PZ?�;S4�&)9T(57R9S059UG &V48?_9S0205$�0+6�9S&5&24�3�9^(2$>I�9~/102PL?'(59�O�D
·�����¸	���º¹8»½¼ ¾�¿ �C�r±������>;C$RO�9T`�$�0:&2B1;S;=9�&2&)`QB1J|02B1? ¿�¾
·�����¸	��� ���S±S´'� �=�C�2�U� � ¾'¿ �C�F±8�����>;=$�OR9T`Q$'0iPL6>/102$'/9S0i&)K�?'(548Y ¿�¾
·�����¸	���ÁÀ ±8µ1µ!�8� �5³1�=µ ÂpÃZ� � ¾�¿ �=�r±8�����M;=$�OR9�`�$�0il1JL9~4�;S;=9�&2&d9=0502$'0 ¿�¾
t'w JL$'I148J!WU4805PQ48IRJL9�&�x\vH�
���!Ä �C�r±������NÅ ¹8»kÆ ¾'¿ 9=Y�PZ(V&)(548(2B&i$8`	;=$�6�6�48?O�[�PL?RPZ(5PQ48JLJZK ¹8»Ç¿�¾
�¦È�ÉRÊ%¿ ³��2�5´ µ!±U¶>� Æ ¾�¿ bV7R$>b+9~48059 ¿�¾

Ë «A«pÌ5Í §g©i§r«A¨F®�¥ ©XMÎ x¦¯
£|¤¦¥ §k¨)©Sª¦«c¥ §\¬U§g«)ª:¥ �§g«A¨A®�¥ ©X z�¯

and the C code:

#define OK 0
#define usage_error 1
#define cannot_open_file 2 \

#define READ_ONLY 0 \

#define buf_size BUFSIZ \

#define print_count(n)printf("%8ld",n) \

/*2:*/
#line 30 "wc.w"

/*3:*/
#line 39 "wc.w"

#include <stdio.h>

/*:3*/
#line 31 "wc.w"

/*4:*/
#line 50 "wc.w"

xii Software Design

Paul Bartholdi 1.2. Quality Assurance

int status= OK;
char*prog_name;

/*:4*//*14:*/
#line 150 "wc.w"

long tot_word_count,tot_line_count,tot_char_count;

1.2 Quality Assurance

The goal of Quality Assurance is to systematize the process of verification and
validation:

� Verification: Are we building the the product right?
� Validation: Are we building the right product?

1.2.1 Standards, Practices and Conventions

Will depend on the environment (ex. programming language). It should be

� generally agreed on,
� then followed by every one.

In general:

� The code should reflect the problem, not the solution;
� the methods used has to be predictable;
� the style has to be consistent throughout the program;
� special features of the programming language or hardware environment

should be used very carefully, or avoided altogether;
� the program should be written for a reader as much as for a computer.

1.2.2 Software Quality Factors

Correctness does it satisfy its specifications and fulfill the objectives?
Does it do what I want?

Reliability does it perform its intended functions?
Does it do it accurately all the time?

Efficiency Amount of resources required
Will it run on a given hardware as well it can?

Security controlled access to the code and data
Is it secure?

Usability Effort required to learn, operate, upgrade the code
Can I run it in the long term?

Maintainability Effort required to locate and fix errors in the code
Can I fix it?

Software Design xiii

1.2. Quality Assurance Paul Bartholdi

Flexibility Effort required to modify an operational program
Can I upgrade it?

Testability Effort required to test fully a program
Can I test/trust it?

Portability Effort required to transfer the program to another system
Will I be able to change my OS or hardware?

Re-usability Reuse of parts of a program in another application
Can I reuse some of my work?

Interoperability Effort required to couple one system to another
Can I interface my program to another system?

1.2.3 Review and Audits

An innocent view on your work can be very useful to

� uncover errors in function, logic or implementation;
� verify that it meets the requirements;
� agree with accepted standards;
� achieve consistency with other works;
� ease management.

A technical review should take place each time a module of a reasonable size
has been completed, or results from some extensive test exist.

The review team should be small: 2–3 persons. E-Mail has the advantage that
everything will be documented.

Imaginary checklist for a review:

1. System engineering: definitions, interfaces, performances, limitations, con-
sistency, alternative solutions

2. Project planning: budgets, deadlines, schedules
3. Software requirements
4. Software design: modularity, functional dependencies, interfaces, data struc-

tures, algorithms, exception handling, dependencies, documentation, main-
tainability

5. Testing: identification of test phases, resources, tools, record keeping, error
handling, performance, tolerance

6. Maintenance: side effects, documentation, change evaluation and approval
. . .

1.2.4 Testing

1. Executing a program with the intent of finding an error
2. Successful test: one that uncovers an as-yet undiscovered error, with mini-

mum amount of time and effort.
3. Testing cannot prove the absence of defects

xiv Software Design

Paul Bartholdi 1.2. Quality Assurance

Black Box Testing

Using only the specified functions and input/output description, demonstrate
that each function is fully operational in all circumstances, and has no defective
side effects.

Some questions:

� Which functions are tested?
� Which classes of inputs are used?
� Is the system sensitive to input values? to user errors?
� What data rates and volumes can be accepted?
� How does it affect system operations?

White Box Testing

Using not only the external specifications, but also the internal working of the
modules, demonstrate that it does work in the expected way, exercising all inter-
nal components.

All procedural details should be closely examined.
Exhaustive testing is generally impossible for large modules.
Some questions:

� Do the data structures maintain their integrity during the execution?
� Which paths are exercised, which are not?
� How are “special paths” executed?
� How is error handling executed?
� How does the system react to stress, deliberate attacks?

1.2.5 Defensive Programming in the Laboratory

The previous section is mainly valid for large projects, in particular when a team
of many people is involved with external requirements.

Here are a few hints that can be applied during the exercises in the laboratory:

� Try to explain clearly what you are doing to your colleague. It is not far from
a psychiatric experience. You will find your own errors that way.

� Do not trust anything!

– Print the status for all file operations,

– When you open a file, verify that it exists,

– When you read a record,
� check that you are not at eof,
� check that the data are valid;

– When you write a record, check that you have write permissions,

– When you do some complex calculation, check that the results are in
the right order,

Software Design xv

1.2. Quality Assurance Paul Bartholdi

– If some input data must be on a given range, check its bounds,

– If anything may last more than a few seconds, print some flags or indi-
cations,

– When your program has terminated, check the size and contents of
every file involved (it may not be a bad idea to print inside the program
a summary of all written files with their length).

� Keep a backup of all important (a constantly changing concept) files
� Use the facilities of UNIX, like make, grep, tee, diff . . .

1.2.6 Debugging

Almost all programmes contain errors (= bugs in relay). You can help the detec-
tion of them:

� add guards while coding,
� prepare simulated input, first simple (easy to trace by hand), then more

complex (difficult),
� Debug each module alone, then in small integration,
� chose critical points where you know what you should get if previous step

are correct,
� advance by small steps,

– from input forward,
– from output backward,

� analyze wrong results to see what/where this value comes from,
� try all (very) improbable cases.

Rules :

� if some thing can go wrong, it will !
� if an error can be damaging, it will !
� if it is very improbable, it will still exist !

1.2.7 Murphy’s Laws

Murphy was an American engineer whose pessimism paid — his famous law, “If
anything can go wrong, it will,” should remain a model of conservative system
design. Many scientists were inspired by him (as seen from the following):

� Any given program, when running, is obsolete.
� Any given program costs more and takes longer to develop.
� If any program is useful, it will have to be changed.

xvi Software Design

Paul Bartholdi 1.3. UNIX Tools

� If a program is useless, it will have to be documented.
� Any given program will expand to fill all available memory.
� The value of a program is proportional to the weight of its output.
� Program complexity grows until it exceeds the capability of the programmer

who must maintain it.
� If the input editor has been designed to reject all bad input, an ingenious

idiot will discover a method to get bad data past it.
� Make it possible for programmers to write in English and you will find the

programmers cannot write in English.
� Bolub’s Fourth Law of Computerdom: Project teams detest weekly progress

reporting because it so vividly manifests their lack of progress.
� The Briggs/Chase Law of Program Development: To determine how long it

will take to write and debug a program, take your best estimate, multiply
that by two, add one, and convert to the next higher units.

� Computers are unreliable, but humans are even more unreliable.
� Any system which depends on human reliability is unreliable.
� A carelessly planned project takes three times longer to complete than ex-

pected; A carefully planned project takes only twice as long.
� Grosch’s Law: Computing power increases as the square of the cost.
� Putt’s-Brook’s Law: Adding manpower to a late software project only makes

it later.
� Shaw’s Principle: Build a system that even a fool can use, and only a fool

will want to use it.
� Weinberg’s First Law: If builders built buildings the way programmers wrote

programs, then the first woodpecker that came along would destroy civiliza-
tion.

� Weinberg’s Second Law: A computer can make more mistakes in 2 seconds
than 50 mathematicians in 200 years.

� Efforts in improving a program’s “user friendliness” invariably lead to work
in improving user’s “computer literacy”.

� “But I only changed one line and it won’t affect anything!”

1.3 UNIX Tools

The goal of this section is not to introduce UNIX per se, but to show how some
UNIX tools can help in the production of good software.

1.3.1 UNIX as a Programming Language

Forty years ago, much programming was done in assembler, if not with wires.
Then higher level languages like Fortran, C, Cobol etc. permitted the development
of codes more or less independent of the hardware and operating system, that is
much easier to read, that can be developed in reusable modules. Yet, the basic
building blocks are still relatively low level instructions that are combined into

Software Design xvii

1.3. UNIX Tools Paul Bartholdi

higher and higher modules to form a single large program, where the modules
are ‘hard’ interconnected.

The pipes and redirections, the very large number of simple standard tools
available in UNIX and the facilities to build newer tools in the same spirit, and
then interconnect them into streams and shells, make UNIX an ideal interactive
programming environment.

1.3.2 Pipes and Redirections

Pipes permit to write small modules dedicated to simple tasks, and to intercon-
nect them through standard input/output. Such modules are much simpler to
develop and test individually, while the pipe checks for the interfaces. When
fully tested, these modules can be put together in larger ones. The number of
successive pipes is practically unlimited.

ls -l | less

Redirection is a good way to have all input data (including test ones) in files
that can be text-edited. Output redirection, in particular using tee, builds sets
of files against which future version’s output can be compared (use diff for that).

prog < test.data > test.results

or

prog < test.data | tee test.results | less

While every module has only one standard input, it has effectively two output
ones: the standard output and the standard error output. The output redirection
sign (>) followed by an ampersend (&) merge the two output strams into the given
file. Similarely, the pipe sign (|) followed by an ampersend merge the two output
streams into a single one as input to the following programme. Finaly, if the
variable noclobber is defined, then the redirections will not overwrite old existing
files, except if the redirection operator is followed with a ! sign,

Here is a summary of all redirections and pipes:

< file redirect file into standard input
<< ”Word” redirect the following lines, until the one

starting with ”Word”
> file redirect standard output to file
>> file append standard output to the end of file
>& file redirect standard output and standard er-

ror to file
>>& file append standard output and standard er-

ror to the end of file
>! file same as above, but ignore noclobber
>&! file same as above, but ignore noclobber

xviii Software Design

Paul Bartholdi 1.3. UNIX Tools

1.3.3 Five ways to input data into a programme

a) type data by hand
b) prog < data-file
c) cat data-file | prog
d) echo "data" | prog
e) cat << FOF | prog

...
data

...
FDF

1.3.4 Aliases and functions

Every complex command that may be used regularly could be aliased into a sim-
ple mnemonic name :

alias mnemonic=’equivalent string’
The exact form of alias depends on the shell used. Here I have adopted the

bash form.
Many examples of aliases are given below.
Aliasing into usual UNIX command should be carefully avoided if the use of

the original version can be dangerous when the aliased one is expected.
alias rm=’/bin/rm -i’

is a typical example. In another environment, rm will not ask you for confir-
mation when you expected it.

Inversely, tools that require a mode, should specify so: use ”˜/bin/rm -f”
and not ”rm”.

But:
alias ls=‘/bin/ls -CF’

is a perfectly acceptable one. If it is not yet the case, put this alias in your
.tcshrc or .bashrc file. ls will then automaticaly append a “*” at the end of
executable files, a “/” at the end of directories and a “” at the end of symbolics
links.

Notice that, except in csh and tcsh, it is not possible to pass parameters to an
alias. In most cases, but not with csh or tcsh, a function can replace an alias. In
ksh and bash, a function is defined by:

function name()
�
commands �

Inside the function body (commands), parameters are referred by their posi-
tions in the calling statement, that is $1 for the first parameter, and so on. See
the examples bellow, page xx.

The keyword function itself is optional in bash.
Another method, probably safer than an alias and shell independent, is to

have a reserved ˜/bin directory, and a corresponding scripts for each alias:
Put in your .login file a command:

PATH=˜/bin:$PATH
and then:

Software Design xix

1.3. UNIX Tools Paul Bartholdi

echo "/bin/rm -i" > ˜/bin/rmi
This will create a file, usually called a script (do not forget to make it exe-

cutable), instead of the alias command. Typing rmi will execute that file.

1.3.5 Searching Tools

grep is a very powerful tool to do all sorts of searches and filters, in particular
as part of a pipe stream. It looks for all occurrences of a pattern inside a set of
files, and print the corresponding lines. It has many options (see the man pages),
among them three avec very useful: -h suppress the prefixing of filenames on
output, -i ignore case distinctions, and -v to select non-matching lines.

For example, finding all files that use stdio.h:
grep stdio.h *.c *.h or *.[ch]

Printing error messages only, with full output into a file:
test < test.data | tee test.res | egrep -i error

grep can also be used very effectively to “search” through a “data base”. Sup-
pose that you have a file with names, phone numbers and remarks, more or less
in free form, another with hints on different subjects concerning your programs
etc.

Then you can define the following aliases (tcsh) or functions (bash, ksh):
alias help "egrep -ih \!* ˜/.help ./.help"
function help(){egrep -ih $1 ˜/.help ./.help}

alias tel "egrep -ih \!* ˜/.phones /share/phones"
function tel()={egrep -ih $1 ˜/.phones /share/phones}

help xxx will print all lines from ˜/.help and ./.help that contains the
string “xxx”.

tel abc will do the same for the phone files. With tel or help you can look for
anything, not necessarily name or first name, but also for partial phone numbers
etc. tel 0039 will list all entries in Italy, while tel rinus will find our director’s
one.

Here is another application, to list only the files that have been modified this
day in the current directory:

alias today ’set TODAY=‘date +"%h %d"‘; ls -al | egrep $TODAY’

A similar command to see all files modified this day, in alphabetical order:
alias Today ’find . -ctime 0 -print | sort’

1.3.6 Looking for parts of a file

head and tail can be used to select only a few useful lines:
To see only the first line of a set of subroutines:

head -1 *.c
To see only the largest (or the most recently modified) files:

ls -l | sort +4n -5 | tail -16
ls -rtl | tail

Long output could also be piped into more (or less, most).

xx Software Design

Paul Bartholdi 1.3. UNIX Tools

uniq can be combined efficiently with sort to find “words” that are rarely
used, and so possibly wrong (sort -u would do the same).

1.3.7 Stream Editor: sed and gawk

sed is a very simple but powerful editor that can be inserted in the middle of a
stream. gawk can be used in the same way for very complex text manipulation.
The simplest using of sed looks like:

... | sed -e ’s/abc/efgh/g’ | ...
It will simply replace everywhere the pattern “abc” with “efgh ”. The first char-

acter after s will be used as the separator, it is not necessarily a /.
Here is a more elaborated example:

#!/bin/csh
add a new user (board), in group 501
and set the same encrypted passwd as in other machines.
\index{password}

/usr/sbin/adduser -g501 board
set today=‘date +’%Y%m%d:%H%M’‘
cd /etc
cp passwd passwd_$today
sed -e ’s/board\:\!/board\:7s0kry.rn.dco/’ passwd_$today > passwd

gawk is a very complex program for which the manual is more than 300 pages,
but it can also be used very effectively as a single line program. In the simplest
case, gawk is used to reorder the fields or choose among the fields in every lines.
For example:

awk ’
�
print $3 $7 � ’ file

will leave only the third and seventh fields.
Here is little more complex example:

#!/bin/tcsh
lock all users with no password
put a ! in the second field of the file /etc/passwd
if that field is empty.

cd /etc
set today=‘date +’%Y%m%d:%H%M’‘
cp passwd passwd_${today}
/bin/awk ’ BEGIN {FS=":"; OFS=":"} \

{ if(NF>=7) { if($2=="") $2="!";
print $0 } } ’ passwd_${today} > passwd

1.3.8 Character conversion using tr

tr is intended to do all sorts of character conversion, including special charac-
ters, and optionally to replace strings of the same character by a single one.

