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EQUILIBRIUM OF STOCHASTIC MAGNETIC FIELDS

E N. Parker, Department of Physics, University of Chicago

Turbulent aco-dynamos create large-scale mean fields with internal
stochastic lines of force.

An example is the bipolar magnetic field above an active region on the Sun.

Consider the static equilibrium of a field with complicated interweaving of
the field lines.



Consider and initial uniform field Bo in the z-
direction, extending through a nonresistive fluid from
z = 0 to z = L.

Introduce the 2-D incompressible fluid motion

d\\f 8\\J

dy ' y • dx '

where the arbitrary function i|/(x,y,kzt) and its
derivatives are continuous, bounded, and generally
well behaved.

After a time t the field is given by

B.. = +BJc t^ - ,B v = -B0kt4^-,B2 = Bo
dy dx

Note that the field is everywhere continuous.



Hold the footpoints of the field fixed at z = 0, L and release the fluid
throughout 0 < z < L so that the field can relax to the lowest available energy
state. (Introduce a small viscosity)

With the field lines unbreakable and tied at each end, the field line topology
is preserved during the relaxation.

It is obvious that there exists a lowest energy state.

With uniform fluid pressure applied at z = 0, L the fluid pressure is uniform
throughout. (B«Vp = G)

Therefore, the lowest energy state represents the Maxwell stresses of the
field in equilibrium with themselves.
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^ = 0

(VxB)xB = 0

Hence

This wet] known force free equilibrium equation has mixed characteristics,
so that it is unlike the partial differential equations with which we are
familiar. The curl yields



which looks like a quasilinear elliptic equation, (two sets of complex
characteristics). However, the divergence yields

B«Va = 0,

showing the field lines to make up a family of real characteristics.
So, VxB = aB has the novel property of mixed characteristics.

To see what the mixed characteristics imply,- consider the idealized situation
in which the field line swirling has a transverse (x,y) correlation length k «
L. Suppose that the swirling consists of a succession of n distinct random
patterns, each extending for a distance L/n » X along the field. The
swriling of mth pattern is uncorrelated with the m + 1 and m - 1 patterns.

Now it is obvious that the winding of the field lines around each other in any
given pattern determines the torsion coefficient a if we suppose the fields to
be continuous.

The mutual wrapping of the field lines may vary along a given line within a
pattern, and certainly varies along the line from one pattern to the next.

Hence a continuous field in the presence of successive wrapping patterns
requires a different a for each pattern. However, with

B«Va = 0,

a change in a is not possible.

Yet a solution to VxB ~ aB exists in every case.

The resolution of the dilemma is the formation of surfaces of tangential
discontinuity. The field direction is discontinuous across the surface of
discontinuity, while the field magnitude is continuous.

The surface of discontinuity represents the surface of contact between the
regions of continuous field on either side. Neither B nor a is defined on the
surface of discontinuity, so the difference in field direction across the
discontinuity is not subject to B«Vct = 0.
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Take another approach. Dilate the space in the z-direction by a uniform
factor D » 1. The transverse field components Bx , By are reduced by the
factor 1/D, while Bzis affected but little in the final equilibrium.

Write

B = ezB + eBb(x,y,z)

a = sa,

where s = 1/D. .

The field lines are inclined to the z-direction by angles of the order of e, and
d/dz is small O(e) compared to d/dx, d/dy. Equilibrium requires
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Let

Then

dx

a =

The requirement B«Va= 0 becomes

da. 5a
dq dx dy dy dx

where C, - sz.

This equation for a is identical in form with the 2D vorticity equation.

dy dx

co = -
Vdx2 ' dy' J

9t dx dy dy dx
So a evolves with C, in the same way that a> evolves with t. The vorticity
suffers the same restriction as the torsion, being unable to change magnitude
and sign as the stream line or field line extends into a different swirling
patter*.



VxB = otB

Two families of complex characteristics and one
family of real characteristics, viz the field lines.

Specify B(x,y,O) on the lower boundary z = 0.

dz dx

dz dy

dz dx dy

a = Bz{dx dy

dz)0 2
z2+.



Note that B(x,y,0) determines B(x,y,L).

We do not know B(x,y,0). We know only that

Bz(x,y,0) = BO.

However, we know from the physics that there
exists a unique lowest energy state in every case.

The essential information must be contained in the
precise topology (interlacing) of the field lines,
determined by \y.



How does a field line extend through the field?

Flux surface Sc defined by the curve C

The 2-D magnetic field in Sc has VxB = 0, B = -V(|>

B

The optical ray path for the wave expi<I>; index of
refraction n; is

dS

2 2

=n

The field line follows the equivalent optical ray path
with n = B.



Fermat's principle

8 J dsB = 0

Euler equation in a flat surface

d2y/dx2 _dlnB dy

(dy/dx)2] dy dx dx

Consider a localized maximum B + AB

Path across maximum , hAB; path around maximum,
Bw2/L Gap in flux surface when

AB w2

"B^I^



Consider a ridge of enhance AB(x) along x = 0.

(B + AB)cos0 = Bsins.

6 =
B J

as e-»0



Interlacing flux bundles wraps one flux bundle
around another, creating a localized maximum in AB
and a gap in the local flux surfaces.

Twisting a flux bundle causes the bundle to expand
against its neighbors, creating ridges of maximum AB
and refractive discontinuities in the magnetic field.



Consider the increase of B in a flux tube confined to
the radius xn = R as the bundle is subjected to a
uniform twisting.

Initially Bz= Bo. With one revolution of the field in
length 27ia, it follows that

Bz a

Static equilibrium is described by the generating
function f(tn), with

2 dro • 2 dm
Conservation of total flux requires

It follows from the ratio
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Conservation of flux requires that the constant of
integration C have the value

The magnetic pressure at the surface is

f(R)
P =

8TI

R2/a2)[ln(l

B
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The result is TD's throughout 0<z<L wherever
magnetic flux is twisted or wrapped.

With a small resistivity the Maxwell stress cannot
come into equilibrium, but contmues trying to do so,
producing rapid dissipation and reconnection.

The reconnection continues until the field topology is
reduced to so simple a form that TD's are no longer
an intrinsic part of static equilibrium.

The lowest available energy state of almost all
magnetic topologies has the remarkable reconnective
property of reducing the topology to a primitive form
over a modest period of time, no matter how small
the resistivity.

Reconnection occurs in astronomical settings
wherever both ends of an external magnetic field are
held in dense convecting plasma. The convection
continually drives the interlacing, so reconnection in
the extended field (low beta)is a continuing process.

Laboratory magnetic fields confining plasmas may
have small initial misalignments that provide weak
reconnection, altering the field topology after a time
so as to provide rapid reconnection.
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