Outline

- Introduction "Is there a limit?"
- Transistors "CMOS building blocks"
- Parasitics I "The [un]desirables"
- Parasitics II "Building a full MOS model"
- The CMOS inverter "A masterpiece"
- Technology scaling "Smaller, Faster and Cooler"
- Technology "Building an inverter"
- Gates I "Just like LEGO"
- The pass gate "An useful complement"
- Gates II "A portfolio"
- Sequential circuits "Time also counts!"
- DLLs and PLLs "A brief introduction"
- Storage elements "A bit in memory"

"CMOS building blocks"

- "Making Logic"
- Silicon switches:
 - The NMOS
 - Its mirror image, the PMOS
- Electrical behavior:
 - Strong inversion
 - Model
 - How good is the approximation?
 - Weak inversion
 - Gain and inversion

"Making Logic"

- Logic circuit "ingredients":
 - Power source
 - Switches
 - Power gain
 - Inversion
- Power always comes from some form of external EMF generator.
- NMOS and PMOS transistors:
 - Can perform the last three functions
 - They are the building blocks of CMOS technologies!

Light ON = $(A + \overline{B})\overline{D} + C$

Silicon switches: the NMOS

Silicon switches: the NMOS

Silicon switches: the PMOS

MOSFET equations

Cut-off region

$$I_{ds} = 0$$
 for $V_{gs} - V_T < 0$

Linear region

$$I_{ds} = \mathbf{m} \cdot C_{ox} \cdot \frac{W}{L} \cdot \left[\left(V_{gs} - V_T \right) \cdot V_{ds} - \frac{V_{ds}^2}{2} \right] \cdot \left(1 + \mathbf{1} \cdot V_{ds} \right) \text{ for } 0 < V_{ds} < V_{gs} - V_T$$

Saturation

$$I_{ds} = \frac{\boldsymbol{m} \cdot C_{ox}}{2} \cdot \frac{W}{L} \cdot \left(V_{gs} - V_T\right)^2 \cdot \left(1 + \boldsymbol{l} \cdot V_{ds}\right) \text{ for } V_{ds} > V_{gs} - V_T$$

Oxide capacitance

$$C_{OX} = \frac{\mathbf{e}_{OX}}{t_{OX}} \quad \left(F / m^2 \right)$$

• Process "transconductance" | t_{ox} = 5nm (~10 atomic layers)

$$\mathbf{m} \cdot C_{OX} = \frac{\mathbf{m} \cdot \mathbf{e}_{OX}}{t_{OX}} \quad \left(\mathbf{A} / \mathbf{V}^2 \right)$$

0.24μm process

$$C_{ox} = 5.6 fF/\mu m^2$$

MOS output characteristics

Linear region:

$$V_{ds}$$
< V_{gs} - V_{T}

Voltage controlled resistor

Saturation region:

$$V_{ds} > V_{gs} - V_{T}$$

- Voltage controlled current source
- Curves deviate from the ideal current source behavior due to:
 - Channel modulation effects

MOS output characteristics

MOS output characteristics

Bulk effect

- The threshold depends on:
 - Gate oxide thickness
 - Doping levels
 - Source-to-bulk voltage
- When the semiconductor surface inverts to n-type the channel is in "strong inversion"
- V_{sb} = 0 ⇒ strong inversion for:
 - surface potential > $-2\phi_F$
- V_{sb} > 0 ⇒ strong inversion for:
 - surface potential > $-2\phi_{F+}V_{sb}$

Bulk effect

Mobility

Is the quadratic law valid?

Weak inversion

- Is $I_d=0$ when $V_{gs}< V_T$?
- For V_{gs}<V_T the drain current depends exponentially on V_{gs}
- In weak inversion and saturation (V_{ds} > ~150mV):

$$I_d \cong \frac{W}{L} \cdot I_{do} \cdot e^{\frac{q \cdot V_{gs}}{n \cdot k \cdot T}}$$

where $I_{do} = e^{-\frac{q \cdot V_T}{n \cdot k \cdot T}}$

- Used in very low power designs
- Slow operation

Gain & Inversion

Gain:

- Signal regeneration at every logic operation
- "Static" flip-flops
- "Static" RW memory cells

Inversion:

- Intrinsic to the commonsource configuration
- The gain cell load can be:
 - Resistor
 - Current source
 - Another gain device (PMOS)