Software Design xxi

1.3. UNIX Tools Paul Bartholdi

Normally, two strings of characters are given as parameters to tr. tr will
replace all occurances of characters in the first string by the corresponding char-
acter in the second string.

If the option -d is given, then the characters from the first string are deleted.
If the option -s is given, strings of the same characters are replaced by a single

one.
Special characters are represented with \ and a character.
\a ctrl G bell
\f ctrl L form feed
\n ctrl J new line
\r ctrl M carriage return
\t ctrl I tab
\v ctrl K vertical tab
\nnn octal value

It is also possible to give a class of characters instead of a string. In this case,
the string should have the form ’[:class:]’ , where class is one of alnum alpha
digit cntrl blank lower upper punct.

Here are a few examples of using tr. The first three are equivalent. The last
two can be very usefull if you have a mix of PC, Mac and Unix machines.

cat myfiile.c | tr ABC...Z abcd...z > ...
cat myfiile.c | tr A-Z a-z > ...
cat myfiile.c | tr ’[:upper:]’ ’[:lower:]’ > ...

tr ’\r’ ’’ < dos_file > unix_file
tr ’\r’ ’\n’ < mac_file > unix_file

1.3.9 Use of the history

tcsh keeps a log of the last n commands. n is defined with the command set
history=n in the file .cshrcr or .tcshrc .

This log can be used in the following ways:
history prints (on screen) the list of the last n commands executed,
fc repeats the last command,
fc n repeats a given command,
fc -n repeats a given relative command,
fc abc repeats the last command starting with the same letters,
fc -s/old/new/g repeats the last command with editing (substitution [+global]),

Part of the repeated command can be re-used by the following word designa-
tors:

0 word 0 (= command)
n n �

�
word

ˆ first word
$ last word
m–n words m through n
– words 0 through but last

words 1 through last
% word matched by the string

xxii Software Design

Paul Bartholdi 1.3. UNIX Tools

The word designators can be modified by appending a modifier to the specifier:
<specifier>:<modifier>

r root of the file name
e extension of the file name
h head of the path (but last comp)
t tail of the path
s/old/new/ substitution
g global (comes before s)
p print but no execution
q quote words
u make first lower case letter upper
l make first upper letter case letter lower

1.3.10 Command/file name completion

After you have typed a few letters of a command or file name:
<TAB> will complete it if possible and unique,
<ctrl>d will list all possible completions.

Finding something in a large directory tree – find

find allows to search through any directory tree, looking for matching file names
or files modified before or after a given date for example, and then execute any
sort of command, like printing file name with full path, deleting, executing a grep
on them etc.

find has many options, but we will see only four. Refer to the man pages for
all other ones.

find . -name <file name, possibly with wild card> -print
find . -ctime <n> -exec <command>

In the command, use
� � to replace the file name, ending the command with \;

The first parameter (“.”) is the starting point, root of the directory we are
searching.

The second is the selection criteria, according to file names or times.
Then comes the execution for all files that match the selection criteria.
In facts, many selection criteria and many executions can be used simultane-

ously. Selection criteria can possibly be joined by or or and and not.
find without any execution part simply produces a list of the selected files on

the standard output. This can be used with cpio to copy directories recursively.
Examples:

1. Remove all core files, printing their full path:

find . -name core -exec rm -f
� � \;

2. List all files created today in any subdirectory:

find . -ctime 0 -print

Software Design xxiii

1.3. UNIX Tools Paul Bartholdi

3. Search for use of stdio.h in all c files:

find . -name *\.c -exec grep stdio
� � \;

4. copy a directory tree on an other place:

find <source directory> | cpio -dpm <destination directory>

1.3.11 Executing just What is Necessary, using make

When a project gets larger, it becomes more and more difficult to track which
compilations, link and execution are necessary.

make permits to do such operations automatically, based on declared depen-
dencies and last modification time. The set of commands executed in each case
is completely open and not restricted in any way to compilation or link. Further,
the dependencies can be given explicitly, supplied by compilers like gcc -M, or
even assumed implicitly by make itself in many cases from the file suffixes.

The use of implicit assumptions make it faster to write but more difficult to
read the dependency file.

The general form of a dependency file (usually named Makefile) is the follow-
ing:

target(s): dependencies
<TAB> commands to produce the target(s)

make without a parameter will check the first target for dependencies, and
then recursively through the file. If a target is older than a dependency, then the
corresponding commands are executed.

If make is used with a parameter (a target in the Makefile), then the search
starts from this target.

Here is a small example of a Makefile

all: prog test

prog: main.o sub.o
$(LINK.c) -o $@ main.o sub.o

main.o: incl.h main.c
gcc -c main.c

sub.o: incl.h sub.c
gcc -c sub.c

test: prog test.data
prog < test.data > test.results

touch can be used to change the date of last modification.
make can also be used as a simple user interface for commands, when there

are dependencies among them. Suppose that you have a dBase on which you

xxiv Software Design

Paul Bartholdi 1.3. UNIX Tools

can edit, make extraction, preformat, visualize or print. The user could then
say: make visualize or make edit, and all necessary operations will be done
automatically. Here is the corresponding makefile:

all : catalogue stickers

catalogue : Catalogue.dvi
dvips -Php0d Catalogue

stickers : Stickers.dvi
dvips -Php0 Stickers

catalogue.win : Catalogue.dvi
xdvi Catalogue &

stickers.win : Stickers.dvi
xdvi Stickers &

Catalogue.ps : Catalogue.dvi
dvips Catalogue -o

Stickers.ps : Stickers.dvi
dvips Stickers -o

Catalogue.dvi : Catalogue.tex catalogue.tex
latex Catalogue

Stickers.dvi : Stickers.tex stickers.tex
latex Stickers

catalogue.tex : m.rdb
report catalogue.report < m.rdb > catalogue.tex

stickers.tex : m.rdb
report stickers.report < m.rdb > stickers.tex

m.rdb : mediatheque.rdb
cp mediatheque.rdb m.rdb

mediatheque.rdb : mediatheque.db
m.awk mediatheque

clear :
rm catalogue.tex stickers.tex Catalogue.dvi Stickers.dvi \
Catalogue.ps Stickers.ps Catalogue.log Stickers.log \
Catalogue.aux Stickers.aux

If the files reside on more than one machine (using NFS for example), they
should all be synchronized with ntp or similar time protocols. See section 1.8.4.

For very large projects, when many persons are involved in the development,
make is not sufficient. make ignores the notion of version or file locking that are
necessary in these circumstances.

Software Design xxv

1.3. UNIX Tools Paul Bartholdi

Other tools exists for them, in particular sccs, RCS or CV. diff and patch can
be used to keep track of incremental updates and versions (including the recovery
of previous code).

1.3.12 RCS and SCCS: Automatic Revision Control

RCS and SCCS designate sets of tools that help maintaining revisions of a prod-
uct. Only RCS will be discussed; SCCS offers approximately the same capabilities
while having an older, clumsier syntax. CVS is intended for the simultaneous up-
date of files by many users.

If a program of a certain importance is being developed, it is essential to keep
all versions of the source code — not just the last, or the ten last. All versions
should be numbered; a log file should account for all the modifications made
between two numbers; version numbers should be allowed to ramify in a tree-like
manner; the binary code produced should be stamped with the version number;
and if many people work on the same project, there should be some coordinating
means between them.

RCS is a set of tools for UNIX that manages automatically these tasks. Text
files are normally hidden by RCS. A developer may check a file out, that is make
it visible in his directory for modification, while locking other developer’s access
to it; edit it, write appropriate logging information; and check it in back. Initially,
a file f.c is placed under RCS’ supervision with

ci f.c

with initial version 1.1. The file is moved to a special directory, usually ˜/RCS/.
An edit cycle would now be:

co f.c
edit f.c
ci f.c

If you have EMACS, you may use its built-in capabilities to simplify this pro-
cess: edit the file using its true path (˜/RCS/f.c), and type Ctrl-X and Ctrl-Q to
check the file in and out respectively.

It is not necessary to modify your Makefiles, as make automatically checks
out and deletes files it doesn’t find. If you really wanted to, you would just put:

...
f.c: /home/mickeymouse/RCS/f.c
<TAB> co $<
...

RCS can stamp source and object code with special identification strings. To
obtain them, place the marker “Id” somewhere inside your source file. co will
automatically replace it with $Id: filename revision number date time author

xxvi Software Design

Paul Bartholdi 1.3. UNIX Tools

state locker$ and the marker “Log” is replaced by the log messages that are
requested during a check-in.

RCS keeps all your previous versions through reverse deltas, i.e. keeps the last
version in full, and reverse diff’s to obtain previous revisions. These are accessed
through

co -r<revision #>

and a sub-branch, new level major release etc. may be defined with

ci -r<new revision #>

Besides ci and co, RCS provides a few commands:
ident extracts identification markers
rlog extracts log information about an RCS file
rcs changes an RCS file’s attribute
rcsdiff compares revisions

Refer to the manual pages for more detail.

RCS in a multiuser environment

UNIX by itself provides no file lock, neither file access control. But all the nuts
and bolts are present.

For a good multiuser system with personalized file access control,
� create a user rcs, without terminal access (no shell) and locked password

(*LK* in passwd file),

� make RCS directories belonging to rcs,

� for each file, use rcs -a to give access to every authorized users.

Remarks concerning RCS

1. The directory ˜/RCS is not made automatically (use mkdir RCS)

2. ci will not move . . . c,v files automatically to RCS (use mv)

3. co and ci will look automatically in ˜/RCS/ if the file is not found in the
current directory, and ˜/RCS exists.

4. co and ci will not lock automatically the files, use co -l instead.

5. co and ci work also on wild card. For example, co -l *.c will extract all
.c files at once.

6. rcs -l file will lock the file. This is necessary if you modified a non locked
file.

7. rcs -U / rcs -L file will enable/disable the file, doing strict locking.

Software Design xxvii

1.4. Shell programming Paul Bartholdi

1.4 Shell programming

When a set of commands is repeated more than 2 or 3 times, then it is usually
worth putting them into a file and executing the file, passing possibly parameters.
Such files are called script files in UNIX.

All UNIX shells offer lots of usual programming constructions, as variables,
conditionals and loops, input and output, even some rudimentary arithmetic.
Shell programming cannot replace C programming, in particular it is much slower,
but it can be very effective to organize together the repetitive and possibly condi-
tional execution of programs.

Writing script files can have two other advantages:
– They can be edited until it works, even once . . .
– They keep track of what was done, either as a log, or as an example for a

similar problem in the future.
To be executable, a file just needs the x bit set. This is done with the chmod +x

script command.
As many different shells can be used in UNIX, it is preferable to add as a first

line a comment telling the system which one is used. So the first line of a script
file should look like #!/bin/sh or whatever other shell is used (remember they
have different syntax, and should not be confused).

Comments

Any character between the # and the end-of-line is treated as a comment. The
example just above is really a comment, and is understood by the shell as a
possible indication about which shell should be used. In such a case, the # is
called the magic number.

Quotes

Two quotes symbols can be used: ’ and ".
Inside ’ ’, no special character is interpreted.
Inside " ", then $, ‘, !, and \ are the only ones interpreted.
Any special character can be transformed into a normal one with a \ in front.

Try:

Test="NoGood"
echo 1. Test # just ascii string
echo 2. $Test # $ in front
echo 3. \$Test # \$ in front
echo 4. \\$Test # \\$ in front

Parameter passing

A command can be followed by parameters as “words” separated with spaces or
tabs. The end-of-line, a ;, redirections or pipes end the command.

xxviii Software Design

Paul Bartholdi 1.4. Shell programming

Inside a script, $n, where n is a digit, will be replaced by the corresponding
parameter. Notice that $0 corresponds to the name of the command itself.

As a very simple example, here is a script that will compile a C program, and
execute it immediately. The name of the program is passed as a parameter.

#!/bin/sh -x
gcc -O3 -o $1 $1.c
$1

To compile and execute threads.c, one would type ccc threads .

Variables

Variables can be defined inside a shell. Except if exported, they are not seen
outside the shell. Variable names are made of letters, digits and underscores
only, starting with a letter or an underscore.

They can be defined with =, without any space around the = sign, or read from
the terminal or a file.

Test="Order==$1"
read answer

and used, as for parameters, with a $ in front for them to be replaced with their
content.

if ["x$answer" = "xY"]; then
SetPower $level

fi
select "$Test"

Environment variables PATH , MANPATH and LD LIBRARY PATH

When the name of a program (a file name effectively) is given for execution, the
system will look in successive directories, and execute the first one found.

In the same way, man looks in successive directories and prints the first corre-
sponding pages found, and the loader looks in the list of directories for dynamic
libraries.

These lists of directories are given in the variables LD LIBRARY PATH, MANPATH
and PATH.

The directory names are separated with colon (“:”) characters.
To add a new directory, use command (in bash):

PATH=$
�
PATH � :<my dir>

or
PATH=<my dir>:$

�
PATH �

The first version puts the new directory at the end, the second in front of the
list. Both versions have some advantages.

Software Design xxix

1.4. Shell programming Paul Bartholdi

tcsh keeps a hash table of all executables found in the PATH. This table is
setup at login, but it is not automaticaly updated when PATH changes. The com-
mand rehash can be used to update manually the hash table.

� a “generous” PATH is predefined in most Linux systems
� the current directory “.” is usually part of the PATH . It is better to put it at

the end of the list to avoid replacing a system program.
� you can put all your executables in a directory called ˜/bin and add ˜/bin

to your PATH . (in the file ˜/.login or ˜/.profile).
� you can do the same for your personal man pages.
� to see the full PATH as defined now, use the command:

echo $PATH

� to see all environment variables:

env

� to find where an executable is:

which my program
� to find where are all copies of a program (in the list defined by PATH):

whereis your program
You may have to redefine whereis in an alias to search the full PATH :

alias=whereis "whereis -B $PATH -f"

� If you add directories in an uncontrolled way, the same directory may appear
in different places . . . To avoid this, you can use the PD program envv :

eval ‘envv add PATH my dir 1‘

The last number, if present, indicates the position of the new directory in
the list. Without a number, the new directory is put at the right end of the
list.

Notice that envv is insensitive to the shell used (same syntax in tcsh, bash
and ksh.

Reading data

Variables can be read from the keyboard with the read command as seen above.
Any file can be redirected to the standard input with the command exec 0<file.
Then the read command gets lines form the file into the variables. The arguments
can be individualy recovered with the set command:

exec 0< Classes
read head
set $head
echo The heads are: $1 $2 $3

xxx Software Design

Paul Bartholdi 1.4. Shell programming

Loop – foreach command

In bash, the command for permits to loop over many commands with a variable
taking successive values from a list (See section 1.4.1 for a csh equivalent).

The syntax is:
for <variable name> in <list of values> ; do)
<commands>
<commands>
...
done

Here are a few examples using foreach in csh scripts. Try to rewrite them in
ksh ones.

1. Repeat 10 times a benchmark:

for bench in 1 2 3 4 5 6 7 8 9 10 ; do
echo Benchmark Nb: $bench
benchmark | tee bench.log_$bench

done

2. Doing ftp to a set of machines. We assume that the commands for ftp have
been prepared in a file ftp.cmds:

for station in 1 2 3 7 13 19 27 ; do
echo "Connecting to station infolab-$station"
ftp infolab-$station < ftp.cmds

done

Such commands enable us to update a lot of stations in a relatively easy
way.

File name modifiers

The variable names can be modified with the following modifiers:
<variable name>:r suppresses all the possible suffixes.
<variable name>:s/<old>/<new>/ substitutes <new> for <old>.
Many more modifiers exist, look in the man pages of csh for a complete list.

Example: Save all executables and recompile:

for file in *.c ; do
echo $file
cp $file:r $file:r_org
gcc -g -o $file:r $file

done

Software Design xxxi

1.4. Shell programming Paul Bartholdi

1.4.1 bash and csh command syntax compared

Today, many people use tcsh for interactive work. Other prefer bash or ksh. It
has so many goodies. But for shell programming, writing scripts, the choice is
really open between sh and its offspring (ksh, bash. . .) on one side, and csh
on the other. ksh or bash are now the default standard on Linux, probably the
simpler yet most powerful of all. csh on the other end has the advantage of being
a subset of tsch, with which the user is probably more comfortable. As with
many other choices with computers, it has become a question of religion. Make
your mind!

If your problem is more complex, if you need arrays, if you manipulate many
files, then probably neither bash or csh are sufficient.

awk is almost ideal to manipulate text in any form, but it is not really intended
for shell programming. It has only few interactions with the system, with the file
system etc.

perl provides almost everything you may ever whish, including, in the script
language, all facilities of awk and sed, both indexed and context addressed arrays
etc. perl 5 is now available with most Linux distributions. As for tsch, it is not
part of the system and has to be installed specifically by the “system manager”.

