Outline

- Introduction "Is there a limit?"
- Transistors "CMOS building blocks"
- Parasitics I "The [un]desirables"
- Parasitics II "Building a full MOS model"
- The CMOS inverter "A masterpiece"
- Technology scaling "Smaller, Faster and Cooler"
- Technology "Building an inverter"
- Gates I "Just like LEGO"
- The pass gate "An useful complement"
- Gates II "A portfolio"
- Sequential circuits "Time also counts!"
- DLLs and PLLs " A brief introduction"
- Storage elements "A bit in memory"

"The [un]desirables"

- Delay in CMOS circuits
- MOSFET capacitances:
 - Physical structure
 - Channel
 - p-n junctions

What causes delay?

- In MOS circuits capacitive loading is the main cause
- Due to:
 - Device capacitance
 - Interconnect capacitance

$$\Delta t = C \cdot \frac{\Delta V}{I} \approx \frac{C}{2 \cdot \mathbf{m} \cdot C_{ox} \cdot V_{dd}} \cdot \frac{L}{W}$$

MOSFET capacitances

- MOS capacitances have three origins:
 - The basic MOS structure
 - The channel charge
 - The pn-junctions depletion regions

MOS structure capacitances

 Source/drain diffusion extend below the gate oxide by:

 \boldsymbol{x}_{d} - the lateral diffusion

This gives origin to the source/drain overlap capacitances:

$$C_{gso} = C_{gdo} = C_o \times W$$

 $C_o (F/m)$

 Gate-bulk overlap capacitance:

$$C_{gbo} = C'_{o} \times L, \quad C'_{o} \quad (F/m)$$

Paulo Moreira

Parasitics I

MOS structure capacitances

0.24 µm process

NMOS L(drawn) = 0.24 μ m L(effective) = 0.18 μ m W(drawn) = 2 μ m C_o (s, d, b) = 0.36 fF/ μ m C_{ox} = 5.6 fF/ μ m² C_{gso} = C_{gdo} = 0.72 fF C_{gbo} = 0.086 fF C_g = 2.02 fF

Channel capacitance

- The channel capacitance is nonlinear
- Its value depends on the operation region
- Its formed of three components:
 - C_{gb} gate-to-bulk capacitance
 - C_{gs} gate-to-source capacitance
 - C_{gd} gate-to-drain capacitance

Operation region	C _{gb}	C _{gs}	C _{gd}
Cutoff	C _{ox} W L	0	0
Linear	0	(1/2) C _{ox} W L	(1/2) C _{ox} W L
Saturation	0	(2/3) C _{ox} W L	0

Channel capacitance

Paulo Moreira

Parasitics I

Junction capacitances

- C_{sb} and C_{db} are diffusion capacitances composed of:
 - Bottom-plate capacitance:

$$C_{bottom} = C_j \cdot W \cdot L_s$$

- Side-wall capacitance:

$$C_{sw} = C_{jsw} \cdot \left(2 L_s + W\right)$$

Junction capacitances

0.24 µm process

NMOS L(drawn) = 0.24 μ m L(effective) = 0.18 μ m W(drawn) = 2 μ m L_s = 0.8 μ m C_j (s, d) = 1.05 fF/ μ m² C_{jsw} = 0.09 fF/ μ m C_{bottom} = 1.68 fF C_{sw} = 0.32 fF C_g = 2.02 fF