The following pages compare the main commands used in bash and csh. As
you will see, some are missing on one or the other side, others are definitely
simpler on one side, and many are quite similar.

ksh csh

Arithmetic
$((...)) @var=expr
expr expression

Loops
for id in words ; do foreach var (words)

list ; . . .
done end

Repeated command
– repeat count command

Menu input
select id in words ; –

do list ;
done

Case
case word in switch (string)

pattern) list ;; case label :
pattern) list ;; . . .
*) list ;; breaksw

esac default:
endsw

Conditionals
if list ; then if (expression) then

xxxii Software Design

Paul Bartholdi 1.4. Shell programming

ksh csh

list ; . . .
elif else if (expression) then

list ; . . .
else else

list ; . . .
fi endif

Conditional loops
while list ; do while (expression)

list ; . . .
done end

until list ; do
list ;

done

Function
function id () � list ; �

Signal capture
trap command signal onintr label

Breaking loops
– break

continue

Signals used with shells

The main signals used in shells are: INT (2), QUIT (3), KILL (9), TERM (15), STOP
(23) and CONT (25). KILL can not be caught or ignored, and will bring your shell
to an end. STOP and CONT allows to stop temporarely a shell (or any task) and
then restart it without loosing anything.

Here is a full list of signals as used in LINUX. It is extracted from the file
/usr/src/linux/include/asm/signal.h

1 #include <linux/types.h>
2
3 #define SIGHUP 1
4 #define SIGINT 2
5 #define SIGQUIT 3
6 #define SIGILL 4
7 #define SIGTRAP 5
8 #define SIGABRT 6
9 #define SIGIOT 6

10 #define SIGBUS 7
11 #define SIGFPE 8
12 #define SIGKILL 9
13 #define SIGUSR1 10
14 #define SIGSEGV 11
15 #define SIGUSR2 12
16 #define SIGPIPE 13
17 #define SIGALRM 14

Software Design xxxiii

1.4. Shell programming Paul Bartholdi

18 #define SIGTERM 15
19 #define SIGSTKFLT 16
20 #define SIGCHLD 17
21 #define SIGCONT 18
22 #define SIGSTOP 19
23 #define SIGTSTP 20
24 #define SIGTTIN 21
25 #define SIGTTOU 22
26 #define SIGURG 23
27 #define SIGXCPU 24
28 #define SIGXFSZ 25
29 #define SIGVTALRM 26
30 #define SIGPROF 27
31 #define SIGWINCH 28
32 #define SIGIO 29
33 #define SIGPOLL SIGIO
34 /*
35 #define SIGLOST 29
36 */
37 #define SIGPWR 30
38 #define SIGSYS 31
39 #define SIGUNUSED 31
40
41 /* These should not be considered constants from userland. */
42 #define SIGRTMIN 32
43 #define SIGRTMAX (_NSIG-1)
44

Sample shell scripts

The following pages list some shell scripts that present various aspect of shell
programming. Almost every construction is present, though not necessarely with
every options. Some are just toy scripts (calc), some real programs used daily
for system maintenance (crlicense, png1 and png2). flist has been used to
create this listing.

Here is a table of commands and corresponding scripts where they are used.
The scripts bellow are in alphabetical order. Their names appear in the listing at
the right, after a long dash line separating the various scripts. They are written
in ksh or bash, but are easily converted to csh.

xxxiv Software Design

Paul Bartholdi 1.4. Shell programming

arithmetic calc calc2 guess1 guess2 minutes
awk KillKillMeAfter

loops convert convert2 flist tolower toupper
select term1 term2

case convert minutes term2
if KillKillMeAfter KillMeAfter convert ddmf check

filinfo flist grep2 guess1 guess2 term1 term2
while calc2 convert guess1 guess2 minutes

function convert3
trap calc2 guess1

1 Tue Oct 3 11:41:33 MEST 2000
2 -- KillKillMeAfter
3 #!/bin/bash -f
4 # Kill the KillMeAfter started by pid $1
5 # Also kill the sleep started by KillMeAfter
6
7 ostype="‘uname -mrs | tr ’ ’ ’_’‘"
8 GAWK=/unige/gnu/${ostype}/bin/gawk
9

10 KMApid=‘ps -ef | \
11 tr -s ’ ’ | \
12 egrep KillMeAfter | \
13 $GAWK -v pid=$1 ’$10 == pid { echo $2 } ’ ‘
14
15 sleeppid=‘ps -ef | \
16 tr -s ’ ’ | \
17 egrep sleep | \
18 $GAWK -v pid=$KMApid ’$3 == pid { echo $2 } ’ ‘
19
20 # echo "$0 : KillMeAfter pid : $KMApid"
21 # echo "$0 : sleep pid : $sleeppid"
22
23 if ["X$KMApid" != "X"] ; then
24 # echo "killing pid : $KMApid and $sleeppid"
25 kill -9 $KMApid $sleeppid
26 fi
27
28 exit 0
29 -- KillMeAfter
30 #!/bin/bash
31 # called by some script, with pid as parameter $1,
32 # expected to kill it after $2 sec
33
34 # echo $0 : pid=$1
35 # echo $0 go to sleep for $2 sec
36 sleep $2
37 # echo $0 weak up
38 if ‘ps -ef -o pid | egrep $1 > /dev/null ‘ ; then
39 kill -9 $1
40 # echo pid : $1 should be dead now
41 # else
42 # echo pid : $1 was already killed

Software Design xxxv

1.4. Shell programming Paul Bartholdi

43 fi
44 exit 0
45 -- calc
46 #!/bin/bash
47 # Very simple calculator - one expression per command
48
49 echo $(($*))
50 exit 0
51 -- calc2
52 #!/bin/bash
53 # simple calculator, multiple expressions until ˆC
54
55 trap ’echo Thank you for your visit ’ EXIT
56
57 while read expr’?expression ’; do
58 echo $(($expr))
59 done
60 exit 0
61 -- convert
62 #!/bin/bash
63 # convert tiff files to ps
64
65 echo there are $# files to convert :
66 echo $*
67 echo Is this correct ?
68
69 done=false
70 while [[$done == false]]; do
71 done=true
72 {
73 echo ’Enter y for yes’
74 echo ’Enter n for no’
75 } >&2
76 read REPLY?’Answer ?’
77 case $REPLY in
78 y) GO=y ;;
79 n) GO=n ;;
80 *) echo ’***** Invalid’
81 done=falase ;;
82 esac
83 done
84 if [["$GO" = y\"y"]]; then
85 for filename in "$@"; do
86 newfile=${filename%.tiff}.ps
87 eval convert $filename $newfile
88 done
89 fi
90 exit 0
91 -- convert2
92 #!/bin/bash
93 # simple program to convert tiff files into ps
94
95 for filename in "$@" ; do
96 psfile=${filename%.tiff}.ps

xxxvi Software Design

Paul Bartholdi 1.4. Shell programming

97 eval convert $filename $psfile
98 done
99 exit 0
100 -- convert3
101 #!/bin/bash
102 # simple program to convert tiff files into ps
103
104 function tops {
105 psfile=${1%.tiff}.ps
106 echo $1 $psfile
107 convert $1 $psfile
108 }
109
110 for filename in "$@" ; do
111 tops $filename
112 done
113 exit 0
114 -- copro
115 #!/bin/bash
116 # coprocess in ksh
117
118 ed - memo |&
119 echo -p /world/
120 read -p search
121 echo "$search"
122 exit 0
123 -- copro2
124 #!/bin/bash
125 # coprocess 2 in ksh
126
127 search=eval echo /world/ | ed - memo
128 echo "$search"
129 exit 0
130 -- filinfo
131 #!/bin/bash
132 # print informations about a file
133
134 if [[! -a $1]] ; then
135 echo "file $1 does not exist !"
136 return 1
137 fi
138
139 if [[-d $1]] ; then
140 echo -n "$1 is a directory that you may"
141 if [[! -x $1]] ; then
142 echo -n " not "
143 fi
144 echo "search."
145 elif [[-f $1]] ; then
146 echo "$1 is a regular file."
147 else
148 echo "$1 is a special file."
149 fi
150

Software Design xxxvii

1.4. Shell programming Paul Bartholdi

151 if [[-O $1]] ; then
152 echo "You own this file."
153 else
154 echo "You do not own this file."
155 fi
156
157 if [[-r $1]] ; then
158 echo "You have read permission on this file."
159 fi
160
161 if [[-w $1]] ; then
162 echo "You have write permission on this file."
163 fi
164
165 if [[-x $1]] ; then
166 echo "You have execute permission on this file."
167 fi
168 exit 0
169 -- flist
170 #!/bin/ksh
171
172 # list files separated with name and date as header
173
174 ECHO=/unige/gnu/bin/echo
175
176 narg=$#
177 if test $# -eq 0
178 then
179 $ECHO "No file requested for listing"
180 exit
181 fi
182
183 if test $# -eq 2
184 then
185 head=$1
186 shift
187 fi
188
189 $ECHO ‘date‘
190 for i in $* ; do
191 $ECHO ’ ’
192 $ECHO -n ’-- ’
193 if test $narg -ne -1
194 then head=$i
195 fi
196 $ECHO $head
197 cat $i
198 done
199 $ECHO ’ ’
200 $ECHO ’-- end’
201
202 exit 0
203 -- grep2
204 #!/bin/ksh

xxxviii Software Design

Paul Bartholdi 1.4. Shell programming

205
206 # search for two words in a file
207
208 filename=$1
209 word1=$2
210 word2=$3
211 if grep -q $word1 $filename && grep -q $word2 $filename
212 then
213 echo "’$word1’ and ’$word2’ arre both in file: $filename."
214 fi
215 exit 0
216 -- guess1
217 #!/bin/ksh
218
219 # simple number guessing program
220
221 trap ’echo Thank you for playing !’ EXIT
222
223 magicnum=$(($RANDOM%10+1))
224
225 echo ’Guess a number between 1 and 10 : ’
226
227 while read guess’?number> ’; do
228 sleep 1
229 if (($guess == $magicnum)) ; then
230 echo ’Right !!!’
231 exit
232 fi
233 echo ’Wrong !!!’
234 done
235 exit 0
236 -- guess2
237 #!/bin/ksh
238
239 # an other number guessing program
240
241 magicnum=$(($RANDOM%100+1))
242
243 echo ’Guess a number between 1 and 100 :’
244
245 while read guess’?number > ’; do
246 if (($guess == $magicnum)); then
247 echo ’Right !!!’
248 exit
249 fi
250 if (($guess < $magicnum)); then
251 echo ’Too low !’
252 else
253 echo ’Too high !’
254 fi
255 done
256 exit 0
257 -- minutes
258 #!/bin/bash

Software Design xxxix

1.4. Shell programming Paul Bartholdi

259 # count to 1 minute
260
261 i=1
262 date
263 while test $i -le 60; do
264 case $(($i%10)) in
265 0) j=$(($i/10))
266 echo -n "$j" ;;
267 5) echo -n ’+’ ;;
268 *) echo -n ’.’ ;;
269 esac
270 sleep 1
271 let i=i+1
272 done
273 echo
274 date
275 -- term1
276 #!/bin/bash
277 # setting terminal using select
278
279 PS3=’terminal? ’
280 oldterm=$TERM
281 select term in vt100 vt102 vt220 xterm dtterm ; do
282 if [[-n $term]]; then
283 TERM=$term
284 echo TERM was $oldterm, is now $TERM
285 break
286 else
287 echo ’***** Invalid !!!’
288 fi
289 done
290 -- term2
291 #!/bin/bash
292 # set terminal using select and case
293
294 PS3=’terminal? ’
295 oldterm=$TERM
296 select term in ’DEC vt100’ ’DEC vt220’ xterm dtterm; do
297 case $REPLY in
298 1) TERM=vt100 ;;
299 2) TERM=vt220 ;;
300 3) TERM=xterm ;;
301 4) TERM=dtterm ;;
302 *) echo ’***** Invalid !’ ;;
303 esac
304 if [[-n $term]]; then
305 echo TERM is now $TERM
306 break
307 fi
308 done
309 -- tolower
310 #!/bin/bash
311 # convert file names to lower case
312

xl Software Design

Paul Bartholdi 1.5. Very High Level Programming

313 for filename in "$@" ; do
314 typeset -l newfile=$filename
315 eval mv $filename $newfile
316 done
317 -- toupper
318 #!/bin/ksh
319 # convert file names to upper case
320
321 for filename in "$@" ; do
322 typeset -u newfile=$filename
323 echo $filename $newfile
324 eval mv $filename $newfile
325 done
326 -- end

1.5 Very High Level Programming

Many tools exist now where the basic data unit is not numbers or words, but
vectors, matrices, records or files, whose internal structure and detailed manip-
ulation can be ignored by the user.

matlab, SciLab, Yorick, Python or SuperMongo are good examples of very
high level programming environments for graphic, vector and matrix manipula-
tion.

/rdb is a similar environment to manipulate relational tables.
For example, here is a small program in SM, that reads a file, does some com-

putation, and draws a graph with points of various sizes:
data cluster.dat
read{ size 1 viscosity 2 temperature 5 }
set LogT = lg(temperature)
set size = 0.1 + 2 * viscosity
expand viscosity
Diag size LogT

and another that selects some columns and rows from a table, using their
names and a selection criteria, then prepares a file for later processing with LATEX.

column name first_name institute < ictp.rdb | \
row ’ country == "India" || country == "China" ’ | \
jointable -j1 institute - addresses.rdb | \
tabletotex > addresses.tex

The commands column, row, jointable etc. are part of the Perl rdb set of
commands that are also used for the exercises.

Software Design xli

1.5. Very High Level Programming Paul Bartholdi

1.5.1 Public Domain Software for High Level Programming

Programs like Mathematica, matlab, ingres etc. are very good indeed, but also
very expensive, even for universities. Most of them cost now more than even
powerful computer stations.

They have an other major drawback: They are produced and maintained gen-
erally in the United-States, and the users never get involved in their development.
In some sense they are passive consumers.

Since the advent of GNU and more recently of LINUX, the users have the pos-
sibility not only to get free software of high quality, but more important, in par-
ticular for developing countries, to get involved actively in their development,
maintenance etc.

If LINUX, gcc, samba, apache and many other products around GNU are so
powerful and robust, it is mostly thanks to the very large number of users that
participate in their development, find bugs and correct them, exchange idea to
improve them etc. This could be a very cheap way to develop strong software
competences in your country. When the package is installed in your machine, it
requires only access to e-mail to exchange informations. . . and your manpower
and basic knowledges. Big supporting organization are not necessary.

Here is a small list of some of the most often used ones, with their equivalent
commercial names:

LINUX Commercial Comment

octave matlab Matrix + 2D and 3D graphics, use the same
M-files

scilab idem, strong for simulation
jacal mathematica Symbolic mathematics
maxima maxima idem, GNU version of maxima
R S Statistics, very complete
gnuplot 2D graphics
pgplot idem
Yorick IDL Data analysis and graphics
Python idem
RDB /rdb UNIX relational database
postgres ingres Powerful Relational Database System
msql idem
MySql idem
. . .

Thousend of public domain applications are available. To have a wider look at
the projects you may get involved with, consult:

http://rpmfind.net/linux/RPM/

or

http://sal.kachinatech.com/sal2.shtml

xlii Software Design

Paul Bartholdi 1.5. Very High Level Programming

1.5.2 Notes about Relational Data Bases

Data Base systems are not part of this course, but it is difficult to build real time
systems without producing data that must be stored for later analysis. Environ-
mental parameters, usually noted in log books, should also be put in files.

Many models have been invented to organize (some very large) sets of data,
the final goal being to be able to extract rapidly part of these data according to
given criteria (see the example in page xli).

The relational model is probably the simplest to understand and use, the only
one where mathematical proofs can be used and for which a standard interroga-
tion language (SQL) has been defined.

The relational model

The relational model was introduced by E. F. Codd of IBM in 1970. Its main
characteristics are:

� it is mathematically defined

� it is always coherent

� it is fully predictable

� it contains no redundancy

Many commercial or not relational data Bases are now available, for example
DB2, Informix, Ingres, Oracle, Postgres, Sybase, /rdb . . .

In a relational RdB the data are organized in sets of rectangular tables:

PIN name surname birth . . .

9318 Weber Luc 610711

PIN Insurance

9318 Medica

Test Blood Sugar
316
. . .
495 . . .

PIN Diag Interv Test

9318 316

9318 495

Some columns (in bold) are key columns. Usually, each row has a different
value in them. They do not depend on another one. Non key columns depend on
a key one.

The rule behind the choice of columns and the structure of tables, is that no
information should appear twice or more anywhere.

Software Design xliii

1.6. Use of network Paul Bartholdi

RdB basic commands

The basic commands are: insert, delete, sort, search, edit, append and join.
The join commands combine two or more tables whose records match on a

given column.
Example:

Join Personal Medical on PIN
Join Medical Lab on Test

SQL, the Standard Query Language, is a standard way to do interrogation on
a RdB. SQL commands can be embedded into C or Fortran programs, but this is
not standardized. See above, page xli for a small example of a relational database
system entirely written in Perl, and so very transportable. It is freely available at:

http://obswww.unige.ch/˜bartho/RDB.tgz

Real Time RdB

Concept: Associate with critical columns a trigger function(s) that is executed
whenever an entry is added or changed in it.

The trigger has access to any other data, and can start any operation, includ-
ing modification in the dB that may start another trigger.

Example of applications:

� stock exchange

� patient monitoring

� central control for complex instruments

� storage monitoring (����� 1 day)

Real time dBs are good examples of the concept of “Objects = Data + Func-
tions”.

1.6 Use of network

The network concepts are part of another chapter. Here are just a few notes on
how to use the network for file transfer and remote connection.

1.6.1 File transfer

File transfer between two computers can be done with the program ftp (file
transfer protocol)

ftp <remote host name>
On some computers (including infolab-n), ncftp is available with some extra

facilities. It will record all recent hosts you have been connected to and in which
directory you worked. It will reuse this information the next time you connect to
the same host. Hosts can have short nick names.

xliv Software Design

Paul Bartholdi 1.6. Use of network

Host names

The computer you want to connect to can be local, part of your local network, or
nonlocal, part of the rest of the world.

For a local host, the host name is sufficient.
For a non local host, the fully qualified name of the host.domain.country is

necessary.
For example: infolab-27 is locally acceptable, but obsmp2.unige.ch must

be given in full.
Every computer on the Internet has an IP number, made of 4 groups of digits

(1-255). For example, infolab-20 has the number 140.105.28.186 .
Both full name and IP number are unique in the world, and must stay so!

They can usually be used interchangeably.
See the chapter on Network for the new ipv6 (current is ipv4) protocol and

addressing schema.

User names

If you have an account on the remote computer, then use your own username
and your own password on that machine to transfer files back and forth between
your local and your remote computer.

If the remote machine is an anonymous server, from which you intend to fetch
or send files, then you must use anonymous as user name, and your email ad-
dress, in the form user@host.domain.country as password. Some servers will
accept anything as password, some others will check that it is a valid address.
In any case, politeness dictate that you use your true email address, or at least
your name and host.

Going to the right directory

When you are connected to the remote computer, you can use the usual cd and
ls or dir command to locate your files.

Note that on anonymous servers, directories ready to accept files from anony-
mous users are usually not readable! . . . but you can still fetch a file from them
if you know its name and place.

Setting the mode of transfer

The files can be transmitted either in ascii, possibly with code conversion if
necessary, or in binary mode. The tenex mode is for binary files with very long
records.

Getting files

get <remote file> <local file name> will fetch the file.
mget <first file> <second file> . . . fetch a set of files.

Software Design xlv

1.6. Use of network Paul Bartholdi

reget <remote file> <local file name> will restart the transfer of the file after
the last previously transferred block (after a problem on the line . . .).

Putting files

put <local name> <remote file name> will transfer the file to the remote host.
mput <first file> <second file> . . . will transfer a set of files to the remote host.

Compression and tar files

Some servers are set to compress files before transferring them. They can also
tar a complete directory and even compress it before sending.

To use these facilities, one must add .gz , .tar or .tar.gz after the file or
directory names.

Decompressing a file or directory

gzip -d <compressed file> will decompress that file.
tar xzvf <compressed tar file> will decompress and detar the full tar file.
gzip -dc <compressed tar file> | tar vxf - will do it if the decompression

is not available within tar.

1.6.2 Working on another computer

To do so, you MUST have an account on the remote machine. No anonymous
user is possible (On infolab-nn machines, the username public, possibly with
password public can be used in a way similar to anonymous!).

telnet <remote host name> will establish the connection to the remote host.
rlogin -l <username> <remote host name> will establish a new session for

you on the remote host.

Password transfer

If you have in your home directory a file called .rhosts with entry lines in the
form:

<host1> <username>
<host2> <username>

with your current host name on the left part of this file, then the remote system
will not ask you for your password if you use the rlogin connection.

1.6.3 Executing a command on a remote host

It is possible to execute a line of commands on a remote station with:
rsh <remote host> "<command line>"
Your local host should be present in the .rhosts file in your remote home

directory.

xlvi Software Design

Paul Bartholdi 1.6. Use of network

If more than one command is present on the line, they should be separated
with “;” characters.

For example, to list your files in the directory tbl on the remote host infolab-21,
use the command:

rsh infolab-21 "cd tbl; ls -l"

1.6.4 Remote copying a file

rcp <local file> <remote host>:<remote file> will copy the local file onto the re-
mote system. Your local host should be present in the .rhosts file in your remote
home directory.

1.6.5 Displaying on another station

To have a process running on a station with a X11 display on another, you must:
On the display station: give the permission to write on its screen with the

command:
xhost <process station name or IP address>
(xhost + will give permission to any computer in the world. This can be

dangerous . . .)
On your process station, you may have to redefine the global variable DISPLAY

with the command:
setenv DISPLAY <display address>:0.0
Then on, all your X11 output will go to the screen of the display station.

1.6.6 Secure remote commands

If you use rsh or rcp over the Internet without a .rlogin file on the remote sta-
tion, your password will be transmitted in clear ascii and many spying programs
will be able to catch it. With the very large number of nodes traversed by your
packets, it is impossible to guarantee any confidentiality, even for sensitive ones.

ssh was developed to replace rsh and rcp while encrypting (and compressing)
every packet. X11 packets are also automatically encrypted and compressed.
ssh use public key encryption in a very clever way. It has to be installed by root
on the target machine (server), but the client part can reside in the normal user
files. Except for the initial “r” or “s” in their names, the original and securised
commands are used in the same way. No extra password is needed. They may be
just faster because of the compression on slow, non compressed lines.

You can find informations on ssh on the following URL:
http://obswww.unige.ch/isdc/SSH/ssh-1.2.26.tar.gz
http://www-itg.lbl.gov/info/ssh/
The syntax for scp is as follow:

scp [-C -c blowfish] [[username]@hostname:]source
[[username]@hostname}:]destination

Software Design xlvii

1.7. Data structures Paul Bartholdi

Recently, a new version of ssh has been developed, that is free to any one
and do not contains any proprietary or patented code. It is available for LINUX
and SOLARIS and most other UNIX versions. It should replace very soon the
proprietary ssh as above.

The master address for this OPENSSH is:
http://www.openssh.com/portable.html
The next URL contains information on OPIE, a password system where the

users get a list of passwords that are usable only once, making spying useless.
This effectively replace telnet.

http://obswww.unige.ch/isdc/OTP/opie-2.32.tar.gz
Both Openssh and OPIE are public domain softwares available for linux and

Unix in general.

1.7 Data structures

Data structures can be classified into two main categories: linear and nonlinear.
Linear structures are composed of a sequence of elements and include arrays,
linked lists, stacks and queues. Non linear structures include trees and graphs.
We will limit our scope to a general introduction to the linear structures, as they
are the basis of the structures used in real-time systems.

The operations that can be performed on a linear structure are:

� Traverse the structure and process each element.
� Search a particular element of the structure.
� Add a new element to the structure.
� Remove an element from the structure.
� Rearrange the elements in some order.

The internal representation of a linear structure may take two shapes:

� Array representation, where logically consecutive elements of the structure
are represented by sequential memory locations.

� Linked list representation, where the relation between the elements are rep-
resented by means of pointers.

The type of representation one chooses for a particular structure depends on
how it will be accessed, and on how many times the different operations will be
performed.

1.7.1 Arrays

Arrays can be linear or multidimensional homogeneous structures. We will limit
our scope to linear arrays; the extrapolation of the algorithms to the other cases
is relatively easy.

The linear array is a finite list of data elements. The elements are referenced by
an index, which is the ordering number of the element. The elements are stored

xlviii Software Design

Paul Bartholdi 1.7. Data structures

in consecutive memory locations. That implies that the index set is composed of
consecutive numbers.

The smallest index is called the lower bound (LB), and the largest is the upper
bound (UB). The length of the array is given by the formula L=UB-LB+1 . Usually,
LB=0 and L=UB+1, or LB=1 and L=UB.

The logical representation of an array consist of a series of compartments
pictured either vertically or horizontally, depending on the number of elements
and on the available space, as shown on the figure 1.1.

DATA
1 247
2 56
3 429
4 135
5 87
6 156

DATA
247 56 429 135 87 156

1 2 3 4 5 6

Figure 1.1: Logical pictures of array DATA.

The computer keeps only track of the base address (BA) of the array A, and
calculates the position of the k th element by the formula:

���������
	�����
��� �
����� ����� ������� � �

where w is the number of memory words (bytes for an 8-bit architecture) per
element for the array A. The figure 1.2 on page l shows the internal representation
of an array AUTO, with BA=200, LB=1932, and w=4.

Operations on linear arrays

Operations on arrays are simple, due to the linear structure of the arrays.

Traversing an array is done by a counting loop, the index of the array being
used as the control variable of the loop. The body of the loop defines the
operations to do on each element.

Inserting an element at the end of an array is quite simple. Inserting an ele-
ment in the middle of the array implies moving all the elements located after
the insertion point up back a position. This again may be done by using
a counting loop initialized at the upper bound, and running down to the
insertion point. One has to do it this way, as the higher indexed memory
locations may be overwritten without problem.

The figure 1.3 illustrates this by inserting the value “Ford” in a string array
at position 3.

Notice that decreasing index counting loops are not supported by all lan-
guages. If not supported, this operation can be simulated by a conditional
loop.

Software Design xlix

1.7. Data structures Paul Bartholdi

Figure 1.2: Memory representation of array AUTO.

NAME
1 Brown
2 Davis
3 Johnson
4 Smith
5 Wagner
6
7
8

NAME
1 Brown
2 Davis
3 Ford
4 Johnson
5 Smith
6 Wagner
7
8

Figure 1.3: Insertion of an element in an array.

Deleting an element of the array is very similar to inserting, at the algorithmic
level. A counting loop running upward from the deletion point should be
used to move down the succeeding elements.

Searching an element in the array can be done through two algorithms: linear
and binary search.

Linear search implies a conditional loop executed at least once. The loop
body should check if the element fits the desired item and if the bound

l Software Design

Paul Bartholdi 1.7. Data structures

of the array is reached. This implies two comparisons at each occur-
rence of the loop, leading to a possible 2N comparisons.
The estimation of the number of basic operations an algorithm needs
to be completed is called the complexity of the algorithm. It gives the
notion of computation time for the implementation of the algorithm. It
is sometimes expressed with the

�
notation:

� ��� �
is

����� ��� � �

Where f(n) is the complexity, g(n) is a simple function.
An enhanced algorithm will first write the searched item at the end of
the array, in position N+1. Then a single comparison is done in the
loop, checking for the item, and when successful, a last comparison
determines if the item was found in the array or in position N+1. The
maximum comparisons number is thus N+1.
The average number of comparisons, in case of equally probable posi-
tion of the item, with an absence probability of � is given by

��� �	�
� �
�
	�
 �����
 	 �

�
	�
�� 	
 ������� 	 � 	
 ���

�
� �	�
�� 	
 �����

� � 	
 ��� �
�
�

���

If the absence probability is very small, the average number of compar-
isons will be about half the length of the array.

Binary search is used for maximum efficiency. The array needs to be some-
how sorted. The comparisons will not be done sequentially, but access-
ing recursively the middle of the part of the array containing the item to
find. At the beginning, the containing part is the whole array.
After M comparisons, the segment containing the item is ���� long. Lo-
cating the item implies thus a maximum of � �����! � �#"�� �%$ comparisons.
This means that a 65000 element array could be searched successfully
in 16 comparisons.
So why not use always a so economical algorithm? Binary search is
only possible if the array is sorted, and maintaining a sorted array can
be very resource-consuming, for big arrays with a lot of modifications.

Sorting an array is a bit more complicated. There are several algorithms suitable
for different data structure. The most simple is called bubble-sort.

Let’s have a N-element array. The algorithm consists of traversing the ar-
ray, comparing each element with the element immediately following it and
swapping the two elements if necessary. This traverse operation, called a
pass, enables to put the smallest or the largest element (according to the
test) at the upper bound, in element N. This step is repeated N-1 times with
the sub-arrays upper-bounded by the element indexed N-1, N-2, etc.

Software Design li

1.7. Data structures Paul Bartholdi

The complete sort is a N-1 passes process. The passes involve N-1, N-2, etc.
comparisons, so the entire sort process need, to be complete, a total of

�#" � $ � � �#" ��� � � �#" ��� � ��� � � � � � $
�

" �#" � $ �
�

which is proportional to
" �

.

Another well-known sorting algorithm is the quicksort algorithm.
In this algorithm, each step (fig. 1.4 on page lii) is used to find the proper
place for one element of the array. Let’s take the first number of the array.
We compare it with the others, starting backwards from the last. When a
smaller number is found, we exchange the two numbers, and start again
traversing from left to right the array until we find a larger number. This
step stops when the comparison with the element itself. This element is at
its correct place in the array.

We then have two sub-arrays which are themselves to be quicksorted.

Comparison 1 44 33 11 90 40 22 88 66
Comparison 2 44 33 11 90 40 22 88 66
Comparison 3 44 33 11 90 40 22 88 66
Swap 1 22 33 11 90 40 44 88 66
Comparison 4 22 33 11 90 40 44 88 66
Comparison 5 22 33 11 90 40 44 88 66
Comparison 6 22 33 11 90 40 44 88 66
Swap 2 22 33 11 44 40 90 88 66
Comparison 7 22 33 11 44 40 90 88 66
Swap 3 22 33 11 40 44 90 88 66

� ��� � � ��� �
subarray 1 subarray 2

Figure 1.4: One step of the quicksort algorithm.

The quicksort algorithm is in the worst case when the array is already
sorted. Each step needs N comparisons and produces only one sub-array,
of length N-1, leading to a total of

" � �#" � $ � � �#" ��� � � �#" ��� � � � � � � � ��$
�

" �
�

comparisons, which is proportional to
" �

. The advantage over the bubble-
sort appears for the average case. Bubble-sort has a constant number of
comparisons. Quicksort, on the other hand, produces 2 sub-arrays in each
step, so the successive levels place $
	 � 	��	�������	 ������� elements. About ���! � �#"��
levels will be necessary to sort the array, with a maximum of N comparisons
at each level. The average number of comparison for the quicksort is thus
proportional to

" ���! �#"�� .

lii Software Design

Paul Bartholdi 1.7. Data structures

1.7.2 Linked lists

As the insertion or deletion of an element in an array is a quite expensive oper-
ation, and as arrays are static structures that cannot easily be expanded, it is
sometimes necessary to use another type of structure, whose elements contain,
in addition to the data, a link to the next element. This way, successive elements
need not occupy consecutive memory locations.

This type of structure is called a linked list, and is widely used in computer
science, due to it’s dynamic behavior. A linked list is composed of nodes. Each
node is divided into two parts: the information part and the link field or next
pointer field, which contains the address of the next node in the list.

Figure 1.5: Horizontal representation of a linked list.

A linked list is represented by a series of double boxes linked by vectors, either
horizontally or vertically, as shown in figures 1.5 and 1.6. The information part
may be further subdivided, as seen in figure 1.6 (page liv). A separate variable
indicates the first element of the list. It is the list pointer variable (START). The
last element of the list contains a null pointer to indicate the end of the list.

Operations on linked lists

A linked list may be maintained in memory by means of two arrays, one contain-
ing the data and the other the links, or by using an array of records containing
both the data and the links. Let the informative part of element K be INFO[K] and
the link field of the same element be LINK[K]. Let also START contain the first
node address and NULL be the content of the last link.

Traversing a linked list is done by using a variable PTR containing initially the
address of the first node (����� � ����� � �	�). After having processed the
first node’s data, the pointer is updated to point to the next node (�����
� ���� "� 	 �����) and the loop is repeated until PTR=NULL.

Insertion To insert a new node in a list, we need to have some available memory
locations, and to be able to allocate them to the list. This is done by main-
taining a parallel list called the list of available space, the free-storage list or
the free pool. Let this list be called AVAIL.

The insertion of a node between nodes A and B of a list (fig. 1.7) is done
by removing the first node of AVAIL and storing its address in an auxil-

Software Design liii

1.7. Data structures Paul Bartholdi

Figure 1.6: Vertical representation of a linked list.

Figure 1.7: Linked list before an insertion.

iary variable NEW (
"���� � �

��� �	� �
). The AVAIL is updated (

��� ����� � �� � "� 	 ���������
); we will then copy the new data in the new node (

� "��
� 	 "��	� � �� � � �), and at last we have to insert the new nodes in the list (
��� "� 	 "���� � �� � "� 	 � �
 � � "� 	 � � �

"��	�
). The resulting lists are presented on figure 1.8.

Note that were the insertion point be the first node, the two last assignments
would have been

� � "� 	 "���� � � ��� � �	�
 ��� � �	� � �
"��	�

.
Deleting a node of a list seems very simple, as we have only to reassign the

pointer of the preceding node to point to the next node. In reality, we can’t
know the address of the preceding node without traversing the list to com-
pare each node with the deletion point, while remembering the preceding

liv Software Design

Paul Bartholdi 1.7. Data structures

Figure 1.8: Linked list after an insertion.

node until the actual node is processed. Another problem is to deallocate
the memory we don’t use anymore. This task is called garbage collection and
is done by returning the node to the AVAIL list (fig. 1.9). Thus, deleting an
element of a list is done by traversing the list once, and then returning the
node to the free pool, which implies about the same operations as insert-
ing a node. While doing the traversing, we are able to do another task, as
searching, for example, a node with specific data, which we want to delete.

Figure 1.9: Deletion in a linked list.

Searching a specific item throughout a list implies a loop with an internal con-
cordance test. If the list is sorted, the test may be smarter to check if the
item position is already over-passed, which would lead us to stop the loop.

Binary search is not possible with linked lists, since there is no way to point
to the middle of a list.

Sorting a list may be done by different algorithms. The bubble-sort algorithm
(1.7.1) will be suitable for a linked list, but the quicksort algorithm (1.7.1)
will need the particular properties of a two-ways list (1.7.2).

Software Design lv

1.7. Data structures Paul Bartholdi

Another good way to have a sorted list is to keep it sorted, i.e. insertion is
done at the right place (searching).

Particular lists

There are several particular forms of lists that can be used in different situations.

Figure 1.10: Circular linked list.

A circular list (fig. 1.10) is a linked-list whose last node’s link points to the first
node. This kind of list is widely used in computer science, because all the pointers
contain valid addresses, and no special treatment is thus required neither for the
first node, nor for the last.

Figure 1.11: Two-ways linked list.

A two-ways list (fig. 1.11) contains three parts nodes. In addition to the
data part and the link field LINK[K] now called FORW[K], there is a second link
� ��� 	 pointing to the preceding node. The START variable is replaced by
two entry point variables FIRST and LAST. A two-ways list has the following
properties:

� �
� � � 	 �
� ����� � � � 	 � �

�
� Operations can be done in either direction.
� For deletion, the localization of the preceding node is trivial.
� Insertion is a bit more complicated by the presence of the second pointer,

i.e. needs two more assignments than insertion in a one-way list.

A two-ways circular list mixes the properties of the two previous lists.

lvi Software Design

Paul Bartholdi 1.7. Data structures

1.7.3 Stacks

A stack is a linear structure accessible only by one extremity. This notion is very
familiar to us, as we use a lot of stacks in every-day’s life, as illustrated in figure
1.12.

Figure 1.12: Every-day’s life stacks.

All the operations will be done on a particular point called the top of the stack.
Adding an element is done by pushing it on the stack. Removing an element from
the stack is called popping (fig. 1.13). As the top is the only access to the stack,
the last element pushed in will be the first popped out from the stack. This last-in,
first-out property has given to the stack its second name: LIFO.

Figure 1.13: Stack push and pop operations.

Stacks are widely used in computer science. They are the basic structures on
which the notion of recursion is implemented, and many well-known algorithms
or problems have been implemented and solved through its usage.

Remember the quicksort algorithm (1.7.1). A practical way to keep track of
all the sub array bounds while processing one of them is to put them on stacks.
The Towers of Hanoi problem is implemented recursively (recursion uses stacks),
or may be implemented with stacks in an iterative way. Reverse Polish Notation
(RPN) which writes operations as operands followed by the operator uses stacks:
The operands are put on the stack, where each operator pops the number of
operands it needs.

Software Design lvii

1.7. Data structures Paul Bartholdi

1.7.4 Queues

A queue is another familiar concept (fig. 1.14). In computing, queues are also
widely used for bufferizing data arriving from or leaving to a peripheral, or to
schedule tasks to a processor. They have a first-in, first-out structure, and thus
are also called FIFO.

Figure 1.14: Familiar queue.

Data may be added in a queue only at the end called the front, and removed
only at the other end, called the rear.

Special implementations of queues allow other types of access:

Deques are double ended queues, that can be accessed by either ends, but not
in the middle.

Figure 1.15: Representation of a priority queue implemented as a list.

Priority queues are queues where the highest priority element is to be processed
first. The implementation will determine the ease of inserting or deleting the
element in a priority queue. A way to implement a priority queue is to use
a linked list with its usual properties for insertion, but where processing
and deletion is limited to the first element. In the figure 1.15, successive
deletions will remove AAA, BBB, etc., while insertion of an element XXX is
done at a place determined by the algorithm according to its priority (2).

lviii Software Design

Paul Bartholdi 1.8. Real-Time Systems

1.8 Real-Time Systems

Real-time applications are characterized by the strict requirements they impose
on the timing behavior of their system. Systems ensuring that those timing re-
quirements are met are called real-time systems. We will exclude from the begin-
ning the transactions processing systems (seat reservations, banking), where the
transactions are done in real-time, but without any constraint.

1.8.1 Concurrent and Real-Time Concepts

A concurrent program is a non-sequential program, in the sense that some op-
erations are performed simultaneously. This technique, obviously useful in the
case of a multiprocessor system, can even be attractive in a mono-processor en-
vironment, to take full advantage of the independence of the processor and the
peripherals.

Consider for example that we want to write characters on a terminal. The fig-
ure 1.16 illustrates the activities of both the processor and the terminal interface.

� The processor has to wait until the terminal is ready to accept a character, it
then sends the character to the interface and loops back to its waiting state.

� The interface waits for a character, accepts it, write it to the screen and
loops back to its waiting state.

That description shows that both processes are waiting for an information
given by the other party, before doing any useful task. This is solved by task or
process synchronization. In this example, the synchronization is done for one way
by an interrupt, and for the other direction by means unspecified at this point.
There are several mechanisms able to signal that the character is ready to be
processed by the interface process.

During this time, a concurrent program can perform another task!
Of course, even with the synchronization, one of the two processes will be

faster than the other. In our example, the processor will be mostly waiting for the
interface to be ready.

Concurrent tasks should avoid accessing shared data simultaneously. This
could lead to incoherent informations if two processes write at the same time in
a data structure. Concurrent programs always present these two problems:

� Mutual exclusion (Critical resource access).
� Synchronization between processes.

These problems are solved by tools (mechanisms) specific to concurrent pro-
gramming, called locks, events, semaphores, monitors, mailboxes, rendez-vous or
interrupts.

A real-time program is very much like a concurrent program. It has to manage
peripherals, and the mechanisms mentioned above still apply. A real-time pro-
gram includes a supplementary issue: timing constraints imposed by the fact that
a real-time program controls an external system.

Software Design lix

1.8. Real-Time Systems Paul Bartholdi

Processor

Transmit

Wait

�

�
� �

� �

Interface

Output

Wait

Signalize

�

�

� �

� �
�

�
Character

���� �
��� �

Interrupt

Figure 1.16: Respective activities of processor and terminal interface for writing
a character.

With the improvement of the performance of the microcomputers, and as their
price, size, weight, and power requirements decrease, real-time systems are more
and more widespread.

Current fields of applications include scientific instrumentation, medicine, in-
dustry, cars and military. For example, a real-time system may drive and moni-
tor an astronomical telescope or an X-ray medical scanner, control an industrial
production line or a car motor and navigation system, as well as drive a weapon
delivery system or control a entire nuclear power plant.

You have noticed that the word control or a synonym come often in those
examples:

Timing and control are the master-words in the real-time systems world.
In general, we’ll call real-time system any system meeting external timing con-

straints and able to solve these constraints during its execution; without any
specification on the architecture of the system.

A Real-time system can be divided into two groups: The hard real-time sys-
tems, for which a failure to meeting the timing constraints is considered as a
major failure (crash) of the system, and the soft real-time systems that will give
an error or a warning on such failures, without stopping execution.

1.8.2 Embedded and Distributed Real-Time Systems

Many complex systems require nowadays an elaborate control system to sup-
port their internal functioning. Such systems often use a dedicated computer as
controller. Such a computer is called an embedded computer.

lx Software Design

Paul Bartholdi 1.8. Real-Time Systems

An embedded computer system has to control the rest of the system. It gets
information like data and status from sensors, then issues control commands to
actuators.

One feature that distinguishes embedded systems from other real-time sys-
tems is that they are only executing a task relative to a fixed and well-defined
workload. They don’t provide any development environment.

Study of embedded systems must consider the controlled system as a whole:
In particular, mechanical, electro-mechanical parts and electronics should be
considered at the specification level of such a real-time embedded system.

The most general way of defining a real-time system is to consider a multi-
machine, distributed computing environment. The term multi-machine implies
that, in addition to the internal timing constraints due to its peripherals, each
machine (node) has to deal with timing constraint requests of the other nodes of
the system.

1.8.3 Implementation Issues

Most of the real-time applications cannot be programmed with traditional lan-
guages under a traditional operating system, or at least at their standard level,
as those languages don’t know how to handle the timing constraints imposed
by the system. Additional features known as real-time extensions are defined for
some languages, enabling such systems to be programmed and checked. These
extensions often enable the programmed real-time system to override the operat-
ing system mechanisms to control directly the hardware.

On the other hand, real-time systems can be programmed with classical lan-
guages such as C, if there is a library of functions implementing the real-time
mechanisms. In this case, the real-time aspects of the application is shared be-
tween the language and the real-time operating system (LynxOS, OS/9).

Another aspect of the implementation of complex, multi-machines real-time
applications is the operating system. The traditional approach to multitasking
operating systems design is to split the time in slices and to attribute those
slices to the different computing-resources demanding applications. This kind
of management is called time-sharing. Time-sharing doesn’t address correctly the
problems arising in real-time systems.

So, the execution of real-time applications has to be supported by a correct
environment, which is obtained through a real-time operating system.

These real-time operating systems have to manage timing and interactions
problems. Different mechanisms allow them to handle timing constraints cor-
rectly, including interrupts and signals. They also contain mechanisms to solve
the processes scheduling problem, that can be quite difficult, with preemptive
tasks and dynamic priority setting. Another aspect treats the communications
between tasks, with semaphores and shared data zones.

Software Design lxi

1.8. Real-Time Systems Paul Bartholdi

1.8.4 Time Handling

Time handling is the most important issue in real-time systems. Time handling
includes:

� Knowledge of time
� Time representation concepts
� Time constraints representation

Knowledge of Time

Time is given by clocks. In a multi-machine environment, multiple clocks may ex-
ist and should be synchronized, in order to get a coherence between the different
timing constraints and interactions specifying the real-time system.

A clock is characterized by its correctness, which defines the quality of the
knowledge of time, and by its accuracy, which defines the way the clock drifts. The
accuracy is given by the derivative of the clock signal, as shown by the following
definitions:

A standard or reference clock is one for which the relation

� � � � � � 	�� �

is confirmed. A clock is correct at time ��� , if

��� � � � � � �

A clock is accurate at time � � , if
� ��� � �

� �

������	� �
$

Clock Systems

There are different clock systems.
The simplest one consists of one central clock server, that should be very

accurate and reliable, even though a redundant system can be used. Therefore,
this kind of clock system is quite expensive.

Another type of clock system defines a master clock polling multiple slave
clocks, measuring their differences and sending to them the corrections to do.
All the clocks can be of the same accuracy, and if the master fails, another one
amongst the other is elected to become the new master. This type of clock system
is called centrally controlled.

A distributed clock system consists of an interlinked network of clocks, which
all run the same algorithm, polling the other clocks to get their time, and then
estimate their correctness. This type of system can be simple or enhanced, de-
pending on the complexity of the algorithms used at the nodes, and implies a
relatively heavy traffic load on the communication network.

lxii Software Design

Paul Bartholdi 1.8. Real-Time Systems

The graph linking the nodes can be closely connected, with any of the clock
polling all the others, or loosely connected with only a subset of the connections
used for time synchronization.

A protocol named xntp working through network with the UDP protocol is pub-
licly available, and works as a distributed clock system with a hierarchy defining
more or less reliable clocks. This hierarchy is organized in levels (strata), a lower
level number meaning a more preemptive clock. Each node can be configured
to communicate with a certain number of other clocks, either for synchronizing
itself (same or lower levels), or to only read the time on higher level clocks.

The Global Positioning System (GPS) is a satellite based navigation system
providing precise position, velocity and time information. The heart of the GPS
consists of 21 satellites and three spares, that revolve round the earth twice a day,
at an altitude of 20000 km. They allow a 24 hours per day worldwide coverage
by more than 3 satellites. This system can be used by special hardware to get a
good timing information to synchronism clocks. The receivers are cheap (about
$ 600-1000).

Other special hardware may take advantage of the time signals broadcasted
by radio waves from different standard clock systems in the world, as DCF in
Germany, WWV in Boulder, Colorado, WWVH in Hawai or JJY in the Pacific North.

Time Representation

Time representation in real-time systems should be sufficiently well-designed to
take into account the properties of the system, and to allow a precise definition
of the characteristics of the time constraints.

As a preliminary definition, we should state that the time granularity of a sys-
tem is the clock resolution. This notion is more complex than it seems. Each
operating system uses a system clock (fig. 1.17a) to manage the timing synchro-
nisation between processes. This clock gives interrupts to the system at a certain
rate, which can usually be modified, but which should neither be too high, for fear
of excessive system overhead, nor too low, because it would penalise the interac-
tive processes by a long response time. This time is usually about some tens of
milliseconds. This gives the granularity for scheduling processes, or time-slicing
in a classical operating system.

There is another clock used for time measurement (fig. 1.17b), which can also
be used to drive a programmable timer for scheduling events at certain time. This
is called the real-time clock, and has a granularity of about microseconds. A real-
time operating system will usually use this clock to synchronise the processes or
manage timing constraints.

Point-based representation defines events of zero-length duration, occurring at
some time instants in a system, which are responsible for a change in the
state of the system.

Interval-based representation defines activities of finite duration, having a start
and a stop time. These activities can exist simultaneously.

Software Design lxiii

1.8. Real-Time Systems Paul Bartholdi

� �
20ms

a) System Clock

� �
1 � s

b) Real-Time Clock

Figure 1.17: Different clocks are defined in a system.

Both approaches have their drawbacks:
Point-based representation Interval-based representation

Events cannot be decom-
posed while maintaining an
order, as they have no dura-
tion.

It is difficult to take into ac-
count the time granularity of
the system.

Partially overlapping activi-
ties cannot be described by
this model.

The best solution is highly dependent of the system, but will often be based on
a compromise between both approaches, leading to an interval based representa-
tion, with system’s granularity support.

Timing Constraints Representation

A real-time system has to deal with the arrival of time-constrained requests, i.e.
the invocation of processes to be executed in due time.

The system has to allocate the resources to meet the specifications, in or-
der that the process can begin at a specified time, and be completed at another
specified time.

The minimal definition of a timing constraint is the triple
� � � 	 �������	��
 ���� � ��� � � � � $ � 	 ����
�� ���� � ��� � � � � � � �

where
� �

is the name or ID-number of the process.
� begin(condition 1) is the starting time of the process.
� end(condition 2) is the completion time of the process.

Depending on the system and the temporal uncertainties on the allocation
time of certain resources, we may need some additional time parameters in the
constraint representation.

lxiv Software Design

Paul Bartholdi 1.8. Real-Time Systems

In particular, the completion time may not be a very severe constraint, and
in case of earlier process completion, the resources should be freed for other
processes.

On the other hand, a very long process should not monopolize the resources
of the system, and the global efficiency of the system would be improved, if time-
slices were attributed to this process.

This leads to the more mature definition of a timing constraint as the quintuple

� � � 	 � begin
�
condition $ � 	 � Id

	 �
Id
	 � end

�
condition

� � �

where ��� is the name or ID-number of the process.�
begin(condition 1) is the starting time of the process.�
Id is the computation time of the process, or the time-slice.�
Id is the frequency with which the time-slices

have to be attributed.�
end(condition 2) is the completion time of the process.ls -l

IR3
�
� � �

� �

�
�

�
�

� �
IR5

�
� � 	

	 	

�

Interrupt Handler I.H. I.H.

�

�

�

Response Time � � � �

IR5 Service Routine S.R.

�

IR3 Service Routine S.R.

�
IE

�
� �

�
� �	
	 	

	
	 	

Figure 1.18: Interrupt Service Scheme

Interrupts driven Systems

Interrupts are often used as a synchronization mechanism in real-time systems,
particularly in control applications.

An interrupt is a signal occurring asynchronously and triggering a service rou-
tine. This routine is called by the interrupt handler, which identifies the interrupt,
locates in a table the appropriate address, and passes it to the program counter
(instruction pointer). The handler or the service routine itself has to save the

Software Design lxv

1.8. Real-Time Systems Paul Bartholdi

current environment before beginning processing the request, as it could modify
this environment.

A signal enabling the interrupt system (IE) is disabled by the acceptance of an
interrupt by the handler. It is usually the service routine’s responsibility to re-
enable it, at some time. In the figure 1.18, we have a first interrupt arriving (IR5).
The interrupt handler accepts it, as there are no other interrupts being processed,
and passes control to the IR5 service routine. A second non-preemptive interrupt
arrives before the routine has released the IE signal. This interrupt is blocked
for a while, until the interrupt handler being re-enabled. Then it is normally
processed. This illustrates the fact that response time to interrupt may vary.

The routine has to be carefully designed to meet the time constraints on it’s
duration, deadline and frequency. Sometimes, the task has also a starting time
condition, in which case it can be executed only if both the interrupt has oc-
curred, and the starting condition is met.

Signal Synchronization

Another way to synchronism processes is to signal certain states of the system.
Typically, one process needs the system to be in a certain state which it cannot
control for continuing it’s execution. Arrived at that point, it checks a signal
specifying the desired state, and if unsatisfied, waits until the signal arrives,
indicating the change in the system state.

On the other hand, another process is responsible of modifying the state of
the system, and has to signal it after completion. This method leading to mailbox
or rendez-vous synchronization does not fit well to real-time systems, because it
cannot ensure that deadlines are respected, and is mainly used for concurrent
processing.

1.8.5 Real-Time Systems Design

The design of any system should begin by a requirement specification phase, fol-
lowed by the design phase itself. These phases will be followed by the implemen-
tation, tests, etc. The design phase can also be decomposed into a preliminary
and a detail phase. The different phases and sub-phases may sometimes overlap
each other in time.

Take care that a too rigid approach in the design, obtained for example by
avoiding any time-overlap between phases, may lead to a very formal and well-
documented design, but that will possibly be neither creative nor the best one.

Another aspect is that a project is in itself very much like a “real” real-time sys-
tem, with timing constraints and deadlines. To achieve a project in the specified
delays, one will tend to minimize the specification and design phases to begin
as quickly as possible the implementation. This attitude may lead to a badly-
designed and possibly fragile system. A better way is to begin the implementation
of well-designed parts while refining the design of the rest, ensuring both a good
overall design and a quick development of the system.

Let’s examine the two phases of the design.

lxvi Software Design

Paul Bartholdi 1.8. Real-Time Systems

Requirements Specifications

The requirement specification phase is important in real-time systems, because
the descriptive aspect of the document enables to easily include the timing con-
straints.

The requirement specification document should:
� state external behavior of the system.
� avoid specifying any implementation details, but only constraints on the

implementation, as the details of the hardware interface.
� state the responses to the exceptions.
� be easily modified.
� be well documented to serve as a reference during all phases of the project.
� specify the timing constraints and deadlines of the project itself.

Some systems may be described in a verbose documentation style only, while
others may need some more sophisticated tools as, for example, state-charts.

Figure 1.19: State-chart example.

State-Charts

State-charts describe the system as states and transitions between them, trig-
gered by events and conditions. States are represented by boxes, transitions by
arrows, events and conditions are labels for the arrows (figure 1.19).

States can be decomposed to lower level states or combined into a higher
level state (figure 1.20). These operations are called refinement and clustering.
Zooming in and out (figures 1.21) enables one to have different levels’ views of the
system.

Petri Nets

The complexity of real-time systems is essentially due to the interactions between
tasks, the access conflicts and the temporal evolution of the system. It is neces-
sary to use powerful tools to represent the evolution of such a system at the con-
ception level. The Petri net representation is a very powerful tool, which enables
to represent the interactions between processes and the evolution of processes.

Software Design lxvii

1.8. Real-Time Systems Paul Bartholdi

Figure 1.20: Clustering states in a state-chart.

Figure 1.21: Zooming in and out.

A Petri net is a quadruple C=(P,T,I,O) including N places � ��� � and L transi-
tions � � � � . The structure is described by two matrices I and O of dimension L x
N specifying inputs and outputs viewed by the transitions.

The elements of those matrices are integers specifying the weight of the link
between a place and transition. The absence of a link is obviously described by a
weight w=0.

A Petri net can be represented by a Petri graph, with two types of nodes: places
and transitions. The directed edges may only link nodes of different type. As an
example, a Petri net described by

�
�

� � 	 � 	 � 	 � �
� � � � � 	 � � 	 ��� 	 ��� 	 ���	�
� � � � � 	 � � �
�

�

� � � � ���
�������$ $ � � � � �� � � � $ � �

�
�

� � � � ���
�������� � � $ � � �� � $ � � � �

lxviii Software Design

Paul Bartholdi 1.8. Real-Time Systems

is represented by the graph of figure 1.22

Figure 1.22: Petri graph with weighted arcs

This definition of a Petri net enables only the static representation of a system.
To modelize the temporal evolution, the Petri net is completed by marking. A
marked Petri net represents a state of the system. Marking tokens are represented
by dots on the graphs (fig. 1.23).

Figure 1.23: Marked Petri graph

A marking is a N-dimensional vector specifying the numbers of tokens in each
place. The system becomes dynamic when the tokens travel through the net. The
traveling is done through transition firing. A transition may be fired only if all the
preceding places are marked (active). This transition is said to be enabled.

Only one transition is fired at a time, randomly chosen between enabled tran-
sitions. A firing has the following effects on the places preceding and succeeding
the transition:

� w token is removed from each preceding place.
� w token is put in each following place.

Firing is:

Voluntary An enabled transition may be fired, but it is not mandatory.

Software Design lxix

1.8. Real-Time Systems Paul Bartholdi

Instantaneous All the operations related to a firing occur simultaneously, and
take no time.

Complete All the operations related to a firing do occur.

The figure 1.24 shows the result of firing transition � � in figure 1.23.

Figure 1.24: Petri graph after the firing of � � .

A Petri net may be annotated as shown in the figure 1.25 illustrating the
allocation of a processor: As soon as the processor is idle (� � marked) and there is
a task waiting in the queue (� � marked), the processing may begin (� �). The task
is executed (� � marked). At the end (� �), the task is completed (� � marked), and
the processor is deallocated (� � marked).

Figure 1.25: Petri net modelizing a processor allocation.

Without going into the details of the Petri net model, we can say that conditions
are associated to places, and events to transitions. The figures 1.26-1.29 show
Petri nets representing some real-time issues.

lxx Software Design

Paul Bartholdi 1.8. Real-Time Systems

Figure 1.26: Petri net modelizing a rendez-vous type synchronization.

Figure 1.27: Petri net modelizing a mailbox type synchronization.

The Petri net model may be used by the designer in a kind of top-down struc-
tured approach (figs. 1.30-1.33):

� Start with a global Petri net model of the system (fig. 1.30).

� Stepwise refine it by substituting (fig. 1.32) the transitions by well-formed
blocks (fig. 1.31). A well-formed block should have only one input and one
output (fig. 1.33).

Software Design lxxi

1.8. Real-Time Systems Paul Bartholdi

Figure 1.28: Petri net modelizing the semaphores primitives P(s) (left) and V(s)
(right).

Figure 1.29: Petri net modelizing mutual exclusion by semaphore.

Figure 1.30: Initial step for structured design.

The Petri nets can be transformed to flowcharts. The nodes of the flowcharts
are associated to the Petri net transitions, while the arcs will replace the places
(figs. 1.34 and 1.35).

lxxii Software Design

Paul Bartholdi 1.8. Real-Time Systems

Figure 1.31: Block example.

Figure 1.32: Replacement of � � 	 ��� 	 � � in fig. 1.30 by the block of fig. 1.31 .

Figure 1.33: Well-formed blocks.

Software Design lxxiii

1.8. Real-Time Systems Paul Bartholdi

Figure 1.34: Petri net example.

1.8.6 Structured design of Real-Time Systems

In addition to the concepts of structured design, we have to address the notions of
timing constraints and interprocess communications. DARTS (Design Approach
for Real-Time Systems) was developed by General Electric to extend the notion of
structured design to include process decomposition and process interfacing.

First, an analysis of the system has to be done in terms of functions: The
system is then viewed as a data flow transformed by functions.

Process Decomposition

When the functions have been identified and described, they must be assigned to
processes. DARTS defines criteria to assign a function to a separate process, or
to group it in a process with other functions:

I/O dependency If a slow peripheral dictates the speed of execution of a func-
tion, this function should be put in a separate process.

lxxiv Software Design

Paul Bartholdi 1.8. Real-Time Systems

Figure 1.35: Flowchart for the Petri net of the figure 1.34.

Time-critical functions High priority functions should be kept in a separate
process.

Computational requirements Intensive computation functions should receive a
separate process.

Functional cohesion Closely related functions should be grouped in a process.

Temporal cohesion Functions triggered by the same stimulus should also be
grouped.

Periodic execution Periodically executed functions should be kept in a separate
process.

So we see that functional and temporal cohesion are a criterion to group func-
tion in a single process, where they can still be separated and distinguished by
creating modules inside the process. Timing constraints and special require-
ments justify on the other hand separate processes.

Interprocess Communication

DARTS provides two types of modules for the communication between processes:

Software Design lxxv

1.8. Real-Time Systems Paul Bartholdi

� Message communications modules (MCM).

� Information hiding modules (IHM). It is used mainly in cases of shared data.
IHM defines the data structure in a hidden way, with procedures to access
it.

The figure 1.36 shows three processes � � , � � and � � communicating through
the data they share, and which is defined in the module IHM, with the data
hidden in structures B and C, accessed only through the procedure a.

Figure 1.36: IHM module

Please notice how close this approach is from the object concept.

1.8.7 Example of a concurrent problem

We want to implement a stop–watch that displays on a terminal screen the times
in a format like 00:00:00.0.

On initialization, the time is 00:00:00.0. Then, keyboard “one–key” command
are driving the instrument:

W : s.chrono � s.watch mode selection
C : s.watch � s.chrono mode selection
H : s.watch � increment hours
M : s.watch � increment minutes
S : s.watch � increment seconds
G : s.watch � r.watch
T : r.watch � s.watch
R : r.watch � e.chrono
I : r.chrono � i.chrono
F : r.chrono � f.chrono

where:

s.watch, s.chrono : stopped watch and chrono modes
r.watch, r.chrono : running watch and chrono modes

i.chrono : intermediate display for 5 seconds
f.chrono : final display for 5 seconds

lxxvi Software Design

Paul Bartholdi 1.8. Real-Time Systems

In the following pages, we show how this problem can be analyzed using Data
flow, State chart, Flow chart and Petri Nets.

Data flow study

display

display chars

compute time
to display

chrono mode

validate key

keyboard

read a key

T1:

T2:

T5:

T6:

T3:
T4:

clock

RT clock

Software Design lxxvii

1.8. Real-Time Systems Paul Bartholdi

State chart study

waych watch

chronochrono

display chrono

k=F

k=Wk=C

t>5s t>5sk=I

k=G

k=T

k=Rstopped

stopped running

running

intermfinal

k=S

k=Nk=M

lxxviii Software Design

Paul Bartholdi 1.8. Real-Time Systems

Flow chart study

Key? FI

interm
display

final
display

tuning initialize
display

running
watch

Key?

T

stop
display

H,M,S Key? G

running
watch

stopped

Key?R W

C

chrono

stopped
chrono

Software Design lxxix

1.8. Real-Time Systems Paul Bartholdi

Petri Net study

R W

I F H C G

T5s 5s

stopped watch

stopped chrono

interm
display

running
chrono

display
final

watch
runing

display
stop

H+1

display
init

lxxx Software Design

Paul Bartholdi 1.9. Use of man pages, apropos and info

Process decomposition study

According to DARTS, we have to select the data flow transforms which will receive
a separate process.

I/O dependency: A process should be given to transform T1 (keyboard input)
and to transform T6 (display output).

Time critical function: none.

Computational requirement: none.

Functional cohesion: same process for T2 (validate key) and T3 (choose mode).

Temporal cohesion: T5 (compute time to display) is to be put in the same pro-
cess as T2 and T3, or as T4, Mode dependent.

Periodic execution: T4 (clock) is to be executed at each RT clock tick. Should
be kept in a separate process.

1.9 Use of man pages, apropos and info

1.9.1 man and apropos

One should not forget all the man pages, either interactively on the screen, or in
printed form. The man pages for gcc, in particular, are very detailed.

When printed pages are really needed, they can be produced with

man command | lpr

or, if troff is installed,

man -t command

man -k keyword and apropos keyword can be used to retrieve command
names that are related to some keywords.

Here is an example:

obssq18:˜ 551> apropos administration
admind admind (1m) - distributed system administration daemon
admintool admintool (1m) - system administration with a graphical user interface
dispadmin dispadmin (1m) - process scheduler administration
nis_checkpoint nis_ping (3n) - misc NIS+ log administration functions
nis_ping nis_ping (3n) - misc NIS+ log administration functions
nisgrpadm nisgrpadm (1) - NIS+ group administration command
nistbladm nistbladm (1) - NIS+ table administration command
nlsadmin nlsadmin (1m) - network listener service administration
pmadm pmadm (1m) - port monitor administration
sacadm sacadm (1m) - service access controller administration
obssq18:˜ 552>

Software Design lxxxi

1.9. Use of man pages, apropos and info Paul Bartholdi

1.9.2 info

info is an interactive hypertext system that is replacing man for documentation,
in particular for all recent GNU products. info can be used on any terminal, not
necessarily in an X-window.

The information is organized in a tree-like fashion, but can be accessed di-
rectly on any leave.

It is invoked as:
info keyword

where keyword is a leave (concept, command or subcommand). If the keyword
is missing, info starts at the root of the documentation.

Here is for example what info without any parameter returns on my system.

File: dir Node: Top This is the top of the INFO tree
This (the Directory node) gives a menu of major topics.
Typing "d" returns here, "q" exits, "?" lists all INFO commands, "h"
gives a primer for first-timers, "mEmacs<Return>" visits the Emacs topic,
etc.
In Emacs, you can click mouse button 2 on a menu item or cross reference
to select it.

* Menu: The list of major topics begins on the next line.

* As: (as). GNU assembler ‘as’.
* Bison: (bison). GNU version of yacc grammar parser.
* Cfengine: (cfengine). System configuration management.
* Cpio: (cpio). GNU version of cpio.
* Flex: (flex). GNU version of lex lexical analyser.
* Gasp: (gasp). Preprocessor for assembly programs.
* Gdb: (gdb). GNU debugger.
...

The first lines remind briefly how to use info, and, under the menu, are the
sub-top leaves. Putting the cursor on any line starting with an * and pushing
the return key will show the content of the selected material, which itself may
contain other sub-leaves etc.

lxxxii Software Design

Paul Bartholdi 1.10. Think

1.10 Think

Think !
� think before doing
� think while doing
� think after having done
� your are responsible, you are the master

never give it to ���
� ��� must obey, not dictate

Think small !
� ‘Small is beautiful’
� keep things manageable, under control
� use small modules

Think with others !
� do not reinvent the wheel
� make your work sharable
� build-up libraries
� accept help, call for help
� the others can and must think too

Software Design lxxxiii

1.11. Introduction Paul Bartholdi

Think on your own !
� do not accept buzz words for granted
� adapt to your own country
� do not destroy your richness
� never accept dogma

1.11 Introduction

In general, we can consider a computer as a box with some input channels, some
output channels, probably local storages devices and links to other computers.

Nowadays, operations are going very fast, even on samll computers, and data
storages (disk, cd, dvd) have huge capacities in the order of $ � � � ����� Bytes. If we
assume $ � � characters on an A4 piece of paper (a rather full page), then a small
10 GB disk corresponds to $ ��� pages, or two metric tons of paper.

The organizations of data in such a way that they can be classified and re-
trieved rapidity is not new. For centuries, librarians have been very good for this
job. More recently, the punched cards were invented at the turn of last cen-
tury to deal with the American census data. Pencil and paper were not sufficient
anymore.

But this simple system of book catalogs or punched card sets is not sufficient,
neither well adapted as data storage devices in computers.

From the early fifties until now, a lot of work on this has been done, many
clever data organization systems developed and made available, even for small
computers.

It is interesting to remember that IBM thought they would eventually sell 10
copies of their first electronic computer. This number would be sufficient for
decades. . . It had a few KB of memory, no disk, but tapes with a capacity of a few
MB.

1.11.1 Why Data Base Systems ?

A fundamental aspect of computers is their neutrality. Without changing any-
thing in the hardware, they can be used for many different types of work, some-
times even at the same time. Data can be flags, numbers, words, phrases, codes,
images, sounds etc. These data are not independent. Relations exist between
many of them.

Think of music sound files. They are related to the composer, the CD editor,
the interpreter, the place on your hard disk and in you book shelves, the date

lxxxiv Software Design

Paul Bartholdi 1.11. Introduction

of purchase etc. What about finding the address of the interpreter, or a list of
composers born in the same year as the one in your file?

What we want is a system that is sufficiently general to deal with all kinds
of data, that is easy, fast and secure to use for storing new data, keeping them
uptodate and retrieving them with their relations.

1.11.2 What is a Data Base System ?

A Data Base System is a set of programs that can be used according to what is
described in the previous paragraph. In many cases, they interact with the users
through a single interface hiding their complexity effectively. Some even go as
to replace entirely the operating system (The PIC relational computer system or
the R38 computer of IBM for example). At the other extreme, the system appears
effectively as a large set of programs/commands that can be combined in the
normal operating system (/rdb for example). We will see later (Section 1.13.4,
page xciv) the relative advantages of both approaches.

Data Base Systems can be local on a single machine, or distributed on many
different ones, either in a hierarchical or egalitarian way. They can interact in
real time or in pseudo batch mode (night update for example).

The fundamental aspects of the Database system are that it hides completely
from the users the way the data are organized physically in the computers, and
its ability to furnish a single and uniform way to interact with the data.

1.11.3 What is a Data Base ?

A Data Base is the set of all data that are somehow related.
A single Data Base system can contain many Databases that are not related.

For example, my collection of books, with their authors, title, editors, date of
publishing etc, has probably nothing to do with the meteorological data I keep for
many years. They are two distinct Data Bases in my single Data Base System.

1.11.4 Database Models

As we have seen, a Database is not just data, but also the relations that exist
between them.

In the world, we can recognize three or four types of relations:

hierarchical A company is made of divisions, divisions of workshop etc.

network A company has contractors and sales agents who are themselves. . .

relational A book is defined by its title, author, editor etc, the author by its
names, age, location etc.

object A melody is defined as a sheet of paper, its composer, author etc, and by
all what can be done with it: singing, recording, printing. . .

Software Design lxxxv

1.12. The Relational Model Paul Bartholdi

They are all part of the reality, and Data Base Systems have been built in
the past modeling more or less all four types. But today most work is done with
relational model, Object (Relational) Databases being still in their infancy.

1.12 The Relational Model

1.12.1 Historical background

Historically, the Relational Model came up relatively late, mainly with the two
marking papers of Codd (see 1.14.7, page xcix). Codd was working as a math-
ematician in IBM research laboratories. His goal was to setup a system based
on simple and mathematically coherent rules. It should avoid all the pitfalls of
the hierarchical and network data bases. In particular, the system would be very
easy to interrogate and resilient to all kinds of software and hardware problems.

The implementation of the concepts proposed by Codd was rather slow. They
were too far advanced for the hardware available at that time. They were also
given in a mathematically oriented vocabulary that discouraged many potential
users or developers.

Among the cornerstones in the development of usable relational data bases,
we should notice the definition of a single “structured query language” (SQL) by
IBM, the hardware implementation of the concepts in the system R38 of IBM,
the PIC operating system based entirely on the relational model and the work
of Stonebraker ((see section 1.14.7, page xcix)) to develop a full blown relational
system on a mini computer. The last one became the INGRES system, soon joined
by ORACLE on the same ground.

Around 1985, a few people (see 1.14.7, page xcix) recognised that the rela-
tional model and the UNIX pipes and redirections fitted very well together, per-
mitting the elaboration of a completely open relational data base system. Sadly,
this was never very popular outside a small circle of users, enthusiastic by its
simplicity of usage.

Many, commercial or not, Relational Data Bases are now available, for exam-
ple IBM DB2, Informix, Ingres, Oracle, Postgres, Sybase, /rdb, mSQL, MySQL,
PostgreSQL . . .

1.12.2 The relational model

Vocabulary

The work of Codd is fundamental, but it uses a vocabulary more oriented to-
ward mathematician than database users. So let us start with a small table of
equivalent words :

Formal relational term Informal equivalent
relation table

tuple record, row
attribute field, column

primary key unique identifier

lxxxvi Software Design

Paul Bartholdi 1.12. The Relational Model

1.12.3 The relational system

C. J. Date (see section 1.14.7, page xcix) characterises a relational system by :

1. The data are perceived by the user as tables, and nothing but tables. The
user should not necessarily be aware of the physical representation of the
data.

2. The operators at the user’s disposal are operations that generate new tables
from old ones. The three main operators are selection, projection and join.

Codd himself goes into more details :

� represent all information as tables;

� keep the logical representation of data independent from its physical storage
characteristics;

� use a high-level language for structuring, querying and changing the infor-
mation in the data base;

� support the main relational operations (selection, projection and join), and
set operations as union, intersection, difference and division;

� support views, which allow the user to specify alternative ways of looking at
data in tables;

� differentiate unknown and zero or blank data;

� support mechanisms for security and authorization;

� protect data integrity through (atomic) transactions and recovery proce-
dures.

1.12.4 Data entities and relations

Relation are contained in a homogeneous table, and each line conveys the in-
formation for one entity. As an example, take a table with all participants. It
contains a set of columns like PIN, Name, FirstName, Address etc. For each par-
ticipant, each entity, there is a line with his PIN, his name, first name, address
etc. A data element, or value, is at the intersection of a row and a column. It can
be “valid data”, or “Unknown” or “Empty” (NULL value).

Each row must be identified by a unique identifier, called the primary key.
In our case most probably the PIN, though on many occasions the Name or a
combination of Name-FirstName could be easier to work with.

A database is made of a set of related tables. Most will contain data prepared
by the user, but the system will also keep its information concerning the database
in its own tables that can be accessed in the same way by the user, all information
are treated as tables, as Codd says.

Software Design lxxxvii

1.12. The Relational Model Paul Bartholdi

We will see later in this section how to organize the data into tables.
One more thing: Codd and Date insist rightfully on the independence of the

physical implementation of the tables. We said that they can be considered as
files, but in most relational systems the user will never be able to see them as
such. The only exception is the UNIX flat tables described in the next section.
The logical design of tables should also be independent of the user’s view of them.

1.12.5 The Data model

Here we will elaborate a little further on the organization of data into tables.

1. make a general overview of all the data you want to put into the database.
Look for what is related though not originally intended to be part of the
database.

2. make a list of entities with their properties or attributes; mark those prop-
erties that belongs to more than one entity, those that are effectively trans-
formations of another property.

3. make sure that each entity has an attribute (or a group of attributes) that
you can use to uniquely identify any row in the future table. If the logical
primary key (Name above for example) is possibly not unique, then look for a
different attribute (PIN, ISBN number etc.) or create an artificial one (record
number for example) if necessary.

4. consider the relationships between the entities. They can be of three forms:

one-to-one: for each entry in a table there is a corresponding one in another
table, and the converse is true;

one-to-many: for each entry in a table there is a corresponding one in an-
other table, but there are possibly many entries in the first table corre-
sponding to one entry in the second one;

many-to-many: for each entry in a table there are many entries in another
table and the converse is also true.

5. apply the normalisation rules to eliminate all one-to-one and many-to-many
relationships.

6. verify the coherence of the system and its adequacy to the available data
and foreseen queries.

1.12.6 Entity-Relationship diagrams

A convenient way to look at table organization is the entity-relationship (E-R) dia-
grams. The usual convention is to display each table as a box with columns listed
inside. This could be done with paper and pencil during the early development
phase, then automatically produced by the system.

lxxxviii Software Design

Paul Bartholdi 1.12. The Relational Model

Participants
Name
FirstName
Country
Year
Phone
Email

Countries
Country Name
Capital
Male
Female
Ratio
Groth
Population

Cities
City Name
Country
Altitude
Longitude
Latitude
Population

The second step is to mark (underline, using bold) the primary key for each
table. On many occasions, it will consist of effectively adding a new column that
is unique (The “Name” above is surely not a unique identifier, so we need to add
a PIN column).

The third step is to mark with arrows the relationships between entities in
different tables, without arrow head in the case of one-to-one, single arrow head
for one-to-many and double arrow heads for the many-to-many case.

The fourth step consists of resolving the one-to-one and many-to-many rela-
tionships (see also the normalisation rules below). Both are unacceptable, and
are an indication of something wrong in the design, at least in the view of the
relational model.

The one-to-one is easy to resolve. It is probably sufficient to merge the two
tables into one as they relate to the same entities.

The many-to-many is a little more complex. Usually, it is necessary to create
an extra table with only the two related columns. This new table is usually called
connecting or association table.

In the case of the previous tables, since there are no one-to-one relations,
there is no need to apply the merging steps above. If we assume that every
participant can come only from one country, then we have a one-to-many relation
(one country per participant, but many participants from each country). But if
double nationalities are permitted, then we need to take out “Country” from the
Participants table and crate a new table “Nationalities”, with the two columns
“Name” and “Country” only. Then, every multi-nationality will have only one
entry in in the Participant table, but as many entries as nationalities in the third
table. All in all, only one-to-many relations are left.

1.12.7 Normal forms

Codd himself suggested a set of rules or forms that must be verified by the table
design. Four or five are usually recognised as mandatory, while the next ones are
more often ignored. Each form imply that the requirements of the previous ones
have been met. Following these normalisation guidelines, we will often decrease
the number of columns and add new tables as we did just before.

Software Design lxxxix

1.12. The Relational Model Paul Bartholdi

First normal form

It requires that at each row-column intersection there must be one and only one
atomic value. There must be no repeating group in a table. If participants were
allowed to come back for many colleges, then the “Participant” table above would
not be acceptable. It could be solved by creating a fourth table with “Name” (or
“PIN”) and “Year”, dropping “Year” from “Participants”.

Second normal form

This form concerns only tables where the primary key consists of many columns.
Then every non-key column must depend on the entire primary key. A table must
not contain a non-key column that pertains to only part of the composite primary
key. In other words, no non-key column shall be a fact about a subset of the
primary key.

Third normal form

This is a generalisation of the second form. It requires that no non-key column
depends on another non-key column. Each non-key column must be a fact about
the primary key only. In the “Countries” table above, the column “Ratio” depends
numerically on the “Male” and “Female” columns, both non-key columns. In our
case, this column (Ratio) should be dropped, as it can be recomputed easily at
any time.

Fourth normal form

This form forbids independent one-to-many relationship between primary key
columns and non-key columns. This situation is relatively rare. It is an indica-
tion that we are mixing together in the same relation things that are effectively
independent and should appear in different tables.

Remarks

These rules or forms are rather abstract and the user may not see immediately
why he should apply them.

If you are a stranger to their formal beauty, then there are very good reasons to
apply them nevertheless. The keywords here are coherence and (no) redundancy.
If the data base is to survive system crashes as well as operator errors, and
stay coherent at the end, then the application of the four normalisation steps is
necessary. First, there will be no redundancy; all information will appear only
once. Then, because of this, all data will stay coherent, they can not appear
with different values at different places. The “Ratio” column discussed in the
third normal form description, is a good example. If any value in the “Male” or
“Female” column is changed, but the “Ratio” left unchanged, then the table is
incoherent, and there is no way to force them to be updated at the same time.

xc Software Design

Paul Bartholdi 1.13. UNIX flat tables

This was the main problem encountered with hierarchical and network data
bases. They used either multiple copies of some informations, or had pointers
all over the place to some informations. Any incident during an update was
catastrophic, as different values for the same information were left behind, or
pointers were pointing to data non existing anymore. Relational database systems
can be built without using a single pointer.

Formal rules are very useful, but not always sufficient.

1.13 UNIX flat tables

1.13.1 Using pipes and redirections

Among others, UNIX is based on two things : 1) all files are unstructured strings
of characters; 2) a large number of small programs, dedicated to a well defined
task, that can be linked together in chains, each one getting data from its pre-
decessor and giving results to its successor. Real files appear at both end of
the chain, while pipes, virtual files (memory buffers ?), link the various modules
(programs).

As a reminder, prog < file1 > file2 means that file1 is redirected to
the standard input of prog, and the standard output is redirected to file2.
Similarly, prog1 | prog2 means that the standard output of prog1 is redirected
as standard input for prog2. These redirections and pipes can be combined as
desired : prog1 < file1 | prog2 | prog3 ... progN > file2

This model is implicitly present in most, if not all, data base manipulation or
interrogation if it is assumed that relations are represented by individual files (see
the seminal work of Manis et al. 1.14.7, page xcix).

As an example, we have a file containing the Name, FirstName, Country, Tele-
phone, Email, No, Flag and Year for all participants of ICTP Colleges. Let us call
this file Participants. We want to extract the Name and Email addresses of all
participants of the colleges between 1997 and 1999. The result should be ordered
alphabetically by Name. Here is a solution :

cat Participants | \
select ’ Year > 1996 && Year < 2000 ’ | \
column Name Email | \
sorttable Name > P1997-1999

1.13.2 Building Databases

Tables can be created with any editor (vi, crisp, emacs etc.), or from within any
program in C, Fortran or Java, or from a shell script.

Here is a small example of a script that runs forever and records every 60
seconds the local time, the number of users and the three “loads” as measured
with the uptime command.

#!/usr/local/bin/ksh

Software Design xci

1.13. UNIX flat tables Paul Bartholdi

Create and load a table with time, no of users and loads from uptime
echo "time\tusers\tload1\tload2\tload3" > Load.rdb
echo "----\t-----\t-----\t-----\t-----" >> Load.rdb
while true ; do

uptime | tr -s " ,\t" " " > /tmp/uptime
exec 0< /tmp/uptime
read Time dum dum Users dum dum dum Load1 Load2 Load3
echo "$Time\t$Users\t$Load1\t$Load2\t$Load3" >> Load.rdb
sleep 60

done
rm /tmp/uptime
exit 0

The following is the beginning of the resulting file (the <TAB>s have been ex-
panded as spaces) :

time users load1 load2 load3
---- ----- ----- ----- -----
10:22pm 0 0.17 0.15 0.10
10:23pm 0 0.12 0.14 0.09
10:24pm 0 0.09 0.12 0.09

Finally, here is a larger script that builds up a dictionary of all fields from the
files in the current directory.

#!/usr/local/bin/ksh
Build a dictionary of all fields from the /rdb files
in the current directory
#
First create a small dictionary for every table (*.rdb file)
for f in *rdb ; do

dict=${f}_dict
echo "field\t$f" > $dict
echo "-----\t----" >> $dict
head -1q $f | \
tr "\t" "\n" | \
sort | \
awk ’{ print $1 "\tX" }’ >> $dict

done
Then join together all individual dictionary
First=1
for f in *_dict ; do

if [[$First -eq 1]] ; then
First=0
cp $f Dictionary

else
jointbl -c < Dictionary field $f > /tmp/Dico
mv /tmp/Dico ./Dictionary

fi
done

xcii Software Design

Paul Bartholdi 1.13. UNIX flat tables

Add a comment field
awk ’ NR==1 { print $0 "\tDescription" }

NR==2 { print $0 "\t-----------" }
NR>2 { print $0 "\t" } ’ < ./Dictionary \

> /tmp/Dico
mv /tmp/Dico ./Dictionary
Do some cleanup and exit
for f in *rdb ; do
rm ${f}_dict

done
exit 0

and the resulting Dictionary :

field College.rdb Countries.rdb Load.rdb Description
---------- ----------- ------------- -------- --------------------
Capital X
Country X X
Email X
Female X
FirstName X
Flag X
Groth X
Male X
Name X
Nb X
Population X
Ratio X
Telephone X
Year X
load1 X
load2 X
load3 X
time X
users X

The Description field can now be edited by hand.

1.13.3 UNIX commands

There are at least three or four different systems based on the previous ideas. The
simplest (RDB) is entirely written in Perl. Because of this, the user can read the
code and get an unusual feeling of what is done. The entire code, is 8100 lines,
for 20 commands. At the other end, starbase and /rdb , are written in C with
access to awk and sed. /rdb contains about 130 different programs, including
for commercial applications. starbase is almost as rich, but was developed with
astronomical users in mind. Both are much faster than RDB.

Here is a commented list of the main programs of RDB.

Software Design xciii

1.13. UNIX flat tables Paul Bartholdi

indextbl builds an index for one or more columns from a table for fast searching
(see search bellow);

jointbl joins two tables on a common column;

mergetbl adds the contents of a table to the end of another table (they must have
exactly the same columns);

ptbl pretty prints the contents of a table;

rdbedit a window data entry/editing facility for tables;

reporttbl formats and prints an arbitrary style report, as specified in another
file;

row extracts lines from a table according to some given criteria;

search fast searching using index file built with indextbl;

sorttbl sorts a table according to one or more columns in numerical or lexico-
graphical order;

subtotal calculates subtotals for one or more numerical columns;

summ summarizes information from a table, as number of rows, number of
unique values in some given columns as well as minimum, average, maxi-
mum and total.

uniqtbl removes adjacent rows that are identical in some columns;

valid check that a table is in “good” format, meaning all the rows correspond to
the header of the table.

These programs have many options, including -h that will give a good descrip-
tion for each of them.

As said before, these UNIX tables have nothing special and can be used or
manipulated by any other program which is not part of the original Database
System.

1.13.4 Advantages and limitations

The advantages of this approach are numerous, but its limitations are also im-
portant.

Advantages
� it is extremely simple and fast to create new tables, often on the fly, work

with them, and destroy them when the job is finished;

� it is an open system, and so very easy to interface to other programs, data
acquisition, backup, text processing, graphics, statistics etc.

xciv Software Design

Paul Bartholdi 1.13. UNIX flat tables

� the files are very compact; no extra space is reserved in advance;

� the user has full control of what is happening; he can optimize complex
operations using his knowledge of the data and query.

� considering the last rules of Codd (see section 1.12.3, page lxxxvii), the UNIX
system itself provides confortable access security, though at the file level
more than at the record level, and many solutions for recovery procedures.
rcs, or better cvs, can be used to keep track of all table modifications,
including facilities for back and forward rolling. Atomic transactions can be
done using lock files or semaphores.

Limitations

� its simplicity encourage going to fast development, bypassing the careful
analysis needed for a good Data Base design;

� it is not standardised, neither in the exact format for the tables, nor in the
command names;

� it is much better at data query than update due to the simple table format.

� there is no global view or description of the Data Base as such. All tables
rest independent, only under the control of the user who has to keep them
coherent.

� it is usually slower during execution, though the factor is smaller than could
be expected for an interpreted system.

1.13.5 SQL equivalence

SQL is a de facto standard, in particular outside the UNIX environment. It is
thus useful to look at the equivalent commands on both side.

SQL /rdb
SELECT col1 col2 FROM table column col1 col2 < table
WHERE column = expression row ’column == expression’
COMPUTE column = expression compute ’column = expression’
GROUP BY subtotal
HAVING row
ORDER BY column sorttable col
UNIQUE uniq
COUNT wc -l
NESTING “pipes” —
INSERT, UPDATE, DELETE editors, form softwares etc.

Software Design xcv

1.14. References and Bibliography Paul Bartholdi

1.14 References and Bibliography

The following bibliography is not necessarily very coherent. It contains old and
new books, as well as some reference articles. They are all in my personal library.
I have not read all of them, but they all contain something that impressed me and
changed my way of using computers.

Many of these books have been reprinted, some re-edited, and the dates given
may not be uptodate.

1.14.1 Structured Programming

- Dahl O., Dijkstra E.W. and Hoare C.A.R., Structured programming, Aca-
demic Press 1972

- Dijkstra E.W., A discipline of programming, Prentice-Hall 1976

- Kernighan B. W. and Pike, R. The Practice of Programming. Addison-
Wesley 1999

- Kruse R.L., Data structures and program design, Prentice-Hall 1984

- Wirth N., Program development by stepwise refinement, CACM 14, 221-
227 (1971)

- Wirth N., Systematic programming, Prentice-Hall 1973

1.14.2 Algorithms & Data Structures

- Bentley Jon Programming Pearls. Addison-Wesley 1989

- Bentley Jon More Programming Pearls, Confessions of s Coder. Addison-
Wesley 1988

- Knuth D.E., The art of computer programming, vol. 1 : Fundamental
algorithms, Addison-Wesley

- Knuth D.E., The art of computer programming, vol. 2 : Semi-numerical
algorithms, Addison-Wesley

- Knuth D.E., The art of computer programming, vol. 3 : Sorting and search-
ing, Addison-Wesley

- Knuth D.E., Literate Programming. CSLI Lecture Notes No 27, 1992

- Krob D., Algorithmique et structures de données, Programmation, Ellipses
1989

- Lipschutz S., Data Structures, McGraw-Hill 1986

- Sedgewick Algorithms Addison-Wesley 1983

- Wirth N., Algorithms & Data Structures, Prentice-Hall 1986

xcvi Software Design

Paul Bartholdi 1.14. References and Bibliography

1.14.3 Object Orientation

- Aubert J.-P. and Dixneuf P., Conception et programmation par objet, Mas-
son 1991

- Blaschek G., Pomberger G. and Strizinger A., A comparison of object-
oriented programming languages, Structured programming 4, 187-198 (1989)

- Booch G. Object-oriented Analysis and Design with applications, Addison-
Wesley 1994

- Quément B., Conception objet des structures de données, Masson 1992

- Reiser M. The Oberon System. Addison-Wesley 1991

- Reiser M. and Wirth N. Programming in Oberon, Steps beyond Pascal and
Modula. Addison-Wesley, ACM Press 1992

- Rubin K.S. and Goldberg A. Object behavior analysis, CACM 9 (1992)

- Voss G., Object-oriented programming, McGraw-Hill 1991

1.14.4 Concurrent and Real-Time Programming

- Levi S.-T. and Agrawala A.K., Real-Time system design, McGraw-Hill 1990

- Nichols B., Buttlar D. and Proux Farrel J., Pthreads programming, O’Reilly
& Associates 1996

- Nussbaumer H., Informatique industrielle, vol.2: Introduction à l’informatique
du temps réel, Presses Polytechniques Romandes 1986

- Schiper A., Programmation concurrente, Presses Polytechniques Romandes
1986

1.14.5 Languages

- Darnell P.A. and Margolis P.E. C, A Software Engineering Approach. Springer-
Verlag 1991

- Eckel Bruce Thinking in Java. Prentice-Hall 1998

- Flanagan David Java in a Nutshell. O’Reilly & Associates

- Hanly J.R. and Koffman E.B. Problem Solving and Program Design in C.
Addison-Wesley 1996

- Hunt John Java and Object Orientation, An Introduction. Springer 1999

- King K.N., Modula-2, D.C. Heath and Company 1988

Software Design xcvii

1.14. References and Bibliography Paul Bartholdi

- Lea Doug Concurrent Programming in Java, Design Principles and Patterns.
Addison-Wesley 1997

- Lemay L. and Casdenhead R. SAMS Teach Yourself JAVA 2. Sams 1999

- Oualline Steve Practical C textslO’Reilly & Associates 1993

- Lippman S.B., C++ Primer, Addison-Wesley 1989

- Borland C++ Documentation, Borland International 1989

- Thorin M. Ada, Manuel complet du langage avec exemples, Eyrolles 1981

- Winston P. H. and Narasimhan S. On to JAVA. Addison-Wesley 1996

1.14.6 UNIX Tools

- Bolinger D. and Bronson T. Applying RCS and SCCS. O’Reilly & Associates
1995

- DuBois Paul Type Less, Accomplish More Using csh & tcsh. O’Reilly &
Associates 1995

- Garfinkel S. PGP, Pretty Good Privacy, O’Reilly & Associates 1995

- Kernighan B.W. and Plauger P.J. Software Tools. Addison-Wesley 1976

- Miller W. A Software Tools Sampler, Prentice-Hall 1987

- Newbam C. and Rosenblatt B. Learning bash shell, O’Reilly & Associates
2000

- Quigley E. UNIX Shells by Examples (Csh, sh, ksh, awk, grep and sed).
Prentice-Hall 1999

- Rosenblatt Bill Korn Shell. O’Reilly & Associates 1993

- Scott, G., Gundavaram, S. and Birznieks, G. CGI Programming with Perl.
O’Reilly & Associates 2000

- Wall L., Christiansen, T, Schwartz, R. L. Programming Perl O’Reilly &
Associates 1996

- Welch B. B. Practical Programming in Tcl and Tk. Prentice-Hall 1997

xcviii Software Design

Paul Bartholdi 1.14. References and Bibliography

1.14.7 RELATIONAL DATABASE

- Bowman J. S., Emerson S. L. and Darnovsky M. The Practical SQL.
Addison-Wesley 2001

- Codd E. F. Relational Database: A Practical Foundation for Productivity.
CACM, 25, No 2, 109-117, February 1982

- Codd E. F. A Relational Model of Data for large Shared Data Banks. CACM,
13, No 6, 377-387, June 1970

- Codd E. F. Relational Database: A Practical Foundation for Productivity.
CACM, 25, No 2, 109-117, February 1982

- Date C. J. Relational Data Bases: Selected Writing. Addison-Wesley 1986

- Date C. J. A Guide to INGRES. Addison-Wesley 1987

- Manis R., Schaffer E., Jørgensen UNIX Relational Database Management,
Application Development in the UNIX Environment. Prentice-Hall 1988

- Parsaye K., Chignell, M., Khoshafian, S., Wong, H. Intelligent Databases.
Wiley 1989

- Stonebraker M. The INGRES Papers: Anatomy of a Relational Database Sys-
tem. Addison-Wesley 1985

- Yarger R. J., Reese G. and King T. MySQL & mSQL. O’Reilly 1999

Software Design xcix

Index

administrator guide, x
algorithms

references, xcvi
alias, xix
apache, xlii
array, xlviii

deleting, l
inserting, xlix
searching, l
sorting, li
traversing, xlix

attribute, lxxxvii
audit, xiv
awk, xxi, xxxii

bash, xxxii
references, xcviii

binary search, li
bubble sort, li
buzz word, lxxxiv

c
references, xcvii

c++
references, xcvii

character
conversion, xxi
quote, xxviii
special, xxviii

circular list, lvi
clock, lxii
Codd

rules, lxxxvii
command

history, xxii
name completion, xxiii

concurrent programming, lix
example, lxxvi

references, xcvii
cpio, xxiv
critical path, lxxiv
csh, xxxii

references, xcviii
cweb, xi

darts, lxxiv, lxxxi
data base, xx
data entities, lxxxvii
data flow

example, lxxvii
data structure, xlviii

array, xlviii
linear, xlviii
queue, xlviii
references, xcvi
representation, xlviii
stack, xlviii

database
real-time, xliv
relational, xliii

db2, xliii
DB2, lxxxvi
debugging, xvi
defensive programming, xv
dictionary, xcii
diff, xviii
distributed system, lx
documentation, vii

comment, xxviii
in-line comment, viii
internal, viii
literate programming, xi
user guide, ix

dos file, xxii
dynamic library, xxix

editor, xxi

c

Paul Bartholdi Index

egrep, xx
emacs, xxvi
embedded system, lx
entity-relationship, lxxxviii
envv, xxx
example

textttalias, xix
apropos, lxxxi
awk, xxi
character conversion, xxii
date, xx
egrep, xx
find, xxiv
grep, xx
info, lxxxii
make file, xxiv
sed, xxi
shell scripts, xxxiv
stop watch, lxxvi
tr, xxii
ways to input data, xix

fifo, lviii
file

appending, xviii
dos, xxii
mac, xxii
merging, xviii
name completion, xxiii
name modifier, xxxi
transfer, xliv

filter, xx
find, xx, xxiii
flow chart

example, lxxix
ftp, xliv

anonymous, xlv
data compression, xlvi
transfer mode, xlv

function, xix

gawk, xxi
gcc, xxiv
GNU, xlii
gnuplot, xlii
gps, lxiii

graphic, xlii
grep, xx

head, xx
help, xx
hierarchical model, xci
host name, xlv

IBM
DB2, lxxxvi
IBM 704, lxxxiv
R38, lxxxvi
R38, lxxxv

indextbl, xciv
informix, xliii
Informix, lxxxvi
ingres, xlii, xliii

references, xcix
Ingres, lxxxvi
internet, xlv
interrupt, lxv
ip address, xlv

jacal, xlii
java

references, xcvii
jointbl, xciv

kill, xxxiii
ksh, xxxii

references, xcviii

LATEX, xi
ld library path, xxix
less, xviii
library, lxxxiii
linked list, xlviii, liii

deleting, lv
inserting, liii
representation, liii
sorting, lv
traversing, liii

literate programming, xi
references, xcvi

login
secure, xlviii

textttls, xix

Software Design ci

Index Paul Bartholdi

mac file, xxii
mailbox, lxvi
maintenance

administrator guide, x
revision, xxvi

maintenance manual, viii
make, xxvi
make, xxiv
man, xxix
manpath, xxix
manual, vii

administrator guide, x
apropos, lxxxi
general index, x
info, lxxxii
maintenance, viii
man pages, lxxxi
primer, x
reference, ix
reference card, ix
user guide, ix

many-to-many, lxxxviii
mathematic, xlii
matlab, xli, xlii
maxima, xlii
mergetbl, xciv
modula

references, xcvii
msql, xlii
Murphy’s Laws, xvi
mutual exclusion, lix
mysql, xlii

network, xliv
network model, xci
noclobber variable, xviii
normal form, lxxxix
normalisation, lxxxix
ntp, xxv, lxiii
NULL modifier, lxxxvii

oberon
references, xcvii

object programming
references, xcvii

octave, xlii

one time password, xlvii
one-to-many, lxxxviii
one-to-one, lxxxviii
openssh, xlviii
opie, xlvii
oracle, xliii
Oracle, lxxxvi

pascal
references, xcvii

password, xxi, xlvi
one time, xlvii

patch, xxvi
path, xix, xxix
perl, xxxii
petri net, lxvii

example, lxxx
pgp

references, xcviii
PIC operating system, lxxxvi
PIC operating system, lxxxv
pipe, xviii
postgres, xlii, xliii
PostgreSQL, lxxxvi
primer, x
priority queue, lviii
process decomposition, lxxiv, lxxxi
program development

references, xcvi
ptbl, xciv
public domain

applications, xlii
secure login, xlviii
software, xlii

punched card, lxxxiv
Python, xli

quality assurance, xiii
queue, lviii
quick sort, lii
quick sort, lvii

R38, lxxxv
rcp, xlvii
rcs, xxvi

references, xcviii
RDB, xciii

cii Software Design

Paul Bartholdi Index

rdb, xli, xliii
references, xcix

/rdb, lxxxv, lxxxvi, xciii
real-time, lix

database, xliv
example, lxxvi

real-time programming
references, xcvii

rdbedit, xciv
recursion

using stack, lvii
redirection, xviii
reference card, ix
reference manual, ix
reference page, x
relation, lxxxvii
relational database, xli, xliii

references, xcix
relational model, lxxxvii
remote

execution, xlvi
file copy, xlvii
login, xlvi
secure operations, xlvii
x11 window, xlvii

rendez-vous, lxvi
reporttbl, xciv
responsibility, lxxxiii
review, xiv
revision, xxvi
revision control, xxvi
rhost, xlvi
rlogin, xlvi
rm, xix
row, xciv
rpn, lvii
rsh, xlvi

samba, xlii
sccs, xxvi
scheduling, lviii
scilab, xli, xlii
scp, xlviii
script, xix
search, xx
search, xciv

security, xlvii
sed, xxi, xxxii
sharing, lxxxiii
shell, xxxii

example, xxxiv
loop, xxxi
parameter, xxix
programming, xxviii
reading data, xxx
script, xxviii, xxxiv
variable, xxix

shell programming, xxxii
references, xcviii

shell script, xci
signal, xxxiii
simulated data, xvi
simulation, xlii
slogin, xlvii
sort, li, lv
sort, xx
sorttbl, xciv
sql, xliii, xliv
SQL, lxxxvi

references, xcix
ssh, xlvii
stack, lvii
standard, xiii
starbase, xciii
state chart, lxvii

example, lxxviii
stop watch, lxxvi
structured programming

references, xcvi
Super-Mongo, xli
sybase, xliii
Sybase, lxxxvi
synchronization, lix
systematic programming

references, xcvi

tail, xx
tar, xlvi
tbl, xciii
tcl

references, xcviii
tcsh, xxxii

Software Design ciii

Index Paul Bartholdi

references, xcviii
teaching manual, x
tee, xviii
testing, xiv
TEX, xi
time

constraint, lxiv
representation, lxiii

time-sharing, lxi
today, xx
today, xx
tools

references, xcviii
tr, xxi
tuple, lxxxvii
two-ways list, lvi

unix
pipe, xci
redirection, xci
script, xix
tool, xvii, xcviii

user
guide, ix
name, xlv

validation, xiii
verification, xiii

xhost, xlvii
xntp, lxiii

Yorick, xli

civ Software Design

